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Figure 6. Experimental stability results for shock waves in CO2 superimposed on the
computed (normalized) equilibrium Hugoniot curves. Solid, crossed and open symbols
show cases classed as ‘unstable’, ‘doubtful’ and ‘stable’ shocks respectively. A DD
operation; O sb operation.
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~ Figure 6. Experimental stability results for shock waves in COz superimposed on the

computed (normalized) equilibrium Hugoniot curves. Solid, crossed and open symbols
show cases classed as ‘unstable’, ‘doubtful’ and ‘stable’ shocks respectively. A DD
operation; O SD operation.
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Ae/APh 237 Assignment No. 3, January 23, due January 30, 2003

PROBLEM 1.

Consider a general Hugoniot curve. Show that if a piston-velocity minimum exists, it must
lie between the specific-volume minimum and the entropy minimum.

PROBLEM 2.

Determine an equation for the Hugoniot curve for a solid with the following equations of
state:
e = e.(v) + T
p = p(v) + ¢,GT/v.

Simplify the Hugoniot for moderately strong shocks, py < p, po <€ p., €0 <K €.. Sketch the
curve.

PROBLEM 3.

Use the peculiarities of the isotherm at the critical point in order to determine a “law of
corresponding states” for a van der Waals gas, expressing these two equations with variables
normalized with their values at the critical point. Determine the boundary of the region in
vp-space where the fundamental derivative of gasdynamics I is negative. Make a quantitative
diagram showing this boundary and the saturated vapor boundary.

PROBLEM 4.

Consider waves in a retrograde fluid. Explain the cases that may arise when a piston in a
tube filled with this fluid is first withdrawn (brought suddenly to a speed moving away from
the fluid) and then suddenly stopped. Draw appropriate Rayleigh lines, zp-diagrams and
zt-diagrams.






mordimeay wrowsss s bort padomolieing ?
e
o fronehs °”j“"4 oLy ji*}“'ér“ "i@;’w
f\»wcdo/&o l} L prootenn ane

(o ple) , w(p), $=pn = QQo)

“:'*LD : ‘:f/. W W X C“M»—e(gx, 7

: ‘ ) - X
A

Xq X At y {QQ(X == ‘?C"'Cf’x




o Fowdbammmnk do Har ghadi pnide okt

/\wﬂwww %/ML‘@% wms%éewmwb/@
3’}@ AL O@%M W% A ensa L XX,

r_)_ﬁ_(_%f_efa}_#q_%éff_). = O .

— POLX ‘+’ - S O(/X = ﬂ«oﬁﬁ/\ -
d/% \*""a { dt “Si—(kgg

Wo oo teronbe Hoie »LW.:M& Lea LW#%’ Rele
<

X Dt t

s (¢
‘-r

W%MLLWW W(ow«/ MW»«/XDM S_
onnd_ M/\/\/L?O‘VVW {;)«Q/‘/LMM\, 5+M)(‘) Oy /\"/‘% X['“Xo‘”‘”

0 o m%«%ﬁo/ po diat Heeo, do

Neror S — ¢ o “’l’é\{,%m% OT—LV—{L} RO W Qe

ertns P s /gxﬁgw '\/»JK’“ oy, L(; S TPNTOY Ty N

& lﬂ"ﬁ Ax + f(smtk)ﬁi-f + g %%ix 5/‘\@&),*)%—;:: Yo

Axr

Hnd \cz\,{: —”‘—'-AC}?\\ %cm



!

W’O ANARBRAND w Q( A ‘kﬁgz, WC& g/‘k./('\’@fw |

l
@ , -
(gﬁi+4(€j?§%{v&o 2Q Cbﬂ

vk' ) s U C .

z | d |
| i / 7 1
| /L >
ECEAANT, :

i




o he 23y o

| |

Loan Hal ke ProAolenr i S {Dﬁgéx ok 4 =0
ot K -ascn ak X:==(S . M%W?@M-
AS Lo~ A+ WMW oAt t =0, Thero

et b i § e ek

e x= 9+ At

Horcer e loAna e;“) e mckal nveboe PVM

T ety , a= AR =219
B X = g—fé@)‘t’,

Stnen M%Fuwwvvg s Whone chiaracAinshe

W) o
cbianrochena s ande MW«J{T el s vl
MDD W-e/ MM erys ‘o ia—é/vvvvx;L /w-—w‘v d

A\

M%W@ AT J,D oTon~", T{p .&xwwa

e Qf“@a'+crf+cl(°2+‘ n
vxc%,b/o@ ~ ot /&A&Lw ters @

A ~




Then -,C +2c, E Lw%(l

B = T e 4

&(f)_,

Now c (%M%M(Q’W (}\ %MMWJQ
C.__A& Q+CP‘+C2ID—~Q CEFO CL

AF ‘ f)‘w—-{w

= C, + Czu‘\*f%}@'i P“‘)/{D‘”(_DO
= C, + &, (0, %p)

Bk a,+a Cit 2c,0, * ¢ +2,0

o
—

PA 2

p Q**-C(?,*’&‘CDB

o, [T 8~ 1 [ate m

omersnam——




) X
oY Lh(?a, 2

% L aE =0

ot 7%

oo

el
*//\7 Rt
X




Tomhormr oty Aadyimeally o e s 2,
5y AR (-5 = (g
g,

Lek Lo aboodl be at X:S(%B co ttas

s(e)= 5.+ ARt
v (€)= ¢, T AN
W%b ”C:: Eo"—'g'
Alg) - A(SD

S(£) | §L) o $ft) abong dee sboct




LEHEDEE
REaTER
g ennie)
elandalels)

23z | * 7
Bebiowioy of aboh at Lernci e,
A L% e W()M Mw
A dﬁ[ 4 e 5., Ao 2%«/

a‘o@o g1> = Séo 00L‘§ ’{”“@""‘ the egpat
Q4. MM - o <

A@M pw A(gym.

ok
oo, 2 [A@ ) -ao](5.- ) = S_‘g [Alg)-a,]dy
aloo 4 - 3.-%, |

A@ =,

L
W} L \A@—ao r o~ SESEA@-—%}&% _
Moo

) s(t)= 5.+ A(g\t
and = A5
A:“E»?co/f, —= 0 ond A@,) ——S:)QO,M@

tlsae L A et /
“/wi:;wﬁ o Ww M Sy

Foe L ag)-aolt = [ [Afy)-aoldg =3 says









L Ae Zg}ﬁl e ; al

A NS AT

(}W@AZ% Cwm F&« vk MM %VG—M ) B i
| per ek ) o = Q(@.
1‘ Mt W /\,\sfffe/w o anve 0 M} ~a e,
M < ) 0'2«24/\/4/‘ . p@«/ /QAM'J’“’WLDA\‘: ‘ g A e
Hee cav. So Q'@ = Wpow - M@Cj\/{:/?? ::éj}/
Q=0 , Ao @P)=0 . The - A :
A I;&.Siv?@s W i . FM |
R | Qm / s Stpe=a =RAuw daon he FJA ok tlat
coaio @ p)

a aansa et~ Llice
i\—* - : ) i




' { i :
; : : . ;
i - — i - EE !
H H N
| ! : : : .
I L - - : . - H i H . t E
| ; : ¢
. : B
PRI - - - - : ; -
; i i |
i : ' !
i H i '
N 3 ; .
i i |
3 . i . -
: \ .
; |
{
-~ R R -
; - -
: s
. . op - - - - L -
: : ; :
' : i ;
; 7 ; R L
v I i 1 H .
¢ H | ' . ‘ B
- - - - - - |- e i ) - - i
) : | ; ; i
! : ¢ : t
i B [ — ‘. . - - ; — L —
! i !
i N i .
| A - e — et e e e AU - R i . _
| i : ! |
i : +
i

; ! \J\\
i | ' ¢
R 1 - - C
¥ .
v i t
:
. i H * i
e iy L TS s 5 SN DS S .
i i
- i e ; ; - - .
i N I »
i i i i I
- s n S e e e, - -
t :
L i H ; J. e ot o




Ae 237 f 80

e e e e e o 4 i st 3 S ot st m e ek g _f

S{/wu;, LL(<D LLLOQM%M Lmkv VVME
mMWﬂ %W%WWWMJ%E

M,a/&wqﬁf /,3 Ao reladed to the
e oo Tianc Z'a/‘l%d»m&m WM&

Wﬂ/u,,c/z, lg&{/vu%wwv’am LLL g,o e Hal

Bl

{MM A”%ML” /o

T L =ur —
e 1

<o L= ;/‘°’ = (L' ) %% )






rea— ool 0 W do %F‘Sa“‘%‘&«_\, |

A / A

x i X | T X
The MwMM @( e abock acore Kos a
ot maaan (KD\' - [3) bl oo beliocs'on f)jly

A — O, ::—@ efe
Wase, Ao the Mwwﬂ‘g “5\‘( O Mﬁ”" @W

| WW&L&—J becehonenel Ao e S ol

|
’ i 73 ..ul

Wu, Ca/vvv» ) Qs ﬁ/ytgcuum B LrTid—C Wy |

/ ;


http:14-l>1.fk

bwkwwvﬁ \‘-CM&»X/*LO MW)WLu
Nt M Dozadion 8] Mo e Lo Yo
f%wmeMWWM/A@%&M&MWWM%@M%
bwmmwﬁmmmwﬂﬁﬂwmmd@““w%%”W

. M&HWFQLMWaWA%%mwiamuq%?M/

Lx%/&tf( ‘Era/( fnu

ok oy
Eo Al cny Seo %M«P b LW oM

o \ u}-é/v\—z ‘(\a/(/hc,/ /Q/\



-A\’.Nauaw ‘Bang %
i

R t?m/vx/& ahd AT "“EC»L H&{/rw, € S’(é""’ |

Heo rafle macéjvv&/l recche Renac ra/\owk
(o~ WQ/&W% e e Mcf«) oA cacle co |

YRS VIE S S




;%WW&) bid Avtatas ¥ relef e
%Mm/,uwu\i/{ L becor, a. Hlacte

AeAA




Ae 229 g | §8§

H
4
|
i

Vi e oo M}gutwgn‘@m) oA G e

H

Mh P s Comn 4/16 AR, B A A —
S e ek are preperbional bo dofin, o
bl PV

% 7’@¢ﬂ~wV%§

A Ue o V&ubmvﬁdf,w§amha48 \% A

o~

| U iTig o

| 2t 2x
/ ) ' »Bg 5 4 o
QL R

| Ve reeh oo /J/Leaxtj AehoA~ B do Hoig e,ef/wu%&\/

! ( i necidl J(/(/Mv o E‘LMM} MNM

- Speca coo~ol, Letde. J}( Hoo

A e o e
K e, 2oy
. E::X'——C«t







Nous Qo = dp ¢ _ _ ¢
5S¢ T d% & = Al
So 2
~c dp dp _ v 9
A

= C, -+ CLW*F@)

Q-—-(;F = c.+co+c Q»Cr—cz{:(f

- cerelpmrp o

= oS+ enleplle f>

W\/

oLH.S 7@ (e U A Maes Comatmart V\J

QCF*K'C@ ()/Q>

= e e (o re -G

s6.

c



http:C2-r0Cf'-ro)-C2.li

4 { B H ' ; § . ' .
- R W LI T . [ [ . - e e -
. } ' ; ' . ) ‘
- R - ! : i - '
; | . : ' ;
e et - — [ - : ; . .
| :
S . ) -
H :
: |
: . 1 . i y
- [ s ,w - . - - - —
. i - - R
s . | : , : ! : .
i 1 : .
H ;
i : ; ,
- : . . . P
; . ! ) ;
) . ) « : . i N !
' ! ¥ s . P e FRRT PSR- — o -
; ! ! .
t i .
; et ; - . - ;
; ) | E
! ; | .
. .
i
N +
H !
, . . ; ; .
:
: ~, ' ' i .
. — v e < s o snn o e o e e et e b o it e e
. - | N f N
H f : . « ; . «
i e e N e . I . : - _ .
B i i N
i i '
¢ ’ . | R v . -
: i
i
H . - - P
B i '
t .
: . . . :
. ;. V s i 1 e . AN 147 o818 W 91

‘










d% 1% 1 V L

J—— T m— e
s

A -Cz<f;“{‘") m B C"zf(f‘”/’d)

1

S v
4Cp (Pt'f"?}/ ‘

f\%ﬂw“’b arh WN/Q\ MMMM

Nede Hoh o covadanct €, s o
M\MAWW% u corel [am)m

A G

MAAAA ML W( and Hee devns 1«3 A s -

M i,(/vs/ an n
C — WA
3 5 .
fm/

HW/U—L-—/; {/[/L& WQWJ{A A 0’? %8 Ft?’vw/(a,&(//ut
| ol o P;—,@} Ao s

BE

4. Mj:

< : i

_ W g/e Ao ka) A~ A Ml/é .



i
et
i

[P—

i H
'
f
e . .

'

‘

'
'




U A iAo e a ?M’ o

Fo o M WWLLWJX/ A o x = deryesAs e
e AL o cwfh‘b««/%"@»w ‘Pa {’(,\,L Ww&
hers A~

M _ A ol/bp e
o = &1 ‘*‘/”"r'> T T
A %\«LWH—— f\}-ﬂaw%, | |

- — k4T

mOrfﬂ:o MM{,@W‘«/M b e
A A, (LL sy Q/F,MOL— et e o MB)

ORIV Lot —
Condr WJ} &;ﬁ 19,
A d\i+d/x e

Zlevre-figg)=e
ek AN ACU A AGEE AL S
pro = &= P — ©
FER R e ptn O

A

. i
Codho - fpde kAT L4 = A (g
> A f‘* A 2




ERETEL

E-?? ,_\—/K»L

E /Lbd;ét(";" }D“F;}“{—QDW — A
5 bdl g g Wbl @
@o 0LX /K /e'a _{_ Q -

é’;/w-e. fworr b= %CT)/O} b= &C/@ o
E(A—L MM e ,eyfu@%a/ WM c)} oAl
ol /w CT;(O oAk C’* | /{/Y@/V"\ Jctu. coradn

“{Tu/t'\ e Q///\,\_g(/ﬁve./ux/: % ‘{ff/x_a WL/UMM/} W

Cavuﬁ/s(rflm MVJHQ,‘;& a—of_ MM%"MM:

;M»J/Cw/&/tﬂ M”kwg} MvLmaW%
OMC% prt% A= k(7)) b= P@—)@u
"“‘”"")

AX

P""L K& ’C?i““

. A o
\Puu&— I C‘, — Py _ /‘? /U\. = O , ‘\ ¥ = ﬁj’— {x.f:fy:‘—"- ?‘Y%
Tk A = k"



P e = 5 (e ‘ S

Sehondvhde
A @ C:L/M,a( MMVLL—*LC«

AY e
x4 ’D“—'&WM,L Z(r\
3 D(/L 1
Zr—H (N " 6’«&-1%] i

The oA
| C o
M (:Y\Em,q(_/ L MAao 5,1/\/\.&._/(, M&/ E ‘{/L’\-L ‘Dyd/&
wo et = ok = U, =
» m M\a{/é’\.‘







T‘-——'; -’e\/a “‘%;
C‘P L
?u)‘b%}vv& (Qq = ¥ f:—"j e %M&A—-
=~ 11 D S
‘‘‘‘‘‘‘‘ oh Yo boAdon 3} B q1 bt cote—
et = Ro V-t(u-w)
wz( A /&0 — ‘%? o AL —

» 1

. TN N
L")‘F“ _ (/Li-/&'v\.,Cl u,) uz&yab-ﬂg

T

— ._.—if.—'f
i

A
Spedtlan(® oot gou ) koo e o

bond, Lo /f: 2z Auw @»m‘)(v—w)
Q, Bt Ax v |
o~ A, QW> |

f;QzA._:_JZI/aS . '»{:- ~ “ o
Profls am ateeqas b e oo



Ai’& = W~

“,

[



Ao 237F

Ny @ femo ) K*D e Pr=o

{-xi(x-D k A = @““/MKW‘ ""‘5
AT RQ, T &

T o’*”"‘_’"
P AL GG N _j
3 W, —t, I
§ T %/\a,u._, a W’M A~ CAA d/\w—Q; ,.,J'\mejm
P 2u, > PG/QD) Nie. arta b Aok o sudlio
~.z( c::,\e/;,\/(—»&{ /w—eég/k (NW 2LL,”>E>O/QO Ao aL,g—@{QM)
Lﬁ A, < %”“/Qo) e Q}A e belives oy

e inatttandl: shandde

i
£
|
;

gru/a( ol caai - Woede Ao

. '\—'——""\1 _ A N Ao——dd (:U(_E’(c.c)
A‘\z\. —_ M‘”VL?,{’( VW, = CL/ 3’\%‘\

N
§




Y ,
. i
e o “ | B ' T f ” . -
' : : e i ! : i ‘ : ; 7 e
i ; | | H ' . R [Rpe— ! | : e
: Lol : | S ! e e
< R | € { | . : e T I.A B I b 3
) i ; b e . ; ! : . | - SR S S ST :
- ! “ = e : Lo : 4 ,
- 4 2 - : i~ L } ,
! : P e R L o i
- . o ; : ! . : : N
M | o gl B , | _
| i H 4 ‘ : ¢
] p g : T ! ‘
i oy . H ' | R - i
) : : S VU S i ) o .
4 ol e e P } i i ¢ ; - i — ~ B ! ! ) T e i
| e — ! | : - i :
. ; ! . : ' :
! :
— o
. H - - ~ .
b - ] i i
! X ¢ i : . - -
. o | D n I
H - i } t 3 5 "~ &
i b u : )
. o i . _
| e . : e
i M Eod B D S
N — ) : S
| | | | CT
: : e e R — R !
: ) i I - ‘
. i ; . | : - —
: ¢ v + '
! : . I ; . -
H > : i
{ ; ; v ; .
H i | . L ;
H E o i : S
i b - . : T s e e
e ” i ST NS RO s e e
H . : i i . T T
: o 3 - , i
5 . : o wcbe - -
! i i i ' ; — by
m - -y £ T R {‘V\Q
| ,. | T
e -
9
—
ot
- <> ,QV

R I
w | AT




4

hﬁx\m/ﬂ, o socrred Ol/pm Ke wa_ﬁw«

=)

CRede - bl e LSt T WMW
WB 4-)/\,07 O wwvku/w m&(/&_ |
ir/(/\—e/v ‘*E,e’ug?{.n N

Lfvuﬁk{}l.»w “{“ L{:/(::é%(

waw




Ae/APh 237 Assignment No. 4, January 30, due February 6, 2003

PROBLEM 1.

In the relation
Q = Cy -+ C1p + CQ,L’)2

find the condition that determines whether expansions or compressions steepen. Obtain the
coefficients ¢y, c1, ¢ for the traffic flow problem in terms of the speed limit, V;,, the average
vehicle length, L, and the reaction time of the driver—vehicle system, 7. Hence show that,
for this flow, compression waves steepen. Obtain expressions for the density and vehicle
speed at the maximum flux density. What can be done to increase the maximum value of
Q7 Which of these measures would drivers like best? Explain.

PROBLEM 2.

The unimpeded flux density, @, in traffic flow may be larger than the corresponding time-
averaged flux density, @, for cases in which shock waves occur. Consider the case of traffic
flow with a traffic light of period 7}, equally divided between green and red. Use the relations
derived in Problem 1 to find the maximum value of ¢, for which the traffic light just does
not reduce the flux density. Also find the maximum delay imposed on an individual vehicle
by the traffic light at that condition. Make suitable approximations as you need them.

PROBLEM 3.

Make and discuss a gas-dynamical analogy of the traffic-light problem.

PROBLEM 4.

The density distribution of a one-dimensional, right-travelling wave is given at a particular
time by a triangular excursion from a constant value py. Take the amplitude and length of
the excursion to be p, and A. Determine the evolution of the density as a function of time
and space.
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PRESSURE-VELOCITY DIAGRAM
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p/po > 1 - Shock Discontinuities
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Note nonuniform vertical scale.

10Ilillrlflllilillillillillll|ill!llliil

vy =5/3

Shock ]

(=] .
<
N 0
< [ . Steady Expansion |
. Non—Steady Expansion -
_ Mg = 0 ]
-0.5F .
r- -
i Mo = 1 |
—1 'O | 1 S T | ! LTS U5 W WO . S S W b T A O O S N T | ]
-2 -1 0 1 2
Au/a,

6 February 1993



Ay s
SMM sl WM W{V‘h}—/{g{, W@&N |

£ A A b Aot fatd

— L an O cordaly M@
SR I A Gfp A Anted

o dr R )
ér-mkq ::\\i/& %ﬂ/,@a/v‘:w
ik o o i et
Wa/f—c, bo /?/‘v CM an 53/3(6“?""""(‘"‘?‘
LWM Lfo e /&./f e darge, (3/&‘-':»
We askdae “(“‘»\&g ‘3/3 v—tgt;vwm“% F%; F“L | W= e,

' B S 1

o ol
bopam- A e




|

e 23F | o

|

1! P*-x’,«wc—c{/{u /JIW{V) F’Wt H_g""‘"' + £
;

l

Pe oy zszx
P |

. ¥ 4

% \1‘2_("‘.5 \ <

S i
k“s B 3 zc-:m -0

SR ot
- %&“ﬁi} PPN

C e ok cane

‘_H;l \ Ay W A " b
Hs TR PR 3 P

A,

Mo — L = 29424 — (08
M & ¢

M = 109

A by ca/a:—; X

ety

W e L\?,/A‘V\/ ok ol e W\ufwm/i'bwt e _

i

29

ROV & W{A
SM %ezﬁ

w{%\, %ZM&/Q_ bk %ML-L %O/ZMLW
MQL/;M %#*ATW&%W‘/}M



20— I I i
- 20 a,/a, = 10
v, = 1.4
15 vy, =5/3 5 -
=~ 10+ 3 -
i 2 ]
5._ —
i 1 ]
Y 7 7 5 's
10 10 10 10 10
P4/ Py



RN

I
=&
5 =8 =3 n
Pa
—— = OO
ol -
/20 9
/3 rLe
EE 2.F
|
& /0
“«
29
FIG. 3

AN MM LLF ~ &'L\\é"\/%/\/&/\_«/\/



R

( B P ¢
B tionst rand
R

PR

i g R
dewh sbotho:
¢ e TS
i A ) N ) My
o f(}-\( thae %M Adoed
R Ak o Wprue o Uy = 2 M’é“"(
Ay ) Ay Tt Mg |
Moot Thgot e i l
T hg a, Mg |

E&XHS—-@kiﬂ[l*éﬂ"} M;? X—@Hi
$

Fov V’l_&?}l Q@
) — " . @z+
A, C‘”‘) Mg

mr‘,[x,s &?Lﬂ\,@ \oe/x%uw,,—o{-m cuwwfeﬂ'?a,w’{n%
Coloh oAi ‘L(AL fﬁ-cmm ~ H’/g/\g"\.\ S

_,._t-‘zri’ 1+ (3R J
)

3 [t (e -

Eﬁ&w




Aheonss Hi caae FSC%‘,‘)M ‘S.%é chosuotc S,c s b
et cae, 5t A Ao | QA b= by > Pe ) ?‘
Wy=ly >0. Thin cont o called PMMM/K
e ey e nleon ps < oot S,
B L T e T o

) \ L r
LLé = L«&?_ < O Tl\/\:—\> ~— o@_,w ﬁbeAM fﬁl«'\/&e‘\—'@/t’( v




/00

@)

10}

z|

| i
He = AIR
Mg B
F.6
2.0
L [ Srz -
(/) [ [ | |
o] p=4 g é & /10
“
2,
FIG. 2

0“"‘0( F§>F+

W /&tusfc/tv WU Caais b= F“‘



/000

/00

(‘0,‘;,

Ry
5,7)
S26

/0 (9

£t &

[ | I ]
- 8,7) A, ]
‘ i He -AlR
) Siy 36 ]
(5 |
Sas
fa 2
— /0 "
- 3) { A
Ms = 7-0
n Sie -
* y
- o UWAM(
Ses . -
¢ —
| Faz\\ . : 4
(A _ (e
(’2}3){ ;5;,- = O W\,
» /V,Zs = 2./ -
| | ] |
o c < & & 0
“®
a,

(22



EE5EES
2
&
k|
8
]
L
&

g

_3
t
N
%D ) e oy tooi Bl

24,

shodl. be Uy Qe dak g} Ml ;U(/CMM PSS c.ua,fj

Ap = P A



FIG. 6 TAILORED INTERFACE

/0



V. m Ww(%% %%u«p%—aﬁm |

){{Qe«»r /%:w Szg s

I+ MW u@twcf Jﬁm S N ;s«w«’ e

/s.},(u +u ) (,Lz{» . )ﬁ&

Mvuyﬂxc Wv(t.»t&(lw»c_,e, ﬁL Fc\/ wa Lo-ea A
Lum»e/; Toih oAl M\/u/u( o e ~dr @ de s

Mumm J(Lubﬁ J(Luv /a/cw«nk %Muwa @
l'(,u/,cwqu, /\/V\, 2 C‘LV‘-WL 3 {w JfL\_,e,,, (6/174% %ﬁu{u«é’k

pioch apeds




3
g
2
wz(

| 2p
A = _F -
Po {1+ 2
2 peo
adh cgmobe Sp = Lp, A, = Ol
<= .
. U oo
st, - Kiz? — —g' "f’ ?v‘b
a —
: \jl“r Xt X’s" >
2 5 P
é‘- - 3
L Peba
836 ‘ L«—{E = Bt %__%_z_,
T I ) —
V4 ekl Peps
Zx, “F3
TR Rl b o
2
T
L3 =y e L P e
A ’"‘\/ e \
- XIK/ L"{' ¥+ f’s*’ > MWM
| S
N .E‘ | ’

E = i@ﬁ (,/M = teliccAa, luta (S,AA
Ll/ WZ, 2

126



Ae/APh 237 Assignment No. 5, February 6, due February 13, 2003

PROBLEM 1.

By writing dz/dt = u, and expressing u in terms of z/aot in a left-facing centered expansion
propagating into a perfect gas at rest, find the equation of a particle path in (z, t)-space.
Hint:

de o _ d(z/t)

dt i dt
Plot the result and check that it gives the correct maximum speed.

PROBLEM 2.

Go through the case distinctions for convergence or divergence of characteristics in simple
compressions or expansions depending on the value of the fundamental derivative of gasdy-
namics, in the case when the Griineisen parameter is negative. Make a table of the results.

PROBLEM 3.

For a certain experiment it is necessary to produce a flow at Mach number 1.5 and density
2 kg/m? behind a shock wave in a shock tube. The test gas is air. Determine suitable values
of the diaphragm burst pressure and the initial shock tube pressure when the driver gas is
air and all temperatures are initially 300 K. Repeat this for helium driver gas. Comment.

PROBLEM 4.

Consider shock reflection from the end wall of a shock tube. Let the Mach number of the flow
downstream of the incident shock (in the laboratory frame) be M,. Show that the reflected
shock Mach number My is the reciprocal of M,. Make a plot of Mg as a function of ~, with
the shock Mach number, Mg, as a parameter. In shock tunnels, an undesirable feature is the
reflected—shock-induced separation of the boundary layer generated by the incident shock.
A rule of thumb for shock—induced separation is that, to avoid it, the shock Mach number
has to be smaller than 1.3. Is there a realistic range of v where we may expect that a strong
shock reflecting from an end wall will not cause boundary layer separation?
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Each of the three images shows an infinite—fringe interferogram of a shock propagating
from right to left at 6 km/s into nitrogen, and reflecting from a wedge of decreasing angle
to the horizontal from left to right. The fringes following the shock indicate the density
rise accompanying dissociation of the nitrogen. LEFT: Regular reflection, MIDDLE:
. small scale double Mach reflection, RIGHT: Double Mach reflection with distinctly :
; visible bulge of the Mach stem that characterizes the phenomenon in this regime of flow.
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44 ALLEN M. TESDALL AND JOHN K. HUNTER

conclusions in section 6.

2. The asymptotic shock reflection problem. The asymptotic shock reflec-
tion problem [11, 12, 14, 20] consists of the unsteady transonic small disturbance
equation

1
(2.1) us + (§u2> +uy =0,
P
Uy — Uz = 0

in the half space y > 0 with the initial and boundary conditions

_ [ 0 ifz>ay,
(22) w400 = { 1 ifz<ay,
(2.3) v(z,y,t) =0 ifz>oa(yt),

(2.4) v(z,0,t) = 0.

Here, z = o{y, t) is the location of the incident and Mach shocks. The location of the
incident shock is given by

(2.5) r=ay+ (% + az) t.

The incident shock strength, as measured by the jump in u, is normalized to one. This
problem depends on a single parameter a, the inverse slope of the incident shock.

These equations may be derived by a systematic asymptotic expansion of the
shock reflection problem for the full Euler equations for weak shock reflection off
thin wedges [12]. The variables u(z,y,t), v(z,y,t) are proportional to the z, y fluid
velocity components, respectively, and pressure perturbations are proportional to u.
The flow is irrotational and isentropic to leading order in the shock strength.

If the Mach number of the incident shock is M, and the wedge angle in radians
is 8., then (2.1)-(2.4) is obtained in the limit M -- 1 and 6, — 0, with

O

2.6 V et
(26) W, v

fixed. Because of transonic similarity, the asymptotic problem depends on a single
combination of the incident shock strength and the wedge angle. A regularly reflected
solution of (2.1)—(2.4) is impossible when a < v/2, and triple point solutions of (2.1),
in which three plane shocks separated by constant states meet at a point, do not exist.

The problem (2.1)~(2.4) is self-similar, so the solution depends only on the simi-
larity variables

=2 =¥
Writing (2.1) in terms of £, 7, and a pseudo-time variable 7 = log ¢, we get
1
(2.1 Ur — EUg — My + U . + vy =0,

Uy — vg = 0.

w3 »
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Fi1G. 2. Contour plots of u for increasing values of a, showing the full numerical domain. The

| u-contour spacing is 0.05.

i

TABLE 4.1
Numerically computed values of the size of the supersonic region at the triple point, the triple
point location, and the strength [u]r of the reflected shock at the sonic point. The shock strength is
measured by the jump [u] in u.
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7t X/t
(c)a=06 (d) a=0.8

Fic. 3. Contour plots of u near the triple point for increasing values of a. The u-contour
spacing is 0.005 in (a), and 0.01 in (b)—(d). The dotted line is the sonic line. The regions shouwn
contain the refined uniform grids, which have the following numbers of grid points: (a) 620 x 480,
(b) 768 x 608; (c) 346 x 260, (d) 245 x 150.
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Fia. 10. A comparison of u- and v-contours near the triple point for the two solutions shown
in Figure 9. The plots in (a) and (b) show u-contours for the solutions computed on the larger
and smaller domains, respectively, plotted at the same levels of u. The plots in (¢} and (d) show
v-contours for the solutions computed on the larger and smaller domains, respectively, plotted at the
same levels of v. The dashed line in (a)-(d) is the sonic line. The u-contour spacing in (a)—(b) is
0.005, and the v-contour spacing in (c¢)—(d) s 0.001.
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10

Maximum norm of residual
[ ot s e
) @, = <
> i IS [5

2
O Ty

Time step, n

F1G. 8. A plot of the mazimum norm of the residual, showing partial convergence on a sequence
of grids, followed by convergence on the most refined grid. The sharp local peaks correspond to inter-
polations onto more refined grids. The computation on the most refined grid begins at approzimately
n = 30000. The final stage of convergence to a value for the mazimum norm of the residual of less
than 10~2 is not shown in the plot.
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y/t
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F1Gc. 9. A check of the sensitivity of the solutions to the size of the numerical domain, showing
u-contours for two solutions computed on different sized domains, for a = 0.5. The full numerical
domains are shown, with u-contours for the large domain solution (dashed lines) and the small
domain solution (solid lines) plotted at the same values of w. Contour lines for u and v near the
triple point for both solutions shown here are compared in Figure 10.
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EXACT RESULTS (PRESENT WORK)
MIRELS ORIGINAL CORRELATION
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Ae237 Non-steady gasdynamics, 2003, Topics covered

Discrete waves in a medium, general shock jump conditions

Causality, stability, relation between Hugoniot, Rayleigh line, isentrope in dependence
of Griineisen parameter and fundamental derivative

General properties of the Hugoniot, Chapman-Jouguet points

Strong and weak detonations, deflagrations

Phase transitions, normal and retrograde fluids

Sound speed in mixed and vapor phase, expansion shocks, shock structure

Conditions near a critical point

. Weak shock theory

. Waves in traffic

Viscous dispersion, shock structure

Simple waves in one-dimensional flow, dependence on fundamental derivative, compar-
ison of steady and unsteady waves

Wayve interactions, shock tube, up-diagram, tailored interface operation
Evolution of a simple compression into a shock, more wave interactions
Wave interaction with an area change

Interaction of a shock with an area change

Two-dimensional flows, oblique shock, shock reflection from a wedge
Pseudo-steady flow, Mach reflection, case distinctions, information condition

Mach reflection in steady flow, von Neumann condition, dual solution domain, hystere-
sis, information condition again

Double Mach reflection, von Neumann paradox for very weak Mach reflection, resolu-
tion of v. N. paradox

Viscous effects, shock-generated boundary layer, displacement thickness and wall shear
stress

Viscous effects in Mach reflection
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THE EFFECT OF VISCOSITY ON THE MACH STEM LENGTH IN UNSTEADY STRONG SHOCK
REFLECTION

Hans Hornung
Institut fiir Experimentelle Stromungsmechanik
DEVLR~AVA, 3400 Géttingen, Bunsenstr. 10

Introduction

Consider a plane shock wave I travelling from right to left with a constant
speed ¢ into a uniform gas at rest relative to an inertial frame. Let the
shock strike a plane wedge whose leading edge is parallel to the plane of
the shock, see Figure I. Let the wedge be at rest relative to the same
inertial frame. The interaction of the shock wave with the wedge usually
causes a reflected shock R to be generated. In the situation shown in Fig-
ure I this occurs as a so-called regular reflection. The reason for the

Figure I Regular shock reflection viewed from an inertial frame
fixed in T (left) and from an inertial frame fixed in P (right)

reflected shock becomes evident when the flow in the vicinity of the
reflection point P is observed from a frame of reference moving with P. In
this frame the flow is steady in the neighbourhood of P, see Figure 1. In
region 1, the undisturbed gas moves with velocity =2 towards the shock I.
It is then deflected towards the wedge surface by I (region 2), and the
reflected shock performs the function of returning the flow direction to
the wall direction in region 3. In the reference frame of P the wall also
has the velocity dy of course.

We consider situations in which the flow is well approximated by the model
of an ideal, viscous, heat-conducting gas with a constant ratio of specif—-
ic heats ¥, shear viscosity p, heat conductivity k and density p. Let the
wall temperature be Ty and a representative reservoir temperature be T,.
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In such situations any global dimensionless quantity Q may be expressed as
a function of five parameters:

Q=0 (a/a, ¥, pad/u, ve/k, T /T,), or
(1) Q=Q (M, ¥ Re, Pr, T /T ).

where c¢_ is the specific heat at constant pressure and a2 = ¥p/p, p being
the pressure. In the inviscid (and non-conducting) limit this reduces to

(2) Q=0 (M, ¥).

We now return to shock reflection: As the wedge angle is reduced, so that
the angle a between I and the wedge surface (wall) is increased, an angle
a = ud(M1, ¥) is reached, beyond which it is not possible for the second
shock to return the streamline direction to that of the wall. The stream-
line direction in region 3 thus has a finite component towards the wall. As
a consequence a third shock, the "Mach stem" S appears, opening up a
fourth region between the wall and the triple shock point P which now
lies off the wall, see Figure 2. The velocities in regions 3 and 4 are dif-
ferent, but the pressures and streamline directions are the same. The
gtreamline f£rom the triple point is thus a vortex sheet V in inviscid
flow. This reflection configuration is called Mach reflection.

Figure 2 Mach reflection viewed from inertial frame fixed in P.

The different manifestations of shock reflection are too numerous to be
discussed here. The interested reader is referred to (1] and the extensive
list of references given in it. For our purposes it suffices to treat the
two configurations illustrated in Figures I-2, because we wish to single
out the effect of viscosity.

In the inviscid limit, the only characteristic length in the problem is d.
This increases linearly with the time t that has elapsed from the instant
of contact of the shock with the wedge tip. Hence the geometrical config-
uration of the flow also grows linearly with t 1if the wedge surface is
straight and smooth. Flows which exhibit this kind of selfsimilarity are
called pseudosteady. Their particular feature is that the flow becomes
independent of time in coordinates which are stretched by dividing the

~
<N
‘\)
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space coordinates by t. For inviscid pseudosteady flows the transition
from regular to Mach reflection occurs at

(2) c=c;s=ad My, 7).

The introduction of any second characteristic length into the problem nec-
essarily destroys the selfsimilarity of pseudosteady flows. For example,
if the gas is so rarefied that the mean free path ) is not extremely small
compared with d, the reflection configuration will look different when it
is near the tip than when it is far from the tip (see {2], [3]). Indeed,
this effect is intimately connected with the problem at hand, since the
introduction of viscosity brings into the problem the viscous length scale

(4) 2, =1/ (pq),
which is related to the mean free path by
(5) 8, = bA/M,
where, for a given gas, b is a numerical constant of order one.

Conseqguences to be expected from the introduction of viscosity into the
problem are therefore:

1. that the angle a:, at which transition from regular to Mach

*
reflection occurs in viscous flow, is different from “ps(Ml’ €},
and

2. that u:, depends on the additional parameters d/itV = Re, Pr
and Tw/To.

The first of these effects has been amply confirmed by [4] through exper-
iments conducted with a systematic variationof £, holding other parame-
ters constant. As regards the second, [4] makes the mistake of not
recognizing the fact that the destruction of the selfsimilarity through
the introduction of viscosity means that the transition angle varies with
the distance from the tip. This is because it had been tacitly assumed that
the effect of viscosity is local to the reflection, and a local charater-
istic length was sought for the Reynolds number. In [4] the length chosen
was the length of the Mach stem at observed transition, i.e. the observ-
er's smallest resolvable length.

This turns out to be an incorrect description of the facts. However, the
form of the wvariation of the viscous effect with !.V was correctly
modelled by {4], and agrees well with experiment. The mistake was not dis-
covered because both d and the observer's smallest resolvable length were
constant in the experiments of [4].
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The crucial guantity in the measurement of the condition for transition to
Mach reflection is the length of the Mach stem. The aim of the present work
is to determine the dependence of this quantity on the parameters in
equation (1) for Re »>> 1,

The free shear layer

Consider the Mach reflection shown in Figure 2. The velocity discontinuity
of the vortex sheet will be smeared out by the action of viscosity, so that
the rotational region grows in thickness with distance along V from the
triple point P. For laminar flow, this growth will be parabolic. In fact,
such shear layers become unstable after quite short distances and roll up
into discrete vortices thereafter. This effect may be observed in some
schlieren photographs of Mach reflection.

The effect of viscous diffusion on the streamline shape in a shear layer in
the region upstream of the point where the instability manifests itself,
is to cause a displacement towards the faster side. This displacement may
be expected to grow as the square root of the product of Ly and the distance
from P. However, in schlieren photographs e.g. of [4] it was not possible
to observe any such displacement, the vortex sheet V being clearly visible
and having no discernible curvature. In the following, the effect of vis~
cosity at the vortex sheet is ignored, because the viscous effect at the

wall produces much larger, and certainly observable angular changes, see
[4].

The shock=induced boundary layer at the wall

Consider Mach reflection from a frame of reference fixed relative to the
foot of the Mach stem, point A, see Figure 3. Let us focus attention on the
flow in the immediate vicinity of A. The velocity of the wall, Vi and of
the gas in region 1, vy, are equal . The Mach stem causes Vg the velocity
in region 4 to be smaller than Ver For inviscid flow this means that a
velocity discontinuity exists at the solid boundary. In viscous flow this
is smeared out to form a boundary layer. In our shock-fixed frame of refer~
ence the flow in the wvicinity of A is steady. The velocity in the
shock-induced boundary layer is everywhere greater than the free stream
velocity V4 If the wall temperature is uniform and equal to the static
temperature in region 1, the wall will be colder than the free stream, so
that the density will also be greater within the boundary layer than in the
free stream. Hence the displacement thickness of this boundary layer is
negative. Becker [5] gives a detailed treatment of such shock-induced
boundary layers. He shows that the displacement thickness 6* may be
expressed in the following form for laminar flow.

e
W
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(6) 6% /x = £, (M, %, Pr, T /T,) (2,,/%)2,

where x is the distance from A in the downstream direction along the wall,
and the subscript 4 signifies that "v and the function f are to be evalu-
ated at the conditions in region 4 cutside the boundary layer.

Figure 3 The Mach stem generates a velocity discontinuity which
is smeared out by viscosity to form a boundary layer. Viewed from
a frame of reference fixed in A

The influence of displacement thickness on Mach stem length

We now determine the mass of gas that has passed through the Mach stem dur-
ing its traverse of the distance d from the wegde tip, see Figure 2. We do
this for both the inviscid (pseudosteady, subscript ps) and the viscous
case. In the pseudosteady case the triple point path is straight, and in
the viscous case it describes a curve of so far unknown shape. Let Lv and
Lps be the Mach stem lengths in the viscous and pseudosteady case respec-
tively. Since the conditions in region 1 are independent of whether the
flow is viscous or not, the ratioc of the masses m,, and mpSl swept up by the
Mach stem in the viscous and pseudosteady case respectively is equal to
the ratio of the corresponding volumes swept through. I.e.

_ ~cd
(7) mv/mps'ZSo L, dz/(Lps d),
where z = d -~ x is the coordinate measured from T.

Now let us obtain another expression for this mass ratio. The mass that has
been swept up by the Mach stem is all contained in the region P'AB' in the
pseudosteady case and in the region PAB in the viscous case, see Figure
4. That is, the vortex sheet V separates the gas that has been processed by
5 from that which has been processed by I and R. We now assume that the
angle B between S and V is independent of viscosity and return to this
assumption later., We further assume that the conditions in region 4 are
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uniform except for the region occupied by the boundary layer. We also note
that, if we wished to accommodate the mass m,, of gas at the conditions 4,

Figure 4 Showing viscous, , and inviscid flow,—— —, in the

vicinity of the Mach stem, viewed from a frame of reference fixed
in A —m—-- , triple point paths

we would require a volume that is larger than the volume PAB by the dis-
placement volume of the boundary layer, i.e. by

(8) I§5oam® s¥ax| = £ £, 204%(1 tan 5)*/2

Hence,
my/m g = (L2tans +§ £, 2242 (1 tan B)B/z]/(LgstanB), or
3 2
(%) mv/mps = [szz M % £y (iv4tana)1/21‘v/2] /Lps’
We may now eguate (9) and (7) to get

(10) 2zt = L2+ 2, 1320 tan 8)2 /(2 tany),

where the upper limit of integration has been changed from d to z for con-
venience.

Let us now introduce the dimensionless variables
(11) ¢ =z/d, g(g) =L,/d, g' = dg/dg,

Assuming that B 1is independent of lv4 (see later), we substitute (11)
into (10) and differentiate w.r.t. { to obtain

(12) gtanx=gg' + aRe;"/2 gi/zg’,
where Re4 = ci/x?.v4 and a = f4(tanﬁ)1/z. Rewriting (12) in the form
{13) g'(1+aRe;1/2 g-1/2y = tan x,

1294
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we may see that direct integration is possible, giving
(14} g+2aRre; /2 ¢/ 2 = tanx+c,

where C is a constant of integration. Let us choose the boundary condition
g =0 at ¢ =0 suggested by the fact that, at the wedge tip, the Mach stem
length must be zero, and return to this choice later. This boundary condi-
tion puts C = 0. Solving (14), we obtain

(15) g=¢ tanx [ 1 - 2are;™2/(z tan 1)2/2] + o(Rej!), or
(16) L,=z tanx [1 - 2f, (tan B)/? Re;1/? /(2 tan x/d)¥/?),
te the accuracy permitted here (boundary layer assumptions). This result

is shown in Figure 5. It deserves some comment. In the inviscid limit, Re =

=, it gives the correct behaviour that Lv =z tan x = Lps’ In the viscous

Figure 5 Effect of viscosity on triple point path: , Viscous
flow; — ——, inviscid flow;wm.—.— , according to observer assuming
inviscid flow;--~---, by the procedure of [6]

case it predicts that the triple point path describes a curve which is con-
cave away from the wall. A tangent to this curve extrapolated back towards
the tip intersects the wall. In fact, the curve itself intersects the wall
at z = do' However, this occurs in a region where our asymptotic theory is
not valid, and where equation {16) does not give a good description of the
facts, since higher order terms in Re"}i’f would become important. A tan-
gent to the curve at a point z = d1 cuts the surface at a point

(17) z=d,=£, (d 2, tan 8)2/? (tanx)"3/2 .
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With the help of [5] and inviscid Mach reflecton theory, the right hand
sides of (16) and (17) can be evaluated for a given set of the parameters
M, ¥, Re, Pr, Tw/To and a.

Revision of assumptions made

Three assumptions made in the argument leading to the results of the pre-
vious section need to be discussed. The first is, that the Mach reflection
is assumed to have existed all the way from the tip, and this assumption is
contradicted by the results. This contradiction arises because of the lim-
itations of boundary layer theory. Consider eguation (17). It is clear
that do = O(lv4), so that the Reynolds nunmber based on do is O(1). The
results of the theory are restricted to large Reynolds numbers, so that
the theory must not be expected to be valid in the region z = O(do) . In the
range z »> do the negative contribution to the integrations in (7) and (8)

which arise from O < z < d, are O(Re"}l) . Hence they appear only in higher
order terms of the asymptotic theory and mnmust be neglected for
consistency.

The second assumption was that B is independent of viscosity. To investi-
gate its effect, consider the angles ¢V and "ps made by the paths of P and
P' relative to the wall. In the inviscid case, this is "ps = %. In the vig~
cous case it is

¢, = [arctan (dLv/dz) ]z=d
= arctan [tanx - £,({% , tanp tanx/d}l/z]
=% = £,(k,, tand tanx/d) /2 /(1 + tan®x),
(18) #,= -~ bRe;/% + o(Rejh).

The angle 63 between V and the direction of the triple point path is given
by the shock jump conditions applied in a frame of reference attached to
the triple point. Provided thatd »>> d,, it is possible to show that

- ~1/2
(19) 83, = B3, * by Reg /2.

The guantities b1 and b2 do not depend on Re,. Since
(20) B=1/2-(8+83),

- ~1/2
(21) BV - Bps + (b.l'bz) Re4 v

Hence the error in B incurred by the assumption is O(Rezl/z). Since 8 only

occurs in a term O(Re;‘l/z) in the results, the assumption is valid in the
asymptotic sense.
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The third assumption was that the conditions in region 4 are independent
of viscosity. By considering the speed of the Mach stem in the two cases
from a frame of reference fixed in the wall, it may be seen that this is not
quite correct. In all our considerations we took the viscous and inviscid
Mach stems to be at the same position, see Figure 4, Since the viscous Mach
stem is shorter, it must lag behind the inviscid one, however, because the
incident shock is in the same position for both cases. The separation of
the Mach stems is

(22) 4= (Lps - LV) tan{a + %},

so that this too is O(Re&l/z), see ecuation (16). An error in the free
stream conditions of this order affects the displacement thickness only in
higher orders, so that again, the assumption is wvalid in the asymptotic
sense.

The experimental evidence

Apart from the experimental results of [4] which support the parabolic
dependence of the viscous effects on Reynolds number, there are two items
of evidence worth noting here.

The first is in the experiments of Henderson and Gray (6] who showed that
the measured shock and vortex sheet angles did not agree with the shock
jump conditions if the triple point path was assumed to be a straight line
through the wedge tip. They adjusted the slope of the triple point path to
minimize the discrepancy. The resulting triple point path was found to cut
the wedge surface. This is in agreement with the behaviour described by
eguation (16), and equation (17) gives a quantitative expression for the
intersection point.

The second item of evidence is the behaviour of the Mach stem length in
rarefied gas flows. Such flows have been examined by Walenta [2] and
Schmidt {3}, who found that the triple point path emerges from the surface
at a distance from the tip which is of the order of 100 ). In unpublished
work, Walenta relates this effect to the dependence of the speed of shocks
of finite thickness on shock curvature. It is likely, however, that it is
at least partly due to the effect of shear viscosity at the wall.

Conclusions

An asymptotic theory for large Reynolds number is presented, which yields
an expression for viscous and heat conduction effects on the triple point
path of Mach reflection. The result predicts that viscosity and heat

. 0. A AR 8 e
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transfer to the wall cause the Mach stem length to be reduced by an amount
which increases as the square root of the distance from the tip of the
reflecting wedge. Some qualitative features of this solution are con-
firmed by independent experiments. The results are of considerable impor-
tance in the interpretation of experimental results on Mach reflection.
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