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Decay of plane shock waves in equilibrium flows
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A new model is presented for the decay of plane shock waves in equilibrium flows with an 
arbitrary equation of state. A fundamental challenge for the accurate prediction of shock 
propagation using analytical modeling is to account for the coupling between a shock’s 
motion and the post-shock flow. Our m odel accomplishes t his by n eglecting o nly higher-
order perturbations to the second velocity gradient, 𝑢𝑥𝑥 , in the incident simple wave. The 
second velocity gradient is generally small and exactly zero for centered expansion waves 
in a perfect gas, so neglecting its effect on the shock motion provides an accurate closure 
criterion for a shock-change equation. This second-order shock-change equation is derived 
for a general equation of state. The model is tested by comparison with numerical simulations 
for three problems: decay by centered waves in a perfect gas, decay by centered waves in 
equilibrium air, and decay by the simple wave generated from the constant deceleration of 
piston in a perfect gas. The model is shown to be exceptionally accurate for a wide range 
of conditions, including small 𝛾 and large shock Mach numbers. For a Mach 15 shock in 
equilibrium air, model errors are less than 2% in the first 60% of t he shock’s decay. The 
analytical results possess a simple formulation but are applicable to fluids with a  general 
equation of state, enabling new insight into this fundamental problem in shock wave physics.
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1. Introduction
Shock decay is fundamental to numerous problems in fluid mechanics, resulting from either
the geometric or unsteady expansion of the post-shock flow. Geometric effects have been
famously modeled by Whitham’s geometric shock dynamics (Whitham 1999, Chapter 8).
However, predicting shock decay from the interaction with an unsteady wave in a general
medium remains a challenging problem to describe analytically because a shock’s motion is
coupled with the post-shock flow. Predictive models for this wave interaction are important
because it is fundamental to many problems in shock wave physics. In detonation physics, it
is essential to the unsteady shock front of gaseous detonations (Jackson & Short 2013), to
critical phenomena like minimum ignition energy (Eckett et al. 2000), and to the operation of
detonation-driven shock tubes (Jiang et al. 2002). The interaction causes the shock attenuation
in experiments using flyer plates (Fowles 1960) and laser-driven shocks (Cottet & Romain
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1982). Application of geometric methods to problems like spherical blast wave propagation
is substantially complicated by the unsteady wave interaction (Best 1991). The interaction of
an unsteady expansion with a shock is isolated for plane shock waves in equilibrium flows,
and so this problem is the focus of the present article. With modern computational methods
it is straightforward to directly simulate these one-dimensional shock dynamics, however,
analytical methods remain essential for physical insight, time-efficient solutions, and analysis
of experimental and computational data.

Many shock propagation theories have been developed over nearly a hundred years of
research. A common analytical approach is to specify the conservation equations to the shock
discontinuity and combine them with the Rankine-Hugoniot equations. A single equation
can be derived, and early formulations by Cassen & Stanton (1948) and Chen & Gurtin
(1971) showed how shock acceleration is determined by the balance of the post-shock
pressure gradient with geometric divergence or chemical reaction, respectively. The resulting
equation is often unnamed but sometimes referred to as the shock-change equation (Fickett
& Davis 1979) or as singular surface theory (Wright 1976). A family of shock-change
equations can be derived that relate shock acceleration to a derivative of any post-shock flow
variable (Radulescu 2020). For one-dimensional equilibrium flows, predicting a shock’s
motion from these equations requires an additional condition on the post-shock flow, and this
condition is typically what distinguishes different shock propagation theories and determines
their accuracy for a given problem. Taylor (1939) developed a first theory by approximating
the post-shock pressure gradient as constant. Chandrasekhar (1943) obtained a solution
for weak shock pulses by assuming the velocity and sound speed to be spatially linear.
Friedrichs (1948) first solved the problem of a weak plane shock decayed by a centered
expansion in a perfect gas. This specific problem has seen significant attention since it is
the simplest formulation for a shock decayed by an unsteady wave. Burnside & Mackie
(1965) specifically analyzed the initial decay rate of the shock. Ardavan-Rhad (1970) and
Sharma et al. (1987) developed models also assuming linearity of the post-shock velocity
distribution. Fowles (1960) derives a similar theory to Friedrichs using a Murnaghan equation
of state. For general one-dimensional shocks (planar, cylindrical, and spherical), Brinkley
& Kirkwood (1947) derived a second-order shock propagation equation using a condition
on the similarity of shock energy over time. Many other theories have come from efforts
to model the non-self-similar motion of blast waves when the shock strength is finite and
the upstream pressure is nonzero. These theories are not reviewed here but are described in
monographs by Korobeinikov (1991), Sachdev (2004), and Lee (2016), which also discuss
some of the other theories above.

The shock-change equation formalism was also used by Chester (1954), Chisnell (1957),
and Whitham (1958) to model the effect of a nonuniform upstream medium on a shock’s
motion, particularly due to quasi-one-dimensional area changes. They neglected the coupling
between the shock’s motion and the post-shock flow, which is equivalent to assuming that all
incoming𝐶+ characteristics originate from a region of uniform flow. Whitham developed the
theory into his shock dynamics (Whitham 1999, Chapter 8) and identified that the method’s
fundamental assumption is

𝜕𝑡𝑃 + 𝜌𝑎𝜕𝑡𝑢 = 0 (1.1)
at the shock front, where 𝑃 is the pressure, 𝜌 is the density, 𝑎 is the sound speed, and 𝑢
is the particle velocity. The approximation has enabled expedient and reasonably accurate
estimation of shock motion for a wide range of problems. However, for problems with rapid
geometric expansion, such as in blast waves and shock diffraction (Skews 1967), coupling
with the post-shock flow cannot be ignored and so the accuracy of (1.1) is worse. The
effect of incoming disturbances on Chester-Chisnell-Whitham (CCW) theory was studied by
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Rośaciszewski (1960), Oshima et al. (1965), and Yousaf (1974, 1982), and ad hoc methods
(Ridoux et al. 2019) have been developed to remedy this issue for numerical implementations
of geometric shock dynamics (Henshaw et al. 1986). Best (1991) sought to include the effect
of incoming disturbances by extending the approximation (1.1) to higher orders.

Shock propagation theories are not limited to approximations on first-order post-shock
derivatives but can be formulated for any higher-order derivative. If a shock-change equation
is derived for each term in the series expansion of a dependent variable, then an infinite
hierarchy of equations can be obtained, and truncation of the series expansion provides a
sufficient condition to solve all lower-order equations. Friedlander (1958) presents this theory
in detail for sound pulses, where higher-order equations provide corrections to geometric
acoustics. Similarly, since geometric shock dynamics is obtained from (1.1), Best (1991)
derived higher-order corrections using a series expansion in terms of

𝜕𝑛−1
𝑡 (𝜕𝑡𝑃 + 𝜌𝑎𝜕𝑡𝑢) = 0. (1.2)

An alternative approach is given by Sharma & Radha (1994), who use a series expansion in
space of the post-shock pressure, so that truncation at order 𝑛 is given by

𝜕𝑛𝑥 𝑃 = 0. (1.3)

Although arbitrarily higher-order shock propagation equations can be derived, enabling in
principle arbitrarily accurate solutions, the utility of these methods is limited because higher-
order equations become exceedingly cumbersome to derive and the accuracy achievable at
any given order is not clear. Additionally, higher-order equations require initial conditions at
every lower order. These initial conditions cannot be arbitrary, since they must be compatible
with a series expansion of a solution to the governing equations. Obtaining these initial
conditions is itself a difficult problem.

The difficulty of these higher-order theories is highlighted for the problem of plane shock
decay. Plane shock waves in a uniform medium can only decay from the interaction with
a simple wave, which entirely determines the resulting shock motion. In the simplest case,
the wave is self-similar and centered, and a space-time diagram for the interaction with a
shock is shown in figure 1. The shock interaction generates a wave propagating along 𝐶−

characteristics, which perturbs the post-shock flow from purely the incident simple wave.
For an arbitrary flow variable, 𝑞, the perturbed quantity in the post-shock flow can be written
simply as

𝑞 = 𝑞 (0) + 𝑞 (1) , (1.4)
where 𝑞 (0) is given by the unperturbed incident simple wave and 𝑞 (1) is the perturbation.
An infinite hierarchy of shock-change equations can be obtained by a series expansion of 𝑞
at the shock front. The series expansion can be truncated to solve the system of equations,
however this introduces truncation error not only from the perturbation, but also the incident
wave. Instead, if only the series expansion for the perturbation is truncated,

𝜕𝑛𝑥 𝑞
(1) = 0, (1.5)

then the system of equations can be solved including the effect of the unperturbed simple
wave at all orders. The problem is then reduced to identifying the appropriate variable to use
for 𝑞 and obtaining initial conditions for the perturbed wave. The subject of this article is the
development, implementation, and validation of this theory for the decay of plane shocks.

Since shock wave phenomena are important in many diverse media, an important point
is that theories using the shock-change equation formalism can be derived for a general
equation of state. This has been used before by some authors. Brinkley & Kirkwood (1947)
derive their theory for a general equation of state, Best (1991) implements a Tait equation of
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Figure 1: Space-time diagram of a shock decayed by a centered expansion wave. This
diagram was generated from numerical simulation results presented later in this work for a
Mach 3 shock and isentropic exponent 𝛾 = 1.4. 𝑋0 is the shock’s initial distance from the

origin, and 𝑎1 is the upstream sound speed

state, and Singh & Arora (2021) applied Sharma & Radha’s theory to a van der Waals gas.
However, most prior work only considers a perfect gas model. The theory presented in this
article is derived for a general equation of state.

The structure of this article is as follows. In section 2, the problem of a shock decayed
by an arbitrary simple wave is formulated. From analysis of the simple wave motion, it will
be shown that an optimal truncation term is the second gradient of velocity, 𝑢𝑥𝑥 , which is
identically zero throughout a centered expansion in a perfect gas. The shock-change equation
for 𝑢𝑥𝑥 is derived in section 3. The derivation is developed by defining coefficients for each
first-order shock-change equation, which enables a compact presentation of the second-order
results. The second-order ordinary differential equation and strong and weak shock solutions
are discussed in section 4. In order to implement the shock decay model for any given simple
wave interaction, the initial shock decay rate is required. A solution for the perturbed initial
condition is given in in section 5. Finally, section 6 presents the major results of this article,
where the present model is compared with numerical simulations and several prior theories.

2. Formulation
An initially steady plane shock wave decays when overtaken by a simple expansion wave.
The properties of the expansion wave determine the rate of decay of the shock over time.
Any simple wave can be modeled as having originated from the motion of some piston. If a
piston impulsively accelerates to speed 𝑢2 and impulsively stops after time 𝜏p, then a shock
with speed𝑈0 is driven ahead of a centered expansion wave that overtakes the shock at later
time. Figure 1 depicts the resulting space-time diagram for a Mach 3 shock, where the time
when the piston stops is 𝑡 = 0. Coordinates are scaled by the shock position when the piston
stops, which is given by

𝑋0 = (𝑈0 − 𝑢2)𝜏p. (2.1)
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The space-time diagram shows the𝐶− characteristics of the reflected wave. The particle path
drawn intersects the point at which the shock begins decaying and so bounds the region of
nonuniform entropy behind the shock. The nonuniform entropy and reflected wave perturb
the incident simple wave.

The theory of simple waves is discussed in many books, e.g., Thompson (1972) and Landau
& Lifshitz (1987). The equations describing any simple wave for a general equation of state
are

𝑥 = (𝑢 + 𝑎(𝑢))𝑡 + 𝑓 (𝑢), (2.2)

d𝑢 − d𝑎
Γ − 1

= 0 on 𝐶− characteristics, (2.3)

where 𝑓 (𝑢) is some function that satisfies the boundary conditions given by the piston motion
and Γ is the fundamental derivative of gas dynamics (Thompson 1971).

If the piston is impulsively stopped, then all characteristics are centered at the stopping
point and (2.2) becomes

𝑥 = (𝑢 + 𝑎(𝑢))𝑡. (2.4)
Equation (2.4) is also obtained asymptotically from (2.2) as 𝑡 → ∞, because on a given 𝐶+

characteristic 𝑓 (𝑢) is constant and so becomes much smaller than (𝑢 + 𝑎(𝑢))𝑡. Using (2.3),
the velocity gradient in the centered wave is given by

𝑢𝑥 =
1
Γ𝑡
, (2.5)

which shows that 𝑢𝑥 is spatially uniform, except for any variation in Γ. If the medium is a
perfect gas, then Γ = (𝛾 + 1)/2 is constant, where 𝛾 is the ratio of specific heat capacities,
and the first and second velocity gradients are

𝑢𝑥 =
2

(𝛾 + 1)𝑡 (2.6)

𝑢𝑥𝑥 = 0. (2.7)

The second gradient, 𝑢𝑥𝑥 , is exactly zero everywhere throughout the wave. From (2.3),
it is straightforward to show that the second gradient of sound speed, 𝑎𝑥𝑥 , is also zero
everywhere. Second order derivatives of all other dependent variables are nonzero. The
temperature, pressure, and density throughout the wave are given by

𝑇 = 𝑇0

(
𝑎

𝑎0

)2
,

𝑃 = 𝑃0

(
𝑎

𝑎0

) 2𝛾
𝛾−1

,

𝜌 = 𝜌0

(
𝑎

𝑎0

) 2
𝛾−1

,

(2.8)

where the subscript 0 denotes a reference state in the isentropic flow. For values of 𝛾 where
𝑛 = 2𝛾/(𝛾 − 1) is an integer, then the lowest-order gradients of 𝑇 , 𝑃, and 𝜌 to vanish are

𝜕3
𝑥𝑇 = 0, (2.9)

𝜕𝑛+1
𝑥 𝑃 = 0, (2.10)
𝜕𝑛−1
𝑥 𝜌 = 0. (2.11)
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For 𝛾 = 5/3, 𝑛 = 5, and for 𝛾 = 7/5, 𝑛 = 7. In Best’s truncation term (1.2), partial derivatives
with respect to time are used. For all second order derivatives, including mixed partials, only
𝑢𝑥𝑥 and 𝑎𝑥𝑥 are zero. This can be seen by suitably differentiating (2.4) and (2.8).

For a centered expansion in a perfect gas, 𝑢𝑥𝑥 and 𝑎𝑥𝑥 can only be nonzero behind a
decaying shock due to the perturbation by reflected waves. The proposed model is to neglect
this perturbation and apply 𝑢𝑥𝑥 = 0 at the shock, which is a sufficient condition to obtain a
second-order shock propagation equation. The term 𝑢𝑥𝑥 is chosen over 𝑎𝑥𝑥 due to the simpler
derivation and because it is continuous through jumps in the entropy gradient, such as across
the particle path in figure 1. Note that this model is only applied in the limit approaching
the shock position from behind, and so it is independent of discontinuities in 𝑢𝑥𝑥 , e.g., at the
head of the reflected wave.

For an arbitrary simple wave in a general medium, 𝑢𝑥𝑥 ≠ 0, and so this variation must be
accounted for. If Γ is not constant, then

𝑢𝑥𝑥

𝑢2
𝑥

= −Γ − 1
Γ

𝜕𝑎Γ, (2.12)

where 𝜕𝑎Γ is the variation of Γ with the equilibrium sound speed at constant entropy. For
many cases, (2.12) may be sufficiently small that it can be neglected, for example, this will
be shown for equilibrium air. In cases where this approximation cannot be made, then the
𝑢𝑥𝑥 in the unperturbed incident wave must be evaluated for each characteristic.

If the piston slows to a halt monotonically but its motion is otherwise general, then 𝑢𝑥 and
𝑢𝑥𝑥 are given by

𝑢𝑥 =
1

Γ𝑡 + 𝑓 ′ (𝑢) , (2.13)

𝑢𝑥𝑥 = −
(
𝜕Γ

𝜕𝑎

����
𝑠

(Γ − 1)𝑡 + 𝑓 ′′ (𝑢)
)
𝑢3
𝑥 , (2.14)

and, for a perfect gas,
𝑢𝑥𝑥

𝑢2
𝑥

= − 𝑓 ′′ (𝑢)
(𝛾 + 1)𝑡/2 + 𝑓 ′ (𝑢) . (2.15)

By neglecting only the perturbation to 𝑢𝑥𝑥 by reflected waves, the unperturbed value given
by (2.15) can still be used to evaluate 𝑢𝑥𝑥 at the shock. However, as discussed previously, the
simple wave from a general piston deceleration rapidly approaches the self-similar centered
expansion as time advances. So, an additional approximation is to still apply 𝑢𝑥𝑥 = 0 at
the shock and use (2.15) to estimate the additional induced error. This is equivalent to
approximating the incident simple wave as a centered expansion with an equivalent initial
velocity gradient 𝑢𝑥 , which determines the initial shock decay rate.

The tendency toward a self-similar solution is a feature of many fluid mechanics problems,
including shock propagation. Strong decaying shocks over sufficiently large time approach
a self-similar limit described by Zel’dovich & Raizer (1967). In this limit, 𝑢𝑥𝑥 again equals
zero, including behind the decaying shock, even if 𝑢𝑥𝑥 ≠ 0 initially from a general piston
motion and the reflected perturbation. Uniformity of the velocity gradient in self-similar
flows is a property discussed by Pert (1980) and motivated the work by Sharma et al. (1987).
Indeed, Chandrasekhar (1943) and Ardavan-Rhad (1970) both also use similar models. The
difference here is that 𝑢𝑥𝑥 is assumed to be zero only at the shock front, and no assumptions
are made about the flow further behind the shock.

This shock decay model will be compared with numerical simulations to test the three
factors that cause 𝑢𝑥𝑥 to deviate from zero. First, simulations of shocks decayed by a centered
expansion in a perfect gas will evaluate the magnitude of the perturbation by the shock
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interaction, since 𝑢 (0)𝑥𝑥 = 0 exactly. Second, simulations of shocks decayed by a centered
expansion in equilibrium air will provide one example of a general equation of state that
significantly departs from a perfect gas. Third, simulations of shocks decayed by the simple
wave generated from the constant deceleration of the piston will examine the departure from
𝑢
(0)
𝑥𝑥 = 0.

3. Shock-change equations
The aim of the following derivation is to obtain the shock-change equation that relates plane
shock motion with post-shock values of 𝑢𝑥𝑥 . Aspects of the derivation appear in many
previous articles, including recent work (Radulescu 2020). However, other than the main
results, a useful feature of the present derivation is the formalism of defining coefficients for
each shock-change equation. These coefficients can be evaluated independent of any problem
and provide a substantially more compact approach for deriving higher-order shock-change
equations for a general equation of state. In this work, equilibrium flow is specified throughout
because nonequilibrium phenomena, such as vibrational relaxation or exothermic chemical
reaction, are also coupled with the shock motion. These effects are included in many shock-
change equation derivations (Fickett & Davis 1979; Sharma & Radha 1994), however they
are beyond the scope of the present work. Equilibrium flow assumes that the time scale
of these phenomena is either much greater or smaller than characteristic flow time scales.
Vincenti & Kruger (1965) describe equilibrium flows in detail.

The equations of motion for equilibrium flow in one dimension, neglecting diffusion of
mass, momentum, and energy, are

D𝜌
D𝑡

+ 𝜌 𝜕𝑢
𝜕𝑥

= 0, (3.1)

D𝑢
D𝑡

+ 1
𝜌

𝜕𝑃

𝜕𝑥
= 0, (3.2)

D𝑃
D𝑡

− 𝑎2 D𝜌
D𝑡

= 0, (3.3)

where 𝑎 is the equilibrium sound speed. An equation of state closes the system and can be
specified generally, for example, as 𝑎 = 𝑎(𝑃, 𝜌). It is useful as a first step to combine the
continuity and energy equation, which gives

D𝑃
D𝑡

+ 𝜌𝑎2 𝜕𝑢

𝜕𝑥
= 0. (3.4)

Consider a shock propagating with speed𝑈 (𝑡) and position 𝑋 (𝑡) into an otherwise uniform
flow with conditions given by 𝑢1, 𝑃1, and 𝜌1, where subscript 1 denotes the upstream state.
The derivation in the case of a nonuniform upstream flow is given by Schoeffler & Shepherd
(2023a). Although the shock is unsteady, the discontinuous jump in flow variables can
still be found by control volume analysis and is given instantaneously at all time by the
Rankine-Hugoniot equations,

𝜌2𝑤2 = 𝜌1𝑤1, (3.5)
𝑃2 + 𝜌2𝑤

2
2 = 𝑃1 + 𝜌1𝑤

2
1, (3.6)

ℎ2 + 𝑤2
2/2 = ℎ1 + 𝑤2

1/2, (3.7)

where subscript 2 denotes the post-shock state, ℎ is the enthalpy, and 𝑤 is the flow velocity
in the shock-fixed frame, i.e., 𝑤 = 𝑈 − 𝑢. With an equation of state, the Rankine-Hugoniot
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equations can be solved for the post-shock state, where each quantity can be written generally
as

𝑤2 = 𝑤2(𝑤1, 𝑃1, 𝜌1),
𝑃2 = 𝑃2(𝑤1, 𝑃1, 𝜌1),
𝜌2 = 𝜌2(𝑤1, 𝑃1, 𝜌1),
𝑎2 = 𝑎2(𝑃2, 𝜌2),

= 𝑎2(𝑤1, 𝑃1, 𝜌1).

(3.8)

Assuming 𝑢1 = 0, then 𝑤1 = 𝑈 (𝑡). Since 𝑤1 = 𝑈 (𝑡) is not constant, the post-shock quantities
are varying with time, and so the flow is nonuniform. The resulting gradients behind the
shock are described by the conservation equations, (3.2) and (3.4), evaluated at the shock
discontinuity, i.e.,

D𝑢
D𝑡

����
2
+ 1
𝜌2

𝜕𝑃

𝜕𝑥

����
2
= 0,

D𝑃
D𝑡

����
2
+ 𝜌2𝑎

2
2
𝜕𝑢

𝜕𝑥

����
2
= 0.

(3.9)

The time-variation of any post-shock variable can be obtained by differentiating (3.8), e.g.,
for the post-shock pressure,

d𝑃2
d𝑡

=
𝜕𝑃2
𝜕𝑤1

¤𝑈 (𝑡), (3.10)

where ¤𝑈 (𝑡) is the shock acceleration. The partial derivative coefficient is only a function of
the shock Hugoniot and instantaneous shock speed. The time derivative of the post-shock
quantity 𝑃2 is equivalent to a total derivative of the field variable evaluated at the shock’s
position, 𝑃(𝑋 (𝑡), 𝑡), i.e.,

d𝑃2
d𝑡

=
𝜕𝑃

𝜕𝑡

����
2
+𝑈 (𝑡) 𝜕𝑃

𝜕𝑥

����
2
. (3.11)

This derivative is analogous to the material derivatives in the conservation equations and
referred to as shock derivatives. Material derivatives can be expressed in terms of shock
derivatives by

D
D𝑡

����
2
=

d
d𝑡

+ (𝑢2 −𝑈)
𝜕

𝜕𝑥

����
2
. (3.12)

Applying (3.12) to the (3.9) gives
d𝑢2
d𝑡

+ (𝑢2 −𝑈)𝑢𝑥,2 +
𝑃𝑥,2

𝜌2
= 0,

d𝑃2
d𝑡

+ (𝑢2 −𝑈)𝑃𝑥,2 + 𝜌2𝑎
2
2𝑢𝑥,2 = 0,

(3.13)

where subscript notation has been adopted for partial differentiation. The equations can now
be combined to eliminate either the pressure or velocity gradient. Eliminating the pressure
gradient and simplifying gives

d𝑃2
d𝑡

+ 𝜌2𝑤2
d𝑢2
d𝑡

+ 𝜌2𝑎
2
2𝜂𝑢𝑥,2 = 0, (3.14)

where

𝜂 = 1 −
𝑤2

2

𝑎2
2
. (3.15)
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The shock derivatives can be expanded in terms of the shock acceleration by differentiating
(3.8) as shown in (3.10). Equation (3.14) becomes

𝑢𝑥,2 = − 1
𝜌2𝑎

2
2𝜂

[
𝜕𝑃2
𝜕𝑤1

+ 𝜌2𝑤2
𝜕𝑢2
𝜕𝑤1

]
¤𝑈. (3.16)

This result can be expressed compactly as

𝑢𝑥,2 = 𝐹 ¤𝑀, (3.17)

where ¤𝑀 = ¤𝑈/𝑎1 and

𝐹 = − 𝑎1

𝜌2𝑎
2
2𝜂

[
𝜕𝑃2
𝜕𝑤1

+ 𝜌2𝑤2
𝜕𝑢2
𝜕𝑤1

]
. (3.18)

The coefficient 𝐹 is nondimensional and only a function of the shock Hugoniot. Equation
(3.17) represents one of a family of shock-change equations that relate first-order derivatives
of post-shock flow variables with the shock acceleration. All first-order shock-change
equations can be expressed similarly in terms of a coefficient multiplying the shock
acceleration to give any post-shock flow derivative.

Shock-change equations for all other post-shock flow derivatives can be derived using
(3.17). The equation for the pressure gradient can be derived from the momentum equation
(3.2),

1
𝜌1𝑎1

𝜕𝑃

𝜕𝑥

����
2
= − 𝜌2

𝜌1𝑎1

D𝑢
D𝑡

����
2

= − 𝜌2
𝜌1𝑎1

[
d𝑢2
d𝑡

− 𝑤2
𝜕𝑢

𝜕𝑥

����
2

]
= − 𝜌2

𝜌1

[
𝜕𝑢2
𝜕𝑤1

− 𝑤2
𝑎1
𝐹

]
¤𝑀

= 𝐺 ¤𝑀,

(3.19)

where𝐺 is the corresponding coefficient for the pressure gradient. The shock-change equation
for the density gradient can be obtained from (3.1) and is

𝑎1
𝜌1

𝜕𝜌

𝜕𝑥

����
2
= 𝐻 ¤𝑀 (3.20)

𝐻 =
𝑎1
𝜌1𝑤2

(
𝑎1
𝜕𝜌2
𝜕𝑤1

+ 𝜌2𝐹

)
(3.21)

With 𝐺 and 𝐻, coefficients for any other thermodynamic quantities can be derived using
the equation of state. For example, the sound speed gradient is given by

𝜕𝑎

𝜕𝑥

����
2
= 𝐸 ¤𝑀 (3.22)

𝐸 = 𝜌1𝑎1
𝜕𝑎

𝜕𝑃

����
2
𝐺 + 𝜌1

𝑎1

𝜕𝑎

𝜕𝜌

����
2
𝐻 (3.23)

where the partial derivative coefficients are thermodynamic functions.
All of the above are first-order shock-change equations. By differentiating the conservation

equations, a similar procedure of substitution can be used to obtain higher-order shock-change
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equations. The gradients of (3.2) and (3.4) are

𝜕

𝜕𝑥

(
D𝑢
D𝑡

+ 1
𝜌

𝜕𝑃

𝜕𝑥

)
= 0, (3.24)

𝜕

𝜕𝑥

(
D𝑃
D𝑡

+ 𝜌𝑎2 𝜕𝑢

𝜕𝑥

)
= 0. (3.25)

Expanding the derivatives gives

𝑢𝑡 𝑥 + 𝑢2
𝑥 + 𝑢𝑢𝑥𝑥 −

1
𝜌2 𝜌𝑥𝑃𝑥 +

1
𝜌
𝑃𝑥𝑥 = 0, (3.26)

𝑃𝑡 𝑥 + 𝑢𝑥𝑃𝑥 + 𝑢𝑃𝑥𝑥 + 𝜌𝑥𝑎2𝑢𝑥 + 2𝜌𝑎𝑎𝑥𝑢𝑥 + 𝜌𝑎2𝑢𝑥𝑥 = 0, (3.27)

and by re-expressing time derivatives as shock derivatives we have

d𝑢𝑥
d𝑡

− 𝑤𝑢𝑥𝑥 + 𝑢2
𝑥 −

1
𝜌2 𝜌𝑥𝑃𝑥 +

1
𝜌
𝑃𝑥𝑥 = 0, (3.28)

d𝑃𝑥

d𝑡
− 𝑤𝑃𝑥𝑥 + 𝑢𝑥𝑃𝑥 + 𝜌𝑥𝑎2𝑢𝑥 + 2𝜌𝑎𝑎𝑥𝑢𝑥 + 𝜌𝑎2𝑢𝑥𝑥 = 0. (3.29)

Eliminating 𝑃𝑥𝑥 gives a single equation,

d𝑃𝑥

d𝑡
+𝜌𝑤 d𝑢𝑥

d𝑡
+𝜌𝑤𝑢2

𝑥−
𝑤

𝜌
𝜌𝑥𝑃𝑥+𝑢𝑥𝑃𝑥+𝜌𝑥𝑎2𝑢𝑥+2𝜌𝑎𝑎𝑥𝑢𝑥+(𝜌𝑎2−𝜌𝑤2)𝑢𝑥𝑥 = 0. (3.30)

The shock derivatives of post-shock gradients can be found from differentiating the first-
order shock-change equations, i.e.,

1
𝜌1𝑎1

d𝑃𝑥,2

d𝑡
= 𝐺′ ¤𝑀2 + 𝐺 ¥𝑀, (3.31)

d𝑢𝑥,2
d𝑡

= 𝐹′ ¤𝑀2 + 𝐹 ¥𝑀, (3.32)

where ¥𝑀 is the second time derivative of the shock Mach number, and 𝐹′ and 𝐺′ are

𝐹′ =
d𝐹
d𝑀

, 𝐺′ =
d𝐺
d𝑀

. (3.33)

Therefore, by replacing all post-shock gradients with their corresponding shock-change
equation and grouping terms, equation (3.30) can be simply expressed as

¥𝑀 + 𝐾 ¤𝑀2 + 𝐿𝑎1𝑢𝑥𝑥,2 = 0, (3.34)

where 𝐾 and 𝐿 are second-order shock-change coefficients given by

𝐾 =

[
𝐺′ + 𝑀𝐹′ + 𝑀𝐹2 −

𝜌2
1

𝜌2
2
𝑀𝐺𝐻 + 𝐹𝐺 +

𝑎2
2

𝑎2
1
𝐻𝐹 + 2

𝜌2𝑎2
𝜌1𝑎1

𝐸𝐹

]
(𝐺 + 𝑀𝐹)−1, (3.35)

𝐿 =
𝜌2𝑎

2
2

𝜌1𝑎
2
1
𝜂(𝐺 + 𝑀𝐹)−1. (3.36)

Similar to the first-order results, 𝐾 and 𝐿 are nondimensional and valid for an arbitrary
equation of state, where the only assumption has been that the flow is in thermodynamic
equilibrium. Equation (3.34) is the desired second-order shock-change equation for 𝑢𝑥𝑥 .

Sharma & Radha (1994) instead formulate a second-order shock-change equation in terms

Rapids articles must not exceed this page length
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of 𝑃𝑥𝑥 , and Best (1991) uses 𝜕𝑡 (𝑃𝑡 + 𝜌𝑎𝑢𝑡 ). These equations can be derived using (3.34). To
obtain the equation for 𝑃𝑥𝑥,2, (3.34) is substituted into (3.28), which gives upon simplification

¥𝑀 + 𝐽 ¤𝑀2 + 𝑁
𝑃𝑥𝑥,2

𝜌1
= 0 (3.37)

where the coefficients are

𝐽 =

𝐹′ + 𝑀 𝜌1𝐾

𝜌2𝐿
+ 𝐹2 −

𝜌2
1

𝜌2
2
𝐺𝐻

𝐹 + 𝜌1𝑀

𝜌2𝐿

, (3.38)

𝑁 =
𝜌1
𝜌2

(
𝐹 + 𝜌1

𝜌2

𝑀

𝐿

)−1
. (3.39)

The coefficients for Best’s formulation are more complex and therefore derived separately in
Appendix A.5.

For a perfect gas, the equation of state is given by the ideal gas law, and the heat capacities
are constant. All of the shock-change coefficients can be re-expressed as functions of only 𝑀
and 𝛾. Some of the coefficients are given here explicitly,

𝐹 = − 2
𝛾 + 1

3𝑀2 + 1
𝑀 (𝑀2 − 1)

, (3.40)

𝐺 = − 2(𝑀2 + 1)
(𝛾 − 1)𝑀2 + 2

− 2(3𝑀2 + 1)
(𝛾 + 1) (𝑀2 − 1)

, (3.41)

𝐻 = −2(𝛾 + 1)𝑀2(3(𝛾 − 1)𝑀4 − (𝛾 − 3)𝑀2 + 2(𝛾 + 2))
(𝑀2 − 1) ((𝛾 − 1)𝑀2 + 2)3 , (3.42)

𝐾 =
−3𝑀 ((9𝛾 − 7)𝑀4 + 10(𝛾 + 1)𝑀2 − 3𝛾 + 13)
(𝑀2 − 1) ((7𝛾 − 5)𝑀4 + 2(𝛾 + 5)𝑀2 − 𝛾 + 3)

, (3.43)

𝐿 = − (𝛾 + 1) (𝑀2 − 1)2((𝛾 − 1)𝑀2 + 2)
2(7𝛾 − 5)𝑀4 + 4(𝛾 + 5)𝑀2 − 2𝛾 + 6

. (3.44)

The coefficient for the sound speed gradient, 𝐸 , can be obtained from (3.23) using the perfect
gas equation of state,

𝑎 =
√︁
𝛾𝑃/𝜌. (3.45)

Each shock-change coefficient above is plotted for a range of 𝑀 and 𝛾 in Appendix B.

4. Shock decay model
For a known incident simple wave, the unperturbed second velocity gradient 𝑢 (0)

𝑥𝑥,2 can be
used to close the shock-change equation (3.34) and solve for the shock Mach number time
evolution. As discussed in section 2, 𝑢 (0)

𝑥𝑥,2 = 0 exactly for centered expansion waves in a
perfect gas and can be applied as a model for arbitrary simple waves with a general equation
of state. By applying this to (3.34), then the following shock propagation equation is obtained

¥𝑀 + 𝐾 ¤𝑀2 = 0,
𝑀 (0) = 𝑀0,

¤𝑀 (0) = ¤𝑀0,

(4.1)
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Figure 2: 𝐾−1 for a range of 𝑀 and 𝛾

where𝐾 = 𝐾 (𝑀) is given by (3.35) for a general equation of state and (3.43) for a perfect gas.
The system of equations (4.1) describes an initial value problem, which can be numerically
integrated for known initial conditions and equation of state to obtain the solution 𝑀 (𝑡).

For a perfect gas, figure 2 shows that 𝐾−1 has a near linear dependence on 𝑀 , which
suggests approximating it as

𝐾 ≈ 𝐾 (𝑀0)
𝑀0 − 1
𝑀 − 1

, (4.2)

where 𝐾 (𝑀0) is the value of 𝐾 at the initial condition. With this approximation, (4.1) can be
integrated analytically, and the solution is

𝛿(𝑡) = 1
(1 + 𝛽𝑡/𝛼)𝛼 ,

𝛿(𝑡) = 𝑀 (𝑡) − 1
𝑀0 − 1

, 𝛽 =
− ¤𝑀0
𝑀0 − 1

, 𝛼 = − 1
𝐾 (𝑀0) (𝑀0 − 1) + 1

.

(4.3)

The solution has the functional form of a power law, where the exponent 𝛼 is determined by
the function 𝐾 . 𝛽 is the initial shock decay rate and provides the time scale for the shock’s
evolution.

The shock decay model (4.1) was integrated for a range of initial shock Mach numbers and
𝛾 using a fourth order Runge-Kutta scheme. The results are shown in figure 3 with the power-
law approximation (4.3), where the time coordinate is scaled by the initial shock acceleration.
Compared with numerically integrating (4.1), the approximate solution (4.3) is reasonably
accurate with errors larger for increasing 𝛾 and 𝑀0. For 𝑀0 = 10 and 1 ⩽ 𝛾 ⩽ 5/3, the error
given by the approximate solution when 𝛿 = 0.4 is less than 1.4%, and when 𝛿 = 0.2 it is
less than 4.7%. Values for the power law exponent, 𝛼, are plotted in figure 4.

The shock acceleration can be obtained by differentiating (4.3) and is
¤𝑀

𝑀0 − 1
=

−𝛽
(1 + 𝛽𝑡/𝛼)𝛼+1 (4.4)

𝜏d =

(
− ¤𝑀
𝑀 − 1

)−1

=
1
𝛽
+ 𝑡

𝛼
. (4.5)
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Figure 3: Shock decay model and its power-law approximate solution for a perfect gas
with (a) 𝛾 = 1.2, (b) 𝛾 = 1.4, and (c) 𝛾 = 1.6
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Figure 4: Variation in 𝛼 with 𝑀 and 𝛾

The time scale of local unsteadiness for a particle processed by the decaying shock is given
by 𝜏d. Equation (4.5) shows that 𝜏d increases linearly with time as the shock decays.

The weak shock limit for 𝛼 is obtained from a series expansion about 𝑀0 = 1 and is

𝛼 =
1
2
+𝑂 ((𝑀0 − 1)4). (4.6)

The leading-order term is the 1
2 power that is well known to be the solution for weak shock

decay from Friedrichs (1948). Notably, this approximation is good to four orders in (𝑀0 − 1)
and independent of 𝛾.

The strong shock limit, 1/𝑀0 → 0, gives

𝛼 =
7𝛾 − 5

4(5𝛾 − 4) +𝑂 (𝑀−2
0 ), (4.7)

where in this case 𝛿 = 𝑀/𝑀0 and 𝛽 = − ¤𝑀0/𝑀0.
The power-law approximation has important correspondence with self-similar theories.

Self-similar solutions typically apply in some asymptotic limit for a given problem (Barenblatt
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& Zel’dovich 1972). For strong shocks, in the limit of large time, when 𝛽𝑡/𝛼 ≫ 1, the typical
formulation of self-similar shock propagation is obtained,

𝑀 ∼ 𝐴𝑡−𝛼 (4.8)

where 𝐴 = 𝑀0(𝛽/𝛼)−𝛼 and 𝛼 is interpreted as the similarity exponent. In our model, 𝛼
for strong shocks is given by (4.7), which provides a good approximation for the similarity
exponents reported by Zel’dovich & Raizer (1967) for the problem of an impulsive load
(note that the exponent is defined differently here). The agreement is not surprising since the
self-similar solution results in 𝑢𝑥𝑥 = 0, so the assumptions of the present model will yield
exact results for such cases. This suggests that the general formulation for 𝐾 could be used to
obtain similarity exponents for other equations of state by examining the limit of 𝑀 → ∞.

The power-law approximation motivated recent work by the authors to model the decay of
plane shocks in detonation-driven shock tubes (Schoeffler & Shepherd 2023b). The strong
shock formulation was used to fit simulation data, where 𝛼 and 𝛽 were instead used as fit
parameters. The agreement was excellent and provided a method for quantifying shock decay
for varying shock tube conditions.

5. Initial shock decay rate
When a simple wave first overtakes an initially steady shock, then the initial shock accelera-
tion, ¤𝑀0, is required to implement the shock decay model (4.1). This quantity is not generally
known and must be estimated. Rough estimates can be obtained by using a first-order shock-
change equation with a gradient in the incident simple wave, however the first-order gradient
is instantaneously perturbed by the interaction. A clear illustration of this is to compare the
velocity and pressure gradients for a given shock acceleration, which cannot simultaneously
match the gradients in the simple wave. The ratio of the pressure gradient to the velocity
gradient in the incident simple wave is

1
𝜌1𝑎1

𝑃𝑥

𝑢𝑥
=
𝜌2𝑎2
𝜌1𝑎1

, (5.1)

and the ratio behind a shock is
1

𝜌1𝑎1

𝑃𝑥,2

𝑢𝑥,2
=
𝐺

𝐹
. (5.2)

These two quantities are generally not equal. For moderate strength shocks in gases with
1 ⩽ 𝛾 ⩽ 5/3, then

𝐺

𝐹

𝜌1𝑎1
𝜌2𝑎2

> 1, (5.3)

which increases for greater 𝑀 and smaller 𝛾. Clearly, both the pressure and velocity gradients
behind a decaying shock wave cannot be simultaneously matched to the incident gradients
of a simple wave. The wave reflected by the interaction is necessary to match flow gradients
with the values given by shock-change equations. The initial gradients are perturbations of
the incident values.

The perturbed post-shock state can be modeled as

𝑢 = 𝑢 (0) + 𝑢 (1) ,
𝑃 = 𝑃 (0) + 𝑃 (1) ,

(5.4)

where superscript (0) terms describe the incident simple wave, and superscript (1) terms
describe the perturbation by the reflected wave. 𝑢 and 𝑃 are the flow variables in the general
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region behind the shock. The approximation is that 𝑢 (0) ≫ 𝑢 (1) and 𝑃 (0) ≫ 𝑃 (1) . Then, to
leading order, the 𝐶+ characteristic equation is (Landau & Lifshitz 1987, §104)[

𝜕

𝜕𝑡
+ (𝑢 (0) + 𝑎 (0) ) 𝜕

𝜕𝑥

] (
𝑢 (1) + 𝑃 (1)

𝜌 (0)𝑎 (0)

)
= 0, (5.5)

and so gradients along 𝐶+ characteristics are given by

𝑢
(1)
𝑥 + 𝑃

(1)
𝑥

𝜌 (0)𝑎 (0)
− 𝑃 (1)

(𝜌 (0)𝑎 (0) )2
𝜕𝜌 (0)𝑎 (0)

𝜕𝑥
= 0. (5.6)

When the simple wave initially overtakes the shock, the reflected wave only perturbs the
derivatives of post-shock flow variables, so that at the shock

𝑢
(1)
2 = 0,

𝑃
(1)
2 = 0,

(5.7)

and (5.6) becomes

𝑢
(1)
𝑥,2 +

𝑃
(1)
𝑥,2

𝜌2𝑎2
= 0. (5.8)

The perturbation (5.4) can be applied to the shock-change equations, giving

𝐹 ¤𝑀 = 𝑢
(0)
𝑥,2 + 𝑢

(1)
𝑥,2, (5.9)

𝜌1𝑎1𝐺 ¤𝑀 = 𝑃
(0)
𝑥,2 + 𝑃

(1)
𝑥,2. (5.10)

From a 𝐶− characteristic through the simple wave, the unperturbed gradients are related by

𝑢
(0)
𝑥,2 −

𝑃
(0)
𝑥,2

𝜌2𝑎2
= 0 . (5.11)

Equations (5.8) and (5.11) can be used to eliminate the pressure gradient terms from (5.10),
which gives

𝜌1𝑎1𝐺 ¤𝑀 = 𝜌2𝑎2(𝑢 (0)𝑥,2 − 𝑢
(1)
𝑥,2), (5.12)

and (5.12) can be combined with (5.9) to eliminate the perturbation term, 𝑢 (1)
𝑥,2. The result is

1
2

(
𝐹 + 𝜌1𝑎1

𝜌2𝑎2
𝐺

)
¤𝑀 = 𝑢

(0)
𝑥,2 . (5.13)

For a given simple wave incident upon a shock with initial velocity gradient 𝑢 (0)
𝑥,2, the

shock-change equation (5.13) can be used to compute the initial shock acceleration, where
the resulting velocity and pressure gradients are consistent with an acoustic perturbation to
the incident simple wave. It is convenient to express (5.13) with a new coefficient,

𝐵 =
1
2

(
𝐹 + 𝜌1𝑎1

𝜌2𝑎2
𝐺

)
, (5.14)

the inverse of which is plotted in figure 5 for a perfect gas with various 𝛾.
Equation (5.13) can be used to calculate the initial shock decay rate, 𝛽, defined by (4.3).

For a centered wave in a perfect gas, 𝑢 (0)
𝑥,2 is given by (2.6), where 𝑡 is the time when the wave

first intersects the shock. Figure 6 plots 𝛽 for various 𝛾.
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Figure 5: 𝐵−1 for a range of 𝑀 and 𝛾

1 2 4 6 8 10
M

0.0

0.5

1.0

β
a1/X0

γ=1.1
γ=1.2

γ=1.4
γ=1.6

Figure 6: Variation in 𝛽 with 𝑀 and 𝛾, where 𝛽 is given by (4.3)

6. Numerical simulations
6.1. Methods

Numerical simulations were performed using the open-source finite-volume CFD toolbox
OpenFOAM-9 (Greenshields 2021) and the solvers implemented in the library blastFoam-5
(Heylmun et al. 2021). The equations of motion are solved in conservative form, so that the
tracked variables are {𝜌, 𝑢, 𝑒}. Fluxes are interpolated using the scheme by Kurganov et al.
(2001) and limited using the functions by van Albada et al. (1997) and van Leer (1974).
Second-order Runge-Kutta time integration was used. Various validation cases are included
in the blastFoam library, including the relevant test problem of interacting blast waves from
Woodward & Colella (1984).

For simulations of centered expansion waves, the initial condition corresponds with the
time when the piston impulsively stops, 𝑡 = 0, as described in section 2. At this time, post-
shock conditions for 𝑃, 𝑇 , and 𝑢 are uniform from the left domain boundary, 𝑥 = 0, up to
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Figure 7: Example of shock displacement calculation using cross correlation of pressure
gradients

the shock position at 𝑥 = 1. A zero velocity boundary condition at 𝑥 = 0 causes a centered
expansion to form as time advances.

For all simulations, the grid resolution was 2.5 · 103 cells per unit length, i.e., the initial
distance of the shock from the left boundary. Time steps were adjusted to preserve a maximum
Courant number of 0.25. Time steps were written to file at a rate adjusted based on the
expected initial shock acceleration. The criterion chosen was 𝛽Δ𝑡 = 0.001, where Δ𝑡 is the
sampling interval. Simulations were run until shocks had decayed to approximately 𝛿 = 0.4.
The domain lengths were adjusted accordingly. Typical simulation domains were 5 · 104

cells, and 3 · 103 time steps written to file. A grid-resolution study including post-processing
methods was performed for 𝑀 = 10 and 𝛾 = 1.4 for resolutions up to 104 per unit length
and confirmed grid independence of the results.

Shock speeds were measured from simulation results using a cross-correlation algorithm.
For every pair of sampled time steps, the cross-correlation of the pressure gradient was
computed, and the resulting correlation peak provides an estimate for the shock displacement.
Because the numerical shock profile approximates an error function, pressure gradients and
their cross correlation are accurately modeled by a Gaussian. Hence, the computed cross-
correlations were fit to a Gaussian of the form

𝑓 (𝑥) = 𝑎e𝑏 (𝑥−𝑥0 )2
, (6.1)

where 𝑎, 𝑏, and 𝑥0 are fit parameters. 𝑥0 provides a sub-grid-resolution estimate for the shock
displacement. This algorithm was chosen for giving much less noisy data than, for example,
computing the shock speed from the post-shock pressure or directly differentiating shock
position data. Figure 7 illustrates the algorithm. In (a), two pressure gradients are shown, and
their cross-correlation is fit to a Gaussian in (b).

In order to quantify residual terms in the second-order shock-change equation (3.34), it was
necessary to compute ¥𝑀 , which requires numerically differentiating𝑀 twice. This is prone to
significant noise, so a smoothing algorithm was employed. Data for 𝑀 were smoothed using
the Whitaker smoother as described by Eilers (2003). This algorithm was chosen because
it does not require interpolation at domain boundaries and so distortion is reduced when
compared to other common smoothers. Distortion is nonetheless nonzero, so for estimation
of the initial shock acceleration, ¤𝑀0, a cubic polynomial is fit to the first 100 points of 𝑀 ,
and its derivative is evaluated at the time when the shock begins decaying.

The decay model (4.1) was solved numerically using a fourth-order Runge-Kutta integrator,
where ¤𝑀0 was computed using (5.13). For perfect gas calculations, 𝐾 is given by (3.43). For
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calculations of strong shock waves in equilibrium air, 𝐾 is given by (3.35), and all shock-
change coefficients were computed using Cantera (Goodwin et al. 2021) and the Shock
and Detonation Toolbox (Kao et al. 2020). This was done by computing the equilibrium
post-shock state for a range of shock speeds, and numerically differentiating the resulting
data.

Thermodynamics for equilibrium air composed of 21% O2 and 79% N2 were computed
with Cantera using the ninth-order polynomials given by McBride et al. (2002) including
ionic species. For implementation of equilibrium air in OpenFOAM, the equation of state
was specified using tabular look-up methods available in blastFoam, where 𝑃 and𝑇 are given
in terms of tabular data of 𝜌 and 𝑒. The data tables were generated using Cantera.

6.2. Decay by a centered expansion in a perfect gas
The time evolution of velocity, pressure, and their gradients is shown in figure 8 for a
representative case with 𝑀0 = 7 and 𝛾 = 1.4. Artifacts in the gradients at the shock front
were eliminated by downsampling the data by a factor of five before computing the gradient.
The leftmost contour corresponds to a time just before the expansion wave is incident upon
the shock, and subsequent contours are after the shock has begun decaying. The interaction
reflects a left-propagating wave along 𝐶− characteristics, which introduces kinks in the
velocity and pressure profiles. Although not obvious from (a) and (c), they are apparent in
the velocity and pressure gradients in (b) and (d) as step discontinuities. This discontinuity
propagates along the leading characteristic of the reflected wave and in (b) is not to be
mistaken for a small numerical artifact that is apparent in early profiles. The pressure gradient
in (d) shows a kink between the step discontinuity and the shock front, which corresponds
to the particle path that bounds the region of nonuniform entropy. These features in both the
velocity and pressure profiles are clearly weak compared with the gradients introduced by
the incident centered wave, which is consistent with the claim made in section 5 that they
can be modeled as perturbations.

The initial shock acceleration, ¤𝑀0, was measured from simulation results and compared
with the value predicted using three estimates. The relative error of these three estimates is
shown in figure 9 for three values of 𝛾 and 𝑀0 ranging from 1.5 to 10, where the relative
error is given by ¤𝑀0,est/ ¤𝑀0,sim − 1. As discussed in section 5, 𝑢 (0)

𝑥,2 and 𝑃 (0)
𝑥,2 are the velocity

and pressure gradients in the incident centered expansion, unperturbed by the reflected wave
from the interaction with the shock. Using these quantities and their shock-change equations
directly introduces significant error for small 𝛾 and large 𝑀0. The method described in
section 5 uses the shock-change coefficient, 𝐵, that takes into account the effect of a weak
acoustic perturbation and is effectively an average of the two other methods. The result is
that 𝑢 (0)

𝑥,2/𝐵 is a consistently more accurate prediction of ¤𝑀0. The average error is uniformly
0.5%, and this is attributed in part to the numerical methods.

In figure 10 results from a simulation for 𝑀0 = 3 and 𝛾 = 1.4 are used to evaluate
the accuracy of various theories from prior work including the new model given by (4.1).
Solutions by Chandrasekhar (1943), Brinkley & Kirkwood (1947), Friedrichs (1948), Sharma
et al. (1987), Best (1991), and Sharma & Radha (1994) are plotted. Details on implementation
of these theories are described in Appendix A. It is important to note that, except for Friedrichs
(1948) and Sharma et al. (1987), all theories require the initial shock acceleration to be
known, so the solution (5.13) was used for this. Clearly, the present model is most accurate,
nearly indistinguishable from the simulation results. Theories by Chandrasekhar (1943) and
Brinkley & Kirkwood (1947) are both also quite accurate, and so they are compared with
the present model and simulation results for a stronger shock, 𝑀0 = 7, in figure 11. In this
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Figure 8: Early evolution of velocity, pressure, and their gradients for 𝑀0 = 7 and 𝛾 = 1.4.
The leftmost profile corresponds to 𝑡 = 0.381√𝛾, just prior to wave incidence, and

Δ𝑡 = 0.127√𝛾 between each subsequent profile
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Figure 9: Estimates of ¤𝑀0 using shock-change equations with unperturbed gradients in
incident simple wave compared with values measured from numerical simulations

case, the other models begin to diverge from the simulation results, but the present model
still closely agrees.

The present model is compared to three simulation cases in figure 12 with 𝑀0 = 3, 𝑀0 = 6,
and 𝑀0 = 9 for 𝛾 = 1.4. The time-evolution of the relative error between the model and
simulation, given by 𝑀model/𝑀sim − 1, is shown in (b). Shock decay is slightly faster for
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Figure 10: Comparison of various theories for the decay of a 𝑀0 = 3 and 𝛾 = 1.4 shock
with simulation results and our model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

X0/a1

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

M

simulation
present model
Chandrasekhar (1943)
Brinkley and Kirkwood (1947)

Figure 11: Comparison for the decay of a 𝑀0 = 7 and 𝛾 = 1.4 shock

the model, such that errors are uniformly negative. For 𝑀0 = 3, it appears that the error
approaches a constant value, but for 𝑀0 = 6 and 𝑀0 = 9 it is still increasing in magnitude.
Although the duration in time of each simulation is not the same, they capture the same
amount of shock decay, 𝛿 = 0.4.

Since errors are largest at final simulation time, they are plotted in figure 13 for all simulated
cases. The dependence on 𝛾 is shown with additional data for 𝑀0 = 7 in (b). Error is larger



21

0.0 2.5 5.0 7.5 10.0
t

X0/a1

1

3

6

9
M

(a)

simulation
model

0.0 2.5 5.0 7.5 10.0
t

X0/a1

−0.015

−0.010

−0.005

0.000

M
 re

la
tiv

e 
er

ro
r M0 = 3

M0 = 6

M0 = 9

(b)

Figure 12: Time-evolution of (a) 𝑀 from numerical simulations and model predictions
and (b) model error. All cases are for 𝛾 = 1.4
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Figure 13: Relative error in model prediction for 𝑀 at end of simulated time,
corresponding to 𝛿 = 0.4. Dependence on 𝛾 is shown with more data in (b) for 𝑀0 = 7

for smaller 𝛾 and increasing 𝑀0. For shock decay up to 𝛿 = 0.4, error for 𝛾 = 1.2 is less than
3%, error for 𝛾 = 1.4 is less than 2%, and error for 𝛾 = 1.6 is less than 1%. For 𝑀0 = 7,
error is nearly 7% for 𝛾 = 1.01.

Other than the estimate for ¤𝑀0, the only assumption in the model is that 𝑢𝑥𝑥,2 = 0, and
so the nonzero errors in figure 13 illustrate that this is not exactly true. Although 𝑢𝑥𝑥,2 = 0
in the initial centered expansion, the interaction with the shock generates a perturbation to
the flow resulting in a nonzero value for 𝑢𝑥𝑥,2. The shock-change equation for 𝑢𝑥𝑥,2 (3.34)
is analytically exact, and so can be used to compute the magnitude of the perturbation
from simulation data. In figure 14, the terms of (3.34) are plotted for the simulation case
𝑀0 = 7 and 𝛾 = 1.4, where 𝐾 is computed using the simulated 𝑀 . In (a), ¥𝑀 and −𝐾 ¤𝑀2 are
nearly indistinguishable. From (3.34), their difference is the residual term 𝑎1𝐿𝑢𝑥𝑥,2, which
is plotted in (b) and shows a small nonzero value initially, before rapidly decreasing to near
zero. The initial magnitude of the terms in (a) is roughly twenty times greater than the initial
value in (b), which shows that the perturbation is small compared to the terms in (a) and
illustrates why the approximation 𝑢𝑥𝑥,2 = 0 produces such accurate predictions of the shock
propagation.
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Figure 15: Maximum value of 𝜖 , which quantifies the perturbation by the reflected wave

The exact shock-change equation (3.34) can be reformulated to obtain a small parameter
in terms of 𝑢𝑥𝑥,2,

¥𝑀 + 𝐾 ¤𝑀2 (1 + 𝜖) = 0 (6.2)

𝜖 = 𝑎1
𝐿𝑢𝑥𝑥,2

𝐾 ¤𝑀2 . (6.3)

Now, the model 𝑢𝑥𝑥,2 = 0 can be considered the limit of 𝜖 ≪ 1. The maximum value for 𝜖
is at time 𝑡 = 0 when the perturbation is strongest. This is estimated from simulation data
and plotted in figure 15, which shows that 𝜖 is largest for decreasing 𝛾 and increasing 𝑀0,
consistent with the errors in figure 13.

In contrast, for the analogous formulations used by Best (1991) and Sharma & Radha
(1994), where the equivalent residual term is defined by 𝜕𝑡 (𝑃𝑡 + 𝜌𝑎𝑢𝑡 ) and 𝑃𝑥𝑥 , respectively,
the residual term is never small because the gradients are never small in the incident simple
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Figure 16: Shock-change coefficients 𝐾−1 and 𝐵−1 for shock Mach numbers up to 20 in a
𝛾 = 1.4 gas and in equilibrium air initially at 50 kPa, 300 K air (21% O2 and 79% N2)

wave, regardless of the reflected perturbation. For example, the equation for 𝑃𝑥𝑥,2 is

¥𝑀 + 𝐽 ¤𝑀2 (1 + 𝜖) = 0 (6.4)

𝜖 =
𝑁𝐹2

𝐽

𝑃𝑥𝑥,2

𝜌1𝑢
2
𝑥,2
. (6.5)

In a centered expansion in a perfect gas, 𝑃𝑥𝑥,2 at the head of the wave is given by
𝑃𝑥𝑥,2

𝜌1
=
𝛾 + 1

2
𝜌2
𝜌1
𝑢2
𝑥,2. (6.6)

Neglecting the perturbation by the reflected wave, then for 𝛾 = 7/5 and 𝑀 = 5, 𝜖 = 5.37,
whereas for the 𝑢𝑥𝑥,2 formulation 𝜖 = 0, exactly.

6.3. Decay by a centered expansion in equilibrium air
Figure 16 shows calculations of the shock-change coefficients relevant to the decay model, 𝐾
and 𝐵, for 𝑀 up to 20. In (a) 𝐾−1 remains roughly linear. In (b), 𝐵−1 diverges significantly
from 𝛾 = 1.4, indicating that for a given 𝑢 (0)𝑥 , the initial shock decay rate is greater in
equilibrium air.

Simulations were performed for three shock Mach numbers (5, 10, and 15) in air initially
at 50 kPa and 300 K. In figure 17(a), the shock Hugoniot and isentrope are plotted. Also
shown is the chemically frozen Hugoniot. Figure 17(b) shows the tabular data for 𝑃(𝜌, 𝑒),
where 𝑃 is normalized by the chemically frozen pressure, 𝑃fr, at the same 𝜌 and 𝑒. The
shock Hugoniot and isentropes are also plotted in figure 17(b), where the area bounded by
the curves contains all thermodynamic states accessed by the simulated flow.

Results from numerical simulations are compared with model predictions in figure 18. The
time-evolution of the shock Mach number is shown in (a), (b), and (c), and the relative error
is shown in (d). The model accuracy is excellent with error less than 1% for both 𝑀0 = 5 and
𝑀0 = 10 cases and less than 2% for 𝑀0 = 15. This clearly shows that the model is effective
even for equations of state very different from a perfect gas. Results for 𝛾 = 1.4 are also
shown for comparison. The large error can be attributed to the discrepancy in 𝐵−1 shown in
16(b).

The power-law approximation can also be applied for problems with general equations of
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state, where 𝐾 (𝑀0) is computed accordingly. Figure 19 shows 𝛼 and 𝛽 for 𝑀 up to 20. The
non-monotonic behavior of 𝛼 as 𝑀0 increases is due to the sequential effects of vibrational
excitation, chemical dissociation, and ionization in equilibrium air. Similar behavior can be
observed from plots of 𝛾 (Henderson & Menart 2008).

The interaction with the centered wave for equilibrium air did not introduce a larger
perturbation to the incoming simple wave than for a perfect gas. As discussed in 2, the other
source for nonzero 𝑢𝑥𝑥,2 is in variation of Γ on 𝐶+ characteristics in the simple wave. Γ and
𝑎1𝜕𝑎Γ are plotted in figure 20 along the post-shock isentrope of the 𝑀0 = 15 case. These
values can be used with (3.34) to estimate the maximum 𝜖 , where 𝜖 is given by

𝜖 = 𝑎1
𝐿𝑢𝑥𝑥,2

𝐾 ¤𝑀2 ,

= −𝑎1
𝐿𝐹2

𝐾

Γ − 1
Γ

𝜕𝑎Γ.

(6.7)

For 𝑀0 = 15, 𝐿𝐹2/𝐾 = 2.16. Then, using the maximum values shown in figure 20 for Γ and
𝑎1𝜕𝑎Γ gives 𝜖 ⩽ .014. So, for equilibrium air at these conditions, the effect of nonconstant
Γ is negligible, and the model assumption that 𝑢𝑥𝑥,2 ≈ 0 holds.

6.4. Decay by a simple wave from the constant deceleration of a piston in a perfect gas
If the piston does not impulsively stop, but instead slows at a gradual rate, then a non-self-
similar simple wave is generated. If the piston slows with a constant acceleration to a halt,
then the piston velocity, 𝑣, and position, 𝑋p, over time are given by the piecewise expressions

𝑣 =

{
𝑢2(1 − 𝑡/𝜏s) 0 ⩽ 𝑡 ⩽ 𝜏s

0 𝑡 ⩾ 𝜏s
, 𝑋p =


𝑢2𝑡

(
1 − 𝑡

2𝜏s

)
0 ⩽ 𝑡 ⩽ 𝜏s

𝑢2𝜏s
2

𝑡 ⩾ 𝜏s

, (6.8)

where 𝜏s is the time when the piston is fully stopped. The solution for the simple wave is
given by (2.2), where 𝑓 (𝑢) is obtained from the piston path. The procedure is demonstrated
for an exponential piston by Zel’dovich & Raizer (1967), however in that case the result is
implicit. For a constant-deceleration piston, all quantities can be found explicitly throughout
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Figure 20: Variation of (a) Γ and (b) 𝑎1𝜕𝑎Γ along 𝑀0 = 15 post-shock isentrope, where 𝑣2
is the post-shock specific volume

the wave. At the piston face, 𝑢 = 𝑣 and so

𝑓 (𝑣) = 𝑋 (𝑡 (𝑣)) − (𝑣 + 𝑎(𝑣))𝑡 (𝑣), (6.9)

where time is expressed in terms of the piston speed, i.e., 𝑡 = 𝜏s(1− 𝑣/𝑢2). For a perfect gas,
the sound speed is given by

𝑎(𝑢) = 𝛾 − 1
2

(𝑢 − 𝑢2) + 𝑎2, (6.10)

and so (6.9) can be simplified to obtain the general expression for 𝑓 (𝑢) in the simple wave,

𝑓 (𝑢) = 𝑢2𝜏s
2

(
1 −

(
𝑢

𝑢2

)2
)
−

[
𝛾 + 1

2
𝑢 − 𝛾 − 1

2
𝑢2 + 𝑎2

] (
1 − 𝑢

𝑢2

)
𝜏s. (6.11)

With 𝑓 (𝑢), 𝑢(𝑥, 𝑡) throughout the simple wave can be obtained from (2.2),

𝑢

𝑢2
= 1 − 𝑎2

𝛾𝑢2
− 𝛾 + 1

2𝛾
𝑡

𝜏s

+ 1
𝛾

√︄(
𝛾 + 1

2
𝑡

𝜏s

)2
+ 2𝛾

(
𝑥

𝑢2𝜏s
− 𝑡

𝜏s

)
− (𝛾 − 1) 𝑎2

𝑢2

𝑡

𝜏s
+

(
𝑎2
𝑢2

)2
. (6.12)

The sound speed can be obtained from (6.10), and other quantities follow from isentropic
relations.

The velocity gradients, 𝑢𝑥 and 𝑢𝑥𝑥 , are found by differentiating (6.12). The result for 𝑢𝑥𝑥
can be simply expressed as

𝑢2𝑢𝑥𝑥 = −𝛾𝜏s𝑢
3
𝑥 , (6.13)

which is valid throughout the wave.
With the additional time scale, 𝜏s, a single additional nondimensional variable distinguishes

resulting shock motions given by 𝜎 = 𝜏s/𝜏p, where 𝜏p is the duration of the constant velocity
phase of the piston motion. For 𝜎 → 0, a centered expansion wave is obtained. For 𝜎 → ∞,
there is no initial steady phase of the piston motion, and the shock is formed decaying at the
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piston face. In this limit, the maximum value for 𝑢𝑥𝑥 at the shock is at 𝑡 = 0 and given by
𝑎1𝑢𝑥𝑥,2

𝑢2
𝑥,2

= −𝛾 𝑎1
𝑎2
, (6.14)

which can be used to estimate 𝜖 from the exact shock-change equation and is equal to

𝜖 = −𝛾 𝐿𝐹
2

𝐾

𝑎1
𝑎2
. (6.15)

For 𝑀0 = 7 and 𝛾 = 1.4, 𝜖 = −0.61, which is clearly not small and shows that the general
piston motion introduces a significant deviation from the 𝑢𝑥𝑥,2 = 0 model.

For decreasing 𝜎, there is more time for the simple wave to approach the linear-velocity
profile of a centered expansion, and so the 𝑢𝑥𝑥,2 = 0 model accuracy is expected to increase.
For larger 𝜎, where 𝑢𝑥𝑥,2 is non-negligible, we can still use the value in the unperturbed wave
and neglect the disturbance by reflected waves. In this case, (6.13) is used in the shock-change
equation (3.34). Instead of directly computing the velocity gradient, it is estimated using its
shock-change equation and the value for the shock acceleration. 𝑢𝑥𝑥,2 is then approximated
by

𝑢𝑥𝑥,2 = −𝛾𝜏s(𝐹 ¤𝑀)3/𝑢2, (6.16)
which enables (3.34) to be solved as a second-order initial value problem. The initial shock
acceleration is still given by (5.13), where the velocity gradient at the head of the unperturbed
wave is

𝑢
(0)
𝑥,2 =

[
𝛾 + 1

2
𝑡0 +

𝑎2
𝑢2
𝜏s

]−1
. (6.17)

In order to numerically simulate the shock decay by these simple waves, three cases for
a shock with 𝑀0 = 7 and 𝛾 = 1.4 were considered with values of 𝜎 = 0.25, 𝜎 = 0.5, and
𝜎 = 1.0. The simulation was initialized using data computed from the above formulae. For
all cases, the initial condition was chosen for a time before the wave is incident upon the
shock. The initial conditions are shown in figure 21. For 𝜎 = 0.5 and 𝜎 = 0.25, the piston
velocity is not zero at the beginning of the simulation. For these cases, the left boundary
condition is set to the constant piston velocity at the beginning of the simulation, so that
the piston is no longer slowing. Characteristics from the wall do not reach the shock within
simulation time.

Results from numerical simulations are plotted with the model prediction in figure 22.
Subplots (a), (b), and (c) show that, as expected, as 𝜎 increases the agreement with the
𝑢𝑥𝑥,2 = 0 model decreases. Accordingly, subplots (d), (e), and (f) show that the error
increases. Also plotted in figure 22 are the model results from using the unperturbed value of
𝑢𝑥𝑥,2 in the incident simple wave, which was approximated using (6.16). This achieves less
than 2% error for all cases, which is similar to the error in section 6.2 for 𝑀0 = 7 and 𝛾 = 1.4.
These results show that even for non-self-similar simple waves, the shock-propagation model
obtained by neglecting only perturbations to the incident second velocity gradient remains
accurate.

7. Summary and conclusions
A model for the decay of plane shock waves in equilibrium flows with an arbitrary equation
of state was formulated using a shock-change equation for the second velocity gradient
behind the shock, 𝑢𝑥𝑥 . In contrast to prior work, instead of neglecting all higher-order
gradients, only the perturbation to those gradients by the shock interaction is neglected.
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Figure 22: Time evolution of (a,b,c) shock speed and (d,e,f) model error for 𝑀0 = 7 and
𝛾 = 1.4 shocks decayed by the simple wave from a constant-deceleration piston for three

values of the scale parameter, 𝜎

For centered expansion waves in a perfect gas, 𝑢𝑥𝑥 = 0 exactly throughout the wave, and
therefore also behind a decaying shock if the perturbation is neglected. Comparison with
numerical simulations showed that these perturbations are indeed sufficiently small to obtain
accurate solutions for the shock trajectory. For a general equation of state, 𝑢𝑥𝑥 ≠ 0 in the
incident simple wave due to variation in the fundamental derivative of gas dynamics, Γ. For
a centered wave in equilibrium air, it was shown that this variation is small, and 𝑢𝑥𝑥 = 0
remains an accurate model even for a Mach 15 shock. For an arbitrary simple wave, 𝑢𝑥𝑥 ≠ 0
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and must be accounted for. This can still be accomplished by neglecting the perturbation
from the shock interaction, which was shown to be effective for the simple wave generated
by the constant deceleration of a piston in a perfect gas. Since simple waves converge to a
self-similar solution, then in some cases 𝑢𝑥𝑥 = 0 can still be used for arbitrary simple waves
and remains a good initial estimate.

The value of the analytical results obtained in this article is in their generality and simple
formulation. The model can be readily implemented through numerical solution of a simple
ordinary differential equation (4.1), where 𝐾 is given for an arbitrary equation of state in
(3.35) and for a perfect gas in (3.43). The initial shock acceleration can be computed from
(5.13), where 𝑢 (0)

𝑥,2 is the velocity gradient in the incident simple wave, which is given by
(2.5). A useful result from this analysis is an approximate power-law formulation, which
remains accurate even for cases with strong shocks in equilibrium air. Although not detailed
in this article, the model can be used for shocks in media with irreversible endothermic or
exothermic reactions, such as overdriven detonation waves. An example of this is described
in Appendix C.

Future work might extend the methods to problems with nonplanar shocks, where
geometric effects are important. The effectiveness of shock-change models might be evaluated
similarly in these cases, where the magnitude of terms are estimated from the unperturbed
incident simple waves.
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Appendix A. Implementation of prior theories
A.1. Chandrasekhar (1943)

Chandrasekhar’s solution is given by equation (31) of his work, reproduced here as

𝑀

(𝑀 − 1)2
(𝑀0 − 1)2

𝑀0
e𝑀0−𝑀 = 1 + 𝑞𝑡

where 𝑞 is a required time scale. If ¤𝑀0 is known, 𝑞 can be obtained from

𝑞 = −
(
1 + 1

𝑀2
0

)
𝑀0

𝑀0 − 1
¤𝑀0.

A.2. Brinkley and Kirkwood (1947)
Brinkley & Kirkwood (1947) derive a propagation equation for one-dimensional shocks in
a medium with an arbitrary equation of state. The derivation is based on the equivalence
between the work done by some generating surface, e.g., the piston motion, and the residual
enthalpy in shocked gas after having isentropically expanded back to the initial pressure,
𝑃1. The enthalpy increment is nonzero because of the entropy increment by the shock.
Lee (2016) discusses this theory in more detail. The Brinkley-Kirkwood shock propagation
equations are given by (14) in their work, which were integrated here as they are given. The
second-order shock propagation equation requires two initial conditions, given by the shock
speed or strength and the blast energy or, equivalently, the initial shock acceleration. The



30

shock acceleration was computed using this article’s solution (5.13) and converted to their
variables to give

d𝑝
d𝑅

=
𝜕𝑝

𝜕𝑅
+ 1
𝑈

𝜕𝑝

𝜕𝑡

= 𝜌1𝑎1(𝐺 + �̂�/𝑀) ¤𝑀
where 𝑅 is the shock position, 𝑝 is the pressure increment at the shock, and �̂� is given in
section A.5.

The critical assumption in Brinkley-Kirkwood theory is that the time-evolution of the
shock-energy integrand is spatially similar. As a result, the integral over scaled time gives a
constant parameter, 𝜈. Brinkley and Kirkwood assume the shock-energy time integrand to
be exponential and show that a strong shock limit gives 𝜈 = 1 and a weak shock limit gives
𝜈 = 2/3. For the calculations used in this article, 𝜈 = 1 was used. This was found to be more
accurate than 𝜈 = 2/3. Accuracy was improved for 𝜈 > 1, but further discussion of this is
beyond the scope of the present work.

A.3. Friedrichs (1948)
Friedrichs’s solution for the shock position as a function of time is given by equation (10.13)
of his paper. Reproduced here using our nomenclature, the equation is

𝑥𝑠 = 𝑥𝑅 + 𝑎1


𝑡 − 𝑡𝑅 + 4𝑘 ((𝑡1 − 𝑡𝑅) (𝑡 − 𝑡𝑅))1/2

1 + 𝑘
(
𝑡1 − 𝑡𝑅
𝑡 − 𝑡𝑅

)1/2


, (A 1)

where
𝑘 =

𝑢2

4(1 − 𝜇2)𝑎1 − 𝑢2
and

𝜇2 =
𝛾 − 1
𝛾 + 1

.

𝑡𝑅 and 𝑥𝑅 are the time and position where the piston impulsively stops. 𝑡1 is the time when the
head characteristic intersects the shock wave. Friedrichs uses the weak shock approximation,
so 𝑡1 is given by

𝑡1 = 8𝑡𝑅
1 + 𝜇2𝜎1
𝜎1(4 − 𝜎1)

,

where
𝜎1 =

𝑢2

(1 − 𝜇2)𝑎1
.

To obtain the shock speed over time, we differentiated (A 1), using the value of 𝑢2 given
by the shock jump equations for 𝑀0. The characteristic time 𝑡𝑅 was scaled to match our time
scale.

A.4. Sharma et al. (1987)
The shock propagation equation obtained by Sharma et al. (1987) is given by equation (38)
of their work. To ensure correct implementation of their solution, it was verified that Figure 2
and Figure 3(b) from their work could be reproduced. Peace & Lu (2018) also implemented
this solution, and it was verified that their Figure 4 could be reproduced.
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A.5. Best (1991)
Best (1991) uses a truncation term of the form

𝑄2 =
1

𝜌1𝑎
2
1

𝜕

𝜕𝑡

(
𝜕𝑃

𝜕𝑡
+ 𝜌𝑎 𝜕𝑢

𝜕𝑡

)
(A 2)

as a generalization of Whitham’s geometric shock dynamics. For constant area shock
propagation, Best’s hierarchy of shock-change equations can be reduced to a single equation
in the same form as above. We consider the second-order equation and compare it with our
𝑢𝑥𝑥,2 result (3.34). The algebra is simplified by manipulating the equations in terms of the
coefficients derived in section 3.

Expanding (A 2) gives

𝑄2 =
𝑃𝑡𝑡 ,2

𝜌1𝑎
2
1
+ 𝜌2𝑎2
𝜌1𝑎1

𝑢𝑡𝑡 ,2

𝑎1
+ 𝜌2
𝜌1

𝑎𝑡 ,2

𝑎1

𝑢𝑡 ,2

𝑎1
+
𝜌𝑡 ,2

𝜌1

𝑎2
𝑎1

𝑢𝑡 ,2

𝑎1
. (A 3)

The partial-time shock-change equations are given by

1
𝑎1

𝜕𝑢

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝜌1𝑎
2
1

𝜕𝑃

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝜌1

𝜕𝜌

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝑎1

𝜕𝑎

𝜕𝑡

����
2
= �̂� ¤𝑀, (A 4)

where the coefficients are given by

�̂� =
𝜕𝑢2
𝜕𝑤1

− 𝑀𝐹, �̂� =
1

𝜌1𝑎1

𝜕𝑃2
𝜕𝑤1

− 𝑀𝐺,

�̂� =
𝑎1
𝜌1

𝜕𝜌2
𝜕𝑤1

− 𝑀𝐻, �̂� =
𝜕𝑎2
𝜕𝑤1

− 𝑀𝐸.

The second-order shock-change equation for 𝑢𝑡𝑡 ,2 is

𝑢𝑡𝑡 ,2

𝑎1
=

1
𝑎1

d𝑢𝑡
d𝑡

− 𝑀𝑢𝑥𝑡,2

=
1
𝑎1

d𝑢𝑡
d𝑡

− 𝑀
(

d𝑢𝑥
d𝑡

− 𝑀𝑎1𝑢𝑥𝑥,2

)
= �̂�′ ¤𝑀2 + �̂� ¥𝑀 − 𝑀𝐹′ ¤𝑀2 − 𝑀𝐹 ¥𝑀 − 𝑀2( ¥𝑀 + 𝐾 ¤𝑀2)/𝐿
= (�̂� − 𝑀𝐹 − 𝑀2/𝐿) ¥𝑀 + (�̂�′ − 𝑀𝐹′ − 𝑀2𝐾/𝐿) ¤𝑀2.

(A 5)

The result for 𝑃𝑡𝑡 ,2 is derived similarly.
Substituting into (A 3) and grouping terms gives the second-order shock-change equation

for 𝑄2,

𝑄2 =

(
�̂� − 𝑀𝐺 − 𝑀2/𝑁 + 𝜌2𝑎2

𝜌1𝑎1
(�̂� − 𝑀𝐹 − 𝑀2/𝐿)

)
¥𝑀

+
(
�̂�′ − 𝑀𝐺′ − 𝐽𝑀2/𝑁 + 𝜌2𝑎2

𝜌1𝑎1
(�̂�′ − 𝑀𝐹′ − 𝐾𝑀2/𝐿) + 𝜌2

𝜌1
�̂� �̂� + 𝑎2

𝑎1
�̂��̂�

)
¤𝑀2. (A 6)

Best’s theory is to assume 𝑄2 = 0, which can be used to solve (A 6) with appropriate initial
conditions.

A.6. Sharma and Radha (1994)
Sharma & Radha (1994) use a series expansion in terms of 𝜕𝑛𝑥 𝑃, where truncation at order 𝑛
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Figure 23: Shock-change coefficients in a perfect gas for a range of 𝑀 and 𝛾

is used to close the hierarchy of shock-change equations. The required second-order shock-
change equation is given by (3.37) and is reproduced here as

¥𝑀 + 𝐽 ¤𝑀2 + 𝑁
𝑃𝑥𝑥,2

𝜌1
= 0.

The coefficients, 𝐽 and 𝑁 , are given by (3.38) and (3.39). The truncation at second order
then gives 𝑃𝑥𝑥,2 = 0, which reduces (3.37) to a second-order ordinary differential equation
requiring the initial conditions 𝑀0 and ¤𝑀0. The latter is provided by our solution (5.13).

Appendix B. Shock-change coefficients
Using the formulae from Section 3, figure 23 plots the shock-change coefficients for varying
𝑀 and 𝛾. Except for 𝐸 , all of the coefficients are uniformly negative. 𝐸 crosses zero for
some value of 𝑀 and 𝛾, which means that when a shock decays through this Mach number,
the sound speed gradient changes sign from negative to positive. Except for 𝐿, all of the
coefficients exhibit an inverse dependence on 𝑀 , tending toward negative infinity as 𝑀 → 1.
This is, of course, partially a consequence of how the coefficients have been defined. They
could have instead been defined so that their product with the a flow gradient gives the shock
acceleration.

Appendix C. Irreversible chemical reaction
The shock decay model can also be applied if there is some nonzero heat of reaction, Δℎ,
where Δℎ > 0 is exothermic and Δℎ < 0 is endothermic. If 𝛾2 = 𝛾1 = 𝛾, and 𝑄 = Δℎ/𝑅𝑇1,
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then the shock jump relations are

𝑃2
𝑃1

=
1 + 𝛾𝑀2

1 + 𝛾𝑀2
2

(C 1)

𝑣2
𝑣1

=
𝑃2
𝑃1

𝑀2
2

𝑀2 (C 2)

𝑀2
2 =

−2𝛾𝜁 + 1 −
√︁

1 − 2(𝛾 + 1)𝜁
(2𝛾𝜁 − 1)𝛾 + 1

(C 3)

𝜁 =
𝑀2

(1 + 𝛾𝑀2)2

[
𝛾 − 1
𝛾

𝑄 + 1 + 𝛾 − 1
2

𝑀2
]

(C 4)

where 𝑀2 = 𝑤2/𝑎2. If 𝑄 > 0, then 𝑀 > 𝑀CJ, where 𝑀CJ is the Chapman-Jouguet (CJ)
Mach number, given by

𝑀CJ =

√︄
𝛾2 − 1

2𝛾
𝑄 + 1 +

√︄
𝛾2 − 1

2𝛾
𝑄. (C 5)

If 𝑀 ⩾ 1, then admissible values for 𝑄 are

𝑄 ⩾ −𝛾
2
𝛾 + 1
𝛾 − 1

. (C 6)

Thompson (1972) discusses this model for CJ detonations. The above equations can be used
to compute 𝐾 and 𝐵 for implementation of the decay model.

Figure 24 shows the effect of 𝑄 on 𝐾−1 for 𝛾 = 1.2. Positive 𝑄 shifts the 𝐾−1 to the
right, so that 𝐾−1 = 0 when 𝑀 > 1. The value of 𝑀 when 𝐾−1 = 0 is equal to the CJ
Mach number. Therefore, the overdriven detonation decays toward the CJ Mach number and
approaches it asymptotically with infinite time. Negative𝑄 results in faster decay for a given
shock Mach number. As 𝑀 → 1, 𝐾−1 remains nonzero and approaches a finite value. As
a result, the decaying shock in an endothermic gas approaches 𝑀 = 1 in finite time. Even
small endothermicity results in significant increase in decay as 𝑀 → 1. These effects are
shown by numerical solutions of the shock decay model in figure 25.

For 𝑄 > 0, the power-law approximation can be formulated as

𝛿(𝑡) = 1
(1 + 𝛽𝑡/𝛼)𝛼 ,

𝛿(𝑡) = 𝑀 (𝑡) − 𝑀CJ
𝑀0 − 𝑀CJ

, 𝛽 =
− ¤𝑀0

𝑀0 − 𝑀CJ
, 𝛼 = − 1

𝐾 (𝑀0) (𝑀0 − 𝑀CJ) + 1
.

(C 7)
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