
Appendix A

Safety Assessment

This Appendix contains a duplicate of the GALCIT Laboratory Safety Assessment �led
at GALCIT� It describes the facility� potential hazards� and steps taken to mitigate them�
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GALCIT Laboratory Safety Assessment

Facility or Experiment Explosion Dynamics Laboratory
Hydrogen Jet Combustion Facility

Location Guggenheim �����A�
bottle farm on the SE corner of Guggenheim

Responsible Faculty or Sta� Joseph Shepherd

Research Associates or Students J� Christopher Krok

Introduction

The Hydrogen Jet Combustion Facility is designed to examine the transient combus	
tion and explosion processes that occur when a high	temperature jet of hydrogen and
steam is injected into a combustible atmosphere of air� steam and hydrogen� The fa	
cility constructed at Caltech is a second	generation experiment based on a facility and
experiments carried out at the Rensselaer Polytechnic Institute 
RPI� in Troy� NY� from
���
 to ����� In that facility� design and operational issues were studied and over ���
experiments were completed in a two	year period of operation 
Krok ����� Ross ������

The design philosophy for our explosion test facilities is to insure complete contain	
ment and control over the experiment at all times� Although these experiments are
designed to examine explosive events with uncertain outcomes� the initial conditions are
always well de�ned and peak conditions can be bounded� The facility is designed as
a pressure vessel to contain any possible event that can occur within the test envelope

with the exception of the schlieren windows� see later discussion�� When appropriate�
these events include detonations and transition to detonation�

These tests will result in a transient and spatially nonuniform load on the containment
system� Although these loads are outside the scope of the existing design guides 
Harvey
������ it is possible 
Shepherd ����� to de�ne an equivalent maximum working pressure
using gasdynamic estimates of the pressure transients and elastic response of the vessel
structure to dynamic loads� The pressure vessel is then designed using available standards
such as the ASME Boiler and Pressure Vessel Code� Standard mechanical engineering
practice was used to compute the moments and forces on all other components� The
calculations are realistic as possible using hand computations and include the reduction
in strength due to potential material �aws� stress concentrations and fastener limitations�
The design goal is to specify a containment system that will operate within the limits
of the materials with a factor of safety for design basis events and without catastrophic
failure 
within the ultimate strength of the material� for exceptional events� We have
used these techniques to design a number of explosive facilities� including a detonation
tube at BNL� the previous jet combustion facility at RPI and the detonation test section
currently in use on the T� free	piston shock tunnel at GALCIT�
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In addition� safety features have been designed into the facility to minimize this
exposure of the operators and building occupants to potential hazards� and to control
and mitigate accidental gas releases� We have solicited the advice of the Safety O�ce
of Caltech� pressure vessel manufacturers and the gas supply vendors in developing and
implementing these safety features� The facility and these safety	related features are
described in this document�

Lessons learned from RPI The facility at RPI was operated without any signi�cant
safety	related incidents� i�e�� events which had the potential to injure the operators or
bystanders� There were two events that were not part of the normal operating regime�
but did no damage� These were two incidents of accidental ignition with the mixing
system open� due to ignition system triggering by electrical interference� To prevent this
in the GALCIT facility� the ignition system now has remote power and arming control�
as well as a logic circuit that blocks power to the ignition modules unless all valves are
closed�
Brief Description

After reviewing operation of the original facility at RPI� the new facility was designed
to better simulate the desired test conditions� and made stronger to expand the experi	
mental envelope and incorporate more safety features� The new facility is built around
two pressure vessels� 
�� the driver� a �	inch diam� tube �	ft� long� 
�� the receiver� a
��	inch diam�� ��	inch long pressure vessel� The total volume 
driver and receiver� of
the CIT facility is about ��� m�� The driver and pressure vessel are connected with a
special hydraulic closure of a design similar to that used in the �	inch GALCIT shock
tube� Figure � shows a schematic layout of the experiment�

The new facility has a �
� greater total volume over the old one� and the distribution
of volume between driver and receiver is much di�erent� The RPI facility had a ���
volume ratio� while the GALCIT version has a ���
 ratio� The MAWP of the receiver
has been increased by ��� to allow for combustion of more energetic mixtures� Some of
the original support hardware has been reused� such as the gas �ll panels and the ignition
systems� Safety improvements have been added to this equipment wherever possible� The
pressure vessels are new� and design and safety considerations were made at CIT� Other
new systems include the electro	pneumatic valves� ignition safety and lockout system�
and outside bottle farm� Although experience gained at RPI was used in the design of
the GALCIT facility� the design calculations for new �xtures were done from scratch at
CIT� Previous computations were re	examined for the RPI components that were reused�
Every aspect of the facility was reconsidered from the standpoint of operations and safety�

A typical experiment begins with both the driver and receiver evacuated to less than
� mbar� The driver is then �lled to � bar with a rich mixture of hydrogen and oxygen�
and the receiver is �lled to � bar with a mixture of �
��
 air�diluent 
nitrogen or steam��
and some small percentage 

 to �
�� of hydrogen� The driver mixture is ignited by
the discharge of a �� kV pulse from an EG�G TM	�� trigger generator through an
automobile spark plug� The diaphragm separating the driver and receiver is ruptured
by the pressure rise� and a hot jet of hydrogen and steam enters into the receiver� If
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Figure A��� Basic layout of experiment� showing both vessels�

critical conditions 
su�ciently large jet diameter�or high enough hydrogen concentration
in receiver� for jet combustion or de�agration exist� a combustion event will occur in the
receiver�

With �
� hydrogen in the initial receiver mixture� this results in a peak pressure of
approximately ��� bar 
�
 psi� in the receiver� The most commonly used driver mixture
is �
� hydrogen and �
� oxygen� combustion of this mixture results in a peak pressure
of ��� bar 
��
 psi� in the driver� Figure � shows a typical driver pressure history from
the experiments done at RPI� A typical receiver pressure history is presented in Figure ��
Both of these traces illustrate the transient nature of the experiment and the short
duration for which the vessels actually experience high pressures�

The experiment concludes by venting the combustion products 
water� nitrogen and
oxygen� through the vacuum pumps into the exhaust system and then into the atmo	
sphere outside the laboratory� The exhaust system is a continuously	operating� high	
velocity vent that is installed on the roof of the �nd �oor of �new� Guggenheim� Typi	
cally� the combustion products are diluted with air and the steam is condensed out prior
to or during the venting process� If a combustion event does not occur� then the mixture
is either diluted until it is non�ammable 
less than �� hydrogen� or else fuel and�or
oxygen is added until a �ammable condition is reached and the mixture is burned� If the
receiver mixture doesn�t burn initially� then it is already very close to the �ammability
limit� Thus� if dilution is chosen� no more than �
� nitrogen 
�

 mbar partial pressure�
needs to be added to insure an inert mixture� This is added through the gas handling
panel� The gas system can measure up to � bar absolute� and the standard starting con	
dition is � bar� so the system can handle the additional pressure from dilution� Mixtures
are always tested for �ammability by several �rings of the ignitors before the gasses are
pumped out� This technique was used successfully at RPI so that combustible mixtures
were never pumped through the vacuum lines or exhaust system�

The driver will always burn unless the mixture is grossly incorrect� e�g�� nitrogen
is added instead of oxygen� or if both ignition systems fail� Both of these events are
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Figure A��� Typical driver pressure trace from experiments at RPI�

considered to be highly unlikely�
Experimental Procedure

The main steps of the procedure to be followed during each experiment are listed
below� The actual checklist to be used in operating the experiment is given at the end
of this document�

�� Test emergency ventilation system�

�� Attach diaphragm and appropriate nozzle to end of hydraulic closure�

�� Close� clamp� and pressurize closure�

�� If needed� heat receiver vessel with steam and turn on electrical heaters� 
Heaters
are controlled by two Omega CN�
��A proportional controllers connected to SCR��Z	
��
 power controllers� The vessel temperature is monitored in the control room and
kept below the maximum design temperature of the vessel��

�� Evacuate vessels with appropriate vacuum pump� liquid ring pump if water vapor
is present� main rotary pump if tanks are dry�

�� Close both vacuum valves and wait �� minutes� If pressure rises more than � mbar�
�nd and �x leak� 
Prior experience has indicated that if O	rings and Swagelok
�ttings function under vacuum� they will do so under pressure if properly installed�
O	ring grooves have been designed so that they seal preferentially under internal
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pressure� Moreover� the system has been hydrotested and helium leak tested under
pressure��

�� Open gas feed valve on receiver� and isolation valves � and � on driver�

�� Fill both vessels with desired mixtures using method of partial pressures� Monitor
pressure gauges for leakage� Close receiver gas feed valve�

�� Run mixers for ten minutes�

�
� Close driver isolation valves� and ensure that all other valves are closed�

��� Run data acquisition software� entering appropriate data on screen�

��� Turn on master ignition power key switch� Arm and �re driver when ready�

��� Save data� and safe �ring system�

��� Open receiver gas feed and driver isolation valves� Add enough air�oxygen to burn
remaining hydrogen� Follow mixing and �ring procedure from above� without data
acquisition�

��� Evacuate water vapor with liquid ring pump� or vent tank up to atmospheric pres	
sure with air� depressurize closure� and separate tanks�

Design Considerations

The design considerations and safety related features of the key components of the
facility are described below�
Compressed Gas Supply Design

Gases are supplied to the experiment from a bottle farm located outside Guggenheim�
along the east wall of the addition 
see Figure ��� There are four high	pressure manifolds�
one for hydrogen 
� DOT	�A class cylinders�� one for oxygen 
� DOT	�A class cylinders��
one for nitrogen 
� DOT	�A class cylinders� and one for argon 
� DOT	�A class cylin	
ders�� The cylinders are connected to the manifolds by �exible� braid	armored pigtails�
The manifolds are connected to two	stage regulators 

	� bar� and shut	o� valves� The
gases can only enter the building at a maximum pressure of � bar gage� minimizing any
potential leak rate within the building if a line or valve failure occurs�

The gas bottles are restrained by seismically	rated brackets� which use a chain and
screw tightener to hold the bottles �rmly against the wall at the top and the bottom�
The oxidizer and fuel cylinders will be separated by a rated �rewall and a canopy will
be placed over the cylinders later this fall� The tubing between the bottle farm and
the control system is 
��	in diameter seamless ��� stainless steel� with an 
�
��	in wall
thickness� This tubing has a working pressure of ��
 bar 
��

 psi�� so it can withstand
full bottle pressure in the event of regulator failure� The tubing is securely mounted to
the building and interior walls via Unistrut brackets�
Precautions with compressed gases
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Figure A��� Floor plan of the Explosion Dynamics Laboratory� �����A Guggenheim and
bottle farm outside on the upper level�
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The gases used in this experiment are argon� nitrogen� oxygen� and hydrogen� There
are obvious potential hazards 
CGA ���
� when using such gases in a con�ned space such
as our laboratory� The amount of gas present in the lab is minimized by locating the high
pressure gas outside of the building� and by not using any secondary mixing reservoirs�
There are three types of potential hazards that we have speci�cally considered�

�� Su�ocation 
nitrogen� argon and hydrogen��

The argon and nitrogen are inert� and could be a hazard through displacement of
oxygen in the lab� This would be di�cult to detect� but unlikely� since fresh air is
continually forced into the lab via the building HVAC system� Should the HVAC
or emergency purge systems fail� the experiment will not be continued� Failure of
these systems would likely be due to a general electrical power outage� which would
close the valves and isolate the vessels� Manual gas supply closure would follow�

�� Increased �re hazard 
oxygen��

Enriched oxygen in the lab atmosphere would enhance �ammability of items in the
lab� This threat will also be reduced by the in�ux of fresh air from the building
HVAC system�

�� Explosion hazard 
hydrogen��

The hydrogen gas is the main cause for concern� due to its �ammability� Hydrogen is
combustible between � and �
� by volume in air� A number of design and operational
procedures have been included to minimize the potential hazard� These are�

�� All plumbing is heavy wall stainless steel with Swagelok	type �ttings�

�� Pressure and quantities of gas within the building are minimized�

�� The gas supply lines are shut o� externally 
at the bottle farm level� when not in
use and internally at the gas supply panel at all other times except when �lling with
that gas� At the bottle farm� the gas is shut o� via a valve between the manifold
and the regulator� If the system will be down for an extended period� the bottle
valves will be closed as well� In the lab� the procedure is to have all gas supply and
metering valves closed except when in use�

�� Plumbing system is pressurized and leak	tested using a helium leak detector pur	
chased speci�cally for that purpose�

�� The laboratory is equipped with an emergency air ventilation system�

This system provides for an intake of �

 cfm from the makeup air system and the
exhaust of a somewhat larger 
�

 cfm� amount through a high	velocity exhaust fan
mounted on the roof of �new� Guggenheim� The exhaust motor and fan assembly
are of explosion proof construction�
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The four ceiling intakes for this exhaust system are directly over the gas supply
control panels� the driver tube� and the other explosion vessel located in the exper	
imental area 
see Figure ��� The vents are located at �high	points� in the ceilings�
The ceilings are designed with a slope toward these points and are sealed except
for some minor penetrations� the air intakes and the emergency exhaust systems�
In case of a major leak into the region above the ceiling� there are three exhaust
vents 
�

 cfm each� located within the space between the ceiling and the concrete
�oor� This ceiling space is separated between the experimental and control areas�
Two of the vents are located in the experimental area and one in the control area�
In the case of the experimental area� the ceiling is taped wallboard� in the case of
the control room� the ceiling is lift	out acoustical tiles with seals� These acoustical
tiles are sealed with a plastic coating to reduce gas penetration� The vent system
is either actuated automatically due to gas detection or manually by a switch in
the control room�

�� The hydrogen supply is equipped with an emergency shut	o� valve�

A electro	pneumatic valve is located in the hydrogen supply line 
outside of build	
ing�� This valve is opened by remote control only when gas is needed for the
experiment� At all other times� it shall be closed� The valve requires both electri	
cal power and air pressure to operate� if one of these is lost due to an accident 
i�e��
earthquake�� the valve will automatically close� The valve is rated to ��� bar� so it
can withstand full bottle pressure if the regulator fails�

�� The laboratory is equipped with a �ammable gas detection system that is inter	
locked to the gas supply and the ventilation system�

There are two �ammable gas detectors 
Sierra Monitors model �

�� that will
actuate when hydrogen is detected at the �

 ppm level 
a factor of �

 below the
�ammability limit�� The shut	o� valve described above will be closed automatically
if either of the detectors are actuated� At the same time� a warning light and an
audible alarm is sounded and the emergency venting system is actuated� The
detector locations are shown in Figure �� Further description of this system is
provided below�

�� The only exhaust system from the test vessel or the supply system is through a
continuously	operated high	velocity vent to the exterior of the building�

�� The operators are physically separated from the test vessels by a wall covered with
a steel shrapnel barrier 
see Figure ��� The experiment is remotely operated by a
mimic panel using electro	pneumatic valves�

When the facility is not in use� it is left either under vacuum or at atmospheric
pressure� There is no provision for purging the supply lines� as these gasses are non	
reactive with stainless steel under these conditions� To prevent contamination� the gas
supply lines are closed and left at or above ambient pressure 

	�� psig� when not in use�
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Figure A��� Gas Supply system for the Hydrogen Jet Combustion Facility�
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Driver Design Considerations

The design load for the driver is a detonation of a stoichiometric mixture of hydrogen
and oxygen� The CJ pressure for this mixture is �� bar 
initial conditions of � bar and
�

 K� and the peak re�ected pressure is �� bar� Allowing for the maximum dynamic
load factor of � 
Shepherd ������ the equivalent maximum average working pressure the
vessel should be designed for is �
 bar� This factor of � is the upper bound of the response
of an undamped elastic system to a step load� It is a general result� not speci�c to any
geometry 
Biggs ������ and used in both the driver and receiver design� In addition to
pressure considerations� the driver should be designed from a ductile material with a high
ultimate strength in order to accommodate any potential pressure transients that might
result from DDT events�

The driver is constructed of a four	foot length of six	inch	diameter� seamless stainless
steel 
���� tubing with a half	inch wall thickness� Stainless steel 
���� �anges ��
	inch
thick and ��	inch diameter are welded to each end of the tubing� Eight ���	inch SAE
grade � bolts are used to connect the �anges to the end plate and the closure assembly�
Using an allowable stress of ���� kpsi� the corresponding hoop stress would limit the
maximum allowable working pressure to ���
 psi 
��� bar��

The end �anges are double	welded� and are estimated 
using the allowable stress� to
take a pressure load of ��
 bar� The bolts retaining the blind �ange are ���	in grade
�� and capable of retaining the end �ange under a pressure of nearly ��
 bar� so even
with preload they will be able to readily withstand ��� bar� The plumbing �ttings are
all �


	lb class� and the connecting nipples are schedule �
 stainless steel� These are
the same �ttings that were used on the RPI apparatus�

Derating this for the stress concentrations at the penetrations� we conclude that the
maximumworking pressure of this assembly is at least �
 bar� Since the allowable stress
used in making this computation includes a substantial factor of safety already� this
design can safety accommodate the design load without any safety implications�

Hydrogen embrittlement may be an issue when pressure vessels are used with hydro	
gen� Three conditions 
Harvey ����� Nelson ����� are required for hydrogen embrittle	
ment to occur�

�� A high hardness microstructure�

�� Penetration of hydrogen into the metal or
pre	existing hydrogen within the metal�

�� Stress� either residual or imposed�

None of these conditions exist in the driver� In general� hydrogen embrittlement in
type ��� stainless is never a problem 
Harvey ����� unless the material is used at very
high temperatures to contain hydrogen at high pressures 
greater than �


 bar�� Data
from the U�S� Air Force Metals Handbooks indicate that �
� SS only su�ers a �� loss in
strength when exposed to pure hydrogen at ��� bar for �� hours�

Type ��� stainless steel has a low hardness microstructure and is formulated to resist
stress corrosion by hydrogen� There will be extremely limited penetration of hydrogen
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in the vessel due to low pressures and temperatures in comparison to typical hydrogen
embrittlement conditions� For most of the test� the hydrogen and the vessel will be at
room temperature and the hydrogen partial pressure will be less than one atmosphere�
After ignition� the pressure and temperature rise to their peak values within millisec	
onds� but heat transfer to the tube walls cools the gas rapidly and the pressure reaches
subatmospheric values within � to �
 seconds� as shown in the driver pressure plot� The
burn also reduces the hydrogen concentration to �
��

Cumulative exposure is not considered to be a problem with this facility� as the
hydrogen embrittlement process requires a threshold in pressure	temperature conditions
before it will even occur� This threshold is not approached in this facility� Both the driver
and receiver vessels were designed for hydrogen service� Per the references stated above�
there are no restrictions on the lifetime of the vessel for our pressure	time history� The
pressure exceeds one bar for approximately � seconds per test� and at �

 tests per year�
this yields about � minutes of cumulative operation with a hydrogen partial pressure of
� to � bar at most�

The facility is expected to be used for at least �
 years� For this duration� fatigue
life will not be an issue for this facility� At �

 tests per year� this yields a total of �



cycles which places the facility in the low cycle regime of fatigue 
Shigley ���
�� In this
regime� the fatigue strength approaches the tensile strength� Since the facility design
incorporates a substantial safety factor 
four in the receiver design�� the operational
stresses are substantially lower than the fatigue limit� Fatigue failure of the components
is thus not an issue for the projected lifetime� If the maximumstress incurred in operation
is less than the endurance limit 
typically one	half of the tensile strength for carbon and
alloy steels�� the lifetime is e�ectively in�nite� This is most likely the case in our facility�

Closure Design Considerations

A specialized closure assembly design originally developed at GALCIT for the �	inch
shock tube is used to connect the driver to the receiver� This closure is made of forged
stainless steel 
�
� and �
�� components and a forged steel 
�
�
� clamp ring that carries
the load� Estimates of the axial stress and stress produced by the moment load on the
clamp indicate that the performance will be within the allowable stress even with a
pressure as high as ��� bar 
�


 psi� within the driver section� Radial loads are carried
by the main structure of the closure� which is hydraulically sealed when in operation�
The hydraulic action provides an axial clamping force of ��
�


 lbs on the diaphragm�
This closure was successfully used in the previous experiment at RPI�

After the closure was partially modi�ed and installed on the GALCIT facility� it
was hydrotested in	situ with the driver at ��

 psi� Pre	shot checkout includes visual
inspection of seals� O	rings� closure position� and for hydraulic �uid leaks� When the
closure is pressurized� a gage on the pump indicates hydraulic pressure� This gage also
has a pressure switch� which is connected to the �ring interlock� If the pressure drops
below �


 psi� the �ring system will be locked out� and the green light on the control
panel will extinguish�
Receiver Design Considerations

Conditions in the receiver vessel are generally much more benign than in the driver�
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However� it has been designed to withstand higher pressures than before� In the worst
case� we would have a detonation in stoichiometric hydrogen	air at one atmosphere initial
pressure� The equivalent pressure produced by a re�ected wave with a dynamic load
factor of two is �� bar� The vessel is designed for a maximum average working pressure
of ���� 
��
 psi� bar� and was hydrotested to �� bar 
��

 psi�� In most cases� the vessel
will be �lled with more dilute mixtures� and operated at higher initial temperatures� so
that the re�ected and compensated pressure will not exceed �� bar� The highest pressure
generated in the receiver in the RPI experiments was about � bar 
Figure ���

The receiver is a mild carbon steel 
ASTM A���	�
� pressure vessel �� inches in
diameter� �� inches seam	to	seam� There are four �

	lb class nozzles and �anges welded
to the tank and a number of smaller penetrations� All �ange closures are also rated to
�

	lb class and are attached with grade � 
ASTM A���� fasteners� A specially designed
�ange is used to attach �	inch diameter windows to each side of the test section� These
windows are used for �ow visualization of the jet and combustion events within the
receiver� There are three axial window locations but only one of these is used at a time�
The others are �lled with steel blanks when not in use�

The vessel was built and certi�ed to the standards of Section VIII of the ASME
Boiler and Pressure Vessel Code� This includes a full X	ray inspection of all welds� and a
corrosion allowance of 
�
��� inches� The preliminary design of the vessel� including size
and location of �anges and ports� was done at Caltech� Final design and material selection
and sizing was done by R� L� Morton Welding Inc�� Valley Acres� CA� fabricator of the
vessel� All of the materials used in the tank were accompanied by mill reports on chemical
composition� yield strength and elongation testing� Discussions with the metallurgist at
R� L� Morton identi�ed fracture toughness as being a material issue for an explosive test
vessel� This is one of the key reasons for the material choice� To insure material quality�
material samples were also impact tested for toughness� The Charpy impact tests were
carried out at 	�
 and 	�
 degrees Fahrenheit� and the material specimens required at
least twice the minimum allowable energy to fracture� The �nal report on the vessel
fabrication and the material certi�cations is available on �le in ��A Guggenheim�

The design pressure 
MAWP� of the tank is ��
 psi at ��
 �F� The pressure was chosen
on the basis of the calculated peak pressures in the event of a hydrogen	air detonation
within the receiver� Previous tests have all been with de�agrations and the observed
peak pressure has always been less than � bar 
�
 psi� in the receiver� The vessels used
at RPI had a design pressure of �

 psi� and the peak pressure measured in the driver
was � bar 
��� psi��

This was a case with a very large ori�ce between the two tanks� and the identical
size of the two vessels caused a high level of pressurization in the receiver� If an over	
pressure event does occur that exceeds the hydrotest rating of the vessel� then it will be
mechanically inspected and retested if necessary�

Hydrogen embrittlement is not an issue in this vessel either� None of the key factors
mentioned above are satis�ed for the receiver vessel� Tests 
Nelson ����� with mild carbon
steel vessels indicate that embrittlement does not occur at hydrogen partial pressures less
than ��

 psi when the vessel temperature is less than �

 �F�
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Figure A��� Highest receiver pressure trace recorded in experiments at RPI� Note that
experimental setup was di�erent than it is now�

Operational Safety Precautions

There are several measures incorporated into the check list to ensure the facility
integrity and that the safety systems are operating properly�

Key checks before each test include� visual inspection of the facility and bottle farm�
measuring the leak rate after pump down� and checking the operation of the remotely
operated valves�

The emergency gas evacuation system will normally remain idle� so it is important
to test it regularly to ensure correct function in case of a release� The detectors can be
tested before each run by releasing �ammable gas near the sensor� or waving an acetone	
soaked rag nearby� This will also activate the evacuation blower� which can be tested by
smoke or tell tales� We plan to equip the vents 
in the winter of ����� with positive �ow
indicators to ensure that the system is operating at the correct �ow rate�

After any seismic events� the entire facility will be visually inspected� the lines and
vessels will be tests under vacuum� and the gas lines pressurized with helium and leak
checked with a helium detector�
Potential Hazards

We have considered a number of potential hazards and discuss each below�

�� Hydrogen Leak Into Laboratory Area� Since the pressure vessels are �lled with gas
at or below atmospheric pressure� a hydrogen 
or inert gas� leak into the room is
unlikely� The gas bottles and regulators are located outside the building� so that the
gases are only at � bar in the feed lines that run to the experiment� However� the
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possibility exists that an open valve� a leak in one of the pressure vessel connections�
or a leak in one of the Swagelok �ttings could release hydrogen into the laboratory
environment� To protect against this� we have hydrogen � combustible gas detectors
strategically located in each room 
SMC model �

�	�
� calibrated to activate at
�

 ppm hydrogen�� In the control room� the detector is located above the gas
panels� the only source of hydrogen in that room 
see Figure ��� The ceiling in
that room is sloped upward towards the detector� as the hydrogen gas will rise and
seek the highest point in the room� In the experiment area� the ceiling is sloped
upwards to an inverted �trough� over the experiment� This trough contains another
combustible gas detector and intakes for the hydrogen exhaust system�

If the detector goes into alarm mode� it activates a latching relay which has several
functions� First� it activates a warning light and buzzer in the lab� Second� it
shuts o� the hydrogen supply valve at the bottle farm� preventing further hydrogen
from entering the lab� Third� it is connected to the ventilation system to turn o�
the air handler and turn on the evacuation system 
this is a ��

 cfm exhaust fan
located on the roof�� This system can not be reset until the detector returns to
�safe� mode� There is no way to turn o� the detector system unless the power is
removed� This would then remove power from the supply valve� stopping the gas
supply anyway�

Another situation that could introduce hydrogen into the lab area would be ac	
cidental� manual opening of the tanks when they are �lled with a combustible
mixture and if they were pressurized to greater than atmospheric pressures� Nor	
mal operation is to only pressurize the tanks to � bar 
absolute� initial pressure
prior to the test� Therefore in normal operating conditions� opening the vessels to
the atmosphere would not constiute a hazard unless the gas supply system was left
on�

However� it is possible for the operator to �ll the tanks to higher pressures and
excessive hydrogen concentrations since the supply manifolds operate at pressure
of � bar gauge� This would require gross negligence on the part of the operator
since the valves used to introduce and control the �ow rates of the various gases are
manually operated� To reduce the possibility of such negligence� we plan to modify
the facility to require continuous operator action 
holding down a push button�
in order to �ll with hydrogen gas� This requirement will force the operator to be
physically at the control panel and able to monitor the pressure at all times during
the �ll process�

A typical experimental condition would be �
� hydrogen in the receiver� and �
�
hydrogen in the driver� The volume of the receiver is ��� cubic meters� and that
of the driver is 
�
�� cu m� These fractions would yield a total volume of 
���
cu m of hydrogen at atmospheric pressure� The volume of the room is �� cu m�
so the fraction of hydrogen in the room would only be 
���� Since �� hydrogen
is required to have any type of combustion at all� this would be a non	�ammable
mixture� It is possible for �ammable concentrations of hydrogen to exist locally�

���



but the HVAC circulation and hydrogen buoyancy would quickly disperse and mix
these local concentrations�

�� Vessel Breach Due To Overpressure� The peak pressure that could occur in this
system is �� bar� based on a re�ected detonation of a stoichiometric mixture of
hydrogen and oxygen 
including a factor of � for dynamic loading�� The tank is
designed to withstand ���� bar� and ASME code incorporates a substantial factor
safety is determining the allowable stress� In the case of the receiver� the allowable
stress used in the design is ��� of the ultimate tensile strength of the material� The
welds and penetrations have been designed with a similar factor of safety in this
vessel resulting in an ultimate capacity of about �

 bar� Thus� we have a safety
factor of � for the worst possible case� We conclude that catastrophic failure of this
vessel is not a credible failure mode�

However� as discussed below� the windows or other secondary components may fail
under extreme loads� As additional protection� the walls of the experimental area
are lined with ���	in steel plate to protect the surroundings from any fragments
that may be ejected from the tank� These could include transducers� igniter plugs�
or window fragments� Note that the �� bar pressure quoted above can not be
obtained within the present operating envelope� This value is used to provide an
extreme upper bound on the maximum pressure that might be encountered under
abnormal conditions� As mentioned earlier� the highest pressures encountered at
RPI were � bar� We have considered the strength of the transducer and ignitor
mounts� and determined that these will not fail even at the �� bar level� The
force on the transducer will only be �� lbs� and that on the spark plug will be ���
lbs� These loads produce acceptable stress levels� Therefore� only the windows are
subject to failure at �� bar� These are discussed in the next section�

The ���	inch steel wall will provide useful protection from glass and small metal
fragments� Peak fragment velocities are di�cult to estimate� but a useful rule of
thumb is that the upper limit will be the sound speed in the emerging gas� which
will be between �

 and �


 m�s� Typically� much lower velocities are obtained
from ruptured or bursting vessels due to the inertia of fragments and rapid decrease
in gas velocity in the jet �ow outside the vessel� It is possible to get higher values
in an underexpanded jet� Using the estimation techniques discussed in Baker et
al� ���� a ����	thick �
�
 CRS plate will withstand 
�
m�s 
normal impact�� The
penetration velocity varies inversely with particle size and density so that smaller�
higher velocity fragments would also be stopped�

�� Schlieren Window Failure Due To Overpressure� The ��
 mm dia� by �� mm thick
windows used for the schlieren can withstand a pressure of ��	�� bar� much greater
than the typical pressures of � bar� This estimate was calculated from elastic theory
for a simply	supported circular plate� The key parameter in this calculation is the
maximum tensile strength of the window material 
BK��� Unlike most materials�
there are no reliable values of yield strength for glass� as it depends strongly on
the surface condition and mounting technique� A value of � ksi was used in the

��




maximum pressure calculation� based on a range of values given by Melles Griot�
Glass suppliers commonly quote values up to �
 ksi� We have exposed glass disks
of similar aspect ratio to detonation waves resulting in stresses up to twice this
value without failure�

In this facility� if a detonation occurs� the peak pressure may exceed the estimated
load capacity of the windows� resulting in window failure� As mentioned in item

��� operators and bystanders are protected from this by controlling the experiment
from a separate room� and the steel plate on the walls surrounding the apparatus�
In addition� the boxes containing the schlieren system will always be in front of the
windows� and will help to contain any glass fragments that may be produced�

To eliminate the possibility of window failure� we will only operate the facility
with less than �
� hydrogen in air� a re�ected detonation in this mixture would
result in acceptable peak pressures� If we go to richer mixtures� the window frames
can be modi�ed to accept ���	inch thick windows� which would increase the failure
pressure by a factor of about ����� Additional failure protection could be provided
by a ��� inch thick aluminum plate on the schlieren system opposite the windows�

Failure of the windows could also result in a blast wave� but it is di�cult to make
an accurate estimate of its strength� The source term is highly transient and anal	
ogous to the muzzle blast from a gun� The e�ective driving pressure will be time
dependent but will initially be much closer to the constant	volume explosion pres	
sure� about � bar for stoichiometric hydrogen	air� than the detonation pressure�
With the above precautions� we consider window failure to be a highly unlikely
event� If the operating envelope is enlarged to include near	stoichiometric hydro	
gen concentrations� then an appropriate blast and consequence analysis will be
considered�

�� Mis�re� A mis�re occurs when there is a combustible mixture in either vessel
and the ignition system fails to ignite it� This can occur if the electrodes on the
spark plugs become fouled or there is an electrical system failure� If the amount of
hydrogen in the system is small enough� the mixtures can be inerted by addition of
nitrogen� and then pumped out of the vessels� Or� extra oxygen or hydrogen can
be added to sensitize the mixture� and the glow plugs can be used to ignite it�

�� Mixture Ignition With Containment Valves Open� All of the valves on the driver
and receiver vessels are remotely operated with positive indication of the valve
position in the control room� The ignition system is interlocked with the valve
indicator switches so that ignition can not occur unless the valves are closed�

If an accidental mixture ignition occurs with the gas supply � tank containment
valves open� a pressure wave will travel through the gas supply tubing� This pres	
sure will not exceed the �
 bar mentioned in item 
��� and all of the plumbing
can safely handle this pressure� The tubing components have a minimum pressure
rating of ��� bar� and the weakest valve in the system can withstand �
� bar�

���



The only weak point in the system is the Heise gage located on each gas supply
panel� These are only rated for � bar and will be damaged if overpressurized� The
gages are quite robust� constructed with a heavy� cast metal body and blowout
backs� The manufacturer does not have data on failure pressure available for these
gages� but from similar models� they suggest that the failure pressure would be at
least �
� greater than full scale�

The gages have their own isolation valves which will be closed after the vessels are
�lled with the proper mixtures� If the gage is pressurized to failure� the operator
will be protected by a ���	in thick sheet of Lexan mounted over the face of the
gage� Lexan is a very tough material� which can withstand a large amount of
plastic deformation without fracturing� The gage faces are constructed of ��� inch
Plexiglas� so the Lexan shields should be able to safely de�ect any fragments�

Failure of these gages would require multiple failures in the operating procedure�
Two possible scenarios are� �� regulator fails� operator doesn�t follow checklist�
opens supply and metering valves with vessel valve closed� and fails to take correc	
tive action� �� Operator does not follow checklist� gage valve left open� vessel valves
open� interlock system fails to function� and ignition occurs�

�� High Voltage Ignition System� Two TM	��A high voltage trigger modules are used
to ignite the mixtures in the tanks� These modules generate a �� kV pulse� and this
voltage is considered to be lethal regardless of the current supplied� The wiring for
these modules will be protected� and they are connected to AC power such that
they can only be turned on from the control room� with a key�

�� Seismic Damage To Vessels� The vessels are both mounted on linear bearings which
allow them to translate in one direction� Safety brackets are mounted on these rails
to prevent the vessels from jumping the track� Also� the gas lines connected to the
tank are �exible� minimizing the possibility of damage or breakage�

�� Miscellaneous� In addition to the built	in safety devices� the laboratory also con	
tains emergency equipment such as �re extinguishers� �rst aid kits� and personal
protective equipment 
safety glasses� dust masks� ear mu�s� etc�� to be used while
working�
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Appendix B

System Drawings

This appendix contains AUTOCAD drawings from the HYJET facility for reference

purposes�

���



���



���



���



���



��	



���



��




���



���



���



���



���



���



���



��	



Appendix C

BETA Pressure Traces

This section contains plots of all pressure traces in the BETA series� They are organized
in order of increasing � for each system�
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C�� Nitrogen Dilution� ��� K
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C�� Nitrogen Dilution� ��� K� No Diaphragm
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
18 2-Feb-96 1530 COMP 80H/20O 12.7 50N/50A 19.5 20.5 11.41 1.15
19 2-Feb-96 1650 COMP 80H/20O 12.7 2H/49N/49/A 20.7 20.7 10.94 1.18 NB
20 5-Feb-96 1030 COMP 80H/20O 12.7 ABORT
21 5-Feb-96 1150 COMP 80H/20O 12.7 4H/48N/48A 20.6 22.1 10.86 1.22 NB
22 5-Feb-96 1545 COMP 80H/20O 12.7 6H/47N/47A 21.2 22.6 10.63 1.89 B
23 6-Feb-96 0948 COMP 80H/20O 12.7 8H/46N/46A 19.5 21.9 10.98 3.39 B
24 6-Feb-96 1123 COMP 80H/20O 12.7 10H/45N/45A 20.8 22.4 10.78 3.92 B
25 6-Feb-96 1400 COMP 80H/20O 25 50N/50A 20.0 23.0 10.66 1.36
26 6-Feb-96 1618 COMP 80H/20O 25 2H/49N/49A 21.7 22.8 10.39 1.39 NB
27 12-Feb-96 0918 COMP 80H/20O 25 4H/48N/48A 19.3 20.8 11.01 1.44 NB
28 13-Feb-96 1341 COMP 80H/20O 25 TRIG FAIL
29 27-Feb-96 1605 COMP 80H/20O 25 CLIPPED B
30 28-Feb-96 1042 COMP 80H/20O 25 CLIPPED B
31 28-Feb-96 1305 COMP 80H/20O 25 6H/47N/47A 20.0 21.2 11.07 1.95 B
32 28-Feb-96 1436 COMP 80H/20O 25 6H/47N/47A 22.0 22.0 NR 2.06 B
33 1-Mar-96 1050 COMP 80H/20O 25 8H/46N/46A 19.2 20.0 10.91 3.33 B
34 1-Mar-96 1400 COMP 80H/20O 25 100N 19.7 21.6 10.35 1.18
35 1-Mar-96 1645 COMP 80H/20O 25 100A 19.5 22.0 10.74 1.39
36 7-Mar-96 1433 COMP 80H/20O 25 10H/45N/45A 20.0 20.0 10.51 4.56 B
37 7-Mar-96 1609 COMP 80H/20O 12.7 50N/50A 20.3 21.6 10.45 1.15
38 8-Mar-96 1110 COMP 80H/20O 12.7 100A 19.0 20.6 10.28 1.15
39 8-Mar-96 1203 COMP 80H/20O 12.7 100A 21.3 21.2 11.65 1.16
40 13-Mar-96 1530 COMP 80H/20O 12.7 100N 19.3 20.6 10.06 1.05
41 13-Mar-96 1633 COMP 80H/20O 12.7 100N 20.7 21.2 11.25 1.08
42 13-Mar-96 1730 COMP 80H/20O 25 100A 21.4 21.2 11.09 1.37
43 14-Mar-96 COMP 80H/20O 25 100N 18.9 20.4 10.79 1.18
44 14-Mar-96 1135 COMP 80H/20O 12.7 50N/50A 20.3 20.4 NR NR
45 14-Mar-96 1435 COMP 80H/20O 12.7 2H/49N/49A 20.3 20.6 10.16 1.17 NB
46 29-Mar-96 1524 COMP 80H/20O 12.7 6H/47N/47A 19.6 20.4 10.23 1.79 B
47 29-Mar-96 1658 COMP 80H/20O 12.7 8H/46N/46A 20.9 21.1 10.35 3.28 B
48 1-Apr-96 1511 COMP 80H/20O 6.4 10H/45N/45A 19.5 20.2 10.84 3.92 B
49 1-Apr-96 1729 COMP 80H/20O 6.4 CLOG B
50 2-Apr-96 1340 COMP 80H/20O 6.4 CLOG B
51 2-Apr-96 1455 COMP 80H/20O 6.4 CLOG TEST
52 15-Apr-96 S 80H/20O 12.7 ABORT B
53 16-Apr-96 1523 S 80H/20O 12.7 10H/45S/45A 23.6 98.0 10.59 2.95 B
54 16-Apr-96 1648 S 80H/20O 12.7 8H/46S/46A 23.8 97.7 9.68 2.01 B
55 16-Apr-96 1818 S 80H/20O 12.7 6H/47S/47A 24.7 96.6 10.52 1.16 NB
56 16-Apr-96 1938 S 80H/20O 12.7 4H/48S/48A 25.4 95.8 10.22 1.09 NB
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
57 17-Apr-96 1038 S 80H/20O 12.7 2H/49S/49A 22.2 102.9 10.58 1.17 NB
58 17-Apr-96 1206 S 80H/20O 12.7 50S/50A 23.6 102.2 10.32 1.09
59 17-Apr-96 1334 S 80H/20O 25 8H/46S/46A 24.0 101.0 10.09 1.99 B
60 17-Apr-96 1521 S 80H/20O 25 8H/46S/46A 24.2 100.4 10.22 1.93 B
61 21-Apr-96 1504 COMP 80H/20O 25 10H/45N/45A 22.4 24.3 10.77 4.33 B
62 22-Apr-96 1605 COMP 80H/20O 12.7 10H/45N/45A 22.0 26.0 10.35 4.07 B
63 23-Apr-96 1610 COMP 80H/20O 12.7 10H/45N/45A 23.3 20.4 10.41 4.08 B
64 24-Apr-96 SA 80H/20O 12.7 ABORT B
65 24-Apr-96 1344 SA 80H/20O 12.7 60S/8H/32A 24.2 102.8 10.21 1.13 NB
66 24-Apr-96 1502 SA 80H/20O 12.7 50S/10H/40A 24.0 102.0 NR 2.58 B
67 24-Apr-96 1648 SA 80H/20O 12.7 40S/12H/48A 25.3 100.2 10.26 3.39 B
68 25-Apr-96 0914 SA 80H/20O 12.7 60S/8H/32A 23.4 103.7 10.59 1.45 B
69 25-Apr-96 1017 SA 80H/20O 12.7 50S/10H/40A 24.0 103.0 NR 2.74 B
70 25-Apr-96 1306 SA 80H/20O 12.7 40S/12H/48A 24.4 102.6 10.75 3.56 B
71 29-Apr-96 0900 SA 80H/20O 12.7 30S/14H/56A 23.9 102.2 10.46 4.3 B
72 29-Apr-96 0959 SA 80H/20O 12.7 20S/16H/64A 25.2 103.6 10.24 4.49 B
73 29-Apr-96 1110 SA 80H/20O 12.7 10S/18H/72A 25.7 102.8 10.21 5.03 B
74 29-Apr-96 1230 SA 80H/20O 12.7 0S/20H/80A 26.1 103.6 10.20 5.53 B
75 29-Apr-96 1413 SA 80H/20O 25 0S/20H/80A 25.0 103.0 10.08 5.59 B
76 29-Apr-96 1606 SA 80H/20O 12.7 60S/8H/32A 25.6 104.8 10.15 1.16 NB
77 30-Apr-96 1036 Kg20H CV 20H/80A B
78 30-Apr-96 1319 SA 80H/20O 12.7 55S/9H/36A 23.8 103.4 10.07 2.16 B
79 30-Apr-96 1516 SA 80H/20O 12.7 GAINS OFF 24.9 106.2 9.78 1.3 B
80 30-Apr-96 1625 SA 80H/20O 25 60S/8H/32A 25.7 106.1 10.07 1.37 NB
81 30-Apr-96 1802 SA 80H/20O 25 CLIPPED 25.5 105.8 10.10 CLIP B
82 30-Apr-96 1900 SA 80H/20O 25 50S/10H/40A 26.4 106.0 10.01 3.05 B
83 30-Apr-96 2045 SA 80H/20O 25 40S/12H/48A 25.8 107.7 10.00 3.76 B
84 30-Apr-96 2145 SA 80H/20O 25 30S/14H/56A 26.6 108.3 9.67 4.04 B
85 1-May-96 0945 SA 80H/20O 25 20S/16H/64A 23.7 102.3 10.19 4.52 B
86 1-May-96 1051 SA 80H/20O 25 10S/18H/72A 25.1 103.7 9.94 5.15 B
87 1-May-96 1158 SA 80H/20O 92 60S/8H/32A 26.1 104.6 7.74 2.08 B
88 1-May-96 1316 SA 80H/20O 92 30S/14H/56A 26.3 103.6 7.58 4.64 B
89 1-May-96 1423 SA 80H/20O 92 20H/80A 26.8 103.6 7.60 6.19 B
90 1-May-96 1520 SA 80H/20O 92 100A 27.6 106.0 7.25 2.21
91 1-May-96 1601 SA 80H/20O 92 100N 28.2 105.6 7.56 1.92
92 2-May-96 1530 SA 80H/20O 92 100A 23.2 57.3
93 3-May-96 1152 SA 80H/20O 92 50S/10H/40A 23.7 100.8 7.87 3.2 B
94 3-May-96 1515 SA 80H/20O 92 40S/12H/48A 24.1 106.8 7.58 4.26 B
95 4-May-96 0920 SA 80H/20O 92 20S/16H/64A 23.5 104.1 7.01 5.34 B
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
96 4-May-96 1115 SA 80H/20O 92 10S/18H/72A 25.6 103.8 6.94 5.76 B
97 4-May-96 1225 SA 80H/20O 25 60S/8H/32A 26.1 105.5 9.68 1.34 NB
98 10-May-96 1020 HHA 80H/20O 92 22H/78A 23.6 99.3 7.82 7.06 B
99 10-May-96 1425 HHA 80H/20O 92 24H/76A 23.4 99.4 NTRIG
100 10-May-96 1615 HHA 80H/20O 92 24H/76A 25.2 101.8 8.61 7.05 B
101 10-May-96 1735 HHA 80H/20O 92 26H/74A 26.2 103.6 8.56 7.48 B
102 29-May-96 1120 HHA 80H/20O 92 28H/72A 23.8 95.2 8.34 8.87 B
103 29-May-96 1355 HHA 80H/20O 92 30H/70A 24.7 96.4 8.60 9.05 D?
104 30-May-96 0940 HHA 80H/20O 92 26H/74A 22.0 100.0 8.60 8.6 12.35 M B
105 30-May-96 1100 HHA 80H/20O 92 28H/72A 25.3 100.5 8.43 8.95 12.35 M D?
106 21-Jun-96 1300 CAM TEST
107 21-Jun-96 CAM TEST
108 21-Jun-96 CAM TEST
109 21-Jun-96 CAM TEST
110 21-Jun-96 CAM TEST
111 22-Jun-96 CAM TEST
112 22-Jun-96 CAM TEST
113 24-Jun-96 1400 CHA 80H/20O 6.4 10H/90A 23.3 24.0 9.88 4.15 B
114 24-Jun-96 1N2O 80H/20O 92 8H/8N2O/84A 8.22 4.8 B
115 24-Jun-96 2N2O 80H/20O 92 50N2O/50A 8.14 2.69
116 25-Jun-96 1045 COMP 80H/20O 92 100A 25.0 25.0 8.74 2.65
117 25-Jun-96 1200 3N2O 80H/20O 92 4H/48N2O/48A 24.7 25.2 8.18 3.72
118 26-Jun-96 COMP 80H/20O 6.4 100A 23.2 24.8 9.48 1.04
119 26-Jun-96 COMP 80H/20O 6.4 100N 24.3 25.1
120 15-Jul-96 1645 CAM TEST
121 18-Jul-96 1020 NITRO 80H/20O 92 24H/76A 24.4 24.0 8.58 8.3 12.47 14.4 B
122 18-Jul-96 1145 NITRO 80H/20O 92 26H/74A 25.7 26.8 9.02 8.57 9.89 20
123 18-Jul-96 NITRO 80H/20O 92 24H/76A 26.1 29.3 8.47 8.33 16.43 20.93 LE
124 18-Jul-96 1500 NITRO 80H/20O 92 26H/74A 26.2 31.1 8.43 9.28 36.92 M 36.62 M D
125 18-Jul-96 NITRO 80H/20O 92 26H/74A 26.3 33.0 8.36 8.96 37.41 61.28 D
126 19-Jul-96 0845 NITRO 80H/20O 92 100A 23.1 28.7 8.44 2.49 2.79 5.63
127 19-Jul-96 1030 NITRO 80H/20O 92 25H/75A 24.6 28.3 8.61 8.48 13.09 24.01 LE 
128 19-Jul-96 1325 NITRO 80H/20O 92 23H/77A 24.4 30.1 8.42 8.08 10.4 17.53 LE
129 19-Jul-96 1445 NITRO 80H/20O 92 27H/73A 25.7 32.1 8.37 9.28 37.59 61.98 D
130 22-Jul-96 1035 NITRO 10N/72H/18O 92 23H/77A 23.1 24.2 8.81 8.65 41.19 25.22 LE
131 22-Jul-96 1145 NITRO 10N/72H/18O 92 24H/76A 25.2 27.1 8.77 8.69 9.87 35.84 LE
132 22-Jul-96 1315 NITRO 10N/72H/18O 92 25H/75A 25.7 29.3 8.66 9.2 40.49 72.25 M D
133 22-Jul-96 1440 NITRO 10N/72H/18O 92 26H/74A 26.0 31.4 8.73 8.94 47.77 55.4 D
134 22-Jul-96 1625 NITRO 10N/72H/18O 92 27H/73A 25.7 33.0 8.68 9.35 39.5 72.75 M D
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
135 22-Jul-96 1805 NITRO 20N/64H/16O 92 24H/76A 25.7 34.6 10.19 8.34 8.92 26.23 LE
136 23-Jul-96 1010 NITRO 20N/64H/16O 92 25H/75A 23.4 28.9 10.04 8.4 19.59 22.16 LE
137 23-Jul-96 1225 NITRO 20N/64H/16O 92 26H/74A 24.4 30.9 10.11 9.42 47.75 72.75 M D
138 23-Jul-96 1445 NITRO 50N/40H/10O 92 25H/75A 25.2 32.5 BURN TOO SLOW B
139 23-Jul-96 1600 NITRO 50N/40H/10O 92 25H/75A 25.9 34.6 8.63 8.04 7.5 17.11 LE
140 24-Jul-96 0940 NITRO 30N/56H/14O 92 CONTAMINATED D
141 24-Jul-96 1100 NITRO 30N/56H/14O 92 25H/75A 25.3 31.4 8.70 8.45 12.81 21.01 LE
142 24-Jul-96 1520 NITRO 30N/56H/14O 92 24H/76A 25.2 31.8 8.48 8.11 11.36 20.49 LE
143 24-Jul-96 1650 NITRO 30N/56H/14O 92 26H/74A 25.7 33.8 8.94 8.33 14.54 12.31 B
144 25-Jul-96 1035 NITRO 30N/56H/14O 92 27H/73A 23.9 28.4 9.13 8.4 8.88 10.31 B
145 25-Jul-96 1215 NITRO 30N/56H/14O 92 28H/72A 24.8 31.2 9.03 8.76 30.73 13.36 LE
146 25-Jul-96 1355 NITRO 30N/56H/14O 92 30H/70A 25.4 33.3 LE
147 25-Jul-96 1555 NITRO 25N/60H/15O 92 30H/70A 25.2 34.9 10.30 9.41 42.18 85.66 D
148 25-Jul-96 1655 NITRO 25N/60H/15O 92 28H/72A 26.3 37.4 10.35 9.27 38.33 83.23 D
149 26-Jul-96 0940 NITRO 25N/60H/15O 92 26H/74A 23.5 29.8 10.86 9.4 42.29 80.62 D
150 26-Jul-96 1105 NITRO 25N/60H/15O 92 24H/76A 25.0 32.4 10.37 8.88 32.39 64.26 D
151 26-Jul-96 1310 NITRO 25N/60H/15O 92 22H/78A 25.1 33.7 10.56 9.02 34.41 101.67 LE
152 26-Jul-96 1425 NITRO 25N/60H/15O 92 23H/77A 25.8 35.3 10.26 11.05 25.25 100.98 LE
153 26-Jul-96 1605 NITRO 25N/60H/15O 92 100A 27.1 37.2 10.31 1.9 3.19 6.66
154 29-Jul-96 1335 NITRO 25N/60H/15O 92 23H/77A 23.3 24.4 10.13 8.79 9.8 48.86 LE
155 29-Jul-96 1450 NITRO 80H/20O 92 23H/77A 24.9 27.2 8.35 8.12 14.82 25.62 LE
156 30-Jul-96 1000 NITRO 80H/20O CV N/A 23.3 10.03
157 30-Jul-96 1305 NITRO 5N/76H/19O CV N/A 24.2 10.45
158 30-Jul-96 1335 NITRO 10N/72H/18O CV N/A 26.5 10.93
159 30-Jul-96 1435 NITRO 15N/68H/17O CV N/A 30.0 11.10
160 30-Jul-96 1542 NITRO 20N/64H/16O CV N/A 29.1 12.66
161 30-Jul-96 1633 NITRO 25N/60H/15O CV N/A 29.1 12.96
162 31-Jul-96 1037 NITRO 30N/56H/14O CV N/A 23.9 12.80
163 31-Jul-96 1115 NITRO 35N/52H/13O CV N/A 26.2 12.85
164 31-Jul-96 1235 NITRO 40N/48H/12O CV N/A 28.7 11.93
165 31-Jul-96 1315 NITRO 45N/44H/11O CV N/A 29.1 8.36
166 31-Jul-96 1503 NITRO 50N/40H/10O CV N/A 27.1 8.20
167 31-Jul-96 1540 NITRO 55N/36H/9O CV N/A 28.3 7.19
168 5-Aug-96 1610 NITRO 20N/64H/16O 92 27H/73A 23.5 23.7 9.47 9.65 50.39 97.32 D
169 6-Aug-96 1033 NITRO 20N/64H/16O 92 25H/75A 23.2 24.7 9.86 9.23 23.94 72.96 LE
170 6-Aug-96 1145 NITRO 25N/60H/15O 92 25H/75A 25.3 27.8 10.51 8.87 45.67 51.99 D
171 6-Aug-96 1440 NITRO 67H/33O 92 100A 24.6 29.7 3.20 2.4 2.77 9.46
172 7-Aug-96 1015 NITRO 25N/60H/15O 92 21H/79A 23.4 25.7 10.53 7.98 11.25 51.03 LE
173 7-Aug-96 1145 NITRO 25N/60H/15O 92 20H/80A 25.1 28.2 10.18 7.87 12.21 20.93 LE
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
174 7-Aug-96 1255 NITRO 25N/60H/15O 92 19H/81A 25.8 30.1 10.15 7.47 9.2 20 LE
175 8-Aug-96 1345 NITRO 10N/72H/18O 92 100A 22.2 25.9 8.60 2.24 3.26 5.56
176 8-Aug-96 1520 NITRO 20N/64H/16O 92 100A 23.3 26.0 9.43 2.11 2.77 4.76
177 8-Aug-96 NITRO 30N/56H/14O 92 100A 23.6 25.8 7.47 1.92 2.87 6.05
178 11-Aug-96 1310 NITRO 25N/60H/15O 92 10H/90A 21.6 22.5 9.96 2.93 5.6 9.94 B
179 11-Aug-96 1420 NITRO 25N/60H/15O 92 15H/85A 23.4 24.0 10.17 6.51 10.9 18.85 LE
180 12-Aug-96 1120 NITRO 20N/64H/16O 92 10H/90A 21.6 23.2 B
181 12-Aug-96 1255 NITRO 20N/64H/16O 92 10H/90A 23.3 24.7 9.40 6.62 7.68 20.94 LE
182 12-Aug-96 1433 NITRO 20N/64H/16O 92 10H/90A 23.9 25.7 9.27 5.83 10.15 17.36 LE
183 12-Aug-96 1545 NITRO 20N/64H/16O 92 15H/85A 24.5 26.7 9.25 6.63 9.56 16.28 LE
184 4-Sep-96 1320 NITRO 45N/44H/11O CV N/A 21.8 11.95
185 4-Sep-96 1400 NITRO 50N/40H/10O CV N/A 23.3 10.74
186 4-Sep-96 1520 NITRO 40N/48H/12O CV N/A 23.3 11.79
187 5-Sep-96 1105 NITRO 45N/44H/11O CV N/A 21.7 7.94
188 5-Sep-96 1140 NITRO 45N/44H/11O CV N/A 22.9 8.75
189 5-Sep-96 1400 NITRO 50N/40H/10O CV N/A 23.1 10.07
190 5-Sep-96 1443 NITRO 45N/44H/11O CV N/A 23.8 8.41
191 6-Sep-96 1215 NITRO 45N/44H/11O CV N/A 22.3 11.01
192 6-Sep-96 1405 NITRO 45N/44H/11O CV N/A 22.9 7.90
193 27-Sep-96 1020 NITRO 35H/65A 92 100 A 22.2 23.7 5.84 2.92 2.1
194 27-Sep-96 1515 NITRO 35H/65A 92 100 A 22.3 23.9 6.15 2.65 1.99
195 27-Sep-96 1635 NITRO 25N/60H/15O 92 100 A 22.8 23.8 13.62 3.02 2.73
196 18-Oct-96 1600 NITRO 30H/70A 92 10H/90A 20.8 21.2 BAD TRIG
206 11-Nov-96 1350 SHOCK-4 30H/70A 92 100A 22.4 23.4
207 11-Nov-96 1415 SHOCK-4 30H/70A 92 100A
208 11-Nov-96 1445 SHOCK-4 30H/70A 92 100A 24.3 23.9 6.02 1.6 2.09 2.64
209 11-Nov-96 1540 SHOCK-5 30H/70A 92 100A 24.3 23.8 5.77 1.52 1.91 3.55
210 11-Nov-96 1607 SHOCK-6 30H/70A 92 100A 24.7 24.1 5.50 1.61 2.33 2.62
211 11-Nov-96 1655 SHOCK-7 30H/70A 92 100A 24.6 23.8 4.91 1.65 1.89 3.89
212 11-Nov-96 1717 SHOCK-8 30H/70A 92 100A 24.9 24.4 1.62 5.71 2.02 5.17
213 12-Nov-96 1115 SHOCK-9 30H/70A 92 100A 22.3 23.5 5.31 1.61 1.95 3.99
214 12-Nov-96 1148 SHOCK-10 30H/70A 92 100A 23.3 23.6 6.14 1.58 1.93 3.27
215 12-Nov-96 1222 SHOCK-11 30H/70A 92 100A 23.9 23.8 7.47 1.7 2.45 4.03
216 12-Nov-96 1733 SHOCK-12 30H/70A 92 100A 22.9 23.7 5.15 1.68 2.11 3.13
217 12-Nov-96 1802 SHOCK-13 30H/70A 92 100A 23.6 24.0 4.85 1.62 1.95 4.24
218 14-Nov-96 1350 SHOCK-14 30H/70A 92 100A 22.7 23.4 5.57 1.62 2.11 3.91
219 14-Nov-96 1427 SHOCK-15 30H/70A 92 100A 23.4 23.6 6.24 1.61 2.66 3.9
220 14-Nov-96 1515 SHOCK-16 30H/70A 92 100A 23.9 23.5 6.99 1.7 2.41 4.19
221 14-Nov-96 1540 SHOCK-17 30H/70A 92 100A 24.3 23.7 6.37 1.57 2.3 4.17
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
222 14-Nov-96 1622 SHOCK-18 30H/70A 92 100A 24.8 23.8 5.13 1.69 2.14 3.76
223 14-Nov-96 1650 SHOCK-19 30H/70A 92 100A 25.1 23.9 5.37 1.69 1.99 3.1
224 15-Nov-96 1144 SHOCK-4 30H/70A 92 100A 22.5 23.4 4.92 1.79 2.2 3.43
225 15-Nov-96 1220 DAS TEST 10H/90A 92 10H/90A 23.4 23.4 3.88 4.1
226 20-Nov-96 1445 SHOCK-10 100A 92 100A 1.2 1.42
227 20-Nov-96 SHOCK-10 100A 92 100A 1.29 1.77
228 3-Dec-96 1710 DAS TEST 10H/90A 92 80H/20O 22.7 22.7 9.43 5.19 12.98 17.55
229 4-Dec-96 1135 NITRO 80H/20O 92 28H/72O 22.8 23.5 8.85 8.8 34.16 72.72M D
230 5-Dec-96 1105 SA 80H/20O 12.7 50S/10H/40A 22.7 96.3 11.68 2.7 B
231 11-Dec-96 1110 CHA 80H/20O 12.7 12H/88A 22.6 22.8 13.30 4.67 B
309 3-Feb-97 1440 BETA β=7.6 CV 22.0 4.19
311 6-Feb-97 1421 CHA β=7.6 92 30H/70A 22.6 26.4 4.03
312 8-Feb-97 1223 BETA-N2 β=2.6 92 β=3.76 21.9 23.6 10.04 8.7 35.82 72.27M D
313 8-Feb-97 1326 BETA-N2 β=2.6 92 β=4 24.1 26.9 11.23 8.41 35.72 102.31M D
314 8-Feb-97 1430 BETA-N2 β=2.6 92 β=4.5 25.2 29.9 10.82 7.85 13.69 23.19 LE
315 8-Feb-97 1700 BETA-N2 β=2.6 92 β=4.4 23.9 30.6 11.75 8.03 41.19 102.14 D
316 9-Feb-97 1230 BETA-N2 β=2.6 92 β=4.6 21.9 25.8 11.00 8.12 21.79 16.14 LE
317 9-Feb-97 1336 BETA-N2 β=2.6 92 β=4.3 24.1 28.9 11.05 8.37 33.28 102.48M D
318 9-Feb-97 1417 BETA-N2 β=2.6 CV 25.7 15.03
319 10-Feb-97 1722 BETA-N2 β=2.6 92 100Α 22.0 9.09 1.6 2.62 4.21
320 10-Feb-97 1852 BETA-N2 β=2.6 92 100Α 23.2 24.8 8.06 1.6 2.54 4.42
321 11-Feb-97 1157 BETA-N2 β=2.6 92 β=4.6 22.6 99.1 11.09 6.89 21.01 135.03 D
322 11-Feb-97 1337 BETA-N2 β=2.6 92 β=4.8 23.7 99.1 11.44 6.89 26.74 68.44 D
323 11-Feb-97 1432 BETA-N2 β=2.6 92 β=5.5 24.9 100.8 9.03 6.33 10.58 FAULT LE
324 11-Feb-97 1554 BETA-N2 β=2.6 92 β=5.2 24.4 102.0 10.05 6.8 37.18 135.03M D
325 11-Feb-97 1751 BETA-N2 β=2.6 92 β=5.3 24.0 102.0 10.45 6.57 9.25 16.71 N
326 11-Feb-97 1856 BETA-N2 β=2.6 92 β=5.4 24.7 100.3 11.39 6.26 9.36 15.73 N
327 11-Feb-97 1945 BETA-N2 β=2.6 92 β=5.3 25.3 102.5 11.23 7.36 28.17 135.03M LE
328 11-Feb-97 2035 BETA-N2 β=2.6 92 β=5.2 25.8 104.5 8.76 6.29 8.78 13.28 N
329 11-Feb-97 2149 BETA-N2 β=2.6 92 β=5.1 24.0 102.0 11.17 6.66 36.86 193.51M D
330 12-Feb-97 1007 BETA-H2O β=2.6 92 β=5.0 10.61 5.37 6.29 5.19 N
331 12-Feb-97 1420 BETA-H2O β=2.6 92 β=4.0 23.2 103.2 9.13 5.63 7.93 5.78 N
332 12-Feb-97 1521 BETA-H2O β=2.6 92 β=3.0 25.1 104.7 11.43 KILLED 13.43 N
333 13-Feb-97 1606 NITRO 25N/ 92 23H/77A 23.8 43.5 10.24 8.52 23.1 135 LE
334 14-Feb-97 1056 NITRO 25N/ 92 23H/77A 22.4 31.4 9.06 9.01 31.47 131.32M LE
335 20-Feb-97 1354 NITRO 25N/ 92 30H/70A 24.7 26.2 9.16 8.44 37.18 55.95 D
336 21-Feb-97 1038 BETA-N2 β=2.6 92 β=4.5 22.1 24.7 10.22 9.1 34.76 132.94M LE
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337 21-Feb-97 1220 BETA-N2 β=2.6 92 β=4.4 23.6 27.6 10.36 8.3 10.9 18.56 N
338 21-Feb-97 1422 BETA-N2 β=2.6 92 β=4.3 23.6 29.6 11.76 7.99 33.54 44.51 D
339 22-Feb-97 1318 BETA-N2 β=2.6 92 β=4.4 22.1 25.7 9.42 9.22 26.12 130.29 LE
340 22-Feb-97 1432 BETA-N2 β=2.6 92 β=4.2 23.8 28.8 9.73 8.49 3718 60.23 D
341 23-Feb-97 1247 BETA-N2 β=2.6 92 β=5.2 21.9 100.2 9.96 6.56 28.7 35.35 D
342 23-Feb-97 1346 BETA-N2 β=2.6 92 β=5.4 23.7 101.7 8.79 6.4 21.31 N
343 23-Feb-97 1452 BETA-N2 β=2.6 92 β=5.3 24.0 104.0 10.50 6.32 7.82 13.05 N
344 23-Feb-97 1859 BETA-N2 β=2.6 92 β=5.1 22.6 103.4 11.32 6.57 37.18 33.87 D
345 24-Feb-97 1022 BETA-H2O β=2.6 92 β=3.5 21.7 102.8 11.10 6.12 4.29 7.96 N
346 24-Feb-97 1137 BETA-H2O β=2.6 92 β=3.0 23.6 102.4 10.70 KILLED 9.61 20.72 N
347 24-Feb-97 1254 BETA-H2O β=2.6 92 β=2.6 24.5 103.8 9.64 16.73 25.04 LE
348 24-Feb-97 1605 BETA-H2O β=2.6 92 β=2.0 22.9 103.8 10.97 13.92 30 LE
349 24-Feb-97 1735 BETA-H2O β=2.6 92 β=1.8 24.1 102.8 9.56 22.02 26.01 T
350 24-Feb-97 1840 BETA-H2O β=2.6 92 β=1.4 25.3 102.6 10.57 25.15 78.15 T
351 24-Feb-97 1944 BETA-H2O β=2.6 92 β=1.6 25.9 102.1 10.04 28.66 55.66 T
352 24-Feb-97 2043 BETA-H2O β=2.6 92 β=1.0 26.5 102.3 10.38 37.18 50.5 D
353 1-Mar-97 1136 BETA-N2 β=2.6 92 β=2.6 20.4 21.3 10.44 36.49 78.54 D
354 18-Mar-97 1234 BETA-N2 β=2.6 92 β=4.3 24.4 26.4 LE
355 18-Mar-97 1549 BETA-N2 β=2.6 92 β=4.2 23.4 27.8 11.46 30.06 56.08 D
356 18-Mar-97 1756 BETA-N2 β=2.6 92 β=2.6 23.8 29.8 11.50 25.75 74.15 D
357 19-Mar-97 0926 BETA-N2 β=2.6 64 β=3.76 22.4 26.4 11.12 25.62 66.97M D
358 19-Mar-97 1036 BETA-N2 β=2.6 64 β=4.2 24.3 29.6 12.80 23.48 48.63 D
359 19-Mar-97 1325 BETA-N2 β=2.6 64 β=4.3 23.6 30.5 11.43 B
360 19-Mar-97 1922 BETA-N2 β=2.6 64 β=4.1 22.5 29.3 12.08 64.23 D
361 20-Mar-97 0818 BETA-N2 β=2.6 38 β=3.76 22.0 26.3 12.86 B
362 20-Mar-97 1243 BETA-N2 β=2.6 38 β=3.0 22.8 27.8 13.62 24.69 81.31 D
363 20-Mar-97 1624 BETA-N2 β=2.6 38 β=3.4 22.8 28.9 11.94 3.13 B
364 21-Mar-97 0936 BETA-N2 β=2.6 38 β=3.2 22.5 25.7 13.78 B
365 21-Mar-97 1301 BETA-N2 β=2.6 38 β=3.1 22.5 27.5 12.33 B
366 21-Mar-97 1718 BETA-N2 β=2.6 38 β=2.9 22.1 28.3 13.90 24.63 66.97M D
367 21-Mar-97 2102 BETA-N2 β=2.6 25 β=2.8 22.1 28.7 13.05 27.11 66.97M D
368 22-Mar-97 0910 BETA-N2 β=2.6 25 β=3.0 21.4 26.2 13.76 B
369 22-Mar-97 1811 BETA-N2 β=2.6 25 β=2.9 21.9 26.2 13.41 25.11 65.68 D
370 23-Mar-97 1241 BETA-N2 β=2.6 25NC β=2.9 22.6 26.8 12.67 67 LE
371 23-Mar-97 1458 BETA-N2 β=2.6 25NC β=2.8 22.0 29.0 13.69 B
372 23-Mar-97 1705 BETA-N2 β=2.6 25NC β=2.6 22.4 30.4 13.85 25.85 66.97M D
373 24-Mar-97 0829 BETA-N2 β=2.6 25NC β=2.7 22.2 26.5 13.41 B
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
374 24-Mar-97 1157 BETA-N2 β=2.6 25NC β=2.5 22.1 27.9 13.04 B
375 24-Mar-97 1410 BETA-N2 β=2.6 25NC β=2.4 22.6 30.1 14.14 26.36 66.97M D
376 24-Mar-97 1907 BETA-N2 β=2.6 25NC β=2.5 21.4 28.8 13.04 66.97M D
377 25-Mar-97 1055 BETA-N2 β=2.6 25 β=2.9 22.2 25.9 14.32 52.53 D
378 25-Mar-97 1338 BETA-N2 β=2.6 25 β=3.1 22.5 28.3 13.53 B
379 25-Mar-97 1729 BETA-N2 β=2.6 64 β=4.5 22.0 28.8 12.42 8.78 B
380 26-Mar-97 0913 BETA-H2O β=2.6 92 β=1.1 24.2 100.7 10.45 19.88 43.93 D
381 26-Mar-97 1030 BETA-H2O β=2.6 92 β=1.3 25.8 100.8 T
382 26-Mar-97 1202 BETA-H2O β=2.6 92 β=1.2 26.3 102.2 T
383 26-Mar-97 1316 BETA-H2O β=2.6 38 β=1.0 26.9 101.2 12.58 B
384 26-Mar-97 1431 BETA-H2O β=2.6 38 β=0.86 27.1 103.6 LE
385 26-Mar-97 1549 BETA-H2O β=2.6 38 β=0.7 26.9 100.4 12.96 61.2 T
386 26-Mar-97 1709 BETA-H2O β=2.6 38 β=0.66 26.9 103.7 12.63 16.89 T
387 26-Mar-97 1805 MISFILL β=2.6 38 β=?? 27.4 102.6 13.11 T
388 27-Mar-97 0845 BETA-H2O β=2.6 38 β=0.5 21.7 104.6 13.27 19.91 52.88 D
389 27-Mar-97 0941 BETA-H2O β=2.6 38 β=0.55 24.6 104.5 12.89 20.62 58.27 D
390 27-Mar-97 1040 BETA-H2O β=2.6 38 β=0.6 26.2 104.2 12.91 45.57 T
391 27-Mar-97 1212 BETA-H2O β=2.6 38 β=0.8 26.1 104.2 13.23 B
392 28-Mar-97 1330 BETA-N2 β=3.76 92ND β=3.76 34.0 B
393 28-Mar-97 1440 BETA-N2 β=3.0 92ND β=3.0 22.8 35.9 9.45 30.01 66.97M D
394 28-Mar-97 1663 BETA-N2 β=3.3 92ND β=3.3 23.1 37.4 9.25 28.08 66.97M D
395 29-Mar-97 1016 BETA-N2 β=4.0 92ND β=4.0 21.1 27.6 9.48 12.92 B
396 29-Mar-97 1107 BETA-N2 β=3.76 92ND β=3.76 23.2 31.2 9.44 B
397 29-Mar-97 1550 BETA-N2 β=2.9 25ND β=2.9 21.7 29.1 14.34 B
398 29-Mar-97 1850 BETA-N2 β=2.6 25ND β=2.6 21.9 30.0 13.60 B
399 30-Mar-97 1146 BETA-N2 β=2.4 25ND β=2.4 21.2 26.6 B
400 30-Mar-97 1400 BETA-N2 β=2.0 25ND β=2.0 22.2 29.1 12.22 10.73 B
401 30-Mar-97 2100 BETA-N2 β=1.8 25ND β=1.8 21.4 28.9 11.73 25.37 72.22 D
402 31-Mar-97 1629 CAM TEST β=2.6 25 100A 20.8 25.5 14.11
403 31-Mar-97 1800 CAM TEST β=2.6 25 100A 21.9 25.6
404 31-Mar-97 1916 CAM TEST β=2.6 25 100A 22.4 25.4
405 1-Apr-97 0900 CAM TEST β=2.6 25 100A 22.0 13.68 1.26 1.93
406 1-Apr-97 1045 CAM TEST β=2.6 25 100A
407 1-Apr-97 1332 BETA-N2 β=2.6 25 β=2.6 21.6 23.6 13.85 63.1 D
408 1-Apr-97 1737 BETA-N2 β=2.6 25 β=2.6 14.09 25.27 66.74 D
409 1-Apr-97 1927 BETA-N2 β=1.8 25ND β=1.8 22.4 29.7 T
410 2-Apr-97 1112 BETA-N2 β=1.8 25ND β=1.8 21.1 26.6 T
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Run # Date  Time Series DRVR Nozz RCVR T1, DR T1, RC Pp, DR Pp, RC Pp, T3 Pp, E REC
411 2-Apr-97 1538 BETA-N2 β=1.7 25ND β=1.7 21.3 28.9 11.97 26.19 73.51 D
412 2-Apr-97 1655 BETA-N2 β=3.76 25ND β=3.76 22.8 32.9 B
413 3-Apr-97 0835 BETA-N2 β=3.76 25ND β=3.76 20.8 27.1 B
414 3-Apr-97 1113 BETA-N2 β=3.76 25ND β=3.76 B
415 4-Apr-97 1740 BETA-N2 β=2.6 25 100A 21.4 24.3
416 4-Apr-97 1935 BETA-N2 β=2.6 25 β=3.76 22.0 27.0 14.05 B
417 4-Apr-97 2035 BETA-N2 β=3.76 25ND β=3.76 23.1 27.4 11.45 B
418 5-Apr-97 1055 BETA-N2 β=3.76 25ND β=3.76 22.2 29.2 B
419 5-Apr-97 1150 BETA-N2 β=2.6 25 β=3.76 23.3 32.2 B
420 5-Apr-97 1308 BETA-N2 β=2.6 25 β=2.6 21.1 27.4 B
421 5-Apr-97 1413 BETA-N2 β=2.6 25 β=2.6 22.4 31.4 13.74 B
422 5-Apr-97 1528 BETA-N2 β=1.7 25ND β=1.7 23.5 34.2 T
423 5-Apr-97 1737 BETA-N2 β=1.5 25ND β=1.5 D
424 5-Apr-97 1850 BETA-N2 β=2.6 25 β=2.4 24.1 39.8 13.42 25.11 66.55 D
425 5-Apr-97 2311 BETA-N2 β=2.6 25 β=3.76 22.3 35.3
426 6-Apr-97 0021 BETA-N2 β=3.76 25ND β=3.76 23.3 37.7 9.17
427 6-Apr-97 0130 BETA-N2 β=2.6 92 100A 23.6 40.3
428 6-Apr-97 1205 BETA-N2 β=2.6 92 15H/85A 21.3 29.9
429 6-Apr-97 1607 BETA-N2 β=2.6 25 β=2.6 21.4 28.8 13.69 NG
430 6-Apr-97 1722 BETA-N2 β=2.6 25 β=2.4 22.8 32.3 13.89 25.52 64.68 D
431 6-Apr-97 1831 BETA-N2 β=1.5 25ND β=1.5 23.6 35.4 11.66 25.59 71 D
432 9-Apr-97 2045 BETA-N2 β=1.9 25ND β=1.9 20.0 21.3 T
433 16-Apr-97 1813 BETA-N2 β=2.6 92 β=2.6 21.4 24.7 25.5 D
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Appendix E

RPI Jet Visualization

This Appendix contains photographs of jet startup from the �nal tests in the RPI facility�
In the photographs� the diameter of the jet tube is ���� �	
�� mm�� The initial driver
mixture is 
�� H��
�� O�� The receiver mixtures are listed in the captions�
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Figure E�	� Jet startup� venting into 	��� N�� Note lead shocks and large� turbulent
vortex head which convects downstream� Framing rate is 	���� kfps� RPI run 	
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Figure E�
� Jet startup� venting into 	��� air� The jet is expected to burn as a di�usion
�ame under these conditions� but no di�erence is visible between these photos and those
of Figure E�	� Reduced �ow in frame � is due to diaphragm clogging �diaphragm later
cleared�� Framing rate is ���
 kfps� RPI run 	
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Figure E��� Jet initiation of de�agration in 	�	 air�N�� with 	�� H�� Framing rate is
	���� kfps� RPI run 	
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