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Abstract
Shock waves generated in forward-mode detonation-driven shock tubes are intrinsically

unsteady. Application of detonation drivers in research facilities is fundamentally limited by
the extent to which the test flow is made unsteady by the decaying shock wave. Numerical
simulations of a simple model problem are used to study the effect of independent variables
on the shock decay. The time evolution of all decaying shock waves is shown to be
excellently modeled by a single power law, which is used to quantify shock decay properties
across all cases. Results indicate that shock unsteadiness is strongly correlated with shock
tube sound speed ratio, and its reduction may mitigate the influence of shock unsteadiness
on test flows.

1 Introduction

Detonation waves generate high pressures, temperatures, and gas velocities that may be
used to drive strong shock waves in shock tubes. The high performance of detonation drivers
from relatively modest initial pressures makes them attractive for use in hypervelocity flow
facilities, such as shock tunnels and expansion tubes. However, an essential characteristic
of detonation drivers is that the nonuniform driver gas causes the driven shock wave to
decay from the beginning of its formation. Prediction of the shock decay is essential
not only to properly choose the shock’s strength for processing the test gas, but also
because the decaying shock introduces unsteadiness in the post-shock flow, which can
pose serious limitations for facilities where the test gas is meant to simulate some steady,
hypervelocity flow. Nonetheless, unsteady shock waves may be used if the time scale of
their unsteadiness is sufficiently large compared to a facility’s test time. Despite many
studies on detonation drivers [1–4], including their implementation in several large research
facilities [5–7], there is no model for the driven shock decay. Without further development,
methods of geometrical shock dynamics [8] including higher-order generalizations [9] are
not appropriate for this problem where all shock decay results from post-shock gradients.
Self-similar blast wave solutions [10] use a point explosion assumption that is inapplicable
here, where shock propagation occurs over lengths comparable to the detonation driver
length.

Without analytical methods, numerical simulations of a model problem provide essential
insight and lead to both useful results describing detonation-driven shocks and potential
directions for theoretical development. To this end, a model problem is first formulated,
where the key independent variables are identified and a technique for characterizing the
shock decay is proposed in the form of a propagation law. Methods used for numerical
simulation and post-processing are described. Results provide a complete picture of the
shock’s evolution over time. The propagation law is shown to be an exceptional model for
the decaying shock, and it is used to quantify how properties of the decay are influenced by
independent variables. Effects of the shock tube pressure ratio and sound speed ratio are
principally examined, and insensitivity to the remaining variables is verified. Correlations
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are given so that for a wide range of relevant shock tube conditions, the shock Mach
number and decay rate can be computed to provide estimates important for analysis of
any detonation-driven shock tube research facility.

2 Problem formulation

The focus of this study is on forward-mode detonation drivers, where the detonation
propagates downstream and directly impacts the shock tube diaphragm. Only the one-
dimensional driven shock propagation is of interest. Reverse-mode operation requires
detonation initiation at the shock tube diaphragm, which includes facility-specific transients
that are not as amenable to the one-dimensional approximations used here.

The intrinsically multidimensional cellular detonation structure can be modeled as
a one-dimensional reaction zone in a spanwise mean, terminating in the equilibrium
Chapman-Jouguet (CJ) state. Behind the CJ state is an unsteady expansion wave, known
as the Taylor-Zel’dovich (TZ) wave when self-similar. Two length scales are present in
this formulation of the one-dimensional detonation wave: the reaction zone width and the
detonation propagation distance, i.e., the driver length. The reaction zone width scales
with some characteristic detonation cell size, which is typically small compared to the
driver length for all pressures and mixtures of interest here. So, the reaction zone may be
neglected from analysis, and the CJ-TZ detonation structure remains. Additionally, wall
effects like heat transfer are neglected, which is appropriate for sufficiently small driver
length-to-diameter ratios.

Both the inert shock tube gas and detonation products are assumed to be perfect gases
and chemically frozen. Although the CJ state can be adequately approximated this way,
additional equilibration of hot detonation products in the TZ wave is known to occur
[11] and can also be expected in the reflected rarefaction wave. For the large shock Mach
numbers of interest here, heat capacities are also expected to be nonconstant. These real
gas effects are important, although their impact on the results presented here remains to
be quantified. Results for perfect gases provide the essential insight into the fundamental
gas dynamics from which generalization to other considerations may be made.

The initial condition for the detonation-driven shock tube, as modeled here, is when
the CJ state is incident with the contact surface separating shock tube sections. The
typical enumeration of shock tube gas states is used here with a modification to also
describe relevant states in the detonation driver, which are the initial, unreacted gas
state 41, the CJ state 42, and the TZ wave plateau state 43. These subscripts are used
throughout, particularly for the CJ state. Because of the self-similar TZ wave, all length
scales can be normalized by the driver length. The resulting simplified model problem has
six independent, nondimensional variables describing all cases. They are

P42

P1

,
a42
a1

, M42, γ42, γ1,
W42

W1

, (1)

which are, respectively, the pressure ratio, the sound speed ratio, the local CJ Mach
number in the lab-frame, the CJ gas specific heat ratio, the shock tube gas specific heat
ratio, and the ratio of molecular weights. The only additional variable not present in
typical shock tube analysis is M42 = u42/a42, which quantifies the driver gas velocity in
the lab-frame. The molecular weight ratio is only included as it is necessary to compute
the temperature, which is unimportant for the present problem. The nonuniformity from
the TZ wave is a result of the boundary conditions and does not require any additional
variables to describe.



All quantities in (1) were independently investigated here. A base parameter set is
used throughout the study to vary parameters about. Quantities for the base case are

P42

P1

= 200,
a42
a1

= 3.7, M42 = 0.85, γ42 = 1.14, γ1 = 1.4,
W42

W1

= 0.79 , (2)

which were chosen to be values typical for stoichiometric ethylene-oxygen at standard
temperature and pressure and air driven gas, although they are typical for other mixtures
as well. The initial condition given by the base case is shown in Figure 1. The primary
variables considered for shock tube operation were the pressure ratio and sound speed ratio.
Quantities M42 and γ42 are only determined by the detonation gas mixture, and typical
values for many mixtures are M42 ∈ [0.8, 0.85] and γ42 ∈ [1.1, 1.2]. The only parameter for
the inert shock tube gas is γ1.
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Figure 1: Initial conditions for the simplified model in terms of pressure, temperature,
velocity, and mole fractions for detonation driver gas, Xdet, and inert shock tube gas,
Xinert, where enumeration 42 and 43 identifies the CJ and TZ-plateau states, respectively

Although the evolution of the initial condition is numerically simulated, the initial
speed of the driven shock can be directly computed using a pressure-velocity diagram.
Because of the nonzero gas velocity, either a rarefaction or shock may be reflected from
the contact surface interaction, determined by the position of the CJ state relative to the
shock curve. All simulation cases were chosen to be on the side of the boundary where an
expansion is reflected. Cases used to examine the effect of only pressure and sound speed
ratios are plotted with the wave-reflection boundary in Figure 2. Shock tube conditions in
which a shock is reflected are discussed elsewhere [3]. For the cases where a rarefaction
wave is reflected, the initial shock Mach number, M0, is given by a modification to the
typical shock tube equation,

P42

P1

=

1 +
2γ1

γ1 + 1
(M2

0 − 1)(
1− γ42 − 1

γ1 + 1

a1
a42

M2
0 − 1

M0

+
γ42 − 1

2
M42

) 2γ42
γ42−1

. (3)

In order to characterize the decaying shock wave generally, it is useful to define a decay
parameter, δ, where the time-varying shock Mach number, M(t), is normalized by its
initial speed, M0, i.e.,

δ =
M(t)

M0

. (4)



100 101 102 103

P42/P1

2

3

4

5

6

a 4
2/a

1

wave boundary simulation cases

Figure 2: Map of variables for simulation cases examining the combined effects of pressure
and sound speed ratios. All are located to the right of the boundary defining reflection of
expansion or shock waves at the diaphragm for M42 = 0.85, γ42 = 1.14, and γ1 = 1.4

The formulation in (4) is only one candidate and might be considered appropriate for a
strong shock.

In order to provide a general description for the propagation of all decaying shock waves
in the present numerical simulations, the following shock propagation law is proposed,

δ =
1

(1 + βt/α)α
, (5)

where β is the positive initial decay rate, β = −δ̇0, and normalizes the time variable. The
power, α, characterizes the shape of the trajectory. Larger values of α correspond with
faster decay for a given value of β. Both parameters determine the rate of shock decay and
hence the magnitude of unsteadiness generated in the post-shock flow. This formulation
of the shock decay will be justified below from simulation results and discussed further.

3 Simulation methods

Evolution of the detonation-driven shock tube initial condition was directly simulated using
the open-source finite-volume CFD toolbox OpenFOAM-7 [12]. The particular solver used
was adapted from an additional library blastFoam-4 [13], where conservation equations for
mass, momentum, energy, and species are solved for inviscid, non-heat-conducting, perfect
gases. Solution methods are typical to other OpenFOAM solvers [14], where fluxes are
interpolated using the scheme by Kurganov et al. [15] and limited using the functions
by van Albada [16] for density and van Leer [17] for all other variables. Second-order
Runge-Kutta time integration was used, as implemented in blastFoam.

Simulations were performed using variables normalized by the inert shock tube gas
initial state, i.e.,

P =
P̃

P̃1

, T =
T̃

T̃1

, u =
ũ

ũref

, W =
W̃

W̃1

, t =
t̃ũref

L̃
, x =

x̃

L̃
, (6)

where ũref =
√

R̃T̃1/W1, R̃ is the universal gas constant, L̃ is the driver length, and the

tilde identifies dimensional quantities. Simulation results are reported below using the



same normalizations except for the reference velocity, where the sound speed, a1, is used
instead. The sound speed and ũref are related by ã1/ũref =

√
γ1, hence simulation time is

reported with a square-root gamma factor.
For a given set of shock tube variables, the initial condition was computed separately,

discretely sampled, and mapped onto a uniform simulation grid, from which the simulation
was initiated. All simulation cases were run until the major features of the shock evolution
were developed, typically tsim ≥ 3.0

√
γ1. Time steps were sampled every ∆t = 0.001

√
γ1.

The driven shock Mach number was computed in post-processing at each sampled time
step using the post-shock pressure and the perfect gas shock jump equation. Numerically
differentiating discrete simulation data is prone to introducing large errors and then
necessitates substantial use of smoothing algorithms. Using the post-shock pressure for the
shock Mach number is a repeatable technique that minimizes use of smoothing methods
and reduces the error introduced into computed quantities. The time evolution of the
shock velocity exhibits several kinks, which were identified using the large spikes in the
second derivative of shock velocity after smoothing the data with a Savitzky-Golay filter.
No smoothing is otherwise applied to the shock Mach number results presented below.

Numerical simulations and post-processing algorithms were both verified for grid
independence using the base case with grid resolutions of 1 · 103, 2 · 103, and 4 · 103 cells
per driver length. All simulations presented here used 2 · 103 cells per driver length, and
the shock tube length was varied depending on the case so that all shocks reached similar
points in their evolution. Total cell count for each case ranged from 4 · 104 to 8 · 104.

Results from thirty seven simulations are described below, which examined the influence
of all independent variables. Primary focus was on the effect of pressure and sound
speed ratios, and the twenty eight pertaining simulation variables are shown in Figure
2. Sensitivity of the base case to other variables was examined with cases where γ42 ∈
{1.1, 1.14, 1.2}, M42 ∈ {0.8, 0.825, 0.85}, and γ1 ∈ {1.2, 1.3, 1.4, 1.5, 1.66}.

4 Results and discussion

The time evolution of the driven shock Mach number for the base set of independent
variables (2) is shown in Figure 3. The Mach number continuously decays from the initial
speed to an apparently quasi-steady plateau period, after which the shock continues to
decay further. These three periods of the shock Mach number evolution were obtained in
all simulations.

A space-time diagram of the base simulation case was computed by directly integrating
along the characteristics. The result is shown in Figure 4, where the reflection of character-
istics at the end wall and shock front are tracked. Characteristic reflections at the contact
surface are important but not included here. The space-time diagram illustrates the origin
of the three regions of the shock Mach number evolution shown in Figure 3. The shock
initially decays from attenuation by the transmitted TZ wave. However, since the TZ
wave is finite, once the final characteristic intersects the shock, a region of approximately
steady propagation is reached. After sufficient time, the centered expansion wave from the
initial contact surface interaction reflects from the driver end wall and catches up with the
shock wave, which causes it to decay further.

The plateau period is referred to as quasi-steady because the shock Mach number
is not exactly constant. The variation that does occur is substantially smaller than the
variation during periods of shock decay, such that the plateau period is comparably steady.
Unsteadiness in this period results from wave interaction with the contact surface, however
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Figure 3: Time evolution of driven shock Mach number for simulation of base case
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Figure 4: Space-time diagram generated from integration along characteristics of simulation
data for the base parameter set

analysis of these phenomena is the subject of future work. For now it is noted that the
shock Mach number in this period can be well approximated by the shock tube equation
(7) expressed in terms of the TZ plateau properties, i.e., P43/P1 and a43/a1. This makes
the additional assumption that the post-shock gas is homentropic, which is false, although
Figure 5 shows that the model provides a good prediction for the mean shock Mach number
in the plateau period for all simulation cases.

P43

P1

=

1 +
2γ1

γ1 + 1
(M2

p − 1)(
1− γ42 − 1

γ1 + 1

a1
a43

M2
p − 1

Mp

) 2γ42
γ42−1

(7)

Even for moderate pressure ratios, the quasi-steady plateau period is only reached
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Figure 5: (a) Comparison of the mean shock Mach number in the plateau region from
numerical simulations, ⟨M̂p⟩, with the result from the model, Mp, given by (7). Residuals
are shown in (b)

after the shock has traveled several driver lengths. Reverse-mode detonation drivers utilize
this condition by initiating the detonation at the diaphragm and reducing the effective
TZ wave or driver length. It is unrealistic to access this plateau period in foward-mode
operation without using shock initiation to shorten the TZ wave [5]. Therefore, in order
to otherwise use the forward-mode driver, the driven shock wave during its initial period
of decay must be exploited, which requires a characterization of its decay properties.

The shock decay parameter (4) in the first period of shock decay was fit to the
propagation law (5) for all simulation cases, and both the fit and its residuals are shown
in Figure 6. The root-mean-square error between data and fit across all simulations is
7 · 10−4, proving the propagation law to describe the shock decay exceptionally well. The
conclusions from this are several-fold. Foremost, the decaying shock propagates according
to a power law in time as formulated by (5) to within some negligible error. There are
only two properties of this propagation: the decay power, α, and the time scale or initial
decay rate, β. The fitting of simulation data to (5) therefore provides measurements of
these quantities, α and β, which may be used to examine effects of independent variables
on the resulting shock decay.

The shock decay properties, α and β, for simulations where the pressure and sound
speed ratios were varied together are plotted against correlations in Figure 7. The decay
power, α, could be separated into a linear combination of independent functions of the
pressure and sound speed ratios. Dependence on the sound speed ratio could be linearly
fit, but a more complicated dependence on the pressure ratio required a cubic fit to the
logarithm. Although cumbersome and not theoretically motivated, the functional form
was chosen because it effectively fits the data. The pressure ratio dependence exhibits a
maximum at P42/P1 ≈ 160. Increasing the pressure ratio further decreases α. Decreasing
the sound speed ratio decreases α. The correlation for β in (b) shows that the initial
decay rate increases strongly with increasing the sound speed ratio and decreases with
increasing the pressure ratio. This is important for facility operation. In order to reduce
unsteadiness in the test gas it is desired to reduce the decay rate of the shock wave. This
can be done by increasing the pressure ratio and decreasing the sound speed ratio, which
has the double effect of reducing the decay power, α, and decreasing the initial decay rate,
β. Dependence of β on the sound speed ratio is particularly strong, nearly quadratic. For
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Figure 6: (a) The shock decay parameter (4) for all simulation cases is plotted against a
fit to the propagation law (5) with corresponding residuals plotted in (b), where residuals
are δ − (1 + βt/α)−α

example, a reduction of sound speed ratio from 3.7 to 3 reduces the initial decay rate
by 30%. Since the shock Mach number is directly proportional to both the pressure and
sound speed ratios, the ratios can be varied to preserve the same shock Mach number
while decreasing the shock unsteadiness.
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Figure 7: Shock decay properties plotted against multivariable correlations with pressure
and sound speed ratios, where Pr = log(P42/P1)

The other three independent variables of interest are γ1, γ42, and M42. Figure 8 plots
α and β for simulation cases where the base case is perturbed about these three variables
independently. For all, the variation in both α and β is small, less than 3% for the variable
ranges tested, which confirms that the effects of pressure and sound speed ratios are
primary. A single simulation case with unity molecular weight ratio was performed to
confirm its irrelevance to the present problem. Results were identical to the base case,
except in the temperature variable, as expected.
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Figure 8: Decay properties from sensitivity study of secondary independent variables,
where each quantity was varied individually about the base case

5 Conclusion

Exceptional agreement between the functional form of a shock propagation law and
simulation data for decaying shock waves enabled fits to the propagation law to be used as
measurements of shock decay properties, namely a decay power, α, and initial decay rate,
β. The decay properties for detonation-driven shock waves were found to be principally
dependent on shock tube pressure and sound speed ratios. A strong dependence on the
sound speed ratio indicates that it is desirable to operate forward-mode detonation drivers
with hydrocarbon fuels and potentially diluted with heavy gases to decrease the sound
speed. Conversely, it may be desirable to increase the shock decay rate in reverse-mode or
shock-initiated forward-mode operation, so that initial transients are attenuated rapidly
to acquire the desired steady shock.

A simple model problem was used for this analysis. However, the success of the
propagation law suggests it might be useful for characterizing decaying shock waves more
generally, for example, in experiments where decaying shock waves are influenced by
facility-specific nonidealities, finite detonation thicknesses, and real gas effects.
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