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Abstract

This work focused on the effects of tailored, externally-applied magnetic fields on current transport

and near-anode processes in the plasma discharge of a magnetoplasmadynamic thruster (MPDT).

Electrical and plasma diagnostics were used to determine whether applied magnetic fields could mit-

igate the effects of the “onset” phenomena, including large-amplitude terminal voltage fluctuations

and high anode fall voltages associated with unstable operation and anode erosion. A new MPDT

was developed with a multi-channel hollow cathode and a concentric anode extending downstream

of the cathode exit plane. This thruster was operated with quasi-steady pulses of 1 ms duration at

power levels of 36 kW (20 V, 1800 A) to 3.3 MW (255 V, 13.1 kA) with argon propellant in three

different magnetic configurations. These included purely self-generated magnetic fields (without

external electromagnets) and two different externally-applied poloidal magnetic field topologies.

One configuration used magnetic field lines tangential to the anode lip near the exit plane (and inter-

secting the anode further upstream), and the other configuration created a cusp with magnetic field

lines intersecting the anode near the exit plane.

The influence of the applied fields on the discharge current streamlines, current densities, and

key plasma properties (electron temperature, number density, and plasma potential) was studied. A

primary finding was that the current pattern and current densities redistributed to follow the applied

poloidal magnetic field lines, which created increased conduction paths to the anode. This shift

was particularly pronounced for the tangential magnetic field, which moved the current attachment
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upstream along the anode. Increased electron temperatures were also found in regions of high

azimuthal current densities induced by the magnets.

Another major finding was that the anode fall voltage was substantially reduced with both ap-

plied magnetic field topologies over a large range of currents. For example, at 8 kA, the 20 V anode

fall measured in the self-field configuration was completely eliminated in both applied-field con-

figurations. At 10.7 kA, the cusp applied magnetic field decreased anode fall voltages from 45–83

V down to 15 V or lower along much of the anode. This reduction occurs because the applied

magnetic field lines which intersect the anode provide a high conductivity path, reducing the local

electric field required to sustain the radial current densities at the anode.

The amplitude and frequency of the voltage fluctuations were also reduced over a broad range of

currents with the applied fields. The standard deviations of the fluctuations were lowered by 37–49%

at 8–9 kA with both applied magnetic fields, and the cusp applied field still exhibited a 15% decrease

at 10.7 kA. The current threshold at which the rapid increase in the magnitude and frequency of the

voltage spikes occurred was typically increased by 1–2 kA with the applied fields. Nonetheless,

the applied fields consistently reduced the magnitude of the voltage fluctuations at currents up to

10.7 kA, above which the fluctuations for all three configurations approached the same values. The

applied B fields also reduced the magnitude of local transients in the ion saturation current. These

results suggest a reduction in frequency and intensity of current-concentrating filaments and anode

spots, along with an induced azimuthal rotational motion of the plasma in regions of high applied

magnetic field. This result is significant because anode spots cause localized erosion of the anode

and are the main life limiter at high currents.

In addition, decreases in the mean terminal voltages as large as 31% were measured with the

applied magnetic fields. The cusp applied magnetic field reduced terminal voltages over the entire

range of discharge currents, and the tangential magnetic field lowered terminal voltages below 10.7
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kA. These effects were primarily attributable to the reduction in the anode fall voltage and result in

substantial increases in the estimated thruster efficiency by up to 41% relative to self-field operation.

Overall, both applied magnetic field configurations enabled significant reductions in onset-

related behaviors relative to self-field operation. These improvements should lead to reduced anode

erosion, i.e., improved thruster lifetime, and increased thruster efficiency with the applied fields. The

applied fields used in this study differ from both the topologies and relative field strengths typically

used in the vast majority of conventional, so-called “applied-field MPD thrusters” (AF-MPDTs).

These results suggest a distinctive and more effective approach to influencing the near-anode phe-

nomena and mitigating the deleterious effects of onset with appropriately designed applied magnetic

fields.
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Chapter 1

Introduction

1.1 Background and Motivation

Future mission requirements will place challenging demands on candidate spacecraft propulsion

technologies, from high delta-V maneuvers on robotic spacecraft to greater efficiency and faster trip

times on human deep-space expeditions [1, 2, 3, 4, 5, 6, 7, 8, 9]. In particular, requirements for

increasingly higher delta-V (large changes in velocity) over the course of such ambitious missions

imply the need for higher specific impulse (Isp) but with acceptable trip times (i.e., sufficient thrust

to enable reasonable trip time constraints). The demand for higher specific impulse is made obvious

when considering the “ideal rocket equation,” given by [10]

Minitial

Mfinal
= exp(

∆v

g0Isp
) (1.1)

where ∆v is the velocity change of the maneuver (delta-V),Minitial is the initial mass,Mfinal is the

final mass after the delta-V maneuver, and g0 is a constant given by the gravitational acceleration

at Earth’s surface, 9.807 m/s2. This equation shows the strong exponential dependence between

mass, the delta-V, and the specific impulse of the propulsion system. A larger total launch mass for

a spacecraft and its propellant ultimately translates into higher costs for the size of a launch vehicle,
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material, engineering labor, etc. Thus, reducing total launch mass by reducing a spacecraft’s total

propellant load and decreasing the size and mass of the structure to support it has clear cost-saving

benefits. For a given mission delta-V requirement, one can lower launch mass exponentially by

increasing the Isp of the propulsion system used.

Electric propulsion (EP) encompasses technologies with the potential to enable future advanced

space missions, due in large part to high Isp. EP is a class of technologies used for spacecraft propul-

sion in which an electrical power source is used to convert electrical input power into kinetic energy

of the exhaust propellant for thrust. Specific impulses for EP thrusters are generally much higher

(typically 800–10,000 s or higher Isp) than those of conventional chemical propulsion thrusters

(175–450 s Isp). EP thruster technologies are generally classified into three sub-categories: elec-

trothermal, electrostatic, and electromagnetic. Electrothermal thrusters (e.g., resistojets and arcjets)

use electrical power to heat and add enthalpy to an expanding propellant gas, similar to chemical

thrusters but with resistive heating instead of chemical reactions as the power source. Electrostatic

thrusters (e.g., ion thrusters) primarily use electric fields to accelerate ions as thrust, and typically

use a separate cathode discharge to neutralize the exhaust beam. Electromagnetic thrusters (e.g.,

magnetoplasmadynamic thrusters) generally use electromagnetic forces to accelerate a bulk plasma

flow. Work in the field of EP also includes an array of more general applications, as well. The

commercial space industry would benefit from higher-efficiency technologies for use in attitude

control systems, station-keeping processes, and orbital transfer spacecraft [11]. Such advances im-

ply lower propellant requirements, which directly translate into lower launch costs or increased

payloads. Further, the discoveries made and technologies developed from the associated challenges

in plasma physics, thermophysics, controls, and plasma-surface interactions could also have broad

applications in manufacture and analysis of materials, thin-film deposition, energy conversion tech-

nologies, and other industrial applications [12]. Also, many physical processes in these thrusters
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have analogies in other areas of plasma science ranging broadly from arc furnaces to astrophysical

phenomena [13].

A magnetoplasmadynamic thruster (MPDT) is a high-power spacecraft electric propulsion de-

vice still in the research stage. The thruster is sub-classified as an electromagnetic (EM) accelerator

because it incorporates electromagnetic forces to produce bulk acceleration in a plasma predomi-

nantly through Lorentz forces, j×B, where j is the current density and B is the magnetic field.

In these coaxial thrusters, current flows in the plasma between an inner cathode and a surrounding

concentric anode in either pulsed (quasi-steady) or steady-state operation. The interaction of the

high current discharge and either the self-induced (current-driven) or externally-applied magnetic

field accelerates the plasma to produce thrust.

MPD thrusters can achieve one of the highest power-processing and thrust capabilities amongst

EP systems, from 100s of kilowatts up to several megawatts and 10s to 100s of Newtons per thruster

at high specific impulses (Isp) of 1,000–10,000 s and higher [14]. Therefore, like state-of-the-art ion

and Hall thrusters, MPDTs are capable of much higher specific impulses than those of conventional

chemical thrusters, albeit with much higher thrust and power density for a given size of thruster. For

a given total velocity change (delta-V) demanded by a high-power mission, MPDTs result in smaller

and fewer thrusters and associated components than required by most other EP technologies. Ion

thrusters and other well-established EP devices are not predicted to be scalable to the combined high

specific impulse and relatively high thrust per engine of MPDTs due to fundamental limitations in

their physical processes and achievable thrust densities. In many potential high-power applications,

ion thrusters would not be practical due to the mass and volume of the large number of thrusters

that would be required to process all of the necessary input power. Power levels of 100s of kW per

thruster or higher may be required for enabling missions to the Moon, Lagrange points, asteroid,

and Mars with megawatt-class spacecraft to support the large cargo infrastructure requirements of
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human space exploration, and piloted missions could demand even higher power levels (multi-MW)

to efficiently deliver sufficient mass or decrease trip times [3, 4, 5, 6, 7]. Also, high-power MPDTs

could support rapid-response orbital transfer and repositioning for future defense and commercial

applications. Thus, MPDTs can effectively fill a high-power niche in advanced propulsion for future

space missions.

MPDTs surpass ion and Hall thrusters in terms of power processed per thruster, but the state-

of-the-art lifetimes, specific impulses, and efficiencies are not nearly as high as currently achievable

by ion and Hall thrusters. Presently, observed performance of MPDTs is typically between 30–

50% electrical-to-jet power conversion efficiency, and thruster lifetimes much beyond 1000 hours

are challenging [14]. Some limited testing with lithium MPDTs has demonstrated promising ef-

ficiencies above 60% [15, 16]. One could compare such performance metrics to state-of-the-art

ion thruster development, where efficiencies as high as 81% and operation for tens of thousands

of hours have been demonstrated for ion thrusters [17]. Consequently, there is a compelling case

for pursuing research in MPDTs to achieve improved efficiencies and lifetimes in the higher power

and thrust regime not achievable by ion thrusters. The long-term goals are to enable higher specific

impulse operation at the increased power levels of interest, significantly increase efficiency, and

enhance lifetime perhaps up to an order of magnitude or more.

The steady-state, self-field MPDT and applied-field MPDT (AF-MPDT) are high-power EP

technologies with significant potential for increased performance to enable future mission appli-

cations. The self-field MPDT operates without magnets, using only its self-generated magnetic

field for acceleration. AF-MPDTs use additional externally-applied magnetic fields typically to in-

crease the thrust, particularly at relatively lower powers (10s of kW to order of 200 kW). In an

MPD thruster, plasma acceleration is governed by the magnetohydrodynamic (MHD) momentum
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equation, given by

ρ
Du

Dt
= j×B−∇P + νρ∇2u ≈ j×B−∇P (1.2)

where ρ is the mass density, Du
Dt is the convective derivative of the center-of-mass velocity vector,

j is the current density vector, B is the magnetic field vector, and P is the pressure. Initially, we

include a viscous damping term (cf., Bellan [13]), where ν is the kinematic viscosity. The kinematic

viscosity is primarily due to ion-ion collisions and neutral collisions and is typically very small for

plasma conditions of interest. The Lorentz force term, j×B, is the electromagnetic contribution

to the force densities and becomes significant at high currents. Near the centerline, the pressure

gradient term dominates. The electromagnetic accelerating forces are shown in Figure 1.1 for the

geometry of poloidal current densities and their induced azimuthal magnetic field. The “blowing”

component of the Lorentz force density, fz , is given by

fz = jrBθ (1.3)

and accelerates the plasma axially (resulting in thrust). The “pumping” component of the Lorentz

force density, fr, is given by

fr = jzBθ (1.4)

and acts to radially constrain the plasma inward. In the radial direction, electromagnetic pumping

forces are balanced by the radial kinetic pressure gradient. In the axial direction, electromagnetic

blowing forces and the axial kinetic pressure gradient result in acceleration of the plasma.

At high currents, increased electromagnetic forces pinch the discharge toward the centerline,

thus “starving” the near-anode region of charge carriers. In addition, the increased magnetic field

near the centerline and cathode impede the mobility of electrons across the magnetic field lines [15].
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Figure 1.1: Illustration of MPD thruster current, magnetic field, and acceleration forces.

This reduction in electron transport to the anode at increasing discharge currents causes an increased

magnitude in the anode fall voltage (potential difference between anode potential and local plasma

potential) to accelerate the electrons to accommodate the necessary charge transport. However,

the increase in anode fall voltage also results in increased energy flux to the anode. Significant

power can be lost to the anode (reducing efficiency), and the high heat fluxes severely affect anode

lifetime by inducing evaporation of anode material. In addition, in this “onset” condition (as it is

commonly referred to in the literature) anode spots begin to form and vaporize material on the anode

surface, resulting in significant anode erosion and large terminal voltage fluctuations [18], as will be

discussed in more detail in Section 1.2. Operation at high currents well into these onset conditions

is unstable, inefficient, and ultimately impractical due to severe erosion. Some means to control

or mitigate the physical processes driving these deleterious behaviors must be identified to enable

higher power, high efficiency, and long lifetime operation.
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1.2 Review of Previous Work

1.2.1 A Brief Background on MPD Thruster Research

Although the basic concept and approach of coaxial MPD thrusters has existed for decades, research

on the thrusters has been limited, largely due to lack of practical opportunities for sufficiently high

power in past space missions as of yet. MPDTs presently remain in the fundamental research stage.

In the U.S., MPDT research evolved out of arcjet studies as a natural extension of experimenta-

tion with lower flow rates and increasing currents in the 1960’s [19, 20]. In Russia in the 1970’s,

a significant amount of experimental testing of various geometries, power levels, and propellants

[21, 22] was conducted, partly as a push to investigate propulsion options to enable human missions

to Mars during the U.S.-Soviet space race. However, much of this progress was limited to empirical

investigations and qualitative insights. Small but intensive research efforts at Princeton University

[20] and other academic institutions in Germany [23], Italy [24], and Japan [25] have also greatly

advanced the knowledge of the MPDT field since this time, allowing for the framework of under-

standing the acceleration mechanisms and basic processes in these thrusters. Much of such works

was focused on self-field MPDTs at higher power (many hundreds of kW to multi-MW) operated in

“quasi-steady” pulsed mode. During the quasi-steady pulses, the pulse durations were long enough

such that steady-state plasmadynamics were achieved, but thermodynamic equilibrium with elec-

trodes and materials were not. Such operation enabled studies at very high power levels without the

need for a steady-state high power source nor significant use of refractory components.

In addition, notable work was performed on applied-field MPDTs (AF-MPDTs) at relatively

lower power levels (order of 10–100 kW) at steady state. Many of the performance characteristics

of such AF-MPDTs were well summarized by Kodys [16]. Thrusters operating with lithium (Li)

as the propellant were found to have the highest efficiencies. Li-fed thrusters are of particular
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interest because the use of Li metal vapor as propellant allows for higher efficiency. This enhanced

performance is due to the low first ionization potential of Li (only 5.4 eV) but relatively high second

ionization potential (76.6 eV) and first excited state of the ion (71 eV), thus resulting in low “frozen

flow” losses (unrecoverable energy lost to multiple ionization and excitation). Li-fed thrusters are

also promising because seeding the lithium flow with a small amount of barium could dramatically

reduce the cathode operating temperature and greatly extend lifetime [26]. Of particular relevance

to Li-fed applied-field thrusters was the work by Fradkin at Princeton [27]. Fradkin investigated

the acceleration mechanisms in applied-field Li thrusters through experiments at power levels from

10–35 kW and Isp approaching 3000 sec. He proposed that the additional acceleration from the

applied magnetic field could partially be explained in terms of the conversion of rotational energy

induced by jrBz and jzBr forces into axial kinetic energy by magnetic nozzle expansion. This is

particularly applicable to lower power MPD thrusters (e.g., 10s of kW) where the applied magnetic

field strengths significantly exceed the self-generated magnetic field magnitudes.

Within the past 10–20 years, the increased interest in human deep-space missions (e.g., Mars,

Moon, Lagrange points, and asteroids) greatly increased the relevance and interest in high-power

electric propulsion. Consequently, significant progress was made in understanding some of the key

issues in MPDTs during this time. Some key works have included the evaluation of performance

envelopes [28], thrust scaling in MPDTs [14], and Russian experimental testing of various Li-fed

MPDTs [15, 29, 30, 31, 32] during the 1990’s in collaboration with NASA.

1.2.2 Onset Phenomena

One of the critical topics that has pervaded much of the MPDT literature has been the issue of “on-

set” phenomena, as introduced by Malliaris et al. [33] at AVCO Corporation in 1972. It was also

referred to as “critical current” or “critical mode” in the Russian literature [21, 34]. Onset represents
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a collection of operating behaviors associated with a transition to large-amplitude terminal voltage

fluctuations, transients in plasma properties, and growth in anode fall voltages in the plasma. Oper-

ation within onset conditions is associated with unstable operation and anode erosion. For a given

thruster geometry and propellant choice, this transition occurs at some particular value of J2/ṁ

(where J is the total discharge current and ṁ is the mass flow rate) as either current is increased

(at fixed mass flow rate) or flow rate is decreased (at fixed current). Once the transition to onset

occurred, the thruster operation was characterized by high-amplitude terminal voltage fluctuations

[35, 23]. Also, Hugel [36] and Diamant [37, 38] identified the formation of “anode spots” during

onset. These anode spots are small, discrete points of current concentration on the anode surface

and melting of the anode material. An important overall effect was that operation of the thruster

in these onset conditions resulted in excessive erosion of the thruster materials, with particularly

increased erosion of the anode surface [39].

Malliaris et al. [33] identified that the critical value of J2/ṁ where transition to onset occurs

scales as ∼ M
−1/2
ion , where Mion is the ion mass of the propellant species. Therefore, lower atomic

mass propellants (e.g., lithium, hydrogen) should allow stable operation (before onset) at higher

currents before transition to onset-related behaviors at a fixed flow rate, which has been consistent

with other experimental findings [15, 28]. Also, thruster geometries and flow conditions that enabled

increased particle densities near the anode were found to increase the condition at which transition

to onset occurs. For example, reducing the ratio of the anode to cathode radius (ra/rc) to increase

particle density [33] or increased propellant injection at higher radii (closer to the anode) [40, 41]

were found to increase the transitional value of J2/ṁ.

Different models of what effectively causes onset have been proposed. Uribarri [42] classifies

these models into two categories: anode starvation models and plasma instability models. In the

anode starvation models, current conduction is considered to be a sheath-limited process. Elec-
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tromagnetic radial pumping forces increase with current and cause what is commonly referred to

as “anode starvation” or “anode depletion,” in which a reduction in plasma density near the anode

results in fewer charge carriers locally available to support the increasing current [21, 43, 44]. How-

ever, as discussed by Baksht and Shubin [21, 22], the current that can be drawn from the near-anode

plasma is limited by the random thermal flux of electrons to the anode surface, which is directly

proportional to local number density. This effect is only exacerbated by the presence of a trans-

verse magnetic field (e.g., the azimuthal self-field of the MPDT) that impedes electron diffusion

radially outward to replenish the electrons hitting the anode [45]. When the random thermal flux

of electrons to the anode is insufficient to supply the requisite current density, electron-attracting

anode fall voltages must form across the sheath and near-anode plasma to enable sufficient electron

flux [43, 46]. Therefore, any mechanisms to either increase local electron number density near the

anode or to more generally increase electron transport to the anode (without increasing the anode

fall voltage) can potentially mitigate the sheath-limited aspects of onset.

Different plasma instability models have also been proposed as possible causes of onset. Au-

thors have described the conditions for exciting drift instabilities due to the relative motion of the

electrons and ions in the plasma currents, as described by Tilley et al. [47], and various plasma

wave excitations have been measured in MPD thrusters in onset conditions (e.g., ion acoustic waves

observed by Tikhonov et al.[44]). Onset in such models is typically associated with exceeding some

critical value of the drift velocity (vd = j
n|qe| , where j is the current density, n is the plasma number

density and qe is the fundamental electron charge) for the inception of current-driven instabilities

[22, 48].

Uribarri [42, 18] established a direct link between voltage fluctuations and anode spot formation

and extinction, as well as a connection between the anode spots and melting or evaporation of

anode material. He established that evaporated anode material effectively “seeds” the discharge with
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additional plasma to sustain the discharge and overcome current starvation. Uribarri also presented

a capacitively-coupled model of the how the spots could incite the terminal voltage fluctuations

and postulated a current filamentation process as associated with spot formation. Recent work

by Giannelli et al. [24, 49] identified conditions for the formation of azimuthal instabilities that

would lead to such current filamentation in the MPD thruster discharge. Their model linked such

filamentation with the current concentration associated with anode spots.

One interesting onset suppression methodology has been to increase the local number density

near the anode. Kurtz et al. [23] diverted a fraction (2–10%) of the propellant flow to injection

sites on their anode. They were able to increase the current at which onset transition occurred,

but only by order of 5% at 10% flow fraction to the anode. The effectiveness of this approach

is also further limited by the inefficiencies associated with anode mass injection, namely that the

propellant introduced near the anode does not yield as much effective acceleration from the elec-

tromagnetic body forces that are higher closer to the thruster centerline (further from the anode).

Therefore, introducing increasing fractions of the propellant at the anode would result in decreasing

thrust efficiency. Kuriki et al. [50] also studied the effect of injecting propellant near the anode and

identified improvements in thrust and efficiency. However, they identified similar increases in per-

formance simply with the inclusion of their anode injection hood even without any additional anode

gas flow. As an alternative, one might examine externally-applied magnetic fields as a potentially

more effective means of onset mitigation, as will be discussed in the next section.

1.2.3 Anode Fall Voltages and Applied Magnetic Fields

Another issue in addition to the fluctuations and transients introduced with onset is the formation of

large anode fall voltages at high thruster discharge currents. Gallimore [43, 46, 51] experimentally

studied the anode power deposition problem in quasi-steady, self-field MPDTs operated between
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150 kW to 7 MW with argon and helium propellants. He found approximately 20–40% of the power

to the thruster being lost to the anode, a significant source of inefficiency for the thruster. He identi-

fied that the predominant cause of this power deposition was due to a significant anode fall voltage,

i.e., the electron-attracting potential difference between the anode potential and the local plasma

potential. He measured anode fall voltages of approximately 4–50 V in his tests. He explained the

anode fall as due to the formation of large electric fields near the anode to provide sufficient cur-

rent conduction across the strong azimuthal, self-generated B fields. Gallimore and Choueiri [52]

proposed that this conduction was further limited by increased anomalous resistivity resulting from

the onset of microturbulence in the plasma. Gallimore identified a connection between the electron

Hall parameter (Ωe, the ratio of electron cyclotron frequency to electron collision frequency) and

increasing anomalous resistivity (i.e., reduced conductivity). The Hall parameter increased as the

azimuthal magnetic field transverse to the anode increased with higher discharge currents. Work

by Soulas and Myers [53] around this same time also confirmed the relationship between both in-

creasing anode fall voltage and higher anode power deposition with increasing transverse magnetic

field strength. Gallimore tested reducing the electron Hall parameter in the vicinity of the anode by

embedding small permanent magnets around the anode to provide a canceling effect on much of the

near-anode azimuthal magnetic field. His tests found that this local reduction of the Hall parameter

decreased anode fall voltages by 37 to 50%. Gallimore suggested that perhaps using applied B fields

intercepting the anode could reduce the anode fall voltage.

Foster [54, 55, 56] studied the mechanisms driving the formation of large anode sheath potentials

in low pressure argon arc discharges in the presence of a transverse magnetic field of up to 120

Gauss. He used a simplified experimental setup with a DC plasma diode with a gas-fed hollow

cathode discharging to a 2.5 cm stainless steel anode disk 6 cm away. An electromagnet provided

a uniform transverse B field in the near-anode region. He identified that the anode fall voltage was
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highly dependent on the local electron number density. Subsequently, he used an auxiliary electron

discharge near the anode to increase local electron number density and found reductions in the anode

fall voltage resulted in reduced anode power deposition of 15 to 25%. Also, Foster examined the

application of an external magnetic field up to about 40 Gauss coaxial with the anode (intersecting

B field), but he found this additional field to have surprisingly little effect on the anode fall voltage

(only approximately 1–2 V decrease). However, he suggested that perhaps beneficial reductions in

anode fall might only occur if the transverse magnetic field component were significantly decreased

relative to the axial field. Also, the lack of a flowing plasma, simplified geometry (not coaxial

electrodes), and different directions for the forces on the plasma in his experiments may be expected

to yield different results than MPD thrusters.

Hoyt et al. [57, 58] examined the use of various applied magnetic fields in high-power coax-

ial accelerators operating in quasi-steady pulses from 2–12 MW. The constant-radius, narrow-

channeled coaxial accelerator geometry used in his study is somewhat different than that used for

typical MPDTs, but the Lorentz force-driven acceleration mechanisms are the same. He was able to

reduce the anode fall by approximately 30 V with an applied B field relative to self-field operation

(no magnets). He used a “magnetic Laval nozzle” shape in his applied B field design, in which the

field lines converged and then diverged again as the plasma moved in the downstream direction.

This B field shape had field lines intersecting the anode in the region upstream of the exit plane.

At Russia’s Moscow Aviation Institute (MAI), studies were conducted by Tikhonov et al. [30,

31] on applied-field lithium-fed thrusters. Their work involved primarily experimental testing and

observations on AF-MPDTs at power levels up to 200 kW with specific impulse (Isp) of 4500 s

and about 48% efficiency. From the results of these (and earlier) tests and some related modeling

efforts [44], Tikhonov suggested that the applied B field and thruster design should be such that

the diverging anode surface be contoured to follow the local applied B field lines. This suggestion
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would result in a transverse-only (non-intersecting) B field near the anode, which is counter to earlier

recommendations by Gallimore, Hoyt, and others. Tikhonov suggested that contouring the B field

along the anode in this manner avoids the concentration of anode current attachment to small areas

near the anode exit, which results in undesirably high local anode heating and erosion. Localized

current attachment downstream on the anode is an expected consequence of advection of the current

streamlines downstream by the flowing plasma. He claimed that by contouring the anode with the

B field, the current streamlines were shown to spread out over a larger area of attachment, thereby

reducing anode current densities.

Also, testing in Russia of a 400–500 kW steady-state, Li-fed MPDT by Ageyev et al. [15] at 8–

10 kA demonstrated stable operation and thrust efficiency of 60%. The operating conditions for this

thruster should have put it in operation above onset. However, Ageyev used a relatively weak 100

Gauss solenoidal applied B field near the anode exit plane and was able to achieve stable, efficient

operation. However, limited details were provided for this empirical demonstration.

In Japan, work was conducted by Tahara, Kagaya, et al. [25, 59, 60, 61] on quasi-steady MPD

thrusters with externally-applied magnetic fields. Tahara identified that a strong, mostly axial ap-

plied magnetic field (mostly parallel to the anode) could suppress the magnitude of voltage fluctu-

ations in their thruster operating conditions. These experiments by Tahara et al. [59], resulted in

higher thrust and somewhat reduced cathode erosion with the applied B fields. However, they used

very high applied magnetic fields of order 1000–2000 Gauss. Also, experiments by Kagaya, Tahara,

et al. [61, 25] showed that their applied magnetic fields (1000–5700 Gauss) notably increased the

terminal voltages and anode voltages for the discharge relative to self-field operation.

To date, there is still limited understanding of the processes that govern the overall current con-

duction in the near-anode region. Gallimore and Foster’s primary motivations and investigations

were to reduce anode fall voltage and not characterizing and understanding the current distribution.
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Further, differences in geometry, plasma flow conditions (or lack thereof), magnetic topologies, and

field strengths between Gallimore’s Princeton Benchmark Thruster, Hoyt’s coaxial accelerator, Fos-

ter’s quiescent plasma experiment, and Tahara’s thrusters can yield particularly different structure

to the current streamlines and conduction in the near-anode region. Moreover, there is a conflict

between competing suggestions from authors such as Gallimore and Hoyt (anode-intersecting B

fields) and Tikhonov (anode-parallel B fields) for the prospects of using applied B fields to reduce

anode falls but also avoid excessive current densities. Further, no details were made available about

the current pattern or plasma properties of the promising Ageyev thruster design. Therefore, our re-

search sought to understand the plasma discharge current pattern and conduction in the near-anode

region of an MPDT. Our work specifically examines the effect of applied magnetic fields on the

current distribution along the anode and current structure within the discharge as part of an inves-

tigation into the potential for reducing anode fall voltages and mitigating onset-related behaviors

with the applied magnetic fields.

1.3 Thesis Outline

The goal of this work was to investigate the effects of externally-applied magnetic fields at modest

field strengths on the plasma discharge and examine the prospect of their use to mitigate the be-

haviors associated with onset. The motivation is to determine how one can influence the current

conduction to mitigate performance losses and anode erosion, thereby leading to potential increases

in thruster efficiency, thrust, and lifetime.

For this investigation, we posed the following questions:

1. Can we mitigate behaviors such as the large-amplitude terminal voltage fluctuations and large

anode fall voltages with applied magnetic fields primarily focused on the near-anode region?
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2. What are the effects of the applied magnetic fields on the plasma properties and current trans-

port in the thruster plasma discharge, particularly in the near-anode region?

There are several components to addressing this goal. The first investigation was to character-

ize the thruster terminal voltage-current characteristics to identify onset-related transitions and the

growth of discharge voltage fluctuations (commonly referred to as “voltage hash”). This charac-

terization was performed with the thruster operating in both self-field mode without magnets and

with two distinct applied magnetic field topologies. The second study investigated the structure and

behavior of the magnetic field, current pattern, and current densities inside the thruster discharge

with a new magnetic probe array. To understand the influence on parameters that drive the changes

in current conduction to the anode, a new triple Langmuir probe was used to study changes in the

local plasma number density, electron temperature, and plasma potential with and without the ap-

plied magnetic fields. This progression of investigations allows us to examine the response of the

thruster in transition to and above onset first at the system level (electrode voltages and related fluc-

tuations), then in the plasma discharge bulk structure (internal magnetic field and current transport),

and finally in the local plasma properties of the near-anode region (Langmuir probe measurements).

The subsequent chapters of this thesis are organized to convey the implementation approach and

results of these investigations. Chapter 2 describes the experimental facilities, thruster, and diag-

nostics used for the experiments. Chapter 3 explores the influence of the applied magnetic fields

on the voltage-current characteristics and voltage fluctuations as compared to self-field operation.

Chapter 4 identifies the results of magnetic probing to explore the structure of the magnetic field,

current pattern, and current densities with and without the applied magnetic fields. Chapter 5 details

the findings of the Langmuir probe investigation of plasma properties and potential in the different

operating conditions. Chapter 6 provides a synthesis of the results, extends the findings with addi-

tional calculations, suggests physical interpretations, and concludes with a summary of key findings
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along with recommendations for future work.
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Chapter 2

Experimental Setup and Diagnostics

2.1 MPD Thruster

To provide the fundamental testbed and framework for this research, a new high-power MPD

thruster (MPDT) was designed and fabricated, along with supporting infrastructure and circuitry.

Figures 2.1 and 2.2 show the MPDT, which was designated as the “Odysseus” thruster. Figure 2.3

shows a schematic highlighting the major components and dimensions of the MPDT.

The overall geometric proportions of the new Odysseus MPD thruster were modeled after the

Russian Ageyev-type extended anode design with a multi-channel hollow cathode [15] and scaled

up slightly in size to allow use of an existing tungsten cylinder as the cathode and maintain a similar

anode to cathode radius (ra/rc) of 2.52 based on the anode exit radius and cathode outer radius. The

tungsten cathode tube has an inner diameter of 8.9 cm and outer diameter of 10.2 cm. The inside

of the multi-channel hollow cathode (MCHC) is tightly packed with thoriated tungsten 0.64 cm di-

ameter welding rod segments cut to 2.5 cm lengths. Each of the interstitial spaces between adjacent

cathode rods form open areas that effectively act as hollow cathodes, and the resulting increase in

emission area allows the MCHC to provide the necessary high discharge currents with lower cur-

rent densities than with a comparably sized solid rod cathode. Propellant is injected through the

multi-channel hollow cathode as in the Ageyev thruster, not in the inter-electrode gap as is typically
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Figure 2.1: Odysseus MPD thruster with magnets mounted on the vacuum chamber header.

Figure 2.2: MPD thruster view into discharge chamber (shown without magnets and outer insulating
surfaces).
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Figure 2.3: Schematic of the MPD thruster, applied-field magnets, and gas flow system. Note that
the gas flow system components are not to scale.

done in gas-fed MPDTs. The anode is made of two segments made of 0.3 cm thick stainless steel

mated together. The thruster anode body straight section has a 19.7 cm inner diameter, and the

anode flared section extends downstream to an anode exit plane of 25.7 cm inner diameter. The

anode and cathode flanges are mounted to a PVC plate which serves as an insulating interface. A

boron nitride backplate is used to insulate between the anode and cathode in the upstream end of

the discharge chamber. The axial distance from the boron nitride backplate to the anode exit plane

is 42.2 cm. The anode flared section begins 1.3 cm axially downstream of the cathode exit plane

and extends 25.7 cm axially upstream to the anode exit plane. Cathode-potential surfaces were also

taped with Kapton tape to mitigate external arcing during testing. Aluminum was used for the rest

of the mounting and support structure.

Due to cost and facility constraints that precluded high power steady-state operation, the thruster

and discharge circuit were designed to operate in a quasi-steady pulsed mode. For quasi-steady

operation, the thruster is pulsed for a long enough duration such that the plasma dynamics of interest
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reach steady state, but total heating of the components of the thruster do not reach the same high-

temperature thermal equilibrium of a steady-state thruster. Less costly materials can be used in

lieu of refractory materials in some parts during quasi-steady operation. Non-refractory materials

were used for all parts except the cathode. Avoiding the need for very high (order of 100s of kW

to several MW) steady-state power also reduces operating costs and complexity. Such high-power,

quasi-steady operation has been commonly used in many MPDT investigations to study dynamics

and processes relevant to both pulsed and steady-state operation [33, 62, 25].

The MPDT was operated at quasi-steady power levels from 36 kW (20 V, 1800 A) to 3.3 MW

(255 V, 13.1 kA) and initial mass flow rates at 0.6 g/s, 1.0 g/s, and 1.5 g/s. The data discussed in this

study was obtained at 1.0 g/s, as this was found to be the lowest reliable and repeatable operating

mass flow rate for the thruster, thus allowing the highest range of J2/ṁ (ratio of current squared to

mass flow rate) conditions for study. Figure 2.4 shows a photo of the MPDT during a test firing at

approximately 750 kW. As a reference for comparison, the Ageyev thruster operated at a lower flow

rate (0.2–0.3 g/s) and lower power (400–500 kW at 8–10 kA), largely due to operation with lithium

as the propellant (decreased voltages and decreased ion mass) [15]. Our new thruster was operated

with argon propellant at a broader range of currents. Somewhat higher flow rates were required to

achieve reliably repeatable shots with this larger thruster geometry and operation in quasi-steady

pulses. However, because the higher ion mass of argon results in onset initiating at lower values of

J2/ṁ than lithium [33], the range of currents in this investigation allowed study of conditions from

below transition to onset to well above transition to onset.
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Figure 2.4: MPD thruster firing.

2.2 External Magnets and Applied Magnetic Fields

To investigate the influence of externally-applied magnetic fields on the thruster discharge, two

solenoidal electromagnet coils were developed. These magnets were made of # 12 AWG copper

insulated wire wound around a thin fiberglass insulating ring and side walls. These magnets were

designed to mount as rings around the outer body of the anode flared section and were supported by

adjustable fiberglass rails along the sides of the thruster mounting platform, as seen in Figure 2.5.

The larger downstream magnet coil was 54 total turns, 33 mm wide, and 24 mm high, with an inner

radius of 159 mm. This larger magnet was positioned with the front face extending 11 mm axially

downstream of the anode exit plane. The smaller upstream magnet coil was 72 total turns, 35 mm

wide, and 26 mm high, with an inner radius of 125 mm. This smaller magnet was positioned with its

front face 108 mm axially upstream of the anode exit plane (i.e., its downstream face was separated

axially by 86 mm from the upstream side of the larger magnet). The magnitudes and polarities

of the currents in the two magnets could be driven independently to enable alteration of the shape

and magnitude of applied poloidal magnetic field generated. Note that the term “poloidal” denotes



23

Figure 2.5: MPD thruster close-up view highlighting external magnets and mounting rails.

vectors with components only in the radial and axial directions (not azimuthal). Two Sorensen

DCS-40-75 power supplies were triggered sufficiently before firing the PFN bank to ensure a DC

current in the magnets to achieve a steady DC applied field before thruster firing.

Two particular applied B field configurations were used for most of the experimental testing.

One configuration operated both magnets set at nominally 30 A each and in the same polarity, which

generated magnetic field lines mostly tangential to the anode lip near the anode exit plane and anode-

intersecting field lines upstream. This configuration is henceforth referred to as the “tangential”

applied magnetic field in the text. The other configuration operated the smaller upstream magnet at

20 A and the larger downstream magnet at 30 A in the reversed polarity, which generated a cusp

structure with magnetic field lines intersecting the anode in the region between the magnets. This

configuration is henceforth referred to as the “cusp” applied magnetic field in the text that follows.

Magnetic modeling results for these two configurations can be seen in Figures 2.6 and 2.7. At

the specified operating currents, applied magnetic field strengths in the vicinity of the magnets (the

downstream section of the anode) were mostly on the order of 50–200 Gauss, with somewhat higher

peaks immediately next to the upstream magnet. Note that the cusp B field had lower peak B field
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magnitudes near the anode. The applied magnetic fields were much lower near the cathode and

centerline. At the location of the cathode tip (downstream front face) and cathode outer radius, the

applied magnetic field was 40 Gauss for the tangential field and 11.5 Gauss for the cusp field. At

the centerline of the cathode tip, the applied magnetic field was 42 Gauss for the tangential field and

12 Gauss for the cusp field. Also, the steady-state power applied to each magnet only ranged from

160–360 W, which was an insignificantly small fraction of the power to the thruster (36 kW to 3.3

MW).

In this investigation, the applied B fields used differ from those typically used in the vast major-

ity of conventional, so-called “applied-field MPD thrusters” (AF-MPDTs) [16]. AF-MPDTs gener-

ally use much higher applied B field magnitudes relative to the thruster self-field, and their applied

B field line structures (magnetic topologies) are generally predominantly axial, with very limited

variation in curvature in the inter-electrode region. In our study, the applied B fields were designed

to be smaller in relative magnitude to somewhat localize the effects of the applied magnetic fields

to address near-anode phenomena. At the higher currents of interest for onset, our applied B fields

yielded Bapplied/Bself field much less than one near the outer radius at the cathode downstream face,

and this ratio was only greater than one over the downstream section of the anode. The applied

magnetic fields were also designed to allow significant anode-intersecting radial components to the

topologies. These anode-intersecting regions were upstream along the anode (but still downstream

of the cathode face) for the tangential B field and downstream closer to the anode exit for the cusp

B field.
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Figure 2.6: Applied magnetic field magnitude (shaded contours) and flux lines for the tangential
applied magnetic field. Geometry for the magnets, thruster anode, and cathode are also shown.
Color bar units for B field are in Gauss.
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Figure 2.7: Applied magnetic field magnitude (shaded contours) and flux lines for the cusp applied
field. Geometry for the magnets, thruster anode, and cathode are also shown. Color bar units for B
field are in Gauss.
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Figure 2.8: Vacuum chamber facility at JPL used for the MPDT experiments.

2.3 Vacuum Facility

The MPDT was operated in an existing vacuum chamber facility at the NASA Jet Propulsion Lab-

oratory (JPL). The chamber is a large 2.3 m diameter by 4.5 m cylindrical length vessel, totaling

approximately 18.7 m3 volume. The MPDT was mounted to a removable header on the vacuum

chamber and connected to gas and electrical feedthroughs on the chamber header. The chamber

is nominally pumped using two Consolidated Vacuum Corporation (CVC) PMC-32C 32” oil dif-

fusion pumps and one CVC PMC-48C 48” oil diffusion pump. The pumps were backed by two

sets of Stokes 412H (10 hp, 300 cfm) roughing pumps with Roots RGS-SP-AVM 615 (7.5 hp, 1250

cfm) booster pumps. The background pressure was 1–3×10−6 Torr prior to each thruster firing, as

measured by a calibrated ion gauge at the opposite end of the chamber from the header with the

mounted thruster. A photo of the vacuum chamber facility is shown in Figure 2.8.
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2.4 Discharge Circuit

To operate the thruster in a quasi-steady mode with discharges on the order of a few milliseconds,

two pulse forming network (PFN) banks previously used in the 1990s at JPL were refurbished, and

a new charging, control, and timing circuit was designed. Each of the two PFN banks consists of a

sequence of capacitors and inductors that are sized to provide a 1–2 ms quasi-steady current pulse

under the range of load conditions. Each PFN is composed of eight matched capacitor-inductor

stages, each containing one series 2.6 microhenry inductor and four parallel 2.4 millifarad elec-

trolytic capacitors initially charged from 50 to 450 V (7.7 kJ). A high-voltage Quality Transformer

and Electronics E202 power supply charged the banks. The two banks were connected in parallel,

together providing up to 3.7 MW discharges in the thruster. Figure 2.9 shows a photo of one of

the PFN banks. The PFN output during a discharge passed through an adjustable ballast resistor in

series with the thruster high current feedthroughs to aid in load matching. The PFNs were tied to

ground on the positive side, thus also connecting the thruster to ground on the anode side during

discharges. Additional components aided in providing circuit protection and a load path for the

PFNs in the event of the thruster failing to discharge.

To initiate the gas breakdown often required a higher initial voltage than the PFNs could supply.

To provide the needed voltage and energy, an ignition circuit was connected in parallel to the thruster

electrical feedthroughs and isolated via high-voltage, high-current diodes from the PFNs. This

circuit used a 4 microfarad capacitor typically charged to 900 V by a Fluke 412B high-voltage power

supply to initiate the discharge. The PFNs and the ignition circuit were triggered simultaneously by

two International Rectifier 1000PK100 silicon controlled rectifiers (SCRs) activated by a Wavetek

801 pulse generator. The ignition circuit would dissipate its capacitor’s energy in less than 100

microseconds, after which the PFNs would complete their discharge within a few ms. A schematic
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Figure 2.9: Pulse forming network bank.

Figure 2.10: Schematic illustrating key elements of the MPD thruster ignition circuit and PFN
discharge circuit.

highlighting key elements of the discharge circuit is shown in Figure 2.10.
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2.5 Gas Pulse System

2.5.1 Hardware

A gas pulse system and drive circuitry were also developed and integrated into the timing circuit

for the current discharge. The major components of the gas feed system are shown in Figure 3. The

gas system utilizes a 3.5 L plenum tank pre-filled with argon to the desired pressure (8–50 psia)

prior to each shot to match a specified flow rate. The plenum tank was connected through a gas

feedthrough on the vacuum chamber to a Skinner direct-acting solenoid gas valve just upstream of

the thruster gas feed connector. Upon opening the solenoid valve, the gas flow would be sonically

limited by a choked orifice 1.51 mm (0.0595”) in diameter located at the upstream entrance to the

multi-channel hollow cathode tube. Gas would flow through the cathode rods in the tube to supply

gas to the thruster discharge, not supplied from the surrounding annular region of the discharge

chamber as is common in most gas-fed MPDTs. Pressures in the plenum tank and just downstream

of the solenoid valve were measured by pressure transducers (Statham PA208TC-50-350, 0-50 psia)

during flow calibrations and thruster firings. The solenoid valve was actuated with a high-current

insulated gate bipolar transistor (IGBT)-based pulse circuit tied to a 300 V power supply to over-

drive the solenoid valve. A Hewlett Packard HP 214B pulse generator was used to trigger the gas

pulse and then trigger the current discharge 50 ms later. By that time, the gas flow had reached

steady state in the thruster, as measured by the downstream pressure transducer (downstream of the

solenoid valve but upstream of the choked orifice).

2.5.2 Mass Flow Calibration

Mass flow calibration was performed with the gas pulse system connected to the thruster under

vacuum conditions. Gas pulses were triggered over a range of argon plenum tank pressures between
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8–50 psia for the 0.0595” choked orifice without firing the thruster. The approach to mass flow

calibration was a modified form of the process outlined in the appendix of Gilland’s thesis to provide

a calibration with lower uncertainty in instantaneous mass flow rate at the time of thruster discharge

[63]. Measurements of the gas pulse were taken from the pressure transducer just downstream of

the solenoid valve (but upstream of the choked orifice), and a total mass bit was calculated from

the pulse based on the pressure drop in the plenum tank and application of the ideal gas law after

the pulse (after a brief thermal equilibration time in the plenum tank). The downstream pressure

response signals were integrated over the time durations for each full gas pulse to get a total pressure

integral. Mass flow rate should be proportional to upstream plenum pressure for sonically choked

flow. A linear least squares fit was calculated to identify the slope between the total mass bit (change

in mass of the gas in the plenum) versus the pressure integral for each gas pulse over a range of initial

plenum pressures. Since the mass bit is an integral over the same pulse time period as the pressure

integral, this slope could then be used as the same constant of proportionality between mass flow

rate and downstream pressure. For each gas pulse at a different initial plenum tank pressure, the

downstream pressure at the time of the current discharge (45 ms after initiation of the gas pulse)

was extracted from the measured response data and multiplied by the proportionality constant to

obtain the instantaneous flow rate at that time. This approach provides a more accurate measure of

flow rate at the time of thruster discharge since the gas pulse is not truly a square wave, but rather

has an exponential pressure decay tail upon valve closing.

Plotting each of these calculated mass flow rates versus the initial plenum tank pressure yields

the results in Figure 2.11. Standard deviation of the residuals for the curve fit of mass flow rate

versus initial plenum pressure result in approximately ±1% uncertainty. The overall uncertainty in

the mass flow estimate including uncertainties initial temperature and initial plenum pressure prior

to each thruster firing is estimated at approximately ±3%. The majority of the data for the thruster
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Figure 2.11: Calibration of flow rate versus initial upstream plenum pressure.

was obtained at a mass flow rate of 1 g/s.

2.6 Diagnostics

2.6.1 Data Acquisition System

All critical measurement signals to be analyzed were recorded via a digital data acquisition sys-

tem (DAQ). Multiple National Instruments model PCI-6133 high-speed digital data acquisition

cards were installed in a dedicated DAQ personal computer (PC). Each DAQ card provided eight

simultaneously-sampled channels (each with their own analog-to-digital converter) at 14-bit reso-

lution and 2.5 megasamples per second per channel. A custom LabVIEW software program was

written to sample and record the buffered data from each thruster firing (“shot”) on the DAQ PC for

later post-processing analyses. A Tektronix DPO2014 100 MHz digital oscilloscope was used for

monitoring all non-critical signals (e.g., pressure transducers, PFN capacitor bank voltage, etc.) and
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for recording higher sampling rate measurements of the thruster terminal voltage.

2.6.2 Terminal Voltage and Current Signals

Thruster discharge voltages and currents were measured during thruster firings to enable exami-

nation of terminal voltage versus current characteristic profiles and assessment of the growth of

voltage fluctuations (“voltage hash”) at higher currents. Thruster terminal voltages were sampled

with a 500:1 Tektronix P5205 high-voltage, active differential probe connected across the anode

and cathode electrodes. The current was measured via a Pearson Electronics Inc. model 1330 pulse

current monitor connected around the cathode-side high current cable connected to the PFN neg-

ative terminal. This current monitor transduced the current to a voltage during the thruster firing

pulse with a calibration constant of 5 V per kA. The current monitor’s output voltage was attenuated

through a 10:1 voltage divider and recorded on a National Instruments NI PCI-6133 DAQ card.

Example voltage and current traces are illustrated in Figure 2.12 and Figure 2.13, respectively.

An increase in the magnitude of the voltage hash can be observed with increasing discharge current,

as discussed in detail later in Chapter 3. To obtain the voltage-current (V-J) characteristic curves,

the voltage and current traces were averaged over the quasi-steady time period of the thruster firing,

typically 0.8 to 1.8 ms after triggering the PFN discharge.

2.6.3 Magnetic Probe Array

Sampling the magnetic field generated inside the thruster provided a fundamental data set for this

research. Mapping of the magnetic field structure inside the thruster enables investigation of the

influence of the external applied magnetic field on the internal magnetic topology in the discharge

region, the current streamlines for the discharge, and current densities along the anode. Also, local

magnetic field measurements enable determination of key parameters such as the electron Hall
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Figure 2.12: Sample traces of voltage vs. time for the MPDT discharge.
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Figure 2.13: Sample traces of current vs. time for the MPDT discharge.
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parameter and electron Larmor radius.

A new magnetic probe array (MPA) was constructed for simultaneous sampling of the magnetic

field along 15 inductor coils positioned along the probe. Each small inductor performed as a so-

called “B-dot” probe (measuring the change in B field with time), enabling measurement of an

induced voltage V across the coil winding due to the time-varying magnetic flux inside the coil

given by Faraday’s law:

V = −N dΦ

dt
= −NAdB

dt
(2.1)

where Φ is the magnetic flux bounded by the coil, N is the number of turns in the coil, A is the

area of the coil, and dB
dt is the instantaneous time rate of change of the magnetic field penetrating

the coil.

Fourteen small commercial inductor chips (Coilcraft Inc., model 1008CS-472XGBB) were used

(each chip was nominally 52 turns each, with 5±0.1 microhenries inductance). The dimensions of

the inductor chips were 2.8 mm by 2.9 mm by 2.0 mm. This approach was modeled after the work

by Romero-Talamas, Bellan, and Hsu [64]. The chips were spaced axially every 20 mm for a total

span of 260 mm, and these chips were inserted into a custom-fabricated Delrin plastic fixture made

to fit these commercial chips’ dimensions. In addition, a hand-wound inductor coil was made by

winding 105 turns of # 40 American Wire Gauge (AWG) magnet wire around a 3.5 mm diameter

by 2 mm long core machined from Ultem rod. This hand-wound coil was glued to the tip of the

Delrin probe stem with glyptal insulating enamel. While providing an additional 15th measurement,

this hand-wound coil also acted as a calibration-correction coil for the smaller inductor chips due to

the larger signal-to-noise ratio provided by the increased number of turns and larger coil diameter.

All coils and the Delrin stem of the probe array were encased in an 8 mm diameter quartz tube to

insulate them from the plasma. The tip of the probe and inductor coils can be seen in Figure 2.14.
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Figure 2.14: Close-up view of magnetic probe array with B-dot coils.

Each coil’s leads were soldered to very fine # 38 AWG “Twistite” twisted pair wire by MWS

Wire Industries. These wires ran the length of the Delrin stem and into a transitional stainless steel

shielded tube, which provided electrostatic shielding and also additional axial stand-off distance

between the probe and positioning stage mounting hardware to minimize the obstruction of the

thruster exit plane. The metal tube was covered with Kapton tape and shrink wrap to insulate the

metal from the plasma in the vicinity of the thruster. The metal tube opened to a shielded transition

box at the top of the mounting structure affixed to a 3-axis (axial traverse, radial traverse, and

horizontal rotation) positioning stage inside the vacuum chamber. Inside this aluminum box, the #

38 AWG wires transitioned to # 22 AWG twisted shielded pair wires bundled together and carried to

the chamber feedthrough and outside the chamber to the aluminum shielded DAQ connection box.

At the DAQ connection box, each coil’s output was fed through a simple R-C low-pass filter circuit

with cutoff frequency of approximately 90 kHz and terminated at 100 Ohms.

Time integration of the measured B-dot probe’s induced voltage signal provided a measure pro-

portional to the absolute magnetic field strength versus time. This time integration was performed

numerically on a computer using the digitally recorded voltage trace for each coil. The integrated

voltage was converted to magnetic field strength by using a pulsed Helmholtz coil for calibration.
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The Helmholtz coil was constructed with a 2.54 cm (1”) radius and 2.54 cm (1”) axial separation

between windings, each with 10 turns of insulated copper wire.

All coils used for the primary measurements were oriented such that they would measure the

azimuthal component of the magnetic field inside the thruster. Enclosed current contours of the

poloidal (radial and axial) current pattern were obtained by applying Ampere’s Law to the magnetic

probe array measurements in the interior of the thruster discharge and exploiting azimuthal sym-

metry. This is discussed in more detail later in Chapter 4 on the magnetic probe measurements and

analyses.

2.6.4 Triple Langmuir Probe

A triple Langmuir probe was constructed to enable high-speed measurements simultaneously of

electron temperatures, plasma number densities, and plasma potentials. The triple probe method

uses a steady applied voltage between two small conducting probes (wire tips in our case), and a

third conducting probe acts as a floating potential probe [65]. The triple probe does not require

any special high-frequency sweeping of the bias voltage as in a single or double probe apparatus.

This makes the triple probe particularly well suited to the noisy, rapidly time-varying discharge

environment of the pulsed thruster. Two probe wires effectively form a double probe with a potential

difference Vd3 = V3 − V1 held constant between them. One wire of the probe is allowed to “float”

unbiased to the floating potential V2 = Vf . For probe wires at V1 and V3 to balance as a floating

double probe, the currents I1 and I3 must be equal and opposite such that the system draws no net

current. A schematic of our triple Langmuir probe circuit and key elements is shown in Figure 2.15,

and a photo of the sensing end of the triple Langmuir probe is shown in Figure 2.16.

To create the triple Langmuir probe, three tungsten wires each with 0.254 mm (0.010”) diameter

and 3 mm long were individually fed through small alumina ceramic tubes with 0.8 mm (1/32”)



38

New Langmuir triple probe

Current probe 
(isolated Isat)

V3

V1

V2=Vf

Isolation 
amplifier

(Vd2=V1-V2)( d2 1 2)

e schematic

Isolation 
amplifier

(VIsat)

_

Current 
measurement 

resistor

Batteries
(Fixed Vd3)

+

High impedance to ground 
(~100 kOhms)

Isolation 
amplifier
(V2=Vf)) ( 2 f))

Figure 2.15: Triple Langmuir probe schematic.

Figure 2.16: Triple Langmuir probe and tungsten wire tips alongside magnetic probe.
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outer diameter (OD) and sealed with ceramabond. Each of these ceramic tubes were glued into

three inner holes spaced 1 to 1.5 mm apart within a 4-bore alumina ceramic tube with 4.8 mm

(3/16”) OD, and this was glued into the end of a stainless steel metal tube to act as an electrostatic

shield. An outer alumina ceramic tube with 9.5 mm (3/8” OD) was placed over the metal tube to

insulate the conductor from the plasma. This outer ceramic tube extended past the end of the 4-bore

ceramic tube by approximately 1.5 cm to act as a “shadow shield” to mitigate against the layering

of sputtering deposits that could coat the 3 small alumina tubes and form an electrically conducting

layer between probe tips. The small, innermost ceramic tubes holding the tungsten wires extended

an additional 1 cm past the outer ceramic tube to avoid any transverse or radial flow obstruction.

For measurements near the anode, this geometry allowed measurements of plasma properties with

the probe tips within approximately 3.5 to 4.5 mm away from the anode.

Inside the metal tube, the thin tungsten wires transitioned to # 22 AWG insulated copper wires.

The metal tube extended along the same long axis of the magnetic probe back to the positioning

stage mounting structure, where it connected to a metal transition box. Here, the wires were con-

nected to BNC coaxial cables that ran from the positioning stage back to the chamber feedthrough,

and the connections continued via BNC cables outside the chamber to an external circuit box wired

to the DAQ inputs.

Primary circuit elements are shown in Figure 2.15. Potential differences that were not ground

referenced were measured using Analog Devices AD215BY isolation amplifier circuits. The bat-

tery bias between two probe tips was made by two Eveready model number 732 lantern batteries

connected in series for a fixed bias voltage, Vd3 of 25.5 V. Batteries were used instead of an external

power supply because of their inherently floating isolation, low noise, and fast time response. The

inputs and outputs of isolation amplifiers were passively filtered with R-C low-pass filters with cut-

off frequencies circa 120 kHz. Measurement signals were connected to the data acquisition system
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(DAQ) for high-speed, simultaneous digital recording. Measurements from both an isolated cur-

rent probe (Tektronix TCP312 current probe and TCPA300 amplifier) and voltages from a current-

sensing shunt resistor were used to verify ion saturation current measurements independently. The

current-sensing shunt resistor values used were 5.1 Ohms in regions of higher densities (and thus

higher collected ion saturation current) and 15.3 Ohms in regions of lower densities. These values

were selected to get sufficiently large signals of order 0.1 V for DAQ recording, but small enough

so that they did not significantly perturb the 25.5 V voltage bias between probe tips.

It should be noted that early experiments were also conducted with a single Langmuir probe with

rapid sweeps at 5 to 10 kHz of the bias voltage applied to the probe to generate the current-voltage

characteristics. The analysis methods for the single Langmuir probe are discussed in Hutchinson’s

book [66]. The single probe used was also tungsten wire of the same dimensions, 0.254 mm (0.010”)

diameter and 3 mm long. This single probe technique was successful at low to moderate thruster

discharge currents, up to approximately 9 kA at 1 g/s mass flow rate. However, above these cur-

rents, significant noise and ground fluctuations during the thruster firing coupled back to the power

supply and driving ramp generator used for the applied bias voltage. This would result in unstable

and unrepeatable voltage sweeps of the probe bias voltage and greatly limited the ability to obtain

reliable data in the electron-collecting region. These effects at higher currents ultimately led to the

construction and use of a triple Langmuir probe instead.

For the triple Langmuir probe, expressions for calculating electron temperature Te, electron

number density ne, and plasma potential Vplasma are derived in Chen and Sekiguchi’s original paper

[65] and interrogated further for error analyses in Tilley’s paper [67]. (Note, just for clarification,

that in Tilley’s paper, his schematic in Figure 1 shows the voltage bias Vd3 drawn incorrectly with
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the opposite polarity.) First, electron temperature Te can be obtained from the implicit equation

1− exp(−χd2)

1− exp(−χd3)
=

1

2
(2.2)

where χd2 = |qe|Vd2
kTe

and χd3 = |qe|Vd3
kTe

are the non-dimensionalized potential differences, k is the

Boltzmann constant, and qe is the fundamental electron charge.

Electron number density, ne, can be calculated from

ne =
exp(1/2)Isat

|qe|Aprobe(kTeMi
)1/2(exp(χd2)− 1)

(2.3)

where Isat = I3 = −I1 is the measured ion saturation current, Aprobe is a single probe wire’s

exposed surface area (assuming equal sized probe tips), and Mi is the ion mass (argon in our case).

Note that it can be shown that the expression (exp(χd2)− 1) reduces to approximately 1 when the

bias voltage Vd3 is much greater than the electron temperature.

The plasma potential, Vplasma, is calculated from the electron temperature by

Vplasma = Vf +
kTe
|qe|

ln(

√
2Mi

πme
) (2.4)

where Vf is the floating probe potential measured from V2, and me is the electron mass. Later, we

will calculate our anode fall voltages, Vfall, defined as

Vfall ≡ Vanode − Vplasma (2.5)

where Vfall is calculated as positive for electron-attracting fall potentials, and the anode potential

Vanode is measured separately as a reference voltage and averaged during the quasi-steady thruster
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firings.

Both Te and ne are calculated with the corrections for the ion current collected at the probe

potential relative to the plasma potential as given in the numerical calculations by Laframboise [68].

Laframboise’s calculations account for finite sheath thickness and ion temperature for a cylindrical

probe in a collisionless and quiescent plasma, but are also applicable to a probe whose axis is

aligned with the plasma flow. Ion temperatures in our analyses were assumed to be equal to the

electron temperatures. This is deemed a reasonable assumption given that Bruckner and Kilfoyle

found typical ion temperatures on the order of the electron temperature in their MPD thruster plumes

[69, 70]. Also, we did not have a means to measure the fraction of multiply-charged ions, and thus,

all calculations assumed only singly-ionized argon. By quasineutrality, this results in equal number

density for electrons and ions, i.e., ne = ni. The effects of variations of these parameters on

electron temperature and ion saturation current (thus, also on number density and plasma potential)

were rigorously accounted for in our error analyses by using the methods described by Tilley [67].

Also, our large probe aspect ratio (length to radius) of 23.6 allows us to justifiably use Laframboise’s

infinite cylinder modeling results.

The triple Langmuir probe theory also requires additional assumptions for validity. The electron

and ion population energy distributions must be Maxwellian, which is a well expected behavior in

the quasi-steady conditions. The sheaths around the current-collecting probes must be collisionless,

which is justified since the Debye length is typically on the order of 5 µm for our plasma properties.

Also, we can neglect interactions between the sheaths of the three probe wires, as the separation

distances between the probe wires (order of 1 mm) are much greater than the Debye length.

Magnetic field effects can also potentially cause significant variations. However, most magnetic

field effects can be neglected since the probe wire radius of 0.127 mm is significantly smaller than

the electron Larmor radius, which is order of 2 mm even in regions of high magnetic fields and
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much larger in weaker magnetic field regions away from the applied-field magnet coils and thruster

centerline. The one major effect that was taken into account in the error analyses was the effect on

electron drift transverse to the probe axis. This effect was modeled as a transverse flow velocity error

and accounted for in the error analysis methods described by Tilley, which yields approximately

5% additional uncertainty in Te [67]. Also, Chen and Sekiguchi describe the effects of triple probe

application to magnetoplasmas [65]. They note that additional magnetic field effects can be ignored

if (Vf − Vplasma)� (e/2me)(Bd)2, where B is the magnetic field intensity and d is the thickness

of the ion sheath (order of a few times the Debye length). For our plasma properties and modest B

field magnitudes, the right-hand side of this expression is only order of 5×10−4 V for our operating

conditions, and our probe potential differences were always much larger than this extremely small

value.

Care was taken to place the probe tips in front of the nearby magnetic probe (i.e., out of the

magnetic probe’s wake) and orient the triple probe tips in the axial flow direction to minimize the

effect of flow disturbances and transverse plasma flow. The effects of the variations in probe angles

were examined in our thruster by rotating the probe orientation angle with respect to the thruster

centerline axis from -25 to +20 degrees. Values for ion saturation current and electron temperature

are minimized when the probe axis is oriented with the flow direction, thus minimizing transverse

current collection and providing more accurate measurements. With the probe axis oriented in

the direction of the thruster axis, measurements were found to have less than 10% variation from

minimum values. I.e., flow was indeed primarily in the thruster axis direction for the measurements

inside the thruster.

Measured signals were averaged over the 1 ms quasi-steady time period and across multiple

thruster shots to calculate mean values and associated statistics (e.g., standard deviations for use in

estimating uncertainties) for each operating condition. However, for some of the shots in the near-
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anode region, brief but significant transients would occasionally occur, which required analysis over

piecewise segments of the quasi-steady period. Sometimes, the plasma density would drop out so

dramatically (by much greater than two orders of magnitude) during some short-lived (typically less

than 0.1 ms) transient as to cause unrealistically large or even negative Te readings. In these cases,

the triple Langmuir probe theory would break down (e.g., excessively large sheaths or overlapping

sheaths between probes), and averaging over these events would not be physically accurate. For

such selected brief transients events, we would break up the quasi-steady time period into one or

more sufficiently long (greater than 0.4 ms) time periods where the plasma was sufficiently resident

enough for the triple Langmuir probe theory to be physically valid.

2.6.5 High-Speed Video Imaging

A high-speed digital video camera was used to obtain images of the thruster discharge. These videos

were taken during early testing with the thruster operating at 9 kA in self-field mode only (without

magnets). These measurements used two Vision Research cameras, including model Phantom V710

and model Phantom V7.3.

In addition to being an effective troubleshooting diagnostic during early tests with the thruster,

the high-speed imaging was particularly useful for providing qualitative insights into transient phe-

nomena in the plasma discharge during quasi-steady operation. High-speed imaging frames were

taken looking at the thruster through view ports in the vacuum chamber. Videos were taken from

an end view looking directly upstream into the anode and cathode, as well as a side view looking at

the thruster plume and a few cm upstream of the anode exit plane. A series of neutral density filters

were used as needed to reduce luminosity to avoid saturation of the camera charge-coupled device

(CCD) detector. The high-speed images presented later used exposure times was around 1-5 µs and

imaging rates of 10,000 frames/s (100 µs intervals between frames).
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Chapter 3

Influence of the Applied Magnetic Fields
on Voltage-Current Characteristics and
Voltage Fluctuations

3.1 Operating Conditions and Thruster Configurations

Thruster discharge voltages and currents were measured during thruster firings to construct voltage

versus current characteristics and determine the influence of the applied magnetic fields on the

voltage fluctuations (“voltage hash”) at higher currents. Section 2.6.2 described how the voltage

and current measurements were obtained.

These data were obtained over a range of PFN voltages to span thruster current levels from 1.8

kA to 13.1 kA. This broad range was selected to cover a wide set of operating conditions and exam-

ine transitions and trends from well below onset to well above onset. To obtain the various voltage

and current statistics presented in this section, the voltage and current traces were averaged over the

time span during which the thruster was quasi-steady, generally 0.8 to 1.8 ms after triggering the

PFN discharge as seen in Figure 2.12. The flow rate was held constant at 1.0 g/s. This flow rate

was chosen because it was sufficiently low to allow a range of J2/ṁ values (approximately 4 to

172 kA2s/g) well above typical onset values for other thrusters (e.g., beyond 80 to 110 kA2s/g in

the Princeton Benchmark Thruster), yet still provided sufficient flow in our large thruster geome-
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try for stable, repeatable operation [42]. Configurations examined included no magnets (self-field

operation), the applied tangential B field, and the applied cusp B field.

3.2 Collection of Data

Some example terminal voltage and current traces over the entire PFN firing duration were shown

earlier in Figure 2.12 and Figure 2.13, respectively. As expected, an increase in the magnitude of

the voltage fluctuations is observed with increasing discharge current. To see a clearer picture of the

structure of the hash, we examine the data during the quasi-steady portion of the time series traces

for the three applied B field configurations at three different operating current levels. The voltage

traces in Figure 3.1 show example traces for the case without magnets (self-field operation). A fairly

quiescent mode of operation is observed in the voltage response at the lower 5.5 kA. However, we

observe an intermediate mode of operation in the 8.0 kA trace wherein the voltage fluctuations

become more pronounced, albeit still primarily oscillating equally positive and negative relative to

the mean. At the higher 10.7 kA, we see a substantial growth in the magnitude of the voltage hash

along with predominantly positively biased spikes in the voltage fluctuations relative to the mean.

We will explore the nature of these spikes via statistics in the following section. These results are

consistent with the behaviors and three different regimes of voltage hash observed by Uribarri in his

own data for the Princeton Benchmark Thruster [18].

We next examine the influence of the applied magnetic fields. Figure 3.2 shows example voltage

traces with the thruster under the influence of the tangential applied B field at the same operating

currents. In this case, it can be seen even by inspection that there is a reduction in the mean voltage

relative to the no-magnets case, at least for the 5.5 kA and 8.0 kA cases. Overall, a reduction in

the magnitude of the voltage fluctuations is also evident. The reduction in the mean voltages and

the reduction in the magnitude of the spikes will be analyzed statistically and discussed further
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Figure 3.1: Example voltage traces during quasisteady period (1 ms duration) for the no-magnets
case (self-field operation). Traces shown compare 10.7 kA, 8.0 kA, and 5.5 kA.

later. The three types of regimes of structure to the voltage hash found in the self-field case are also

observed with the tangential applied B field. These include a quiescent mode in the 5.5 kA case, an

intermediate mode in the 8.0 kA case, and a positively biased spiky hash in the 10.7 kA case.

In Figure 3.3, we see examples of the voltage traces with the applied cusp B field. This case

responds similarly to the tangential B field configuration, with reduced mean voltage and a reduction

in the amplitude of the voltage fluctuations. Moreover, a somewhat steadier response is observed in

the cusp B field voltage time series, exhibiting fewer and smaller-amplitude transitory excursions

(drops or rises relative to the moving average) than we saw in the other two configurations. This

response is perhaps indicative of a slightly steadier and stable behavior due to the cusp B field.
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Figure 3.2: Example voltage traces during quasisteady period (1 ms duration) for the tangential
applied B field case. Traces shown compare 10.7 kA, 8.0 kA, and 5.5 kA.
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Figure 3.3: Example voltage traces during quasisteady period (1 ms duration) for the cusp applied
B field case. Traces shown compare 10.7 kA, 8.0 kA, and 5.5 kA.
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Figure 3.4: Mean terminal voltage vs. current characteristics comparing cases with no magnets,
tangential B field, and cusp B field.

3.3 Analysis of the Moments of the Voltage Signal Distribution

We begin our examination of the thruster terminal voltage response by analyzing the voltage-current

characteristics (also commonly referred to as the “V-J curves” in the literature). Each individual

voltage time series is analyzed over the 1 ms quasi-steady period from 0.8 ms to 1.8 ms. Addition-

ally, multiple shots of the thruster were taken at each discharge current condition shown and then

repeated for each applied B field configuration. These multiple shots were averaged to obtain the

data shown in Figure 3.4. Note that the error bars shown in the plots represent the standard errors of

the means, and are dominated by the shot-to-shot variability. As expected, we see the monotonically

increasing growth in mean terminal voltage as the current is increased. An initially linear trend for

lower currents is observed below approximately 8.5 kA. Above this value, the voltage increases

more rapidly with increasing current. This trend is typically associated with a higher growth rate in

voltage with increasing current above full ionization conditions [62].
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J (kA) Mean voltage (V)
Reduction in 
mean (V)

+/- 95% 
confidence 
intervals (V)

Relative 
reduction in 
mean

+/- 95% 
confidence 
intervals

No magnets 
(self-field):

8.0 kA 97.0
9.0 kA 134.2
10.7 kA 192.5

Tangential B field:
8.0 kA 71.4 -25.7 3.8 -26.5% 3.9%
9.0 kA 92.9 -41.3 11.4 -30.8% 8.5%
10.7 kA 188.9 -3.6 18.8 -1.9% 9.7%

Cusp B field:
8.0 kA 73.5 -23.5 3.8 -24.2% 4.0%
9.0 kA 92.8 -41.4 11.3 -30.9% 8.4%
10.7 kA 167.4 -25.1 11.6 -13.0% 6.0%

Table 3.1: Comparison of terminal voltage signal means and relative reductions with applied mag-
netic fields.

The V-J curves exhibit one of the most significant effects of the applied magnetic fields. With the

applied magnetic fields, we observe a significant decrease in the mean thruster voltage for a given

current level over a broad range of currents. For example, with the tangential applied magnetic field,

we obtain a reduction in the mean voltage of 25.7% ± 3.9% (95% confidence interval) relative

to the self-field at 8.0 kA. A similar reduction of 24.2% ± 4.0% is seen with the cusp applied

magnetic field at 8.0 kA. At 9.0 kA, a 30.8% ± 8.5% reduction and a 30.9% ± 8.4% reduction are

measured for both the tangential and cusp fields, respectively. As current is increased further, the

tangential field case begins to approach the response without magnets. However, the cusp magnetic

field configuration still exhibits a relative reduction of 13.0% ± 6.0% at 10.7 kA and a slightly

decreased but still notable voltage reduction through the full range of measured currents (13.1 kA).

All uncertainties cited above are based on 95% confidence intervals. These mean voltages and

associated reductions with the applied magnetic fields are summarized in Table 3.1.



51

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

Thruster Current (A)

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

V
)

 

 

No magnets

Tangential B

Cusp B

Figure 3.5: Standard deviation vs. current comparing cases with no magnets, tangential B field, and
cusp B field.

This mean voltage reduction is counter to the results of Tahara, Kagaya, et al. [61, 25], who

measured increased terminal voltages with their applied B fields relative to self-field operation.

However, their applied B fields were much higher magnitude (1000-5700 Gauss), and they were

much more axial in shape (primarily parallel to the anode).

We continue our assessment of the voltage signals by analyzing the higher-order moments of

the distribution for the voltage time series during the quasi-steady time interval. As with the V-J

curves, the same averaging process over multiple shots was performed on the higher-order moments

of the distribution. These moments include the standard deviation, skewness, and kurtosis shown in

Figures 3.5, 3.6, and 3.7, respectively. Note that the convention chosen for the equation used to cal-

culate the kurtosis includes the “-3” correction term such that the kurtosis of a Gaussian distribution

is zero. This is sometimes referred to as the “excess kurtosis.” Again, the error bars shown in the

plots represent the standard errors of the means, and are dominated by the shot-to-shot variability.
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Figure 3.6: Skewness vs. current comparing cases with no magnets, tangential B field, and cusp B
field.
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Figure 3.7: Kurtosis vs. current comparing cases with no magnets, tangential B field, and cusp B
field.
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J (kA)
Standard deviations 
average (V)

Reduction in standard 
deviation (V)

Relative reduction in 
standard deviation

No magnets/self-field:
8.0 kA 9.5
9.0 kA 18.3
10.7 kA 37.9

Tangential B field:
8.0 kA 6.0 -3.5 -36.6%
9.0 kA 10.0 -8.3 -45.3%
10.7 kA 35.5 -2.4 -6.3%

Cusp B field:
8.0 kA 5.8 -3.8 -39.5%
9.0 kA 9.4 -8.9 -48.7%
10.7 kA 32.2 -5.6 -14.8%

Table 3.2: Comparison of terminal voltage signal standard deviations and relative reductions with
applied magnetic fields.

The standard deviations of the voltage traces also exhibit a significant reduction in magnitude

over a range of currents for the applied B field configurations. This is indicative of a reduction in

the magnitude of the voltage hash, i.e., lower-amplitude RMS fluctuations about the mean voltage.

Relative to the case without magnets, the tangential applied B field case yields a 36.6% reduction

at 8 kA and 45.3% reduction at 9 kA. At 10.7 kA, the tangential B field case exhibits a small 6.3%

reduction, but the differences are beginning to return to a similar range of response as the self-field

case. For the cusp applied B field, a reduction of 39.5% is observed relative to the self-field case

at 8 kA, 48.7% reduction at 9 kA, and still 14.8% reduction at 10.7 kA. Beyond this current level,

the cusp B field response also trends towards the same behavior as without the magnets. Table 3.2

provides a comparison of the voltage signal standard deviations and relative reductions due to the

applied magnetic fields.

There is a transition to significantly increased growth in the standard deviations with increasing

current that occurs between 7.5 kA to 9 kA. This transition is near the same current range where the
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thruster voltage transitioned to a stronger increasing dependence on current.

The skewness (third moment of the signal distribution) is a general measure of how the voltage

hash fluctuations deviate from a Gaussian distribution toward a population that has a “broader,

longer tail” biased to one side of the mean. Given our previous observation of the positively biased

nature of the voltage spikes at higher currents as seen in the time series traces, we expect to see

a growth in the positive skewness of the voltage signals. This trend is indeed observed. With

increasing current, the skewness increases from values near zero at lower currents to increasingly

positive values for currents beyond approximately 8 kA. However, we do not see a systematically

different response in the skewness with the magnets on than without the magnets.

The kurtosis (fourth moment of the signal distribution) is a measure of how peaked or flat-

tened the data are relative to a Gaussian distribution. In this case, increasing kurtosis gives a sense

of whether the voltage hash distribution shifts from Gaussian toward a population biased with a

“heavy tail” well to the positive side of the mean (i.e., a positive “bump” in population distribution

counts at a high amplitude). Such a population would occur if there are relatively infrequent but

large-amplitude spikes in the voltage signal, as opposed to frequent, modestly sized fluctuations.

We observe such behavior in the time traces and see a general trend of increasing kurtosis above

approximately 8 kA. There is a trend of lower kurtosis with the magnets on, particularly for the

tangential B field case up to approximately 10.7 kA. However, the differences for the cusp B field

case relative to without the magnets are not consistently lower over the range of currents, oscillating

between lower values and statistically similar values relative to without the magnets.

To elucidate the basis of these statistical results, we can examine the population distributions of

the voltage time series. Examples of these distributions are shown in Figures 3.8, 3.9, and 3.10 for

the signals at the higher current near 10.7 kA. A longer tail to the distribution on the positive side

of the mean (a contributor to positive skewness) is observed, and in the example without magnets,
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Figure 3.8: Population distribution histogram example for the voltage signal without magnets at
10.7 kA.

we can see a small peak of some high-amplitude positive spikes extending to just over 400 V in the

distribution (a likely contributor to positive kurtosis). At lower currents, we observed population

distributions that are more symmetric, Gaussian-like distributions are observed in the self-field case

at a lower current circa 8 kA in Figure 3.11.

To examine similarities in thruster behavior, it is useful to compare our results to the data ob-

served by Uribarri for their Princeton Benchmark Thruster in his examination of the voltage signal

means, standard deviations, skewness, and kurtosis [42]. We observed similar trends in the growth

of the means and standard deviations, including a departure to significantly growing standard de-

viations (or magnitudes of the fluctuations) around 90 to 100 kA2s/g. We also observed a positive

growth in the skewness and kurtosis with increasing current, albeit the magnitude for both was

much greater in the Princeton Benchmark Thruster. Uribarri observed in their Princeton Bench-

mark Thruster that the skewness and kurtosis both peaked circa 110 kA2s/g with increasing current,
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Figure 3.9: Population distribution histogram example for the voltage signal with tangential B field
at 10.7 kA.
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Figure 3.10: Population distribution histogram example for the voltage signal with cusp B field at
10.7 kA.
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Figure 3.11: Population distribution histogram example for the voltage signal without magnets at
lower 8 kA current.

then began to decrease back toward zero. We did not clearly observe this feature in our thruster’s

data. It is possible, for example, that such a decreasing response would have been observed at much

higher currents and that the kurtosis was beginning to exhibit a downward trend near the highest-

current data point of 13.1 kA. However, without data beyond this current, it is impossible to make

such a claim with certainty. These results will be discussed further in Section 3.5.

3.4 Analysis of the Transients and Power Spectrum of the Voltage Sig-

nal

To explore further into the temporal and frequency-dependent response of the voltage signal, we

analyze various aspects of the transient spikes and power spectra of the voltage signals. To begin

this analysis, we pick a threshold of 10% above the mean thruster voltage for each signal. Then, we

analyze the positive spikes that exceed this threshold and perform the same averaging over multiple
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shots and uncertainty analysis for the standard error to characterize shot-to-shot variation.

First, we count the number of positive spikes exceeding this threshold of 10% above the mean

voltage over the 1 ms quasi-steady period, as seen in Figure 3.12. Clearly, a transition to sufficiently

high-amplitude spikes occurs beginning at 5.5–6.5 kA for the self-field case, and the number of

spikes grows steadily until approximately 9 kA, where the number of spikes approaches a constant

value. The initial transition begins at somewhat higher currents, circa 7–8 kA for both cases with

magnets on, and the values increase until approximately 10.7 kA. Overall, the applied magnetic

fields increase the current threshold for the rapid growth of large-amplitude spikes by approximately

1–2 kA. The spike-reducing effects of the applied fields can be seen more clearly if we examine the

response at fixed current values. For a fixed, specified current in the transition region between

approximately 6 to 10.7 kA, the applied magnetic fields result in a significant drop in the number of

positive spikes. For example, the applied magnetic fields result in 73–77% reduction in the number

of spikes at 8 kA and 47–50% at 9 kA. Because anode spots have been shown to correlate with

voltage hash, one can argue that the number of spikes is related to the number of anode spots being

formed on the surface of the anode, as indicated in the work by Uribarri [42].

The introduction of anode spotting as a possible mechanism is relevant because evidence of

anode spots occurring in our thruster was obtained via high-speed video imaging. Figure 3.13 shows

9 frames taken with 1 µs exposure times and separated by 100 µs intervals looking upstream into

our thruster during the quasi-steady period. The thruster was firing at 9 kA in self-field mode (no

magnets). These images show the higher-luminosity regions around the inner perimeter of the anode

lip migrating around the anode over time. Similar to observations by Uribarri [42] and Diamant [37],

these luminous regions are associated with localized, higher-current concentrations along the anode,

which have been shown to be associated with anode spotting and current filamentation. Figure 3.14

also shows photographic evidence of anode damage in our thruster by melting due to localized
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Figure 3.12: Number of positive spikes >10% above mean voltage.

heating and surface pitting due to anode spots. This relationship between the terminal voltage

fluctuations and anode spots will be discussed further in Chapter 6. Reductions in the number of

voltage spikes and potentially in the number of anode spots (and associated erosion) appear to be

beneficial effects of the applied magnetic fields.

Next, we examine the peak amplitude of the positive spikes, as averaged over all spikes in the

voltage trace and subsequently averaged over multiple shots. In Figure 3.15, we again observe an

increase in the current threshold and a small reduction in the average amplitude due to the applied

magnetic fields. Relative to the self-field case, this reduction is approximately 22% for the cusp B

field and 34% for the tangential B field at 8 kA, and the reduction extends to approximately 40% at

9 kA for both applied fields.

Perhaps a better measure of intensity for the spikes is the signal energy contained in each in-

dividual spike, as shown in Figure 3.16. Here, we subtracted the mean and computed the integral∫
V 2dt for each positive spike exceeding the threshold (greater than 10% of the mean voltage) in a
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Figure 3.13: High-speed video imaging frames showing evidence of anode spots in thruster at 9 kA.
Frames represent 1 µs exposure times separated by 100 µs intervals.
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Figure 3.15: Average peak amplitude of positive spikes >10% above mean voltage.
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given voltage trace, averaged over all spikes in that trace, and repeated and averaged over multiple

shots. Since the power in a signal is proportional to the square of its amplitude (or its magnitude),

this calculation yields a measure of the average energy of the positive spikes. In these data, we ob-

serve a clear transition to much faster growth in the average energy of the spikes at approximately 9

kA for the self-field case and approximately 9.5–9.7 kA with the applied B fields. At 9 kA, the ap-

plied B fields yield approximately 57% lower energy, but the average energy rapidly rises at higher

current and approaches values similar to the self-field case.

Again, we can attempt to relate this amplitude to the anode spots. Uribarri [42] and Giannelli et

al. [24] proposed capacitively-coupled anode sheath models that associated anode spots and current

filamentation with fluctuations in the voltage signal. Based upon these models, we expect the energy

in the voltage hash spikes to be related to the magnitude of the current carried in the filaments at

the anode spots. A reduction in spike energy is observed with the applied-field magnets at currents

below approximately 10 kA. Combined with a potential reduction in the number of spots (related

previously to the observed decrease in number of spikes), we observe what is thought to be an

overall decrease in both the intensity and frequency of the anode spots with the applied magnetic

fields. This will be discussed further in Chapter 6.

Another way to examine the energy content in the voltage signal is to take the power spectral

density (PSD) of the signal in frequency space and integrate over a range of frequencies. The mean

of the voltage signal is subtracted before performing the PSD analysis. The results of this analysis

are shown in Figure 3.17. We chose to integrate over the frequency range from 10 kHz to 155 kHz.

As will be shown later in some example plots of the PSDs, the bulk of the energy content is in the

10s of kHz, so we chose a cutoff of 155 kHz to exclude all of the low-amplitude random noise in

the higher frequencies. Further, by ignoring the frequency content below 10 kHz, we avoid energy

content associated with very low-frequency shifts in the mean signal over the 1 ms quasi-steady
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Figure 3.16: Average energy per spike for positive spikes >10% above mean voltage. Here, energy
is calculated as the integral of V 2dt over each spike relative to the mean and averaged over all
spikes.

period that irrelevant to the examination of the voltage hash fluctuations. In this plot, we see a

similar relationship as we saw in the previous plot of the signal energy in each of the positive spikes

obtained via integration and averaging in the time domain. This is as expected, as we are examining

similar energy content in slightly different ways (i.e., temporal analysis versus frequency analysis).

We observe a similar transition as before to much larger growth in the energy at approximately 9 kA

without magnets and approximately 9.5 to 9.7 kA with both applied B fields. The applied B fields

result in approximately a 73% reduction in the energy at 9 kA and approximately 40% at 10.3 kA.

The values begin to statistically overlap at higher currents.

Subsequently, we consider the timing of the events associated with the positive spikes more than

10% above the mean voltage. The average duration of these spikes is plotted in Figure 3.18. Spikes

that are below this threshold are ignored, and so the values are zero for sufficiently low currents.

Beginning at approximately 8 kA and higher, all three magnetic configurations begin to statistically
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Figure 3.17: Total energy in the PSD spectrum, as integrated from 10 to 155 kHz. The inset yellow
box shows a zoomed in view of the region from 8–9 kA.

overlap. Although there is a steady growth in the duration of the spikes (on the order of a few

microseconds) with increasing current, the data mostly overlap for all three magnetic configurations.

This suggests that the aspects of the anode spotting events associated with the voltage hash spike

durations may not differ due to the applied magnetic fields. Instead, the duration of these events

may be associated primarily with the other invariant aspects of our thruster, e.g., anode material,

which of course is fixed for all magnetic field configurations.

Further, we can calculate an average time span between positive spike events. By taking the

inverse of this time span, we obtain an effective average frequency of the spikes greater than 10%

above the mean, as plotted in Figure 3.19. As expected, we find a functional form that is nearly

identical to the earlier plot showing the counts of number of positive spikes in Figure 3.12. The

transitions occur at similar current ranges and the magnitude of the reductions due to the applied

B fields is the same. The frequency grows with current until it asymptotes in a range spanning an
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Figure 3.18: Average duration of positive spikes >10% above mean voltage.

effective average frequency between 82 to 103 kHz. Note that this frequency range is higher than

the specific peaks we discuss later in the power spectral frequency analysis of the signals, as this

represents an effective averaging over all of the sufficiently large spikes (including higher frequency

spikes) crossing the threshold above 10% of the signal mean.

We next examine the frequency domain content contained in the voltage signals, for which

example power spectral density plots (PSDs) are shown in Figures 3.20 to 3.31. The PSDs were

calculated using Welch’s method to reduce noise in the power spectra. The mean was subtracted

from the 1 ms quasi-steady interval voltage signal time series, then the signal was segmented into

5 time-interval windows with 50% overlap between consecutive windows. A Hamming window-

ing function was applied and a periodogram was generated for each window interval, and then the

resulting periodograms were time-averaged. Figures 3.20 to 3.28 show the PSDs of multiple exam-

ple shots in the frequency range below 200 kHz, which highlight that the highest energy content is
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Figure 3.19: Effective average frequency of positive spikes >10% above mean voltage. This is
calculated as the inverse of the average duration between positive spikes above the threshold.

observed in the 10s of kHz. Figures 3.20 to 3.22 show the PSDs at 10.7 kA. Peaks can be clearly

seen primarily in the range between approximately 40 to 60 kHz. At the same current, a shift to

smaller-amplitude peaks at slightly lower frequencies can be seen in the PSDs with the applied B

fields relative to the self-field case. Figures 3.23 to 3.25 give example PSDs at 8 kA, where we

observe characteristic peaks near 40 kHz without magnets and significantly attenuated peaks at just

below 40 kHz. Figures 3.26 to 3.28 show example PSDs at 5.5 kA. At this lower current, the peaks

are much smaller in magnitude (consistent with the very small voltage signal fluctuations). The

self-field case still yields some peaks above 20 kHz, and the applied B field cases again exhibit a

shift to slightly lower frequencies near 20 kHz and significantly lower amplitudes. These shifts to

lower frequencies and lower amplitudes are consistent with the previous temporal domain analyses

of the effective average frequency and energy of the spikes.

Figures 3.29 to 3.31 show example PSDs over the full frequency spectrum at the 10.7 kA higher
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current operating point. In these figures, displayed as log-log plots, we can still see the distinct

peaks in the 10s of kHz. However, we can now also see the broader 1/fβ form of the decreasing

PSD dependence with increasing frequency at higher frequencies. A curve fit of the form 1/fβ over

the range of frequencies from 155 kHz to 1 MHz results in a range of values near β = 2, as shown

in the figures. Note that the turnover to flatter frequency response at even higher frequencies in the

plots is due to the very small amplitude fluctuations at these higher frequencies showing up in the

finite resolution bit noise of the least significant bit of the digitization. This 1/fβ form to the signal

implies that the frequency content at these relatively higher frequencies (above approximately 100

kHz) is primarily due to random processes. This is an interesting finding that agrees with the results

of Uribarri’s work in their Princeton Benchmark Thruster. In particular, this 1/f2 relationship is

characteristic of Brownian fluctuations for this higher frequency content. The Brownian fluctuations

are characteristically related to the random walk of the time interval between individual voltage

spike-inducing events, and it is generally a property of randomly perturbed, self-organizing systems.

However, this relationship at higher frequencies does not mask the clear appearance of distinct

peaks in the PSDs at the lower frequencies. Further, the lower-frequency content clearly dominates

the overall power in the voltage signals. Figures 3.29 to 3.31 also show overlay plots of the fraction

of cumulative total power vs. frequency. It is clear from these plots that more than 90% of the power

content in the PSD is below 100 kHz.

3.5 Summary of Results

In this chapter, we examined in detail the voltage-current characteristics and voltage fluctuations

(“voltage hash”) related to onset with rising current. We examined the nature of these fluctuations

in the temporal and frequency domains at a range of currents with the three major magnetic con-

figurations: no magnets, the applied tangential B field, and the applied cusp B field. Several key
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Figure 3.20: Power spectral density (PSD) examples for 3 shots without magnets at 10.7 kA.
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Figure 3.21: Power spectral density (PSD) examples for 3 shots with tangential B field at 10.7 kA.
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Figure 3.22: Power spectral density (PSD) examples for 3 shots with cusp B field at 10.7 kA.
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Figure 3.23: Power spectral density (PSD) examples for 3 shots without magnets at 8.0 kA.



70

0 0.5 1 1.5 2

x 10
5

0

1

2

3

4

5

6
x 10

−3

Frequency (Hz)

P
o
w

e
r 

S
p
e
c
tr

a
l 
D

e
n
s
it
y
 (

P
o

w
e
r/

H
z
)

Figure 3.24: Power spectral density (PSD) examples for 3 shots with tangential B field at 8.0 kA.
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Figure 3.25: Power spectral density (PSD) examples for 3 shots with cusp B field at 8.0 kA.
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Figure 3.26: Power spectral density (PSD) examples for 2 shots without magnets at 5.5 kA.
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Figure 3.27: Power spectral density (PSD) examples for 2 shots with tangential B field at 5.5 kA.
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Figure 3.28: Power spectral density (PSD) examples for 2 shots with cusp B field at 5.5 kA.
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Figure 3.29: Log-Log plot of power spectral density (PSD) example over the full spectrum without
magnets at 10.7 kA. Also shown are the 1/fβ curve fit (over range from 155 kHz to 1 MHz) and
the fraction of cumulative integrated power versus frequency.
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Figure 3.30: Log-Log plot of power spectral density (PSD) example over the full spectrum with
tangential B field at 10.7 kA. Also shown are the 1/fβ curve fit (over range from 155 kHz to 1
MHz) and the fraction of cumulative integrated power versus frequency.
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Figure 3.31: Log-Log plot of power spectral density (PSD) example over the full spectrum with
cusp B field at 10.7 kA. Also shown are the 1/fβ curve fit (over range from 155 kHz to 1 MHz) and
the fraction of cumulative integrated power versus frequency.
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findings arose.

Substantial reductions in the mean voltages over a broad range of operating currents are

achieved with the applied magnetic fields. Relative to the self-field case, both applied B field

configurations yielded reductions of approximately 25% at 8 kA and approximately 31% at 9 kA.

As current increased, the tangential B field case approached response similar to without the magnets.

However, the cusp B field case continued with modest reductions in the mean voltage throughout the

entire range of currents. This mean voltage reduction is counter to the results of Tahara, Kagaya, et

al. [61, 25], who measured increased terminal voltages with their predominantly axial and higher-

magnitude applied B fields. Overall, this implies a significant potential improvement in the total

thruster efficiency by achieving the same current at reduced input power (lower Pin = V J). This

effect on efficiency will be analyzed later in Section 6.5.

The applied magnetic fields yield significant reductions in the magnitude and frequency

of the voltage fluctuations. The standard deviations essentially track the magnitude of the RMS

fluctuations about the mean voltage, which clearly grow with increasing current, and grow more

rapidly above 8 or 9 kA. The applied B fields result in a 37–49% reduction in the standard deviations

at 8–9 kA. The cusp applied B field still exhibits a 15% reduction at 10.7 kA. Both cases trend toward

similar magnitudes as without magnets for higher currents. A detailed examination of the transients

in the voltage signals was conducted. Again, the applied magnetic fields resulted in substantial

reductions in these transients, e.g., the number and average frequency of positive spikes. These

reductions were most substantial particularly around the range of 8–9 kA, which seemed to manifest

as a recurring transitional region in the response behavior of the voltage transients. In general,

relative to without the magnets, the applied B fields resulted in an approximately 1–2 kA higher

current threshold at which these transients transition to significantly larger growth with increasing

current. High-speed video imaging evidence of anode spots was shown in Figure 3.13, supporting
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a link between these fluctuations and anode spots. In reducing the frequency and magnitude of the

terminal voltage fluctuations, the applied magnetic fields may also yield a decrease in anode spots

and associated erosion, which will be discussed further in Chapter 6.

Distinct peaks are observed in the PSDs at low frequencies (10s of kHz), and a 1/fβ depen-

dence is observed at higher frequencies. In the frequency-domain analyses, peaks in the power

spectral density (PSD) plots in the range of approximately 40–60 kHz were observed at higher

currents around 10.7 kA and down to approximately 20–30 kHz for lower currents. These peaks

repeatedly occurred in this range across multiple shots. The applied B fields consistently resulted

in significantly lower amplitudes and a shift to slightly lower frequencies for the peaks relative to

without the magnets. While these lower-frequency peaks clearly dominated the power content in

the PSDs, at higher frequencies (above approximately 100 kHz), a 1/fβ relationship was observed.

This finding, consistent with the work by Uribarri on the Princeton Benchmark Thruster, implies

that the content at these higher frequencies is dominated by random processes.

Also, in Uribarri’s examination of skewness and kurtosis statistics for his Princeton Benchmark

Thruster voltage signals, he observed a trend of initially near-zero values, followed by an increasing

value as current increased, and then subsequently values decreasing again toward zero (Gaussian)

for J2/ṁ above approximately 110 kA2s/g [42]. We observed the similar trend of near-zero skew-

ness and kurtosis values followed by an increase with increasing current, but we did not see a clear

indication of reduced values at much higher currents. Uribarri argued that such a return toward

Gaussian statistics in his data could be associated with an increase in the number (or frequency) of

anode spotting events, which generate the voltage hash. Thus, eventually an overlapping of voltage

spikes in time would result in a smoothing of the spikes in the voltage signal and a return toward

a Gaussian distribution. However, key differences between our two thrusters could possibly be the

cause of the observed difference. First, the anode material is stainless steel in our thruster. However,
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the behavior seemed to be observed in Uribarri’s data for copper, graphite, and lead anodes, suggest-

ing some relative independence with anode material. In addition, our thruster and anode are much

larger geometrically and operated at much lower flow rate and thus lower local plasma densities (as

will be shown in Chapter 5) than the Princeton Benchmark Thruster. These factors, along with the

extended axial length of the conductive anode surface bounding the regions of high magnetic field

(unlike the ring-shaped anode of the Princeton Benchmark Thruster) could all factor into why we

may observe a different set of statistics for the response of the voltage hash at higher currents due

to anode spot formation.

The next step is to examine the thruster discharge properties in more detail with in situ probes.

The behaviors reported in this chapter will be re-examined later in combination with what we learn

from the magnetic and Langmuir probing experiments. Further interpretations will be discussed

later in Chapter 6, including a connection between the reduced intensity and frequency of voltage

fluctuations with the applied B fields and decreased anode spot damage.
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Chapter 4

Magnetic Probing of Internal Magnetic
Field Topology and Current Profiles

4.1 Operating Conditions and Thruster Configurations

A multiple-station magnetic probe array (MPA) with a series of B-dot coils was positioned to mea-

sure the azimuthal magnetic fields inside the thruster discharge chamber and the near-field plume

regions. Each B-dot coil is an inductor that measures voltages induced by the time rate of change

of the magnetic field penetrating the coil. This signal can be integrated in time to measure a signal

proportional to the local magnetic field. The MPA was used during thruster firings to acquire data

to reconstruct the topology of the magnetic fields and discharge currents in the thruster plasma.

Section 2.6.3 describes the magnetic probe array and how it is used to measure magnetic fields in

situ.

Data from the MPA along the near-anode region were obtained over a range of PFN voltages

to span thruster current levels from 1.8 kA to 13.1 kA. As with the thruster voltage and current

measurements, this broad range was selected to cover a wide set of operating conditions from well

below onset to well above onset and examine whether there are any transitions or trends. Again,

the flow rate was held constant at 1.0 g/s. This flow rate was chosen because it was sufficiently

low to allow a range of J2/ṁ values (approximately 4 to 172 kA2s/g) well above typical onset
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values for other thrusters (e.g., beyond 80 to 110 kA2s/g in the Princeton Benchmark Thruster

[42]), yet still provided sufficient flow in our large thruster geometry for stable, repeatable operation.

Configurations examined included no magnets (self-field operation), the applied tangential B field,

and the applied cusp B field.

However, most of the measurements with the MPA were taken at a relatively high current of

10.7 kA, including all of the data at smaller radii in the interior (away from the anode). It is this

larger set of data at this higher current that allows for the contour plots of magnetic fields and current

streamlines in the thruster interior that are discussed later in Section 4.3. This high current is well

in the onset regime, as evidenced by the large-magnitude terminal voltage fluctuations shown in

Chapter 3. This discharge current value was chosen as a representative and repeatable condition

for evaluation of the thruster properties nominally within onset, and, in particular, to observe key

spatial variations in the thruster discharge between the self-field operation (no magnets) and the

configurations with the tangential and cusp applied magnetic fields.

The time-varying signals from the probe’s B-dot coils were integrated and then averaged over

the thruster’s quasi-steady time period, generally 0.8 to 1.8 ms after triggering the PFN discharge.

These results were averaged over both time and across multiple shots at each operating condition

to generate the means and estimate random uncertainties that are presented in the following sec-

tions. MPA measurements were obtained concurrently with the voltage and current measurements

discussed in Chapter 3.

4.2 Collection of Data

During each thruster firing, all 15 stations of B-dot coils on the MPA were sampled simultaneously

on a high-speed 14-bit DAQ at 2.5 megasamples per second per channel and saved via LabVIEW

for post-processing analysis on a PC. Integration of the time-varying signals and calibration with
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Magnetic Probe Array Measurement Positions

(flared anode section line highlighted in red)

Figure 4.1: Positions of magnetic probe array coils for B field mapping measurements. The probe
array position line for measurements along the anode flared section is highlighted in red.

a Helmholtz coil enabled calculation of the measured azimuthal B field at each coil position. The

equations for the MPA B-dot coil signals are given in Section 2.6.3.

The MPA was positioned at different locations to obtain measurements throughout the plasma

discharge region. All data while varying total thruster currents were obtained with the probe’s long

axis positioned along the anode flared section, 4-5 mm from the anode inner radius. This offset was

dominated by the 4 mm radius of the probe’s outer quartz tube. For the data taken at the constant

higher current, the probe was moved and angled around the interior and near-field plume of the

thruster using a three-axis positioning stage. Multiple shots were taken at each new probe position

while conducting the interior spatial mapping. At each new probe position, all 15 stations of the

probe array were measured during each shot. The position grid in Figure 4.1 shows the positions

of the individual B-dot coils in the half-plane of the thruster used to construct the interior contour

maps and near-anode profiles.
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4.3 Analysis of Magnetic Fields and Current Patterns at High Dis-

charge Current

We begin our examination of the MPA probe data with measurements taken at the high current

conditions at approximately 10.7 kA. As shown in the previous chapter, the thruster is operating well

within conditions associated with onset (large-amplitude voltage fluctuations at high frequency) at

this relatively high thruster discharge current. Figures 4.2, 4.3, and 4.4 show shaded contour plots

of the azimuthal B field generated during the thruster firing for the configurations with no magnets

(self-field), tangential applied B field, and cusp applied B field, respectively. These contour plots

show azimuthal B field in units of Gauss, as specified in the color bar legend. The contour plots

are drawn such that the vertical axis shows radial position with the bottom of the vertical axis at the

thruster centerline (r = 0), and the horizontal axis is the axial position measured relative to the anode

exit plane (x = 0). The cathode body is in the lower left side of the plots, with the cathode exit plane

at x = -270 mm. The anode inner radius is shown on the top side of the figures.

As expected, the magnetic field generally increases as we traverse further upstream in the

thruster. We also see a dip in the contours radially inward just downstream of the cathode face.

As will be shown later, these effects are due to the increasing enclosed current in the upstream axial

direction deeper inside the thruster discharge and the electromagnetic radial pinch on the plasma in

front of the cathode. Relative to the self-field case, the tangential and cusp applied B fields result

in azimuthal B field contours that extend further downstream. Also, the tangential applied B field

case shows a clear compression and shift of the B field contours in the near-anode region to a more

central location along the anode wall. This results in a steeper gradient in azimuthal B field in the

central near-anode region for the tangential applied B field case. These azimuthal magnetic field

results can be compared to the poloidal magnetic fields produced by the magnets, as were shown
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Figure 4.2: Contour plot of azimuthal B field without magnets at 10.7 kA. Contour values are in
Gauss.

earlier in Figures 2.6 and 2.7.

To provide further insights into the structure of the MPD current discharge, the azimuthal B field

measurements can be used to calculate the enclosed current and current streamlines. To obtain the

enclosed current, Jenc, from our azimuthal B field measurements, we use the pre-Maxwell equation

for Ampere’s Law (where we can ignore the time-varying term for slow, low-frequency phenomena

in our thruster):

∇×B =µ0j (4.1)

where B is the magnetic field vector, µ0 is the permeability of vacuum, and j is the current density

vector. By integrating both sides over a bounded surface of constant radius about the centerline

and invoking Stokes’ theorem, the right-hand side of the equation becomes proportional to the total

enclosed current crossing the surface. The left-hand side of the equation becomes a line integral

over the surface boundary’s constant radius. By invoking the assumption of azimuthal symmetry,
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Figure 4.3: Contour plot of azimuthal B field for tangential applied B field configuration at 10.7 kA.
Contour values are in Gauss.
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Figure 4.4: Contour plot of azimuthal B field for cusp applied B field configuration at 10.7 kA.
Contour values are in Gauss.
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we obtain a line integral over constant azimuthal B field over a path length of 2πr, which yields:

Jenc =
2πrBθ
µ0

(4.2)

where Jenc is the poloidal current enclosed by the contour, r is the radius, and Bθ is the azimuthal

magnetic field component.

Figures 4.5, 4.6, and 4.8 show contour plots of the enclosed current fraction for the configu-

rations with no magnets, tangential applied B field, and cusp applied B field, respectively. The

contour lines are shown for constant specified values (0.1, 0.2, ..., 0.9) of the fraction of the total

discharge current for the thruster firing at approximately 10.7 kA. Thus, these lines represent the

current streamlines in the thruster. In all three configurations, we observe a shift toward the center-

line of the current streamlines just in front of the cathode due to the electromagnetic forces causing

a radial pinch inward. The radial pumping forces are a consequence of the magnetic force densities

having a significant radial component. The magnetic force densities associated with the poloidal

current pattern are calculated and shown in Appendix A for all three magnetic configurations. Also,

note that the fact that the enclosed current values are still slightly positive at the anode exit plane

(x=0) and go to zero just slightly downstream of the anode exit implies that the current attachment

pattern likely has a small amount of current that loops outside of the anode exit plane to attach along

the anode front face and the 10–15 mm wide exposed strip on the anode exterior not covered by the

insulating Kapton.

In Figure 4.5 for the self-field case, we observe the current streamlines attach broadly across

most of the anode surface. There is small compression in the current streamlines along the anode

lip near the anode exit plane, which is an expected consequence of the convection of the current

streamlines downstream due to the flowing plasma.
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In Figure 4.6, the current streamlines exhibit a marked shift due to the tangential applied B field.

Figure 4.7 shows the same contour plot with an overlay of the tangential applied B field lines. The

current streamlines are convected further downstream in the interior of the thruster. Most strikingly,

the current conduction and attachment are clearly shifted upstream to strong concentration at a more

central location along the anode. The current streamlines are convected downstream and then curve

back significantly upstream to the central anode region near axial positions z = -140 mm to z =

-200 mm. These streamlines follow along the curvature of the applied B field lines at higher radial

positions, where the B field lines turn radially toward the anode. The B field lines intersect the anode

in this region further upstream from the anode exit. Downstream near the anode lip, the tangential

applied B field lines were designed to be near-parallel to the anode. In this downstream region, the

current pattern follows the mostly axial applied B filed lines, preventing any significant attachment

in this region.

The cusp applied B field case shown in Figure 4.8 exhibits a behavior more similar to the self-

field case. Figure 4.9 shows the same contour plot with an overlay of the cusp applied B field lines.

Again, there is a convection of the current streamlines further downstream than without the magnets,

and the current streamlines turn more sharply back upstream to attach along the anode. The current

streamlines near the anode follow along the cusp applied B field lines and attach downstream along

where the cusp radial B field lines intersect the anode.

Next, we examine in more detail the data as profiles along the near-anode region to reveal

insights on the current conduction to the anode. Figure 4.10 shows profiles of the azimuthal B

field near the anode versus axial position for the thruster firing at approximately 10.7 kA in all

three magnetic configurations. Figure 4.11 shows the same profiles for the enclosed current fraction

calculated from the azimuthal B field profile, accounting for the varying radius along the anode

surface in the flared section. The error bars represent the uncertainties in the mean measurements,
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Figure 4.5: Contour plot of enclosed current fraction without magnets at 10.7 kA. Contours are
shown at (0.1, 0.2, ..., 0.9) of total enclosed current.
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Figure 4.6: Contour plot of enclosed current fraction for tangential applied B field configuration at
10.7 kA. Contours are shown at (0.1, 0.2, ..., 0.9) of total enclosed current.
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Figure 4.7: Contour plot of enclosed current fraction for tangential applied B field configuration
at 10.7 kA. Applied B field lines are also shown. Contours are shown at (0.1, 0.2, ..., 0.9) of total
enclosed current.
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Figure 4.8: Contour plot of enclosed current fraction for cusp applied B field configuration at 10.7
kA. Contours are shown at (0.1, 0.2, ..., 0.9) of total enclosed current.
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Figure 4.9: Contour plot of enclosed current fraction for cusp applied B field configuration at 10.7
kA. Applied B field lines are also shown. Contours are shown at (0.1, 0.2, ..., 0.9) of total enclosed
current.

which are dominated primarily by the shot-to-shot variation over multiple thruster firings. The curve

fit for each configuration was generated as a least-squares piecewise cubic spline fit. To match the

appropriate physical constraint that the enclosed current along the anode must be a monotonically

decreasing function with increasing distance downstream, a constraint was included to enforce a

monotonically decreasing functional form to the entire curve fit.

Figure 4.11 shows that the regions of steepest gradients in enclosed current are shifted between

the three applied B field configurations. There are significant differences between the three cases,

and these gradients in enclosed current will be used next to calculate the current densities along the

anode.
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Figure 4.10: Profiles of azimuthal B field near the anode vs. axial position at 10.7 kA. All 3 magnetic
configurations are shown for comparison.
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Figure 4.11: Profiles of enclosed current fraction along the anode vs. axial position at 10.7 kA. All
3 magnetic configurations are shown for comparison.
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4.4 Analysis of Current Densities at High Discharge Current

To examine the implications of these large gradients in enclosed current and identify regions of

highest current attachment, we next calculate the current densities along the same anode profile.

To obtain the current density along the anode, we note that all changes in enclosed current axially

along the anode must be the result of current conduction to the anode wall. Thus, we easily obtain

an expression for the radial current density along the anode by considering the change in enclosed

current, dJenc, across an infinitesimally small ring of the anode surface of azimuthal span 2πr and

axial extent dz as

jr = − 1

2πr

∂Jenc
∂z

(4.3)

where jr is the radial current density and r is the radius along the anode.

Figure 4.12 shows the profiles of current densities along the anode versus axial position, as

calculated from the enclosed current data for the multiple magnetic configurations again at approx-

imately 10.7 kA. Here, the error bars represent the uncertainties calculated from multiple curve fits

of enclosed current obtained for multiple repeat shots. The error bars for the current densities again

represent uncertainties dominated by the shot-to-shot variability of the enclosed current gradients.

These profiles of current densities provide the clearest indication of where the current attachment is

concentrating along the anode.

The current density for the self-field case peaks primarily downstream along the anode lip, close

to the anode exit plane. There is some modest additional rise in current density further upstream,

peaking again near x = -260 mm. The cusp applied B field case exhibits a modest shift upstream of

the peak current density by approximately 15-20 mm, shifting to the region of the anode-intersecting

cusp B field. As seen in the previous data, the tangential applied B field case results in a marked shift

upstream, where the current density peaks strongly in the central anode region where the magnetic
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Figure 4.12: Profiles of current density along the anode vs. axial position at 10.7 kA. All 3 magnetic
configurations are shown for comparison.

field lines begin to turn radially outward and intersect the anode.

We can also look generally at the poloidal current densities throughout the thruster plasma

discharge by simply examining the radial component jr and axial component jz of equation 4.1.

We use the gradients of our azimuthal magnetic field measurements in cylindrical coordinates to

calculate

jr = − 1

µ0

∂Bθ
∂z

(4.4)

jz =
1

µ0

1

r

∂

∂r
(rBθ) =

1

µ0
(
Bθ
r

+
∂Bθ
∂r

) (4.5)

Figures 4.13 through 4.21 show shaded contour plots of the radial, axial, and total magnitude

of poloidal current densities generated during the thruster firing for the various applied B field

configurations. These contour plots show current densities in units of A/mm2, as specified in the

color bar legend, and are drawn with the same position axes as the previous contour plots. Note that
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the color bar scales differ on all plots (based upon the range of values in each case), and the values

change polarity over the range of negative to positive values for the plots of radial and axial current

densities.

Without the magnets, we can clearly see the regions of high outward radial current densities near

the cathode outer radius and downstream near the anode lip, where Figure 4.12 previously showed

a clear a peak in the current density along the anode. We also observe high inward radial current

densities and high axial current densities directly in front of the cathode, where the plasma pinches

toward the centerline under the radial electromagnetic pinching forces.

The contour plots for the tangential applied B field case exhibit similarly high current densities

near the cathode and centerline. In addition, as expected from the regions of high current density

along the anode in Figure 4.12, we observe a region of high outward radial current density upstream

in the mid-anode region. This configuration also exhibits a strong axial current density in the up-

stream direction circa radial position r = 80 mm, where the current streamlines are pulled back

toward the upstream anode attachment region.

With the cusp applied B field, we again observe the high current densities near the cathode and

centerline. Further, high outward radial current densities are seen downstream on the anode in the

region where the cusp applied B field lines intersect the anode. Also, we can see a region in the

interior of the thruster centered around axial position z = -150 mm with relatively high outward

radial current densities that extends from the centerline region outward toward the anode near z =

-170 mm. In addition, we observe a region near the anode lip with relatively high axial current

densities in the upstream direction, where the current streamlines are returning toward the anode.
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Figure 4.13: Contour plot of radial current density at 10.7 kA for the configuration without magnets.
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Figure 4.14: Contour plot of axial current density at 10.7 kA for the configuration without magnets.
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Figure 4.15: Contour plot of total magnitude of poloidal current current density at 10.7 kA for the
configuration without magnets.
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Figure 4.16: Contour plot of radial current density at 10.7 kA for the configuration with tangential
applied B field.
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Figure 4.17: Contour plot of axial current density at 10.7 kA for the configuration with tangential
applied B field.
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Figure 4.18: Contour plot of total magnitude of poloidal current density at 10.7 kA for the configu-
ration with tangential applied B field.
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Figure 4.19: Contour plot of radial current density at 10.7 kA for the configuration with cusp applied
B field.

−400 −350 −300 −250 −200 −150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

Axial Position Relative to Anode Exit Plane (mm)

R
a
d

ia
l 
P

o
s
it
io

n
 R

e
la

ti
v
e
 t

o
 C

e
n
te

rl
in

e
 (

m
m

)

 

 

0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.20: Contour plot of axial current density at 10.7 kA for the configuration with cusp applied
B field.
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Figure 4.21: Contour plot of total magnitude of poloidal current density at 10.7 kA for the configu-
ration with cusp applied B field.

4.5 Analysis of Current Densities Along the Anode Over a Range of

Discharge Currents

Next, we examine the effect of increasing thruster discharge current on the current densities along

the anode. Figures 4.22, 4.23, and 4.24 show the current density profiles over a range of thruster

operating currents for the self-field, tangential B field, and cusp B field configurations, respectively.

Note that these profiles only span the axial range along the flared section of the anode and do not

extend as far upstream in the thruster as the previous profiles shown only at 10.7 kA. However, this

region contains most of the enclosed current and highlights the areas of highest current densities.

In each configuration, we observe that the general functional form of the current density profile

is preserved over the range of currents. Overall, increasing thruster current results in increasing the

magnitudes of the local current densities. Without the magnets, the peak current densities are again

observed well downstream near the anode exit plane, with some additional significant conduction
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Figure 4.22: Profiles of current density along the anode vs. axial position over a range of thruster
currents for the configuration without magnets.

upstream near the transition from the flared section to the straight anode section (x = -257 mm) just

slightly downstream of the cathode exit plane. The tangential applied B field yields a significant

peak in the current density further upstream along the anode. The axial location of this peak moves

downstream as current is increased. The cusp applied B field case shows highest current densities

in the downstream region where the cusp field lines intersect the anode surface downstream. Again,

we observe a modest shift downstream of the axial location of the current density peak as thruster

current increases. Also, both applied B field cases exhibit a modest axial broadening of the region

of highest current density with increasing thruster current. The effect of the current density peaks

shifting axially downstream and broadening with increasing discharge current is likely due to the

increased convection of the current streamlines further downstream in the thruster exhaust plume.
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Figure 4.23: Profiles of current density along the anode vs. axial position over a range of thruster
currents for the configuration with tangential applied B field.
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Figure 4.24: Profiles of current density along the anode vs. axial position over a range of thruster
currents for the configuration with cusp applied B field.
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4.6 Summary of Results

In this chapter, we reviewed the results of the magnetic probing inside the thruster’s inter-electrode

discharge region and near-field plume. These data were used to create maps of the azimuthal mag-

netic field generated by the thruster discharge and poloidal current streamlines with the thruster

operating near 10.7 kA without magnets, with applied tangential B field, and with applied cusp B

field. Current densities were calculated in the thruster interior and along the anode for this high

current condition. Current densities along the anode were also examined over a range of currents

from 4 kA to 13.1 kA. The following interesting results were identified:

The applied-field magnets caused a clear shift in the current pattern and modified the an-

ode attachment region. All configurations, including self-field, exhibited the expected convection

of the current streamlines downstream in the thruster. Current streamlines are blown downstream

and extend past the anode exit plane before they turn back upstream at increasing radii to attach to

the anode surface. We also observe the expected radial pinching forces resulting in a radial com-

pression of the plasma and current streamlines in front of the cathode, where radial j × B forces

are high. However, use of the externally applied magnetic fields results in marked differences in the

current pattern. The current streamlines follow the applied B field lines in the near-anode attach-

ment region. The tangential B field causes the current streamlines to shift significantly upstream

to follow along where the applied magnetic field lines begin to turn radially outward toward the

anode. The applied B field prevents any significant attachment in the downstream region where the

applied B field lines are contoured parallel to the anode. The cusp applied B field case exhibits a

more subtle but still evident shift in the current streamlines to follow along the cusp field lines near

the anode. In addition, both applied B field cases exhibit an extension of their current streamlines

somewhat further downstream in the near-field plume of the thruster. This increased downstream
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convection is likely due to an increased magnetic Reynolds number for these configurations. The

magnetic Reynolds number, Rem, is given by [71]

Rem =
uL

ηm
(4.6)

where u is the flow velocity, L is the characteristic length scale, and ηm is the magnetic diffusivity

given by

ηm =
1

µ0σ0
(4.7)

where µ0 is the permeability of free space and σ0 is the electrical conductivity. For higher Rem,

magnetic field flux lines are more strongly convected with the plasma flow. The applied magnetic

fields are expected to increase acceleration, thus increasing u, and the electrical conductivity is

increased in the directions parallel to the applied magnetic field. Both of these effects increase the

magnetic Reynolds number and thus extend the convection of azimuthal magnetic field and enclosed

current downstream.

The modified current patterns due to the applied magnetic fields result in related shifts

in the regions of high current densities along the anode, and the current attachment pattern

clearly follows the applied B field lines near the anode. The self-field configuration exhibits

highest radial current densities along the anode lip near the anode exit plane, with some additional

significant current attachment upstream at the base of the anode flared section. The tangential ap-

plied B field causes a shift in the concentration of current density well upstream along the anode

flared section to where the radial curvature of the applied B field lines begins to intersect the an-

ode surface. This concentration results in higher peak current densities than without magnets, but

reduces the current attachment in the downstream anode lip region to negligibly small levels. The

cusp applied B field results in a shift of the current density peak region to slightly upstream of
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the self-field case. Cusp configuration anode current density is slightly broadened and relocated to

where the cusp applied B field lines are strongly intersecting the anode. These shifts in the regions

of highest current densities are influenced by the shape of the poloidal applied B field lines, effec-

tively resulting from the higher conduction along the direction parallel to the applied B field than

conduction perpendicular to the B field. This effect will be discussed further in Section 6.1 and is

particularly important in the near-anode region, where the applied B field magnitudes are higher and

the ratio of the applied B field to the self-generated azimuthal B field is also increased.

Regions of high current densities can be clearly identified in the interior of the thruster

discharge. We observe regions of high current densities in the inter-electrode discharge volume.

All operating configurations exhibited high current densities around the downstream perimeter and

in front of the cathode. High axial current densities were also observed along the thruster centerline,

where electromagnetic pinching forces compress the plasma and current streamlines. Additionally,

near the regions of high radial current density identified along the anode, we can see regions of high

current densities that extend into the interior of the discharge, following along the enclosed current

streamlines. For each configuration, this results in relatively high axial current densities pointed in

the upstream direction near regions just downstream of where the peak current densities occur along

the anode. In the cusp applied B field configuration, we also see a region near axial position z =

-150 mm of relatively high outward radial current density that extends from the centerline region

outward toward the anode near z = -170 mm.

Over a broad range of thruster currents, the current densities along the anode for each

fixed applied-field configuration follow a similar functional form, with modest shifts down-

stream of the peak current densities with increasing thruster current. Measurements of current

densities along the anode were made over the range of 4 kA to 13.1 kA average thruster discharge

currents. These results identified that, for a given magnetic configuration, a similar form to the
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current density profile along the anode was observed over the range of thruster currents, albeit with

increasing magnitudes as thruster current increased. As thruster current increased, the applied B

field configurations also exhibited a small shift axially downstream and a modest axial broadening

for the region of highest current density along the anode. These effects with the applied magnetic

fields are likely caused by increased downstream convection of the current streamlines as thruster

discharge current is increased. Again, the magnetic Reynolds number would increase as flow veloc-

ity u is increased with higher discharge current.

In Chapter 6, we will examine these effects in more detail to consider the underlying causes.
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Chapter 5

Langmuir Probe Measurements of
Plasma Properties and Potential

5.1 Operating Conditions and Thruster Configurations

A new triple Langmuir probe was developed for local measurements at selected locations in the

thruster of key plasma properties, namely the electron temperature (Te), electron number density

(ne), and the anode fall voltage measured from the plasma potential (Vfall = Vanode−Vplasma). The

focus of most measurements was the near-anode region, particularly in the regions of highest current

densities calculated from the previous magnetic probe measurements. Section 2.6.4 described the

Langmuir probe apparatus and the equations for calculating the plasma properties.

Measurements with the triple Langmuir probe were obtained at specific thruster discharge cur-

rent levels at 8 kA and 10.7 kA, with most data at the higher 10.7 kA current. Operation at 10.7

kA was selected to examine properties well into onset conditions (as evidenced earlier in Chapter 3

on terminal voltage signal analyses) and allow comparison with the bulk of the magnetic probe data

and current profiles obtained at this same current. Additionally, operation at 8 kA was conducted

at two locations near the anode where the current densities were found to be highest to examine

any relative differences at this more moderate, intermediate current where the thruster was shown to

just begin transition to the early effects of onset. Mass flow rate was again held constant at 1.0 g/s
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for consistency with previous measurements. To again examine the effects of the applied magnetic

fields, triple probe measurements were obtained with all three magnetic configurations: no magnets

(self-field operation), applied tangential B field, and applied cusp B field.

For each thruster firing, the Langmuir probe’s time-varying signals were averaged over the

thruster’s quasi-steady time period, generally 0.8–1.8 ms after triggering the PFN discharge. These

results were averaged over both time and across multiple shots at each operating condition to gen-

erate the means and propagate appropriate statistical uncertainties.

A single Langmuir probe was also used briefly in earlier testing at discharge currents up to

9 kA. The single probe measurements were limited to self-field operation and will only be used

selectively later in the analysis section of this chapter for relative comparison of the number density

and electron temperature spatial variations in the interior of the thruster.

5.2 Collection of Data

Langmuir probe voltage signals (via associated isolation amplifiers), anode voltage, and current

probe measurements were recorded on a high-speed 14-bit DAQ at 2.5 megasamples per second per

channel and saved via LabVIEW for post-processing analysis on a PC. These measurements were

low-pass filtered at approximately 100 kHz cutoff frequency. The voltage on the batteries was also

periodically monitored to ensure no significant reductions or excursions from nominal bias voltage

during operation.

The Langmuir probe was repositioned over multiple sets of thruster shots to obtain measure-

ments at various locations in the plasma discharge. For the measurements in the near-anode region,

the Langmuir probe’s long axis was aligned along the anode flared section. The probe tips were

radially separated from the anode surface by 3.5–4.5 mm, limited primarily by the outer ceramic

tube. The positions of the probe tips near the anode are shown in Figure 5.1. Note that the Langmuir
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Langmuir triple probe positions along anode for measurements 
with all three magnetic configurations

(All positions along anode included in testing at high current 
~10.7 kA. Two points in red denote the positions also measured 

at lower current ~8 kA.)

Figure 5.1: Triple Langmuir probe positions for near-anode measurements with all three magnetic
configurations. Note: All eight positions along anode were included in testing at 10.7 kA. Two
points in red denote the positions also measured at 8 kA.

probe measurement positions along the anode did not extend as far upstream as the magnetic probe.

Measurements were limited to focusing on the regions of highest current density, which extended

from the anode exit plane to the axial position at approximately z = -179 mm upstream of the anode

exit plane (the region of highest current density for the tangential applied B field configuration).

The probe was repositioned using a three-axis positioning stage.

Signals were averaged over the 1 ms quasi-steady time period (or appropriately well-behaved

and reliable piecewise segments of at least 0.4 ms within this period). Measurements were also

averaged across multiple thruster shots for each operating condition. The mean values and asso-

ciated statistics (e.g., standard deviations for use in estimating uncertainties) were included in the

uncertainty analyses. The equations for calculating ne, Te, and Vfall and approach for uncertainty

analyses are described earlier in Section 2.6.4.
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5.3 Analysis of Langmuir Probe Measurements Along the Anode at

High Current

The previous analyses with the magnetic probe data indicated clear regions of high current density

along the anode and a shift in the current patterns with the applied magnetic fields. Thus, our

investigation of the local plasma properties begins with measurements circa 10.7 kA along the near-

anode region in a strip of points from the anode lip at the exit plane and traversing upstream to the

axial position z = -179 mm. Note that the tangential applied B field case exhibited peak current

densities circa z = -179 mm, and the cases without magnets and with cusp applied B field showed

highest current densities in the region around z = -29 mm.

First, we examine the profiles of electron temperature for each magnetic configuration. Figures

5.2, 5.3, and 5.4 show the measured electron temperatures (in eV) for the self-field, tangential ap-

plied B field, and cusp applied B field cases, respectively. Figure 5.5 shows all three configurations

plotted together. Self-field operation suggest a general trend of increasing electron temperature

along the anode as we traverse downstream. This generally follows the trend also seen in the in-

creasing current density along the downstream section of the anode, as shown previously in Figure

4.12. The tangential applied B field case exhibits an increase in Te at z = -150 mm, near where the

highest current densities were measured. In addition, we observe higher Te in the mid-region of the

profile at z = -79 mm, -104 mm, and -129 mm. These values are near the regions of high applied B

field intensity, and may be associated with regions of high induced azimuthal current density. The

cusp applied B field exhibits a similar increase in Te upstream and in the mid-region of the profile,

albeit shifted approximately 25 mm downstream. This may be due to the downstream shift in the

current pattern relative to the tangential applied B field, and thus a related shift downstream in the

regions of higher induced azimuthal current density. This will be shown later in Section 6.2.
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Figure 5.2: Electron temperature along the anode vs. axial position at 10.7 kA for the configuration
without magnets.
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Figure 5.3: Electron temperature along the anode vs. axial position at 10.7 kA for the configuration
with tangential applied B field.
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Figure 5.4: Electron temperature along the anode vs. axial position at 10.7 kA for the configuration
with cusp applied B field.
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Figure 5.5: Electron temperature along the anode vs. axial position at 10.7 kA comparing all mag-
netic configurations. The dashed connecting lines are only as guides for the eye, not an implied
functional relationship.
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Subsequently, we consider the electron number density (i.e., the plasma density, assuming ne =

ni for quasineutrality), as calculated from the measured Te and ion saturation current. The profiles

for ne along the anode are shown in Figures 5.6, 5.7, and 5.8 for the self-field, tangential applied B

field, and cusp applied B field configurations, respectively. Figure 5.9 plots all three cases together

for direct comparison. Without the magnets, we observe a general trend of increasing number

density as we move downstream along the anode, increasing by a factor of 4.2 over the extent

of the profile. This trend is likely due to the expansion of the plasma from the cathode emission

zone outward towards the anode and accelerating downstream, resulting in higher number densities

downstream, as will be discussed later. With the tangential applied B field, we see a significant

increase of a factor of 5 in the number density upstream at z = -179 mm, near the region of highest

current density. In addition to a possible change in the flow field for the tangential applied B field,

this region may be experiencing a zone of increased ionization due to the higher current densities.

Just downstream of this location, we observe a significant drop off to lower densities along the

anode, likely due to the contouring of the strong magnetic field lines in this region, followed by

an increase in the number densities again downstream from z = -79 mm to the anode exit plane

as the plasma expands toward the anode. Except for the region of highest current attachment at

z = -179 mm, the number density decreases relative to the self-field case. In the case of the cusp

applied B field, the data show a generally steadier trend to the number density along the anode.

Uncertainties in the absolute values of the measurements suggest that the measurements are not

statistically significant in their difference relative to self-field operation, except for the increased

number density of the tangential B field case upstream at z = -179 mm. However, relative differences

do suggest the possibility of small increases in number densities around z = -29 mm and z = -154 mm

for the cusp applied B field case relative to without magnets. These are the locations associated with

the higher current densities in the cusp configuration, and this may suggest a modestly increased
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Figure 5.6: Plasma number density along the anode vs. axial position at 10.7 kA for the configura-
tion without magnets.

number density to support increased electron random thermal flux to the anode. These are also the

regions where the cusp B field lines turn radially toward the anode. It is possible that there is an

increased diffusion of the plasma from the interior plasma radially toward the anode in this region

of increased radial B field. Such diffusion will be discussed later in Section 6.1.

As a comparison, Gallimore [43] measured electron temperatures in the range of 2-3.7 eV in

interelectrode gap at the anode exit plane of the self-field Princeton Benchmark Thruster. These tem-

peratures are lower than some of our measurements at 10.7 kA for the self-field case downstream

and are lower than most measurements with the applied magnetic fields. However, his smaller

thruster geometry and higher flow rates (4 g/s and 16 g/s) resulted in plasma number densities of or-

der 1020-1021 m−3, which are 1-2 orders of magnitude higher than our measured number densities.

Our lower number densities result in the resistive heating energy being distributed amongst fewer

particles, generally resulting in higher average temperatures. Also, increased heating from the az-



111

−200 −150 −100 −50 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

19

Axial Position Relative to Anode Exit Plane (mm)

N
u
m

b
e
r 

D
e
n
s
it
y
, 
n e

 (
p
a
rt

ic
le

s
/m

3
)

Figure 5.7: Plasma number density along the anode vs. axial position at 10.7 kA for the configura-
tion with tangential applied B field.
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Figure 5.8: Plasma number density along the anode vs. axial position at 10.7 kA for the configura-
tion with cusp applied B field.
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Figure 5.9: Plasma number density along the anode vs. axial position at 10.7 kA comparing all
magnetic configurations. The dashed connecting lines are only as guides for the eye, not an implied
functional relationship.

imuthal current density likely explains the higher temperatures in the applied B field cases. Burton

et al. [72] measured electron temperatures of 6-8 eV within several cm in front the exit plane of their

argon MPDT, where they also measured number densities of order 5× 1019 m−3. Their electron

temperatures decreased to 1.5 eV much farther downstream in the plume. As will be shown later,

our measured electron temperatures at the lower 8 kA operating point (and lower resistive heating)

are in this lower range observed by Gallimore.

With the measurements of electron temperatures and floating potentials from the triple probe,

we can calculate the plasma potential and cast it as the anode fall voltage, Vfall = Vanode−Vplasma.

Note that the form of this expression implies electron-attracting positive fall potentials and electron-

repelling negative fall potentials. Figures 5.10, 5.11, and 5.12 show the measured anode fall voltage

for the self-field, tangential applied B field, and cusp applied B field cases, respectively. Figure
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5.13 overlays all three configurations together. Without the magnets, we observe a generally very

high anode fall voltage from approximately 45 to 84 V. Such significant potential drops that will be

seen by the electrons in the near-anode plasma will result in high-energy acceleration through this

potential well. The associated high-energy electrons will impact the anode surface, causing anode

erosion. With the tangential applied B field, a significant drop in the anode fall voltage is seen

from z = -129 mm to z = -79 mm. The drop in this region is likely associated with the significant

decrease in current density demands in this region under this applied-field configuration. In the case

of the cusp applied B field, we measure an impressive reduction in the anode fall voltage most of

the profile from z = -129 mm to the anode exit plane. Here, we observe the average anode fall

voltages drop by 42 to 70 V and ultimately reduced to only 3 to 14 V. In this case, we suspect that

the radially intersecting magnetic field lines result in a significant increase in electron mobility to

the anode surface in these regions of measured high current density (e.g., circa z = -29 mm), thus

mitigating the need for large anode fall voltages to sustain the required current density. This effect of

increased current conduction along the applied B field lines intersecting the anode will be assessed

in Section 6.1.

5.4 Analysis of Langmuir Probe Measurements Along the Anode at

Reduced Current

The plasma properties were also measured at 8 kA thruster discharge current to determine whether

the applied magnetic fields at this intermediate current condition caused similar effects on the

plasma properties as at higher current. At 8 kA, where the beginning effects of transition to onset

resulted in much lower magnitude and frequency of voltage fluctuations and transients, as shown in

Chapter 3. The terminal voltage reduction was also larger at 8 kA than at 10.7 kA. Figures 5.14,
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Figure 5.10: Anode fall voltage along the anode vs. axial position at 10.7 kA for the configuration
without magnets.
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Figure 5.11: Anode fall voltage along the anode vs. axial position at 10.7 kA for the configuration
with tangential applied B field.
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Figure 5.12: Anode fall voltage along the anode vs. axial position at 10.7 kA for the configuration
with cusp applied B field.
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Figure 5.13: Anode fall voltage along the anode vs. axial position at 10.7 kA comparing all magnetic
configurations. The dashed connecting lines are only as guides for the eye, not an implied functional
relationship.
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Figure 5.14: Electron temperature for two axial positions along the anode at 8 kA comparing all
magnetic configurations.

5.15, and 5.16 show the electron temperature, number density, and anode fall voltage, respectively,

for all magnetic configurations at 8 kA. At this 8 kA operating point, only two locations near the

anode at axial positions z = -179 mm and z = -29 mm were measured, thus focusing on the regions

observed to have the highest current densities. In general, we see a reduction in the electron temper-

ature from the values measured previously at 10.7 kA. However, we still observe a similar increase

in the electron temperature at 8 kA with both applied B fields relative to the self-field case. This

is again likely due to increased azimuthal currents driven in the plasma with the applied magnetic

field, which are discussed later in Chapter 6.

We do not observe a statistically significant difference in number densities from the values mea-

sured at the higher current. At higher current, increased flow acceleration should cause lower local

number densities (from conservation of mass at increased velocity), and higher electromagnetic

radial pumping forces should also decrease number densities near the anode. However, at higher
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Figure 5.15: Plasma number density for two axial positions along the anode at 8 kA comparing all
magnetic configurations.
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Figure 5.16: Anode fall voltage for two axial positions along the anode at 8 kA comparing all
magnetic configurations.
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current, there may be increased ionization, which would increase local plasma number densities.

These two effects may mostly offset each other, resulting in similar magnitudes for the measured

number densities at 8 kA and 10.7 kA. Nonetheless, relative to without the magnets, the data at 8

kA exhibit a similar pronounced increase in ne upstream at z = -179 mm with the tangential applied

B field relative to the self-field case. Modest increases in ne are also measured with both applied

magnetic fields relative to the self-field case downstream at z = -29 mm.

Overall, we observe lower fall voltages than were measured at higher current, which is consistent

with the trends measured in other experiments by Gallimore [43] and Soulas et al. [53]. However,

there is now a clear benefit of reduced anode fall voltage with both applied magnetic fields at this

8 kA current relative to the self-field case. This is also consistent with the earlier plot of terminal

voltage versus current in Figure 3.4, which demonstrated that the tangential applied B field also had

a pronounced reduction in terminal voltage at 8 kA but not significantly at 10.7 kA. At z = -29 mm,

the calculated anode fall voltages are negative at this lower current, implying an electron-repelling

anode fall. This can physically occur if the electron random thermal flux to the anode is more than

sufficient to sustain the required current density [43], an effect which will be discussed in more

detail in Chapter 6.

5.5 Analysis of Langmuir Probe Measurements in the Thruster Inte-

rior

Although the primary focus of the Langmuir probe measurements was on the near-anode region,

additional data were obtained at locations in the interior of the thruster, albeit only in the self-field

configuration. At 10.7 kA self-field operation, these data were obtained with the triple Langmuir

probe along the anode (as shown previously), at the centerline near the cathode downstream face
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and anode exit plane, near the cathode downstream radius, and at one location downstream about

20 mm radially inward from the anode. In addition, in earlier tests with a single Langmuir probe,

we were able to reliably obtain data at currents up to 9 kA but not above, as discussed earlier in

Section 2.6.4 on the Langmuir probe diagnostics. Nonetheless, the measurements at 9 kA provide

insight regarding the general variations and trends within the thruster interior, as these measurements

spanned a broad region in the interior of the thruster radially from the centerline to 24 mm away

from the anode and axially from the anode exit plane to 15 mm downstream of the cathode exit

plane.

Measurements at these locations were used to calculate the electron temperatures shown in

Figure 5.17 and the number densities shown in Figure 5.18 for the self-field case. These figures are

“bubble plots,” wherein the circular “bubbles” are centered at the location of each data point, and

the radius of each bubble is allowed to scale with the relative magnitude of the values. The data

is shown in red for 10.7 kA and in blue for 9 kA. While the data are too coarse spatially to plot

a proper contour plot, this bubble plot approach affords another way to visualize the variations in

magnitude between the measurement locations, particularly for the number densities.

In Figure 5.17, electron temperatures at 10.7 kA near the anode increase from as low as 2

eV upstrream to 6.1 eV at the exit plane. Measurements at 10.7 kA also show a higher electron

temperature of 5.1 eV near the cathode outer radius, as compared to 2.1 eV at the centerline in

front of the cathode downstream face. The lower temperature at the centerline is likely moderated

by the much higher density at the centerline than at the cathode outer radius, which results in the

energy from heating being distributed into more particles. At 9 kA, the electron temperatures show

moderate variations but without any obvious trends.

However, there are very large gradients in the number densities over the thruster volume, as seen

in Figure 5.18. The number densities upstream along the anode are a factor of 42 to 92 times smaller
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than the values near the cathode downstream face at the centerline. Near the anode exit plane, the

number densities near the anode are a factor of 3.8 to 4.4 times lower than at the centerline of the

anode exit plane. These results highlight the effect of the radial pumping forces in the thruster

that lead to significant reduction of the plasma density near the anode. The radial pumping forces

are a consequence of the magnetic force densities having a significant radial component, as shown

in Appendix A. Interestingly, we can also infer some information about the flow structure from

the number densities. Along the centerline, we observe a compression just a short distance in

front of the cathode and a trend of decreasing number density with increasing axial position. We

also observe a trend of decreasing number density at the mid-radius with increasing axial position.

These decreasing trends are likely due to the acceleration and expansion of the plasma flow. This is

supported even further by data near the anode, where we see the opposite trend now of increasing

number density with increasing axial position. Tikhonov et al. [44] have observed an expanding

cathode jet flow field in their MPD thrusters with plasma flowing from a multi-channel hollow

cathode of geometry similar to our thruster (as opposed to inter-electrode or backplate gas injection

typical of most past gas-fed MPDT studies). This suggests that the plasma in our thruster expands

from the cathode front face radially outward (sometimes referred to as a “cathode jet”), following a

flow field which is expanding downstream to the near-anode region as a consequence of balancing

the magnetic pressure (which is higher upstream) with the kinetic pressure. This type of plasma

flow boundary expansion is consistent with the number density radial variations and axial profiles

along the anode and centerline observed in our thruster. Figure 5.19 plots the same data as Figure

5.18 but with an overlay of qualitative flow field lines to illustrate the cathode jet expansion. Figure

5.19 also includes an overlay on the right side of a high-speed video image (5 µs exposure time) of

the near-exit plume of the thruster. The radial variations in luminosity support the higher number

densities measured closer to the centerline than near the anode radius.
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Figure 5.17: Bubble plot of electron temperature for the configuration without magnets at 10.7 kA (red) and 9 kA (blue). Radius of the circular
bubbles scale with the relative magnitude of values. Absolute numerical values shown are in units of eV.
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Figure 5.19: Bubble plot of number density with overlay of qualitative flow field lines for the configuration without magnets at 10.7 kA (red) and 9
kA (blue). Radius of the circular bubbles scale with the relative magnitude of values. Absolute numerical values shown are in units of 1018 m−3. A
high-speed video image of plume luminosity shown on the right side supports the measured radial variations in number densities.
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5.6 Assessment of Ion Saturation Current Fluctuations

The data previously shown in this chapter represented the plasma properties averaged during the

quasi-steady period. Given that we observed various temporal transients in the thruster terminal

voltage signals studied in Chapter 3, it is of interest to at least briefly examine the effects of the ap-

plied magnetic fields on the ion saturation current fluctuations. The ion saturation current collected

by the Langmuir probe is directly proportional to the plasma number density. Therefore, fluctua-

tions and transients in the ion saturation current signal represent fluctuations in the local number

density. As we will discuss later, the same anode spotting mechanisms that drive terminal voltage

fluctuations could drive fluctuations in the near-anode number densities.

Figures 5.20 and 5.21 show typical examples of the ion saturation current time-series signals

during the quasi-steady period at 10.7 kA and 8 kA discharge currents, respectively. These figures

show data taken near the anode at axial position z = -29 mm upstream of the anode exit plane for all

three magnetic configurations. These signals were low-pass filtered at 120 kHz and had the means

subtracted to more clearly show the major temporal transients relative to the means.

Figures 5.22 and 5.23 show the ion saturation current power spectral density (PSD) plots in

the frequency domain at 10.7 kA and 8 kA, respectively. These data represent the same signals as

shown in Figures 5.20 and 5.21 at axial position z = -29 mm. The signals used in the PSD analyses

were taken at the full bandwidth (2.5 MHz) of the data acquisition system from the current probe

to ensure no lower-frequency attenuation. However, the power in the signals was identified to be

clearly dominant in the lower-frequency range, so only values up to 200 kHz are plotted.

At 10.7 kA, there are clearly large excursions from the means that occur during the time signals.

The magnitude and frequency of the large spikes (e.g., greater than 20 mA) in the ion saturation

current signal are reduced in the configuration with the cusp applied B field relative to the self-
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Figure 5.20: Ion saturation current signal fluctuations relative to the mean versus time during quasi-
steady period at 10.7 kA and z = -29 mm. Typical examples from all three magnetic configurations
are shown for comparison.
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Figure 5.21: Ion saturation current signal fluctuations relative to the mean versus time during quasi-
steady period at 8 kA and z = -29 mm. Typical examples from all three magnetic configurations are
shown for comparison.
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Figure 5.22: Ion saturation current power spectral density (PSD) at 10.7 kA and z = -29 mm. Typical
examples from all three magnetic configurations are shown for comparison.
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examples from all three magnetic configurations are shown for comparison.
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field case. This effect can be seen most clearly in the PSD in Figure 5.22, where the power over

the frequency range is systematically lower for the cusp applied-field case than the self-field case.

However, at this high discharge current, the tangential applied B field shows only limited benefit in

reducing the power in the fluctuations. These results are consistent with the reduction in magnitude

and frequency of thruster terminal voltage fluctuations with the cusp applied B field at this higher

10.7 kA current seen in Chapter 3 in Figure 3.5 of the standard deviations, Figure 3.12 of the number

of large voltage spikes, and Figures 3.20 to 3.22 of the PSDs. The peaks that occur at approximately

20–60 kHz in the ion saturation current PSDs are relatively close to the peaks that occur at about

40–60 kHz in the PSDs for the terminal voltage signals.

At 8 kA, we again see large fluctuations from the mean ion saturation current during the time-

series signals. However, the amplitudes of the deviations in ion saturation current are smaller in

general than at 10.7 kA. Moreover, we now observe that there are fewer of these spikes in the ion

saturation current at 8 kA than at higher current. Again, the cusp applied B field greatly reduces

the magnitude and frequency of the large spikes (e.g., greater than 15 mA). In addition, we now

see that the tangential applied B field has an effect also on reducing the number and frequency of

the large-amplitude fluctuations relative to the self-field case, albeit not as much as the cusp applied

B field. The PSD in Figure 5.23 also shows the effect of the applied B fields on reducing the

magnitude of the PSDs relative to the self-field case. Once again, these findings are consistent with

the observed reduction in magnitude and frequency of thruster terminal voltage fluctuations with

both the tangential and the cusp applied B fields at the lower 8 kA current level seen in Chapter 3 in

Figure 3.5 of the standard deviations, Figure 3.12 of the number of large voltage spikes, and Figures

3.23 to 3.25 of the PSDs. At 8 kA, the peaks at approximately 15–45 kHz in the ion saturation

current PSDs are also relatively close to the peaks that occur at approximately 30–50 kHz in the

PSDs for the terminal voltage signals.
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These results suggest a relation between the terminal voltage signal fluctuations studied earlier

and the ion saturation current fluctuations. The fluctuations or spikes in the ion saturation current

represent fluctuations associated with the number density of the local plasma. Diamant [37, 38] and

Uribarri [42, 18] discuss that such number density variations could be associated with erosion and

vaporization of anode material that seeds the local plasma in response to anode spots. Thus, we may

be observing a direct response to the same anode spotting mechanism in both the terminal voltage

fluctuations and number density fluctuations associated with anode erosion.

The reduction in intensity and magnitude of the fluctuations due to the rotation of the plasma

with the applied B field. The applied B field induces an azimuthal rotational motion to the plasma

due to the jr × Bz and jz × Br terms of the electromagnetic Lorentz force. It is possible that this

swirling motion to the plasma could help mitigate some of the local number density fluctuations

near the anode and anode spot mode erosion by forcing the plasma attachment to rotate azimuthally

around the anode. Localized filamentary current attachment points should be forced to move around

the anode surface, spreading out the heating over the anode surface and reducing erosion at local

hot spots.

Local plasma number density fluctuations could also be caused by azimuthal asymmetries in

the overall current discharge pattern, particularly in the self-field case. For example, Hoskins [73]

observed azimuthal asymmetries in self-field MPDT operation and related these asymmetries to

deviations in the radial centroid of the current discharge from the true geometric centerline of the

thruster. Evidence of fluctuations in the current discharge of our thruster was obtained via high-

speed video imaging. Figure 5.24 shows 8 frames taken with 5 µs exposure times and separated

by 100 µs intervals during the quasi-steady period of the thruster firing at 9 kA in self-field mode

(no magnets). These images show fluctuations in the luminosity associated with the denser plasma

regions in the plume near the thruster exit. The anode is on the left in these images, and the flow



129

High-speed videos – Side
fluctuations – Reduced the

1 2

5 6

 view discharge column 
esis version

3 4

7 8

Figure 5.24: High-speed video imaging frames of thruster discharge fluctuations at 9 kA. Frames
represent 5 µs exposure times separated by 100 µs intervals.

direction is to the right. Coupled with the observations by Hoskins, these oscillations in the lumi-

nous discharge regions suggest that asymmetries in the discharge pattern may indeed be another

mechanism for increased number density fluctuations at higher currents. The induced azimuthal

rotational motion with our applied magnetic fields could potentially have a gyroscopic stabilizing

effect against such asymmetries, which would act to reduce fluctuations in the local number densi-

ties in the near-anode region.
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5.7 Summary of Results

In this chapter, we examined the calculated electron temperatures, number densities, and anode

fall voltages from Langmuir probe measurements. Data were obtained along the anode at a higher

current condition at 10.7 kA and an intermediate current of 8 kA. In addition, a limited set of

spatially coarse data taken in the interior of the thruster at both 10.7 kA and 9 kA were shown to

illustrate general variations and trends, particularly for the number densities in the discharge. The

following key findings were identified:

A reduction in the anode fall voltage is clearly observed for both applied B fields at 8 kA

and for the cusp applied B field at 10.7 kA. At 10.7 kA, the cusp applied B field significantly

reduces average anode fall voltages to only 3–14 V over most much of the near-anode profile. At 8

kA, both applied B field configurations show a substantial reduction in anode fall voltages down to a

range from 8 to -4 V, with negative values implying an electron-repelling anode fall. In these cases,

a likely cause could be the radial component of the applied magnetic fields leading to increased

current conductivity in regions where the applied B field lines intersect the anode (e.g., in regions of

high current density). In addition, modest increases in Te and ne lead to increased random thermal

flux of electrons to the anode to support the current densities demanded. These effects combine to

increase electron transport to the anode surface in regions of high current density (e.g., circa z = -29

mm), thus mitigating the need for large anode fall voltages. In general, the reductions in anode fall

voltages suggest a link to the reduced average thruster terminal voltages previously observed with

the magnetic fields. This relationship will be discussed further in Chapter 6.

The applied B fields result in increases in electron temperatures near the regions of high

applied B field intensity and higher number densities in regions of high radial current density

to the anode. Electron temperatures increase over much of the near-anode region with the applied
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B fields. These increased temperatures may be associated with heating in regions of high azimuthal

current densities induced by the applied B fields. In addition, we observe higher number densities

with the applied B fields in the regions where the radial current densities to the anode are highest.

The increased number density is particularly pronounced in the case of the tangential B field, where

it increases by a factor of roughly 6 to 8 relative to self-field operation. In addition to the applied

B field’s effect on the flow field, the increase in ne upstream for the tangential B field might be due

to an increased ionization zone where the current density is higher. Again, these increased number

densities support increased electron random thermal flux to the anode.

Variations of 1–2 orders of magnitude in the number densities between the near-cathode

centerline and near-anode region clearly highlight the effects of the radial pumping forces on

anode charge carrier depletion without the magnets. Number densities measured over a broad

range of the interior discharge region without the magnets clearly showed significant reductions

in the number density between the centerline and the near-anode region. These variations signify

charge carrier depletion near the anode, which establishes one of the conditions that lead to onset.

Moreover, the expansion of the plasma suggested by the number density variations results in a trend

of decreasing number densities in the upstream direction along the anode, thus making it even more

difficult to sustain significant current densities further upstream in the self-field configuration.

The applied B fields show a reduction in the magnitude and frequency of large fluctua-

tions in the ion saturation current time-series signals, potentially implying a relation with the

reduced terminal voltage fluctuations and anode spot damage. At 10.7 kA, we observed a reduc-

tion in the intensity and frequency of large spikes in the ion saturation current with the cusp applied

B field relative to the self-field case. At 8 kA, we see that the same effect occurs with both the

tangential B field and the cusp B field. These results suggest a relation to the earlier demonstrated

reduction magnitude and frequency of the terminal voltage signal fluctuations with the applied B
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fields, as is also supported by a relatively similar range of frequencies in the sets of PSDs. These

fluctuations may be associated with anode spots seeding the near-anode plasma with vaporized

anode material. It is also possible that the applied magnetic fields could help mitigate current fil-

amentation and anode spot mode damage by forcing the plasma attachment to rotate azimuthally

around the anode and thus smooth out heating at localized filamentary current attachment points.

This may suggest a possible mechanism for mitigating anode spot damage, as such filamentation

into anode spots would otherwise lead to anode erosion damage through vaporization of anode ma-

terial in these local hot spots. High-speed video images were also shown highlighting fluctuations

in the luminous discharge regions near the thruster exit plane, suggesting unsteady oscillations in

the thruster discharge pattern at high currents as another possible mechanism for number density

fluctuations.

These effects will be discussed in more detail later in Chapter 6 to examine the underlying

physics.
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Chapter 6

Interpretations and Conclusions

The data presented in Chapters 3, 4, and 5 followed a path of increasingly focused investigations.

We started with the system-level behavior (e.g., terminal voltage characteristics), continued with

investigations of the bulk plasma throughout the interior and near-anode regions, and ultimately

focused on studying near-anode plasma properties. This chapter provides a synthesis of the experi-

mental studies from these different scales, couples the various measurements to calculate important

new plasma parameters, and relates the observed behaviors to the driving physics and processes.

Section 6.6 closes with conclusions and recommendations based upon these findings.

6.1 Effects on the Current Pattern, Conductivity, and Current Densi-

ties

In Chapter 4, we observed the clear effects of the applied magnetic fields on the redistribution of the

current pattern and regions of high current densities in the thruster. The current streamlines follow

the applied B field lines in the near-anode attachment region, as seen in Figures 4.5, 4.7, and 4.9.

These shifts in the current pattern are associated with similar shifts in the regions of high current

densities along the anode, as shown in Figures 4.12, 4.22, 4.23, and 4.24. The tangential applied

B field causes the current streamlines and regions of peak current densities to shift significantly
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upstream, following along the applied magnetic field lines as they begin to turn radially outward

toward the anode. In addition to higher current densities upstream mid-anode, current densities are

significantly lowered in the downstream region where the applied B field lines are predominantly

contoured parallel to the anode. The cusp applied B field results in a more subtle but still clear shift

in the current streamlines to follow along the cusp applied B field lines as they intersect the anode

surface in the downstream region. The high current density region downstream along the anode lip

is slightly broadened and shifted upstream from the self-field case.

These shifts in the current patterns, anode attachment, and regions of highest current densities

are evidently influenced by the shape of the poloidal applied B field lines. We can examine these be-

haviors on the basis of the physics governing the electron mobility. Consider the classical electrical

conductivity for the plasma, σ0, given by

σ0 =
neq

2
e

meνe
(6.1)

where ne is the electron number density, qe is the fundamental electron charge, and me is the

electron mass. νe is the electron collision frequency, which can be approximated from the electron-

ion collision frequency, νei, given by the Spitzer model [43, 74]

νe ≈ νei =
q4
ene ln Λ

3(2π)3/2√meε20(kBTe)3/2
(6.2)

where Te is the electron temperature, kB is the Boltzmann constant, ε0 is the permittivity of free

space, the plasma parameter, Λ, is

Λ = 12πneλ
3
De (6.3)
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and the electron Debye length, λDe, is

λDe =

√
ε0kBTe
neq2

e

(6.4)

Note that electrical conductivity is simply the reciprocal of the resistivity, η0, i.e.,

η0 ≡
1

σ0
(6.5)

Note that we assumed we can ignore collisions with neutrals to express nue ∼ nuei in equation

6.2. To establish why this assumption is valid, note that the collision frequency scales as

ν = Acsnvrel (6.6)

where Acs is the collision cross section, n is the number density of target particles and vrel is the

(average) relative velocity between the interacting particles. In MPD thrusters, the plasma is highly

ionized, and our thruster plasma should be fully ionized at higher current conditions such as 10.7

kA. However, there is still neutralization of ions hitting the anode wall in the near-anode region.

The number density of these neutrals will be much lower than the background plasma. In addition,

consider the collision cross section, Acs. For neutrals, where the radius of the atom is of order

10−10 m, the collision cross section is of order Acs ∼ 3 × 10−20 m2. For electron-ion Coulomb

collisions, the collision cross section can be calculated from the Spitzer model equation 6.2 for nuei

and dividing by the electron number density, ne, and vrel taken as the electron thermal velocity,

vth,e, given by

vth,e =

√
8kBTe
πme

(6.7)

For parameters of interest in our experiments, where ne ∼ 1019 m-3 and Te ∼ 5 eV, we estimate
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Figure 6.1: Electrical conductivity (classical, uncorrected) calculated along the near-anode region
at 10.7 kA.

Acs ∼ 2 × 10−18 m2. This is two orders of magnitude higher than the neutral cross section, so

nue ∼ nuei. More generally, the electron-ion Coulomb collisions should occur at much higher

frequency than electron-neutral collisions for ionization fractions greater than order of 1% [20].

The classical electrical conductivity, σ0, is calculated along the near-anode region for the thruster

operating at 10.7 kA without magnets, with tangential applied B field, and with cusp applied B field,

as shown in Figure 6.1. These data were calculated using the Langmuir probe measurements in this

region. Note that the dashed lines between data points are merely to guide the eye, not to suggest

any specific functional dependence. Since σ0 is a strong function of temperature, we see somewhat

increased values for σ0 with the applied B fields over much of the anode, following the results of

the electron temperature data seen in the previous chapter in Figure 5.5.

The electrons also become tightly bound to their Larmor orbits (i.e., gyro-orbits) around the

magnetic field lines as the B field magnitude increases [13]. The electron Larmor radius, rLe, is
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given by

rLe =
vth,e
ωce

(6.8)

where ωce is the electron cyclotron frequency (i.e., the gyrofrequency), given as a function of the

magnetic field intensity B by

ωce =
|qe|B
me

(6.9)

A measure of how magnetically bound the electrons are to motion along the B field lines is

the electron Hall parameter, Ωe. The electron Hall parameter is defined as the ratio of the electron

cyclotron frequency to the collision frequency and can be expressed as

Ωe ≡
ωce
νe
≈ ωce
νei

=
qB

meνei
=

3(2π)3/2ε20(kBTe)
3/2B

√
meq3

ene ln Λ
(6.10)

This is a measure of how many gyro-orbits around the B field lines the electrons will undergo before

they experience an elastic collision. Thus, the higher the Hall parameter, the stronger the electrons

will be bound to the magnetic field lines and will be impeded for motion perpendicular to the B

field. Figure 6.2 shows the electron Hall parameter calculated for the thruster at 10.7 kA along the

same near-anode region as our conductivity calculations. The data show that the Hall parameter is

indeed much greater than 1 over the entire region for all configurations, and the Hall parameter is

generally higher with the applied B fields. The applied B field magnitudes are highest in this mid-

range to downstream near-anode region, which is in closest proximity to the magnets’ coils. Thus,

the electrons are indeed strongly bound to the magnetic field lines, which is typically referred to as

the electrons being “magnetized.” As will be discussed later, the high Hall parameter in the case of

the self-field configuration impedes electron conduction radially to the anode, as the magnetic field

is purely azimuthal. However, the applied magnetic fields introduce significant radial B components
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Figure 6.2: Electron Hall parameter calculated along the near-anode region at 10.7 kA.

that provide the magnetized electrons a path to the anode.

Let us consider multiple different models and viewpoints for expressing the current density to

examine the effects of the Hall parameter and B field on current conduction in the plasma. First,

examine the generalized Ohm’s law from MHD given by [13]

j = σ0(E +
∇Pe
n|qe|

+ u×B− 1

n|qe|
j×B) (6.11)

where u is the streaming velocity of the plasma (bulk velocity), and we assume n = ne = ni in the

quasineutral bulk plasma. If we ignore the pressure gradient contribution as small for now, we can



139

write this in tensor form as [43, 75]

j = σ0


1

1+Ω2
Ω

1+Ω2 0

− Ω
1+Ω2

1
1+Ω2 0

0 0 1

 (E + u×B) (6.12)

where the coordinate system is in orthogonal coordinates with unit vectors denoted as â, b̂, and ĉ,

and the component ĉ defined by the B field direction with B ≡ Bcĉ. For Hall parameter much

less than one, the tensor in this equation simply reduces to the unit tensor, resulting in the scalar

conductivity solution. However, high Hall parameter clearly has anisotropic effects.

For the self-field case, the B field is purely azimuthal. In this B field geometry, the current

density to the anode in the radial direction is given by the b̂ component as

jb = σ0

(
−Ω

1 + Ω2
Ea +

1

1 + Ω2
Eb +

−Ω

1 + Ω2
vbBc +

−1

1 + Ω2
vaBc

)
(6.13)

This expression shows how the current density to the anode in the self-field case (in the presence of

purely azimuthal B field) is greatly reduced by high Hall parameter due to conduction perpendicular

to the B field.

In addition, the case of B field in the radial direction toward the anode can be examined. This

is relevant for regions where there is a strong applied B field in the radial direction. For this B field

geometry, the ĉ component of the current density co-aligned with the B field direction gives the

current density to the anode (in the same direction) as simply

jc = σ0Ec (6.14)

where Ec in this geometry is now just the radial electric field. Therefore, this B field orientation
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simply results in the classical scalar conductivity times the radial electric field, with no reduction by

the Hall parameter. Relative to the self-field case, the current conduction is greatly increased. The

current density can either be much larger for a given electric field, or can sustain the same current

density with a much lower electric field. We will consider the latter case further in Section 6.3.

Another way to examine the effects of the Hall parameter and B field on current conduction is

by analyzing the equation of motion for the electrons, since the electrons are the dominant source of

current conduction due to their much smaller mass than the ions. Jahn [20] performed an analysis

of AC conductivity for averaged electron motion. If we take the steady-field DC limit as frequency

ω goes to zero and examine the case where Ω � 1, we obtain an expression for the DC electron

current density vector in terms of the Hall parameter as

jDC =
σ0

Ω2
E +

σ0

Ω

E×B0

B0
+ σ0

(E ·B0)B0

B2
0

(6.15)

where E is the electric field vector, B0 is the magnetic field vector, and B0 is the magnitude of

the magnetic field vector. This expression provides a form for the current density dominated by

the electrons, albeit neglecting the pressure gradient term for now (i.e., we assume the effects of

the electric and magnetic field terms to dominate the ∇P term). This equation shows how high

Hall parameter affects the current density and allows a simpler view of how the general form of the

magnetic field affects the current density. Again, the conductivity is no longer scalar in nature, as it

would be for Hall parameter much less than one. This equation reveals three major contributions.

In the first term, the component directly associated with the electric field is reduced by the inverse

square of the Hall parameter, making the contribution of that term very small. The second term is

associated with the E×B0 drift motion, which is also reduced by the inverse of the Hall parame-

ter. This Hall current term introduces motion perpendicular to the B field lines. For example, the
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self-generated azimuthal component Bθ of the B field crossed with the radially inward component

Er of the electric field acts to direct the current downstream. In addition to the electric field, this

Hall current term contributes to the current streamlines having such a strong axial component, par-

ticularly along the radial distance about half way to the anode, where the B field magnitudes are

highest. The third term in the equation is perhaps the most compelling. It is not reduced at all

by the Hall parameter, but it essentially scales with the angle between the electric field vector and

the magnetic field vector. In the case of the self-field operation, this term is small, as the electric

field is nominally oriented poloidally (radially and axially), and the self-generated magnetic field is

purely azimuthal, i.e., perpendicular to the electric field. Thus, the third term goes to zero for self-

field operation. However, with an applied magnetic field that has a significant component aligned

with the electric field (which is primarily radial in the near-anode region), this third term dominates.

Classical conductivity along the B field lines supports high current densities compared to cross-field

conduction, which is reduced by the high Hall parameter.

This effect is undoubtedly responsible for the change in the current density profile under the

influence of the applied B fields in the near-anode region. Current attachment is preferentially

moved to regions where there is strong co-alignment of the electric and magnetic field vectors

(predominantly, the radial components). Namely, the highest current densities can occur for the

tangential B field upstream on the anode where the magnetic field begins to turn radially toward the

anode. Highest current densities can occur for the cusp B field in the downstream region where the

cusp B field lines intersect the anode. This conduction behavior also partly explains why the high

current density anode attachment zone for the self-field configuration occurs far downstream on

the anode lip, where the self-generated azimuthal magnetic fields are weakest, yielding lower Hall

parameter and higher cross-field current density. This effect is in addition to the overall downstream

convection of the current streamlines at high magnetic Reynolds number in the flowing plasma, as
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discussed briefly in Section 4.6.

The general effect of the B field seen from equation 6.15 is to significantly decrease the conduc-

tion perpendicular to the B field lines but allow for much greater conduction along the directions

parallel to the B field. In the self-field configuration, the B field is only azimuthal, as created by

its own purely poloidal discharge current pattern. This magnetic field geometry thus requires the

current pattern to cross transverse to the self-generated azimuthal B field to reach the anode. How-

ever, conduction across these B field lines is impeded by the high Hall parameter. With the applied

B fields, conduction to the anode is higher where the applied B field lines turn radially outward

toward the anode.

This effect can also be understood from the viewpoint of tracking individual charged particles.

Electrons are strongly bound to the B field lines in the regions of high Hall parameter (both through

the contributions of the azimuthal self-field and the poloidal applied field), as they are much lower

mass than the ions and thus have much smaller Larmor orbits around the B field lines. The much

heavier ions have significantly larger gyro-radii and are not “magnetized” in the modest B field

magnitudes of our thruster operating conditions. The ions predominantly follow the electric field.

The magnetized electrons, however, are driven to follow along the applied B field lines to the anode-

intersecting regions of highest current attachment, where the magnitudes of the applied B field are

also relatively larger (greater than the local self-field azimuthal B in this near-anode region). This

results clearly in the experimentally observed effect of focusing the higher current conduction to

the anode in the regions where there is a sufficiently large radial component to the applied B field

(relative to the axial and azimuthal components) and significant co-alignment of the local B field

vector and E field vector.

Therefore, the anode-intersecting applied B field mitigates the otherwise limiting effect of the

Hall parameter on current density to the anode for self-field operation, where the plasma experiences
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only the self-generated azimuthal B field and is forced into cross-field transport. This behavior can

also be examined in terms of the diffusion process and the effect of the B field on the diffusion

coefficient. This modeling viewpoint is relevant if the pressure gradient term is significant. Either

assuming isothermal electrons or that the pressure gradient is simply dominated by the gradient in

number density,∇ne (and the temperature gradient is much smaller), this yields a diffusion process

for the electrons. The equation for classical diffusion of electrons across a magnetic field can then

be written in terms of the electron flux given by Goebel and Katz [76] as

Γe = µ⊥,eneE−D⊥∇n (6.16)

where µ⊥,e is the perpendicular electron mobility given by

µ⊥,e =
µ0,e

1 + Ω2
e

=
1

1 + Ω2
e

qe
meνe

(6.17)

and where D⊥ is the perpendicular diffusion coefficient,

D⊥ =
1

1 + Ω2
e

D0 =
1

1 + Ω2
e

v2
th,e

νe
(6.18)

This equation shows that the diffusion coefficient is strongly dependent on the Hall parameter

for cross-field diffusion. Consider the basis of the classical diffusion coefficient, D0 = D‖ (the

same as the diffusion coefficient parallel to the B field lines). As discussed by Bellan [13], D is a

consequence of the random walk motion of particles and collisions, with D ∼ (step size)2

(time between collisions) .

D0 is thus a function of the mean free path, λmfp, and collision frequency given by

D0 = D‖,classical = λ2
mfpνe =

(
vth,e
νe

)2

νe =
v2
th,e

νe
(6.19)
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Further, we can examine the case of high magnetic fields and high Ω, where the diffusion coef-

ficient perpendicular to the B field is reduced because the electrons are orbiting the magnetic field

lines in a new length scale associated with the Larmor orbit gyro-radius. This new length scale

results in

D⊥,classical ∼ r2
Leνe =

(
vth,e
ωce

)2

νe =
1

Ω2

v2
th,e

νe
=

1

Ω2
D0 (6.20)

For Hall parameters much greater than one, this is the same as the expression for D⊥ from

Goebel and Katz. Thus, the diffusion coefficient, D⊥, for the diffusion perpendicular to the mag-

netic field is significantly reduced by the Hall parameter. In our MPD thruster, the electrons are

greatly impeded from diffusing toward the anode in the presence of large azimuthal (and axial) B

fields. However, the diffusion parallel to the magnetic field lines is unimpeded from the classical

diffusion coefficient,D0. This effectively allows for much greater electron diffusion radially toward

the anode in the regions where there is a substantial Br radial component. Again, this is consistent

with the measured current pattern and regions of high current densities in our thruster.

6.2 Regions of Increased Heating and Induced Azimuthal Current

Densities

In Chapter 5, we observed increases in the local electron temperatures at 10.7 kA in the near-

anode region as shown in Figure 5.5 operating at 10.7 kA. For convenient reference, the measured

temperature profiles for the three magnetic field configurations are shown again here in Figure 6.3.

These regions of increased temperatures can be shown to relate to the regions of highest current

densities in the thruster.

The induced azimuthal current density, jθ, caused by the externally applied magnetic fields may

be estimated using the vector form of the generalized Ohm’s law. This was given in equation 6.11,
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Figure 6.3: Electron temperature measurements along the near-anode region at 10.7 kA.

re-stated here for reference as

j = σ0(E +
∇Pe
n|qe|

+ u×B− 1

n|qe|
j×B) (6.21)

where u is the streaming velocity of the plasma (bulk velocity), and we assume n = ne = ni in

the quasineutral bulk plasma. The azimuthal current density, jθ, is obtained from the azimuthal

component of this equation as

jθ = σ0

(
Eθ +

1

n|qe|
∇θPe + uzBr − urBz −

1

n|qe|
(jzBr − jrBz)

)
(6.22)

where subscripts r, θ, and z represent the radial, azimuthal, and axial components, respectively.

However, we can make some simplifying assumptions that are generally true for MPD thruster

acceleration processes [43], particularly near the anode, such as uz � ur, E is mostly radial, and
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Eθ and ∇θP go to zero (or the gradient is vanishingly small) due to azimuthal symmetry in steady

state. With these assumptions, we get the following expression for the azimuthal current density

jθ = σ0

(
uzBr −

1

n|qe|
(jzBr − jrBz)

)
(6.23)

We use this expression to then calculate an estimate of jθ in the near-anode region given the

applied poloidal B field and our measured ne, jr, and jz . The calculated jθ values for the tangential

and cusp applied B field configurations are shown in Figure 6.4. For uz , we assume an average from

the estimated thruster exhaust velocity obtained from the bJ2 thrust and Isp model described sepa-

rately in Section 6.5. A sensitivity analysis showed that the results were not significantly sensitive

to the expected range of uz for our parameters. The classical electrical conductivity, σ0, given by

equation 6.1 was assumed for the calculation. We observe substantial azimuthal current densities

in the regions where the thruster experiences high applied B field crossed with the current density

vector. Therefore, the azimuthal current densities are moderated somewhat in the regions of highest

current attachment, as these locations happen to also occur where the current streamlines are mostly

parallel to the local applied B field lines. Also, note that the reversal in polarity of jθ for the cusp

applied B field case is associated with the reversal in the direction of the B field vector across the

cusp region caused by the opposing currents in the two magnets.

The magnitude of the total current density, |jtotal| = (j2
r + j2

θ + j2
z )1/2, is calculated using

the estimated jθ and shown in Figure 6.5. For the self-field configuration, jtotal generally increases

in the downstream direction, as do the electron temperatures. The contribution of the calculated

jθ component greatly increases the total current density for the tangential and cusp applied B field

configurations. For the applied B field cases, the regions of increased and decreased electron tem-

peratures also roughly follow the trends in the total current densities.
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Figure 6.4: Azimuthal current density estimated along the near-anode region at 10.7 kA.
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Figure 6.5: Total current density estimated along the near-anode region at 10.7 kA.
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The increased temperatures are likely due to Ohmic heating of the plasma in the high current

density regions. Ohmic heating scales with the resistivity (and thus with the inverse of the conduc-

tivity) as∼ ηj2
total =

j2total
σ [20]. This is consistent with our observation that the regions of increased

temperatures seem to follow the local trends in higher current density (and thus regions of greatest

heating). The applied B fields lead to higher temperatures (relative to the self-field case) in regions

of high azimuthal current densities.

In addition to the immediate vicinity of the anode, regions of high current densities can be

clearly identified in the interior of the thruster discharge. All operating configurations exhibited

high current densities around the downstream perimeter and in front of the cathode, as associated

with regions of high current attachment to the cathode outer body and front face. High axial current

densities were also observed along the thruster centerline, where electromagnetic j×B pinching

forces compress the plasma and current streamlines. Additionally, the regions of high radial current

density identified along the anode extend into the interior of the discharge, generally following along

the enclosed current streamlines. This is as expected since we observe a compression of the current

streamlines as they converge close the anode in the regions of highest anode current densities.

Heat generated in these interior regions can thermally conduct to the anode, which is another

possible cause of increased electron temperatures. The plasma thermal conductivity is not scalar

in the presence of the magnetic field. As shown by Woods [77], the electron contribution to the

thermal conductivity in the direction parallel to the B field, κ‖,the, scales as

κ‖,the = κ0,the =
5

2

kB
me

Pe
νe

=
5

2

k2
BneTe
meνe

(6.24)

which is the same as the classical thermal conductivity value, whereas the thermal conductivity in
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the direction perpendicular to the B field, κ⊥,the, scales as

κ⊥,the =
1

1 + Ω2
e

κ‖,the (6.25)

The thermal conductivity is not scalar and scales as the inverse square of the Hall parameter per-

pendicular to the B field, much like the electrical conductivity, as discussed in Section 6.1. There-

fore, thermal conduction from the interior plasma radially outward to the anode region is higher in

regions of substantial radial applied B field, but the thermal conductivity is decreased in the direc-

tion perpendicular to the B field. In the regions where the applied magnetic field has a high axial

component but little to no radial component, this results in a decrease of the thermal conduction

from the plasma radially outward toward the anode. This occurs, for example, in the region close

to the axial positions of the applied-field magnets, which helps explain the relatively lower electron

temperatures with the applied-field magnets that occur upstream around axial positions z = -129

mm and z = -154 mm and at the downstream location z = -29 mm.

We have thus far considered only the classical electrical conductivity from equation 6.1. How-

ever, studies have shown (cf., Choueiri and Caldo [52, 78]) that microturbulence instabilities in

MPD thrusters can trigger so-called “anomalous resistivity,” wherein the resistivity can be much

higher (i.e., the electrical conductivity can be much lower) than the estimate of classical resistivity

and electrical conductivity. Caldo [78] showed that the threshold at which this would begin to occur

was of order vd ∼ 1.5vth,ion, where vd is the drift velocity given by

vd =
j

ne|qe|
(6.26)
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and vth,ion is the ion thermal velocity,

vth,ion =

√
8kBTi
πmi

(6.27)

where Ti is the ion temperature (assumed to be of similar order to Te for our plasma) and mi is the

ion mass (argon in our plasma). Gallimore [43] measured electrical conductivities in his Princeton

Benchmark Thruster that were up to 30 times lower than his estimates for the classical conductivity.

In Figure 6.6, we plot the calculated ratio of vd/vth,ion for our thruster configurations. For the

applied B field cases, this ratio is estimated to be of order 10 to 100 based upon our calculated

values of jθ. Therefore, anomalous resistivity is likely to be present, and our estimates of the

electrical conductivity, jθ, and jtotal are likely to be overestimated. This makes it impossible to

quantitatively estimate the absolute heating rates. Nonetheless, the trends in functional forms for the

conductivity, jθ and jtotal, suggest a relationship between the induced azimuthal current densities

and the measured increases in electron temperature.

6.3 Reduction of Anode Fall Voltages

In our experiments, the applied magnetic fields led to three major beneficial effects related to the

voltages: (1) reduced anode fall voltages, (2) lower mean terminal voltages (thus, reduced input

power for the same discharge current), and (3) reduced intensity and frequency of the large fluctu-

ations and spikes in the thruster terminal voltage. Let us examine the anode fall voltage reduction

in some detail first, then consider how it may relate to the reduction in mean terminal voltage and

voltage fluctuations.

As seen in Figure 5.13 at 10.7 kA and Figure 5.16 at 8 kA, the cusp applied B field caused a very

significant reduction in the anode fall voltage, Vfall, at 10.7 kA, and both applied B fields resulted
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Figure 6.6: Ratio of drift velocity to ion thermal velocity along the near-anode region at 10.7 kA.

in significant reductions in Vfall at 8 kA relative to the self-field case. As discussed in Section 6.1,

there is a significant decrease in the electrical conduction to the anode in the self-field case due

to both high Hall parameter and conduction perpendicular to the purely azimuthal B field. In the

applied B field cases, the introduction of radial B field components intercepting the anode surface

greatly increase electron mobility to the anode.

The applied B fields can result in greatly reduced electric fields near the anode as a consequence

of the increased conduction to the anode. Equation 6.15 relating the vectors for the steady-state

(DC) current density, electric field, and magnetic field in the high Hall parameter limit is re-stated

here for convenient reference,

jDC =
σ0

Ω2
E +

σ0

Ω

E×B0

B0
+ σ0

(E ·B0)B0

B2
0

(6.28)
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The radial component of the current density near the anode surface is given by

jr =
σ0

Ω2
Er +

σ0

Ω

(EθBz − EzBθ)
B0

+ σ0E0 cos(ψ)B̂ · r̂ (6.29)

whereB0 is the total magnitude of the B field, E0 is the total magnitude of the E field, ψ is the angle

between the B field and E field vectors, B̂ is the unit vector in the B field direction, and r̂ is the

radial unit vector. In the case of self-field operation, the B field is purely azimuthal, and the E field

components are purely poloidal. Thus, the third term vanishes. In MPD thrusters near the anode,

we also expect the electric field to be predominantly radial, so Er will be much larger than Ez and

Eθ [43]. In the simplified case of only radial E field, the current density equation reduces to the first

term for the self-field configuration, given by

jr, self field ∼
σ0

Ω2
Er (6.30)

Er, self field ∼
Ω2

σ0
jr, self field (6.31)

Thus, to sustain a given radial current density, the electric field Er must grow, scaling with

the square of the Hall parameter. However, with the anode-intersecting applied B fields, there are

regions where the E field and B field are significantly co-aligned radially (E0 ∼ Er and cos(ψ) ∼

1). This gives an expression for the radial current density and radial E field component in terms of

the Hall parameter,

jr, applied field ∼
σ0

Ω2
Er + σ0E0 = σ0(

1

Ω2
+ 1)Er ≈ σ0Er (6.32)

Er, applied field ∼
1

σ0
jr,applied field (6.33)
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For the applied B field configurations, in regions where there is significant radial B field, the

electric field Er can thus be much smaller to sustain a similar order of radial current density. As

discussed in Section 6.1, it is no surprise that we found the highest current densities associated with

regions of significant radial B field and much lower current densities where the B field was only

tangential to the anode. Moreover, the result above suggests that the much smaller electric field

required to sustain a high current density could be obtained with a much smaller anode fall voltage,

as the steady-state electric field near the anode scales as

E = −∇V (6.34)

Er ∼ −∇rVfall (6.35)

Therefore, we suggest the increased conduction along the applied B field lines radially intercepting

the anode and the associated reduction in E field as a prevailing cause of the reduced anode fall

voltage.

Another way to examine the cause of large anode fall voltages is to consider the random thermal

flux of electrons to the anode. When the electron random thermal flux to the anode surface is

insufficient to provide the current density required at the anode, the potential in the anode fall

region must reverse from an electron-repelling potential to an electron-attracting anode fall voltage.

This must form to accelerate the electrons beyond the random thermal flux alone and sustain the

higher current densities with increasing total thruster discharge current. This condition where the

requisite anode current density exceeds the “thermal” current density from random thermal flux

to the anode surface has been presented as a condition for the inception of so-called “onset” and

“critical current” regimes in MPD thrusters by many authors, beginning perhaps with Baksht et al.

[21, 22, 34, 43, 42]. Thus, we can examine the conditions in our thruster to determine whether we
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exceed this criteria and how this was affected by the applied magnetic fields.

First, we consider the case assumed by the previous authors, wherein the random thermal current

density to the anode surface is simply given by the electron charge times the classical kinetic theory

expression for electron random thermal flux to the anode surface (not accounting for B field effects),

je = qeΓ0,e = qe
1

4
nevth,e exp(

−qeVd
kBTe

) (6.36)

where vth,e is the electron average thermal velocity,

vth,e =

√
8kBTe
πme

(6.37)

and Vd is the potential difference between the anode wall and the local ambient plasma. Taking the

limit of Vd going to zero gives an expression for the maximum “saturation” current density before

an electron-attracting sheath must form to draw any more current, given by

je = qe
1

4
nevth,e (6.38)

Figure 6.7 shows the ratio of the measured radial current density to this electron thermal current

(flux) along the near-anode region. These data are calculated from the measurements in this region

with the thruster operating at 10.7 kA with the three different magnetic configurations. This figure

shows that the measured current density never exceeds the values calculated for the random thermal

current density in this region.

However, we suspect that this expression is likely to be overestimating the actual random ther-

mal current density to the anode due to impeded electron motion in the presence of the magnetic

fields. For the conditions in our thruster, the electron Larmor radius is large (order of mm) com-
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Figure 6.7: Ratio of measured radial current density to electron random thermal current (flux) along
the near-anode region at 10.7 kA. Electron thermal current is calculated using classical flux uncor-
rected for B field effects.

pared to the electron Debye length (order of micrometers). Thus, we expect that the anode sheath

does not extend far enough (order of several Debye lengths) to prevent the motion of the electrons

just outside of the sheath from entering the sheath and impacting the anode within the scale of their

Larmor radius orbits. However, the electrons that are effectively lost to the anode surface must be re-

plenished by diffusion of electrons from the plasma further away, in which electrons must transport

across the B field.

In an attempt to make a rough order-of-magnitude correction to the electron random thermal

current in the presence of the B fields, we consider scaling arguments based on diffusion and the

diffusion coefficient. As discussed in Section 6.1, the diffusion coefficient D is a consequence of

the random walk motion of particles and collisions, with D ∼ (step size)2

(time between collisions) . We showed in

equations 6.20 and 6.19 that the diffusion coefficient parallel to the B field is effectively unchanged,

while the diffusion coefficient perpendicular to the B field is greatly reduced by the Hall parameter.
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In the direction perpendicular to the B field, electron motion is associated with step sizes on the

scale of the Larmor radius rather than the mean free path, resulting in this reduction in the diffusion

coefficient. Therefore, we might argue that the electron flux perpendicular to the B field lines will

be impeded in a similar way. This matters because our number density estimates with the triple

Langmuir probe were obtained roughly 4 mm away from the anode surface. However, local Larmor

orbit length scales for the electrons were smaller than this distance, typically in a range of 0.4–1.2

mm for our measurements at 10.7 kA.

For our rough order-of-magnitude estimate of the corrected electron flux, we first account for

diffusion along the B field lines using D‖ and flux perpendicular to the B field lines using D⊥ and

then assume that an effective diffusion coefficient can be written as

Deffective = αD‖ + (1− α)D⊥ = (α+
1− α

Ω2
)D0 = γD0 (6.39)

γ ≡ (α+
1− α

Ω2
) (6.40)

where α is a ratio to account for what fraction of the total B field is in the radial direction (equiva-

lently, the sine of the angle at which the B field vector intercepts the anode surface). This ratio α is

given by

α =
|Br|√

B2
r +B2

θ +B2
z

(6.41)

where Br, Bθ, and Bz are the radial, azimuthal, and axial components of the B field, respectively.

Given that the flux of electrons is proportional to the diffusion coefficient, we first assume that the

flux of electrons to the surface in the direction parallel to the B field is unaffected and is simply the
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classical electron flux Γ0 given by

Γ0 = Γ‖ =
1

4
nevth,e (6.42)

Again, we assumed here that the potential difference Vd between the anode surface and the lo-

cal plasma goes to zero to find the electron “saturation” limit (before the reversal of potential to

electron-attracting voltage falls is required to draw more current). This Γ0 is appropriate for motion

parallel to the B field.

Perpendicular to the B field, we then make a rough order-of-magnitude estimate for the “cor-

rected” electron random thermal flux to the anode surface in a similar manner to the diffusion

coefficient by scaling with the same Hall parameter-dependent factor to obtain

Γ⊥ =
1

Ω2
Γ0 (6.43)

and thus estimate an effective overall flux for the components parallel and perpendicular to the B

field as

Γeffective = γΓ0 (6.44)

Multiplying the flux by the electron charge gives a model for the corrected estimate for the radial

current density from electron random thermal flux to the anode surface in the presence of the B field

jr = qeΓeffective (6.45)

Figure 6.8 shows the ratio of measured radial current density to the radial thermal current den-

sity values calculated assuming this corrected model for the influence of the B field in the manner

described above by taking Γ = Γeffective. This corrected thermal flux results in a ratio of measured



158

−200 −150 −100 −50 0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Axial Position Relative to Anode Exit Plane (mm)

R
a
ti
o
 o

f 
j ra

d
ia

l t
o
 r

a
n
d
o

m
 f
lu

x
 j

th
e
rm

a
l (

c
o

rr
e
c
te

d
)

 

 

No magnets

Tangential B

Cusp B

Figure 6.8: Ratio of measured radial current density to electron random thermal current (flux) along
the near-anode region at 10.7 kA. Here, a correction to electron thermal current is calculated for B
field effects using Hall parameter.

radial current density to calculated thermal current density that is always less than 1 with the applied

B fields but always greater than 1 for the self-field case. In the self-field case, the purely azimuthal

B field acts only to reduce the effective flux to the anode. The presence of radial B field components

with the applied-field configurations greatly increases the effective flux to the anode surface. Given

that these radial B fields also arise in the regions of highest current densities, the discharge is able

to sustain the increase in current density (i.e., increased demand) via the increased flux along the

B field lines (i.e., increased supply of electron flux). Further, in regions where there is little to no

radial component of the applied B field, the measured current densities demanded by the discharge

are also so much lower such that the limited supply of electron thermal flux across the transverse B

field lines is sufficient.

This corrected model of electron flux to the anode in the presence of the B field is most likely an

excessive, conservative reduction resulting in an underestimate of the actual electron flux. The true



159

electron flux is probably somewhere between this correction and the classical flux of 1
4nevth,e. The

simple case of the 1-D diffusion problem purely perpendicular to the B field can be readily solved

(cf., Krall and Trivelpiece [75]). However, this solution requires an assumed or specified length

scale for the diffusion layer (i.e., treating the plasma effectively as a planar or line source some

prescribed distance away from the wall). Sugawara [45] derived an expression for the electron

flux purely perpendicular or purely parallel to the B field for the finite geometry of a disk probe,

which does not require specifying a separate diffusion layer length scale. However, for our quasi-

1-D anode geometry, a proper solution still requires some empirical knowledge about the length

scale of the diffusion layer as a solution parameter and involves solving the diffusion problem with

corrections to the diffusion coefficient for both perpendicular and parallel components of the B field

with respect to the anode.

Nonetheless, if our corrected model is at least valid in a relative sense, it suggests that anode-

intersecting applied B fields have a greatly beneficial effect on increasing the local current density

that can be supplied by the electron random thermal motion relative to the self-field configuration.

As the ratio of local current density demand to electron thermal flux supply is reduced by the applied

B fields, lower anode fall voltages are required to augment electron random thermal current to the

anode, which supports the observed reduction in the anode fall voltages with the applied B fields.

6.4 Reduced Terminal Voltages, Fluctuations, Anode Heating, and An-

ode Spotting

Given what we learned in Section 6.3, we can attempt to relate the anode fall reduction to the other

observed effects. A significant reduction in mean terminal voltages was observed over a large range
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of currents, as seen in Figure 3.4. The average input power is

Pin = V J (6.46)

where V is the average voltage and J is the average total discharge current. By achieving the same

discharge current at lower operating voltages with the thruster, we are reducing the power for a given

current. As will be discussed later in Section 6.5, this leads to an increase in thruster efficiency.

For now, let us focus on why the mean terminal voltage decreases. Consider the terms of the

thruster voltage decomposed as [79]

V = Vback EMF + Vionization + Vthermal + Vfall (6.47)

where Vback EMF is the electromagnetic induced electromotive force (“back-EMF”) term, Vionization

is the power going into ionization divided by the current J , Vthermal is the thermal contribution to

the heating power dissipation divided by J , and Vfall is the anode fall voltage.

This study clearly showed a significant reduction in the anode fall voltage over much of the

anode with the applied B fields. This effect was pronounced for the cusp B field at 10.7 kA and for

both magnetic field configurations at 8 kA. If we compare this result to the measured reduction in

mean terminal voltages in Figure 3.4, we can see that both applied B fields resulted in substantially

lower terminal voltages at 8 kA and a significant reduction only in the case of the cusp applied B

field at 10.7 kA. Therefore, we suggest that the reductions observed in the anode fall voltage directly

lower the mean terminal voltages by reducing the Vfall contribution to the total discharge voltage.

Further, the power lost to the anode includes energy deposition from electron impacts, ion im-

pacts, thermionic emission, radiation, and convection [53]. Gallimore showed that 65-95% of the

total power deposition to the anode came from the current-carrying electrons. Power lost to the



161

anode from electron heating due to Vfall is reduced with the applied B fields, particularly with the

cusp configuration in general and the tangential B field at lower current. The power lost to anode

heating via electron bombardment is related to the radial current density as [53]

P =

∫
Γr,eqe(Vfall +

5kBTe
2|qe|

) dA =

∫
jr(Vfall +

5kBTe
2|qe|

) dA (6.48)

where Γr,e is the radial electron flux and the integral is taken over the entire anode surface. In

general, the anode fall voltages in the regions of highest current density contribute the most to

this integral. This assumes that all of the power deposited in the anode fall region is deposited

to the anode. The cusp applied B field case results in a substantial reduction in Vfall at similar

radial current densities as the self-field configuration. This would therefore result in an appreciable

reduction in the overall power lost to the anode.

Next, we consider the measured reduction in intensity and frequency of the terminal voltage

fluctuations. Where the applied B fields radially intercept the anode, we proposed expressions in

Section 6.3 showing a markedly higher electron flux than the self-field case, as given in equation

6.44. We also observed how this could result in conditions for the measured radial current density to

be sufficiently supplied by the random thermal current flux with the applied B field configurations,

as shown in Figure 6.8. Several authors [21, 22, 43, 37] have attributed the transition to where

the ratio of jr to jthermal,e is greater than 1 as a condition for the inception of significant voltage

fluctuations observed in the terminal voltage. Therefore, increasing the thermal electron flux to the

anode with the applied B fields should act to mitigate transition to this condition.

Further, Uribarri [18] and Diamant [38] have directly attributed the terminal voltage fluctuations

to anode spot formation on the surface of the anode. High-speed video imaging evidence that anode

spots occur in our thruster was shown in Figure 3.13 for self-field operation at 9 kA, and Figure 3.14
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shows evidence of anode erosion due to melting and spotting. The concentration and extinction of

these anode spots were shown by Uribarri to result in the release of anode material vapor to the near-

anode plasma. Measurements of local ion saturation currents and spectroscopy near the anode by

these authors also showed a direct link between fluctuations in local measured plasma density and

the release of anode material into the plasma flow. Such spotting behavior was strongly associated

with anode erosion. Uribarri [42] proposed a capacitively-coupled model for the interactions in the

anode sheath that showed how the formation and extinction of anode spots can be related to the

creation of voltage fluctuations (“voltage hash”).

Additionally, both Uribarri [42] and Giannelli et al. [24, 49] described the formation of a current

filamentation instability and link this to near-anode current concentration and formation of anode

spots. Giannelli also described a similar capacitively-coupled voltage model wherein he linked the

formation and extinction of current filaments to voltage fluctuations.

These models and experiments by Uribarri and Giannelli et al. established a relationship be-

tween current filamentation, anode spots, and the voltage fluctuations. Assuming these models

are correct in their interpretation relating these phenomena, our observed reductions in the fre-

quency and intensity of the terminal voltage fluctuations with the applied B fields strongly suggest

reductions in the frequency of anode spotting events and the average current being driven to con-

centrated anode spots (intensity). The reductions in anode spots with the applied magnetic fields

would likely be associated with notably less anode erosion over time in quasi-steady and steady-

state MPD thrusters operating at ranges of high current conditions (i.e., high J2/ṁ) similar to our

thruster operating conditions.

In addition to measured reductions in the voltage fluctuations, we observed a reduction in the

magnitude and frequency of spikes in ion saturation currents measured near the anode with the

applied B fields. Examples of these ion saturation current measurements and associated PSDs were
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shown in Section 5.6, and these were found to exhibit similar behavior to the terminal voltage

fluctuations (relatively similar range of frequencies and attenuation of fluctuations with the applied

B fields). Since ion saturation current is directly proportional to the local plasma number density,

these spikes are associated with transient increases in the local number density, as was observed by

Diamant [38, 37] and Uribarri [42] and linked to anode material vaporization due to anode spots

and filamentary current concentrations.

The azimuthal rotational motion of the plasma induced by the applied magnetic fields could be

the cause of the reduced magnitude of the ion saturation current fluctuations. The poloidal current

densities interact with the applied poloidal B field to create electromagnetic Lorentz forces jrBz

and jzBr in the azimuthal direction. Azimuthal rotational swirling motion should cause azimuthal

migration of any current-concentrating filaments formed. Motion of these filaments should also

lead to similar migration of local attachment points at anode spots, which would result in reduced

residence time for a given anode spot at a fixed point on the anode. Reduced residence time at a

particular location would decrease heating at that particular location from the shorter-lifetime spot.

This would decrease the energy going into vaporizing anode surface material in a given, fixed local

area. Even if the same amount of energy were going into the spots, it would effectively be spread

out over a larger area. More of the anode would be heated, but less concentration of that heat at spe-

cific spot locations would yield less vaporization of anode material. Reduced vaporization of anode

material seeding the near-anode plasma would be another possible explanation for the observed re-

duction of number density fluctuations. Given the link between terminal voltage fluctuations, anode

spots, current filamentation, and anode erosion established by other studies [37, 42, 24], a reduction

in residence times of local anode spot concentrations is expected to result in less erosion (shorter

time for concentrated heating at a fixed point) and decreased voltage fluctuations. Coupled with the

decreased anode heating from the reduced anode fall voltage, anode erosion could potentially be
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reduced even further with the applied B fields.

Let us briefly summarize these inferred influences on the fluctuations of terminal voltages and

ion saturation currents (i.e., number densities). In the spotting model proposed by Uribarri [42],

(1) starvation caused the growth of a large anode fall; (2) current-concentrating spots formed as a

response to the large anode fall, perhaps through an instability in the plasma; and (3) the formation

of a spot allowed more current to flow to the anode, solving the starvation problem and causing the

anode fall voltage to drop and releasing anode material. In our experiments with the applied B fields,

if a given spot instead dissipates more slowly or not at all (as may be the case if it is kept continually

moving over the surface by the applied B field), then the anode does not necessarily “starve” for

sufficient current conduction again, and the voltage need not rise again (or at least not rise as much).

Current concentrations could migrate around the anode with the applied B field without causing

significant ablation of anode material. Whether this occurs with a particular spot or not is merely

stochastic, so there would still be terminal voltage fluctuations (“voltage hash”). However, these

voltage fluctuations would be lower in magnitude with the applied B field than the self-field case

because of the probability of current-concentrating spot migration under the influence of the applied

B field.

In addition, we speculate that the spikes in the number density could be associated with mea-

surement of local transients due to other general deviations from azimuthal symmetry in the current

attachment pattern, which would also be expected to cause concentrated spikes in the local number

density. It is possible that the intensity and frequency of these number density fluctuations could

also be reduced because of the induced swirling azimuthal motion of the plasma in response to the

applied poloidal magnetic field. The induced azimuthal rotation of the plasma may act to smooth

out unsteady asymmetries in the discharge pattern. For example, Hoskins [73] observed azimuthal

asymmetries in self-field MPDT operation and related these asymmetries to deviations in the radial
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centroid of the current discharge from the true geometric centerline of the thruster. Such asymme-

tries are supported by evidence from high-speed video images of our thruster in self-field operation

in Figure 5.24. These images show fluctuations in the luminous discharge regions near the thruster

exit plane, suggesting unsteady oscillations in the thruster discharge pattern at high currents as an-

other possible mechanism for number density fluctuations. The induced rotational motion with our

applied magnetic fields could potentially have a gyroscopic stabilizing effect against such asymme-

tries, which would act to reduce fluctuations in the local number densities in the near-anode region.

Lastly, distinct peaks were observed typically in the range of 30–60 kHz in the power spectral

density (PSD) plots of the terminal voltage signals and approximately 15–60 kHz in the PSDs of

the ion saturation current fluctuations at 10.7 kA and 8 kA. In addition to the relationship to the

frequency of formation and extinction of anode spots, these frequency-domain peaks could be as-

sociated with excitation of wave oscillations in the plasma near the low-frequency ion acoustic or

Alfven modes. Tikhonov et al. [44] measured ion acoustic instability driven waves in conditions

typically associated with onset. Tilley et al. [47] and Mikhailovskii et al. [80] also described a drift

cyclotron instability (DCI) that occurs at frequencies near the harmonics of the ion cyclotron fre-

quency. Since the ion cyclotron frequency is on the order of 10–100 kHz in our plasma conditions,

such wave instabilities could be a possible source of the observed peaks in the PSDs. Alternatively,

these peaks could simply be associated with resonance at the characteristic frequencies of the L-R-C

(inductance-resistance-capacitance) circuit effectively formed by the plasma discharge and sheath

themselves. Such a view is a simple extension of the R-C model of capacitively-coupled voltage

fluctuations created in the near-anode region in response to spot formation and extinction proposed

by Uribarri [42] and Giannelli [24]. Nonetheless, the identification of a similar range of frequencies

of ion saturation current fluctuations and terminal voltage fluctuations suggests that the mechanism

driving the terminal voltage fluctuations is also likely a process that can cause local plasma density
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fluctuations (e.g., anode spotting, unsteady plasma current pattern fluctuations, and plasma waves).

6.5 Effect on Thrust and Efficiency

Finally, we consider the voltage-current response of the thruster in the three magnetic configurations

and attempt a first-order comparison of performance parameters. Namely, we estimate the thrust,

specific impulse, and thrust efficiency for our three configurations.

The thrust, Ttotal, will include multiple components and can be expressed as [16]

Ttotal = Tself field + THall + Tswirl + Tthermal (6.49)

Tself field is the contribution from the poloidal current densities crossed with the self-generated az-

imuthal B field, which creates radially pinching (jzBθ) and axially blowing (jrBθ) force densities.

This is the only component of thrust that is present in the self-field case. With the applied B fields,

three additional terms arise. THall is the thrust associated with the azimuthal current crossed with

the applied poloidal B field, which creates pinching (jθBz) and blowing (jθBr) force density com-

ponents. Tswirl is the thrust associated with the conversion of the azimuthal rotational momentum

into axial kinetic energy through expansion in the magnetic field as the plasma exits the thruster.

Tswirl also results in inertial centrifugal forces on the plasma radially outward, counteracting the

direction of the electromagnetic pinching forces. Tthermal is the thermal component of the thrust

associated with resistive heating and expansion of the plasma through a nozzle (physical or mag-

netic), but is generally only significant for higher flow rates, where the MPD thruster acts more like

an electrothermal arcjet.

The applied-field thrust terms are complicated to model for our thruster conditions. While

others have done so for the case of applied-field MPD thrusters with significantly higher relative B
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field magnitudes and with much lower curvature (mostly strong axial B fields) than we have used

in our thruster, such models would not be appropriate for our thruster. For simplicity, we will only

calculate the thrust from the self-field term for comparison. This will give us a lower bound estimate

for the thrust of our applied-field cases, as the thrust will likely be even higher than the self-field

term alone with the applied magnetic fields (as evidenced by measurements of applied-field MPD

thruster performance by various authors [16, 81, 61, 60, 59]).

We calculate a rough estimate of the self-field thrust given by the modified form for the Maecker

formula derived by Jahn [20], given by

T = bJ2 (6.50)

where T is the thrust, µ0 is the permeability of free space, ra is the anode radius, rc is the cathode

radius, J is the total thruster discharge current, and b is a constant defined as

b ≡ µ0

4π
(ln(

ra
rc

) +
3

4
) (6.51)

This formula for the thrust accounts for the self-field electromagnetic forces and pressure over the

thruster discharge volume and also accounts for current attachment over the front face of the cathode

in the expression for b.

The specific impulse can be calculated directly from the average effective exhaust velocity, uex,

given the definition

Isp ≡
uex
g0

=
1

g0

T

ṁ
(6.52)

where ṁ is the mass flow rate and g0 is a constant given by the gravitational acceleration at Earth’s

surface, 9.807 m/s2.
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Figure 6.9: Calculated thrust efficiency for the three magnetic configurations.

The thrust efficiency can then be calculated as

η =
Pjet
Pin

=
1
2Tuex

Pin
=

T 2

2ṁV J
=
b2J3

2ṁV
(6.53)

where Pjet is the power in the thrust jet, Pin = V J is the electrical input power, and V is the

terminal discharge voltage.

Figures 6.9, 6.10, and 6.11 show the calculated estimates of efficiency, thrust, and specific

impulse, respectively, versus input power for our three magnetic configurations. The uncertainties

shown only account for propagated errors from the measured data. The error bars do not include

any uncertainty for the model itself. The dashed lines between data points are merely to guide the

eye, not to suggest any specific functional dependence.

Note that the overall magnitude of the efficiency is rather low. This is because we were conduct-

ing our operating tests with argon, which is a particularly inefficient propellant (ionization losses,
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Figure 6.10: Calculated thrust (N) for the three magnetic configurations.
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high particle mass, energy lost to multiply-ionized species, etc.). For example, in the self-field

Princeton Benchmark Thruster, Choueri and Ziemer [28] measured a range of approximately 7–

14% efficiency with argon at 1 g/s over a range of Isp from 800 s to just over 3000 s. Notably higher

efficiencies were obtained with argon at higher flow rates.

For our thruster, consider the relative efficiencies, whose general form and trends should also

be seen at much higher efficiencies with other propellants such as lithium. Overall, we see a sub-

stantial increase in the efficiency with the applied B field configurations than with the self-field

configuration. Also, we see modest improvements in thrust and specific impulse with the applied B

fields. These results are directly associated with the improvements from the applied B fields’ effect

on reducing the mean terminal discharge voltages over a wide range of currents, as previously seen

in Figure 3.4. Again, these results should only improve if we were able to take into account the

additional components of the thrust introduced by the applied B field.

For example, relative to the self-field case, we estimate a 41% increase in efficiency with the

tangential applied B field and 28% increase with the cusp applied B field at 400 kW. We also

calculate a 35% increase in efficiency with both applied B fields at 800 kW. The cusp applied B

field has a particularly pronounced increase in efficiency over a large range of power levels. The

cusp applied B field still improves efficiency by 17% even at 2.2 MW. The tangential B field case

maintains its beneficial increase in efficiency at least to approximately 1.7 MW.

Overall, we observe an impressive relative improvement in the estimated efficiencies and modest

increases in thrust and specific impulse at a given power for the thruster with the applied B field

configurations, and this result is a direct consequence of the beneficial terminal voltage reduction

effect of the applied B fields. The calculated thrust, specific impulse, and efficiency that we present

here for the applied magnetic field cases should only increase further if the applied-field thrust

components were included.
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6.6 Summary and Conclusions

The goal of this work was to investigate the effects of externally-applied magnetic fields at modest

field strengths on the plasma discharge and examine the prospect of their use for mitigating the

behaviors associated with onset. In particular, we posed the following questions:

1. Can we mitigate behaviors such as the large-amplitude terminal voltage fluctuations and large

anode fall voltages with applied magnetic fields primarily focused on the near-anode region?

2. What are the effects of the applied magnetic fields on the plasma properties and current trans-

port in the thruster plasma discharge, particularly in the near-anode region?

The issues of onset voltage fluctuations and large anode fall voltages are linked to anode spotting

and anode erosion (a lifetime issue), as well as power lost to the anode (an issue for efficiency).

Therefore, the attempt to mitigate these onset behaviors is ultimately related to the desire to improve

efficiencies and lifetimes in future MPD thrusters. We developed a new MPD thruster, applied-field

magnets, associated driving circuitry, and a new set of plasma diagnostic probes to address these

questions. The thruster was operated in 1 ms quasi-steady pulses at 1 g/s mass flow rate with argon

over a range of power levels and currents from 36 kW (20 V, 1800 A) to 3.3 MW (255 V, 13.1 kA)

in configurations without magnets (self-field), with applied tangential B field, and with applied cusp

B field.

This investigation identified significant beneficial reductions in onset-related behaviors

with the applied magnetic fields relative to self-field operation. Indeed, over a broad range

of currents, the amplitude and frequency of the voltage fluctuations were reduced, the anode

fall voltages were greatly lowered, and the mean terminal voltages were decreased. These re-

sults imply substantial improvements in efficiency and lifetime are likely to be obtained through the

use of appropriately designed applied magnetic fields to locally influence near-anode phenomena



172

that drive onset.

Consider each of these interrelated findings. A primary finding was that the current pattern

and current densities redistributed to follow the applied poloidal magnetic field lines, which created

increased conduction paths to the anode. This led to shifts in the current pattern inside the plasma

discharge region and the current densities along the anode. This shift was most pronounced for

the tangential applied B field configuration, for which the current pattern moved notably upstream

along the anode to attach where the applied B field lines curved to intersect the anode. This shift

was shown to be driven by conduction that was increased along the directions parallel to the B field

and reduced in directions perpendicular to the B field. Also, increased electron temperatures were

measured in regions identified as having high azimuthal current densities induced by the applied B

fields.

A second major finding was that the anode fall voltage is substantially reduced with both applied

magnetic field topologies over a large range of currents. At 8 kA, the 20 V anode fall measured in the

self-field configuration was completely eliminated in both applied-field configurations. At 10.7 kA,

the tangential B field had little benefit, but the cusp applied B field decreased anode fall from 45-83

V down to 15 V or lower along much of the anode. We interpreted this result as also caused by the

increased conduction to the anode along the anode-intersecting applied B field lines, which results

in a substantial reduction in the local electric field required to sustain the radial current densities at

the anode.

The amplitude and frequency of the voltage fluctuations were also reduced over a broad range

of currents with the applied fields. The standard deviations of the fluctuations were lowered by 37–

49% at 8–9 kA with both applied B fields, and the cusp applied field still exhibited a 15% decrease

at 10.7 kA. The self-field case transitioned to voltage spikes greater than 10% of the mean voltage

circa 6 kA. The current threshold at which the rapid increase in the magnitude and frequency of the
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voltage spikes occurred was typically increased by 1–2 kA with the applied fields. Nonetheless, for

a given operating current up to approximately 10.7 kA, the applied fields consistently reduced the

magnitude of the voltage fluctuations. Above 10.7 kA, the voltage fluctuations for the applied-field

cases generally approached similar values as without the magnets.

Enhanced electron mobility to the anode along the anode-intercepting applied B field lines re-

sults in an increase in the electron random thermal flux to the anode. The associated reduction

in anode fall voltage means there is a decreased electron-attracting potential for accelerating elec-

trons to the anode. This results in reduced electron kinetic energy deposited to the anode, which

decreases power lost to the anode in general (a benefit for overall efficiency) but also reduces the

local power deposition at anode spot concentrations. This should directly result in less energy go-

ing into vaporization of anode material, and thus less anode vapor to seed the near-anode plasma.

This is consistent with measured decreases in the ion saturation current spikes (i.e., number density

spikes) with the applied magnetic fields, and the similar range of frequencies observed in the PSDs

for both the terminal voltage fluctuations and ion saturation current spikes. The applied fields also

induce azimuthal rotation of the plasma, which may reduce fluctuations in local number densities

in multiple ways (cf., discussion in Section 6.4). In particular, the applied B fields should cause

azimuthal rotational migration of any current-concentrating filaments formed. Motion of these fila-

ments should also lead to similar migration of local attachment points at anode spots, which would

result in reduced residence time for a given anode spot at a fixed point on the anode. High-speed

video imaging evidence of anode spots occurring in our thruster in self-field operation at 9 kA was

shown in Figure 3.13. Given the link between anode spots, current filamentation, and anode erosion

established by other studies [37, 42, 24], then a reduction in residence times of local anode spot

concentrations is expected to result in less erosion (shorter time for concentrated heating at a fixed

point) and decreased voltage fluctuations.
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A final relation back to the mean terminal voltages and efficiency can be made. The applied

B fields resulted in a significant reduction in the mean terminal voltages, with decreases as large

as 31% at 9 kA. For the cusp applied B field, terminal voltages were moderately reduced over the

entire range of discharge currents. The tangential B field lowered terminal voltages below 10.7 kA.

Because the anode fall voltage is a direct contributor to the terms that comprise the total thruster dis-

charge voltage, the anode fall reduction is proposed as the primary cause of the measured decrease

in terminal voltage. Given that the electromagnetic thrust scales with the square of the current,

J2, these voltage decreases were shown to generate notable increases in the estimated thruster ef-

ficiency by up to 41% relative to self-field operation, as discussed in Section 6.5. Moreover, these

results should only improve further if we were able to take into account the additional components

of the thrust introduced by our particular applied B field configurations, for which existing applied

magnetic field thrust models are not directly applicable.

Overall, these onset-mitigating improvements with the applied magnetic fields should lead

to reduced anode erosion, i.e., improved thruster lifetime, and increased thruster efficiency

relative to self-field operation. The measured benefits of the applied B fields were shown to be

effective over a broad range of current levels at least to 10.7 kA (J2/ṁ = 115 kA2s/g). Additionally,

the cusp applied B field lowered terminal voltages over the entire range of currents (up to the max-

imum value of 13.1 kA and J2/ṁ = 172 kA2s/g studied and potentially higher). Given that J2/ṁ

has been shown to be one of the characteristic scaling parameters for MPD thrusters [14, 79, 62],

we would expect that these relative advantages should translate to other MPD thrusters operating

at a similar range of values. This also implies that if stable thruster operation can be achieved

at lower mass flow rates in this thruster or other similar MPD thrusters (e.g., perhaps physically

smaller geometry to increase local number densities for stable arc initiation), these beneficial ef-

fects could be observed at even higher discharge currents. Such higher-current operation should
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directly result in higher thrust and efficiencies, as shown in Section 6.5. In addition, because others

have identified that the critical value of J2/ṁ where transition to onset begins scales as ∼ M
−1/2
ion

[33], lower atomic mass propellants (e.g., lithium and hydrogen) should allow the extension of our

work’s findings to operation at even higher currents.

Applied magnetic fields analogous to those examined in this study should strongly be considered

for application to future MPD thruster designs, experiments, and simulation efforts. The applied B

fields used in this study differ from both the topologies and relative B field strengths typically used

in the vast majority of conventional, so-called “applied-field MPD thrusters” (AF-MPDTs) [16].

Such AF-MPDTs generally use much higher applied B field magnitudes relative to the thruster self-

field. Also, the applied B field geometries of AF-MPDTs are generally extremely axial in form,

with very limited variation in curvature in the inter-electrode region. The applied B fields examined

in our study were much lower in relative magnitude in the interest of localizing the applied magnetic

fields to address near-anode phenomena. At the higher currents of interest for onset, our applied B

fields yielded Bapplied/Bself field much less than one near the outer radius at the cathode downstream

face, and this ratio was only greater than one over the downstream section of the anode. Further, our

applied magnetic field configurations introduced significant anode-intersecting radial components

to the topologies, which was ultimately key in providing the improved electron conduction to the

anode that led to many of the observed advantages. Our results suggest a distinctive and more

effective approach to influencing the near-anode phenomena and mitigating the deleterious effects

of onset with appropriately designed applied magnetic fields.

The results of this study suggest that the cusp applied B field is the preferred configuration over

the tangential applied B field, given the broader range of currents at which the cusp case improved

the onset-related phenomena. The cusp configuration gives a convenient path for the electrons to the

downstream section of the anode. At increasingly higher discharge currents, the tangential applied
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B field likely suffers more than the cusp case from the downstream shift in the accelerating flow

field. As discharge current increases, the higher acceleration will cause number densities in general

to decrease by conservation of mass in the flow. Electromagnetic radial pinching forces will also

be increased with higher current and will be greater in the upstream region (higher Bθ upstream,

yielding higher jzBθ in the radial direction) than in the downstream region, further reducing local

number densities upstream. However, the tangential applied B field topology directs the higher

current conduction path along applied B field lines that only turn radially outward toward the anode

in this upstream region, where the number densities are more significantly reduced. Conversely,

the cusp applied B field configuration directs the high current conduction path to the downstream

region, where local number densities will be reduced less. A simple solution to operating more

efficiently at higher currents with the tangential applied B field could be to create a similar applied

B field topology but shift it downstream (e.g., by shifting the magnets farther downstream).

The results of this investigation should be extensible to both quasi-steady and steady-state MPD

thrusters, as well as different propellants. The overall efficiency, in particular, should greatly im-

prove for lower-atomic mass propellants such as lithium and hydrogen. Lithium, for example, would

be a desirable propellant choice due to its low energy for the first ionization potential but high en-

ergy for the excited state and second ionization state, resulting in much less energy lost to energy

sinks that would not contribute to useful thrust.

6.7 Recommendations for Future Work

The results of this study provide a number of interesting directions for potential future work. Fur-

ther exploration of the trade space for applied-field topologies and relative B field strengths could

be examined in future studies to identify optimal (or at least improved) operating configurations.

One question to investigate is can one further extend the effective operating range of J2/ṁ values
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over which the identified onset-mitigating improvements occur? One approach to investigating this

question could be to increase the magnitude of the applied B field with increasing thruster input

power, e.g., scaling such that the ratio of the magnitude of the applied B field to the self-generated

B field is held roughly constant. Another study could hold a fixed power level (constant discharge

current) and examine the effect of varying the applied B field magnitude, i.e., essentially modifying

the radial intercept angle of the total B field vector with respect to the anode surface.

Additionally, could a topology be identified that helps to distribute the current pattern over a

wider area and thus reduce peak anode current densities, while still maintaining similarly increased

performance? Lower current densities would contribute to further improvements in lifetime-limiting

anode erosion due to heating. Such spreading of the anode current attachment could potentially be

enabled by anode-intersecting B field lines spread over a broader region of the anode. Broadening of

this attachment region could be explored both with a cusp-like applied B field with wider separation

between the magnets and a tangential-like applied B field shifted further downstream.

Such questions and effects could initially be explored through modeling and simulation, fol-

lowed by experiments to validate the simulated response. A detailed numerical MHD model for the

bulk plasma dynamics should be coupled with an appropriate near-anode physics model of the elec-

tron transport and sheath effects. Further, to better understand the nature of the spotting events and

instabilities that led to the voltage fluctuations and ultimately anode damage, a near-anode plasma-

surface interactions model could be studied. The dynamics and conditions for inception of current

filamentation and breakdown of azimuthal symmetry in the diffuse current pattern could be studied

with a full 3-D model, as opposed to quasi-2-D models (assuming azimuthal symmetry). Including

applied B fields in the model would provide insight into the azimuthal rotation or other mechanisms

associated with reducing the fluctuations in the terminal voltages and near-anode number densities.

In particular, the nature and source of the low-frequency (10s of kHz) peaks in the PSDs for the
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terminal voltage signals and ion saturation currents could be studied from the perspectives of both

induced instabilities in the plasma and a possible inductive component to the anode spotting and

filamentation models proposed by Uribarri [42] and Giannelli et al. [24].

Also, direct measurements of performance (thrust, efficiency, and specific impulse) should be

made to identify the absolute magnitude of the performance benefits of the applied B fields. We

invoked very simplified thrust and efficiency models, which are likely conservative and underesti-

mating performance with the applied B fields. Future studies should consider directly measuring

the thrust with a thrust stand appropriate for pulsed, quasi-steady operation (e.g., a swinging gate

thrust stand [28] or other method). Detailed modeling could further inform thrust and efficiency

improvements. For example, identifying topologies that result in larger radial components (relative

to the axial components) for the current streamlines would produce higher electromagnetic thrust.

However, modeling would be needed to identify whether such configurations indeed increase over-

all thrust or simply increase electromagnetic thrust at larger radii at the expense of significant thrust

contributions closer to the centerline.

Lastly, if facilities and resources would permit, future experiments with applied magnetic fields

at these high power levels (100s of kW to several MW) should examine operation at flight-like

conditions. For example, steady-state operation would validate that the observed improvements in

quasi-steady operation also manifest in steady-state conditions relevant to high-power, long-duration

missions. However, this would introduce challenges with steady-state, high-power supplies, in-

creased vacuum chamber pumping requirements, and thermal challenges for cooling the electrodes

and magnets. In addition, operation with propellants such as lithium would address performance

questions with a propellant that is most favorable to high-efficiency operation. Lithium has some

challenges and complexities for safe handling and operation. However, facilities for operating at

high power with lithium as a condensable metal propellant do exist, for example, at JPL.
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Appendix A

Magnetic Force Densities

The magnetic force densities can be calculated in the plasma discharge of the thruster from the

Lorentz force term, j×B, in the magnetohydrodynamic (MHD) momentum equation introduced

in equation 1.2. This equation is restated here as

ρ
Du

Dt
= j×B−∇P + νρ∇2u ≈ j×B−∇P (A.1)

where ρ is the mass density, Du
Dt is the convective derivative of the center-of-mass velocity vec-

tor, j is the current density vector, B is the magnetic field vector, P is the pressure, and ν is the

kinematic viscosity. The viscous damping term as a function of the kinematic viscosity is often

small and ignored for plasma conditions of interest. The Lorentz force term, j×B, is the elec-

tromagnetic contribution to the force densities and becomes significant at high currents. Near the

centerline, the pressure gradient term dominates. The contribution to the force densities exclu-

sively due to the poloidal current distribution can be calculated from the poloidal current densities

(jpoloidal = jr + jz) and the associated induced azimuthal magnetic field (Bθ) as jpoloidal ×Bθ.

These vectors are illustrated in Figure 1.1.
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The axial “blowing” component of the Lorentz force density, fz , is given by

fz = jrBθ (A.2)

and the radial “pumping” component of the Lorentz force density, fr, is given by

fr = jzBθ (A.3)

and acts to radially constrain the plasma. In the radial direction, electromagnetic pumping forces

are balanced by the radial kinetic pressure gradient. In the axial direction, electromagnetic blowing

forces and the axial kinetic pressure gradient result in acceleration of the plasma.

The azimuthal Bθ is a direct consequence of the poloidal current densities in the thruster and

can therefore be related to the enclosed current, Jenc, as obtained via Ampere’s law in equations 4.1

and 4.2. Bellan [13] derived an expression for calculating the magnetic force densities from Jenc

given by

jpoloidal ×Bθ =
1

2π
(∇Jenc ×∇θ)×

µ0

2π
Jenc∇θ =

−µ0

(2πr)2
∇(

J2
enc

2
) (A.4)

where µ0 is the permeability of free space, r is the radial position, ∇θ = θ̂/r, and θ̂ is the unit

vector in the azimuthal direction.

The expression above was used to calculate the poloidal current distribution’s contribution to the

poloidal force densities (radial and axial components) using our magnetic probe array measurements

and calculated Jenc values in the thruster discharge from Chapter 4. Figures A.1, A.2, and A.3 show

vector plots of the magnetic force densities at 10.7 kA for the configurations without magnets,

with tangential applied B field, and with cusp applied B field, respectively. The arrows in these

plots indicate the direction and relative magnitude of the jpoloidal ×Bθ vector component of the
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force densities. The positions of the anode and cathode are also shown. Current streamlines for

each configuration are overlaid on the figures to show that the force density vectors are always

perpendicular to the current streamlines.

Each configuration clearly identifies significant forces directed radially inward, particularly

closer to the cathode and at smaller radii. The magnetic force densities predominantly pinch the

discharge toward the centerline and lead to reduced plasma number densities near the anode relative

to near the centerline, as was shown in Figure 5.18. At higher currents, these increased magnetic

forces will contribute to the “anode starvation” associated with onset due to depletion of charge

carriers in the near-anode region.

It is important to note that these calculated forces only account for the contribution of the

poloidal current distribution to the force densities in the MHD equation. These calculations do

not include the pressure gradient component (particularly significant near the centerline) nor the

magnetic components introduced by the applied magnetic fields. An applied magnetic field would

introduce additional magnetic force density components due to jθ ×Bpoloidal. However, sufficient

data are not available in the interior discharge to support calculation of the full components of the

force densities. The data in Figures A.1 to A.3 are merely shown to illustrate the general radial

pumping effect in the discharge.



182

−400 −350 −300 −250 −200 −150 −100 −50 0 50 100 150
0

20

40

60

80

100

120

Axial Position Relative to Anode Exit Plane (mm)

R
a
d
ia

l 
P

o
s
it
io

n
 R

e
la

ti
v
e
 t
o
 C

e
n
te

rl
in

e
 (

m
m

)

Figure A.1: Magnetic force density vector plot for the configuration without magnets at 10.7 kA. Arrows show the direction and relative magnitude
of the jpoloidal ×Bθ vector component of the force density. Current streamlines are also shown for reference.
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Figure A.2: Magnetic force density vector plot for the configuration with tangential applied B field at 10.7 kA. Arrows show the direction and relative
magnitude of the jpoloidal ×Bθ vector component of the force density. Current streamlines are also shown for reference.
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Figure A.3: Magnetic force density vector plot for the configuration with cusp applied B field at 10.7 kA. Arrows show the direction and relative
magnitude of the jpoloidal ×Bθ vector component of the force density. Current streamlines are also shown for reference.
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