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Abstract

Optimal electrodes for solid-oxide fuel cells will combine high porosity for gas diffusion, high phase

connectivity for ion and electron conduction, and high surface area for chemical and electrochemical

reactions. Tracer-diffusion simulations are used to gain a better understanding of the interplay between

microstructure and transport in porous materials. Results indicate that the coefficient of diffusion

through a porous medium is a function of the details of the internal geometry (microscopic) and porosity

(macroscopic). I report that current solid-oxide fuel cell electrodes produced from high-temperature

sintering of ceramic powders severely hinder gas transport because the resulting structures are highly

tortuous, complex three-dimensional networks. In addition, poor phase connectivities will assuredly

limit ion and electron transport, as well as the density of active sites for power-producing reactions.

With new access to a wide range of technologies, micro- and nano-fabrication capabilities, and high-

performance materials, there is a new ability to engineer the fuel cell electrode architecture, optimizing

the physical processes within, increasing performance, and greatly reducing cost per kilowatt. Even

simple packed-sphere and inverse-opal architectures will increase gas diffusion by an order of magnitude,

and provide a higher level of connectivity than traditional powder-based structures.
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Chapter 1

Introduction

“[The fuel cell] is almost magical in its elegance and simplicity, and it is astonishing that this process has not yet

been commercialised to supplant the inefficient and polluting combustion heat engines which currently dominate

our civilization.” [54]

As of the writing of this thesis, the need for cheaper, cleaner, renewable, and more reliable energy

sources and conversion methods is arguably at the forefront of our society. Rising energy costs, limited

natural resources, a reliance on those resources in unstable geographic regions, rising CO2 emissions,

and the threat of global climate change have moved money and minds to deliver more efficient ways of

extracting energy from already limited supplies, and to find more environmentally conscience energy

sources or conversion devices.

A continuum of work spans the realm of energy-related topics, each with its own attractions and

drawbacks, as well as present-, short-, and long-term goals. There is no consensus on a right or

wrong solution, but the scientific community and those far removed are of a common understanding

that something must change. Much effort is focused on improving current combustion systems, using

bioinspired fuels, harnessing renewable sources like water, wind, and solar, and/or combining one or

more of these areas with new electrochemical conversion devices.

Solid-oxide fuel cells (SOFCs) are the most efficient such devices known to convert chemical energy

in a fuel directly into electrical power [54], without burning the fuel. Originally, SOFCs were designed to

compete with large power-generation units, like central power stations. In these large-scale systems with

cogeneration of power and useful heat, efficiencies as high as 75% are projected. These fuel cells operate
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at relatively high temperatures, 600 to 1,000 ◦C, making start-up and shutdown slower and generally

more difficult. Because of this, SOFCs are not particularly suited for applications requiring rapid

response or power cycling (e.g., automotive power), but during the last 10–15 years, the realization

has steadily dawned that SOFCs can work well in small, portable, residential and auxiliary power

systems [54].

Unlike proton exchange membrane (PEM or hydrogen) fuel cells, SOFCs can operate on many

different fuels; they work very well on hydrogen, but also operate nearly as well on methanol, ethanol,

methane, diesel reformate, and more. As a result of their high efficiency and fuel flexibility, SOFCs

hold a promising position for near-term power generation for the following key reasons:

• high efficiencies directly correlate to a significant reduction in greenhouse gas emissions compared

to more traditional coal-burning power systems;

• the fuel flexibility of SOFCs allows operation on emerging fuels such as biofuels, coal-derived syn-

gas, and more—this is particularly promising for near-term adoption as well as being a significant

solution to the long-term, post-fossil-fuel, hydrogen economy;

• further, SOFCs can serve as a CO2 capture technology through the use of synthetic fuels produced

by reaction of hydrogen with atmospheric CO2 [5];

• SOFCs can integrate directly with existing hydrocarbon infrastructure;

• SOFCs can provide power from milliwatt to large-scale megawatt power-generation systems, pro-

viding an unprecedented range of applicability.

Despite the clear promise of SOFCs, none of this will come to pass unless we develop SOFCs that are

substantially cheaper, per kilowatt of generating capacity, than current-generation SOFCs. To bring

cost per kilowatt down (the Department of Energy target of $400/kW requires an order-of-magnitude

reduction!), it is necessary to either dramatically lower manufacturing costs per cell, or dramatically

improve the power output per cell (or both). While some performance improvements are possible by op-

timizing the overall, or big-picture, macroscopic-level parameters (stack design, interconnect locations,

etc.), these improvements are incremental in nature and are actively being pursued by industrial SOFC

developers. Whatever the macroscopic architecture, the heart of any SOFC is the membrane-electrode
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Fig. 1: Two cells of a planar anode-supported solid-oxide fuel-cell

stack. The flow channels, which have characteristic cross sections

on the order of a square millimeter, are formed in the interconnect.

The membrane-electrode assembly is fabricated with a dense elec-

trolyte sandwiched between porous electrodes.

chemistry and physical processes within fuel cells. Al-
though aspects of the fluid flow, gas-phase chemistry, and
thermal catalytic chemistry will be familiar to readers who
are expert in combustion science and technology, aspects of
the electrochemistry will be new. Fuel cells rely on the cou-
pled interaction between thermal and electrochemical pro-
cesses. Thus, the optimal design and implementation of
new systems will benefit from an improved understanding
of these interactions.

2. Solid-Oxide Fuel Cells

Figure 1 illustrates the physical layout of a planar anode-
supported SOFC. The fuel-cell stack is composed of layers
of cells. Each cell is composed of amembrane-electrode as-
sembly (MEA), which consists of a dense electrolyte sand-
wiched between an anode and a cathode. The anode is the
electrode on the fuel side and the cathode is on the air side.
The electrolyte is a dense polycrystalline ceramic that is
impervious to any gas transport, but conducts oxygen-ions
O2−. The architecture illustrated in Fig. 1 has defined flow
channels that are formed in an interconnnect. The anode
and cathode are connected by an external circuit through
which electrons may flow. The voltage of an individual cell
ranges from about one volt at open circuit to around one-
half volt at maximum power density. The system voltage
can be increased to higher levels by stacking a number of
cells in series, much as stacking batteries in a flashlight.
Figure 1 shows a counter-flow situation, where the fuel

flows in one direction and the air flows in the other. Both
co-flow and cross-flow geometries are also used. Other lay-
outs do not use defined channels, leaving the space between
the electrode and the interconnect relatively open with
screen-like structures forming the electrical connection be-
tween the porous electrode and the interconnect structure.
Figure 1 illustrates only the interior of the stack. There must
also be some sort of manifold system that distributes flow
into the channels and between layers of cells [4]. The inter-
connect should have very low electrical resistance, leading
to nearly uniform electric potential. The overall system size
depends on the net power to be delivered. For systems in
the kilowatt range, planar cell dimensions are on the order
of tens of square centimeters and flow channels are usually

Fig. 2: One cell of a tubular anode-supported solid-oxide fuel cell.

Fuel flows through the inside of the tube, which is formed from a

porous anode. The thin dense electrolyte and porous cathode are

fabricated on the outside of the tube. The outside of the tube (cath-

ode) is exposed to air. Wires are wrapped around the outside of

the tube to form the cathode interconnect and the anode terminal

is formed by a metal insert that is bonded to the porous anode at

one end of the tube.

small. With channel dimensions on the order of a millime-
ter and low flow rates (especially on the fuel side), charac-
teristic Reynolds numbers are on the order of ten.
Figure 2 illustrates an anode-supported tube-based de-

sign. Here the fuel flows on the inside of the tube and the
air on the outside. Multiple tubes are packed into a cham-
ber through which air flows. Air and excess fuel mix in
a combustion zone at the tube exit. Tube systems have
an advantage insofar as dissimilar-material sealing can be
less troublesome than in planar systems. However, ohmic
losses in current collection can be more troublesome be-
cause there are longer current paths through the relatively
high-resistance electrodes. In any case, the underlying elec-
trochemical and reacting flow processes are similar in pla-
nar and tubular systems.

2.1. Electrolyte

Electrolytes should be good ion conductors, but have lit-
tle or no electronic conductivity. The electrolyte must also
be impervious to gas transport. In an SOFC the electrolyte
is an oxide with mobile oxygen ions O2−. The most com-
mon electrolyte is zirconia (ZrO2) with 8% yttrium added
as a dopant (yttrium-stabilized zirconia, or YSZ). The Y
atoms substitute for Zr in the lattice, but have +3 valence,
rather than +4. To compensate the charge, one oxygen ion
must be removed for every two Y atoms added. Therefore,
YSZ has a vacancy concentration of 4% in the oxygen sub-
lattice. Since the addition of Y dopants also stabilizes the
relatively open fluorite crystal structure (which without Y
doping is only stable at higher temperatures), the vacancies
can move relatively easily through the crystal via hopping.
The ionic conductivity σ is known for most common

electrolyte materials and is usually expressed as

σ =
σ0

T
exp

(−Eel

RT

)
. (1)

For YSZ, σ0 ≈ 3.6 × 105 S·K/cm and Eel ≈ 8 × 104

J/mol [5]. It is evident that the conductivity varies strongly
with temperature.

2

Figure 1.1. Two cells of a planar anode-supported SOFC stack. The flow channels, which have charac-
teristic cross sections on the order of a square millimeter, are formed in the interconnect. The MEA is
fabricated with a dense electrolyte sandwiched between porous electrodes. From Kee et al. [31].

assembly (MEA), consisting of porous anode and cathode layers separated by a dense ceramic elec-

trolyte. The opportunity for game-changing breakthroughs relies on our understanding of the MEA,

specifically, the interplay between electrode microstructure, gas transport, and electrochemical reac-

tions responsible for power production. Attempts to understand SOFC electrode performance have

been limited by a lack of data and knowledge describing the microstructure, which directly affects

gas transport and electrochemistry. Optimal electrodes will combine high porosity for gas diffusion,

high connectivity for ion/electron conduction, and high surface area for chemical and electrochemical

reactions.

Although much SOFC research focuses on developing new high-performance materials, it is also

known that electrode structure and microstructure significantly impact SOFC performance. The work

in this thesis is aimed to expose the relationship between microstructure and gas transport. This

is accomplished in two separate broad tasks: (1) study the internal framework of various modeled

microstructures spanning from seemingly simple, uniform-size ordered sphere packings, to more complex

random and distributed-size particle-based models, to voxelated meshes of actual SOFC electrodes; and

(2) simulate gas diffusion within the microstructure to predict effective transport properties and lead

to better understanding of the complex relationship between molecular mechanisms and influence of

the physical structure of the pore network.
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Fig. 1: Two cells of a planar anode-supported solid-oxide fuel-cell

stack. The flow channels, which have characteristic cross sections

on the order of a square millimeter, are formed in the interconnect.

The membrane-electrode assembly is fabricated with a dense elec-

trolyte sandwiched between porous electrodes.

chemistry and physical processes within fuel cells. Al-
though aspects of the fluid flow, gas-phase chemistry, and
thermal catalytic chemistry will be familiar to readers who
are expert in combustion science and technology, aspects of
the electrochemistry will be new. Fuel cells rely on the cou-
pled interaction between thermal and electrochemical pro-
cesses. Thus, the optimal design and implementation of
new systems will benefit from an improved understanding
of these interactions.

2. Solid-Oxide Fuel Cells

Figure 1 illustrates the physical layout of a planar anode-
supported SOFC. The fuel-cell stack is composed of layers
of cells. Each cell is composed of amembrane-electrode as-
sembly (MEA), which consists of a dense electrolyte sand-
wiched between an anode and a cathode. The anode is the
electrode on the fuel side and the cathode is on the air side.
The electrolyte is a dense polycrystalline ceramic that is
impervious to any gas transport, but conducts oxygen-ions
O2−. The architecture illustrated in Fig. 1 has defined flow
channels that are formed in an interconnnect. The anode
and cathode are connected by an external circuit through
which electrons may flow. The voltage of an individual cell
ranges from about one volt at open circuit to around one-
half volt at maximum power density. The system voltage
can be increased to higher levels by stacking a number of
cells in series, much as stacking batteries in a flashlight.
Figure 1 shows a counter-flow situation, where the fuel

flows in one direction and the air flows in the other. Both
co-flow and cross-flow geometries are also used. Other lay-
outs do not use defined channels, leaving the space between
the electrode and the interconnect relatively open with
screen-like structures forming the electrical connection be-
tween the porous electrode and the interconnect structure.
Figure 1 illustrates only the interior of the stack. There must
also be some sort of manifold system that distributes flow
into the channels and between layers of cells [4]. The inter-
connect should have very low electrical resistance, leading
to nearly uniform electric potential. The overall system size
depends on the net power to be delivered. For systems in
the kilowatt range, planar cell dimensions are on the order
of tens of square centimeters and flow channels are usually

Fig. 2: One cell of a tubular anode-supported solid-oxide fuel cell.

Fuel flows through the inside of the tube, which is formed from a

porous anode. The thin dense electrolyte and porous cathode are

fabricated on the outside of the tube. The outside of the tube (cath-

ode) is exposed to air. Wires are wrapped around the outside of

the tube to form the cathode interconnect and the anode terminal

is formed by a metal insert that is bonded to the porous anode at

one end of the tube.

small. With channel dimensions on the order of a millime-
ter and low flow rates (especially on the fuel side), charac-
teristic Reynolds numbers are on the order of ten.
Figure 2 illustrates an anode-supported tube-based de-

sign. Here the fuel flows on the inside of the tube and the
air on the outside. Multiple tubes are packed into a cham-
ber through which air flows. Air and excess fuel mix in
a combustion zone at the tube exit. Tube systems have
an advantage insofar as dissimilar-material sealing can be
less troublesome than in planar systems. However, ohmic
losses in current collection can be more troublesome be-
cause there are longer current paths through the relatively
high-resistance electrodes. In any case, the underlying elec-
trochemical and reacting flow processes are similar in pla-
nar and tubular systems.

2.1. Electrolyte

Electrolytes should be good ion conductors, but have lit-
tle or no electronic conductivity. The electrolyte must also
be impervious to gas transport. In an SOFC the electrolyte
is an oxide with mobile oxygen ions O2−. The most com-
mon electrolyte is zirconia (ZrO2) with 8% yttrium added
as a dopant (yttrium-stabilized zirconia, or YSZ). The Y
atoms substitute for Zr in the lattice, but have +3 valence,
rather than +4. To compensate the charge, one oxygen ion
must be removed for every two Y atoms added. Therefore,
YSZ has a vacancy concentration of 4% in the oxygen sub-
lattice. Since the addition of Y dopants also stabilizes the
relatively open fluorite crystal structure (which without Y
doping is only stable at higher temperatures), the vacancies
can move relatively easily through the crystal via hopping.
The ionic conductivity σ is known for most common

electrolyte materials and is usually expressed as

σ =
σ0

T
exp

(−Eel

RT

)
. (1)

For YSZ, σ0 ≈ 3.6 × 105 S·K/cm and Eel ≈ 8 × 104

J/mol [5]. It is evident that the conductivity varies strongly
with temperature.

2

Figure 1.2. One cell of a tubular anode-supported SOFC. Fuel flows through the inside of the tube,
which is formed from a porous anode. The thin dense electrolyte and porous cathode are fabricated on
the outside of the tube. The outside of the tube, i.e., cathode, is exposed to air. Wires are wrapped
around the outside of the tube to form the cathode interconnect and the anode terminal is formed by
a metal insert that is bonded to the porous anode at one end of the tube. From Kee at al. [31].

1.1 Background

Figure 1.1 illustrates the physical layout of a planar anode-supported SOFC, while figure 1.2 shows

an anode-supported tube-based design. The anode is a ceramic-metallic composite (cermet), generally

made of nickel (Ni) and yttria-stabilized zirconia (YSZ), while the cathode is composed of strontium-

doped lanthanum manganate (LSM). Sandwiched between the electrode layers is a dense electrolyte

(YSZ) that has the ability to conduct oxygen ions (O2−) at high temperatures (SOFCs generally operate

in the range 600–1,000 ◦C). Collectively, these three pieces make up the MEA. Mass transfer of the fuel

(e.g., H2) occurs from the fuel channel, through the porous anode, to electrochemical reactive sites at or

near the anode/electrolyte interface. These reactive sites are known as triple-phase boundaries (TPBs),

formed at the intersection of gas, oxygen-ion conductor (electrolyte, YSZ), and electron conductor (Ni).

Products of the charge-transfer reactions (i.e., gas-phase products like H2O, as well as electrons) must

be transported away from the TPB. Gas-phase products diffuse and convect back through the porous

anode where they mix with the fuel. Electrons are carried through the anode metal phase to the

interconnect. The process is illustrated graphically in figure 1.3.

Apart from work in a handful of university labs, essentially all SOFC development work is a variation

on basic themes more than 40 years old. For example, the Ni/YSZ cermet anodes used in the majority

of modern SOFCs do not differ qualitatively from those developed by Spacil in 1964 [56]. The modern

SOFC—a Ni/YSZ anode, YSZ electrolyte, and LSM cathode—is the result of engineering compromises
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Figure 1.3. Details of the membrane-electrode assembly microstructure affect transport and charge-
transfer processes. Image courtesy of Robert Kee, Colorado School of Mines.

that took into account manufacturability, material compatibility (e.g., matching of thermal expansion

coefficients), performance, and cost. These trade-offs were established for the previous era of manufac-

turing technology, when high-temperature sintering of ceramic powders was at the forefront of ceramics

fabrication methods. Now, we have access to a wide range of technologies, micro- and nanofabrication

capabilities, and high-performance materials largely unknown in previous decades.

Current SOFC electrodes are typically produced from high-temperature sintering of powders em-

bedded with pore formers. The resulting structures are highly tortuous, complex three-dimensional

(3D) networks, optimal neither for gas transport nor electrochemistry. Not until the recent work of

Wilson et al. [65] have we been able to visualize and analyze the microstructure of a SOFC cermet an-

ode. The results of a 3D reconstruction of a cermet anode using focused ion-beam milling and scanning

electron microscopy (FIB-SEM) are shown in figure 1.5. The microstructure is highly convoluted and

only partially connected—only 63% of the TPB regions are well connected to the metal, oxide, and

pore networks. A large proportion (19%) of the TPB is formed by short segments disconnected from

one or more networks, and therefore inactive for electrochemistry. Such a random, tortuous structure is

clearly not optimized for its desired purpose, and clearly not what one would design with better control

over the fabrication process.
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Figure 1.4. SEM images of typical fuel cell structures. Left shows the membrane-electrode assembly in
cross section and right shows the porous surface of the anode in plan view. Pictures and description
from Shao et al. [53]. LETTERS
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Figure 2 3D anode reconstruction. A view of the 3D reconstruction showing the Ni
(green), YSZ (translucent/grey), and pore (blue) phases.

4.28 × 106 m cm−3. Although TPB lengths have previously been
estimated from 2D images of La0.8Sr0.2MnO3–YSZ cathodes10, this
is the first direct measurement known to the authors.

We are currently developing detailed electrochemical models
of porous anode and cathode performance that connect TPB
length and other microstructural information quantitatively to
performance. In the meantime, a crude assessment can be done
to determine if the measured TPB density reported above is
consistent with the measured SOFC performance. We can estimate
the expected anode area-specific resistance by multiplying the
above TPB density by previously measured values of the length-
specific resistance (LSR) of the TPB, and an approximate anode
active depth (≈10 µm (refs 17,21)). On the basis of various studies
including point-contact18,22 or patterned23,24 electrodes, reported
LSR values vary in a range from 5 × 104 to 5 × 106 ! cm at
700 ◦C, yielding anode area-specific resistance of 0.1–10 ! cm2.
Although broad, this range encompasses typical values for this
type of SOFC anode25 and is consistent with our total SOFC
area-specific resistance at 700 ◦C (≈0.7 ! cm2, from the data in
the Supplementary Information, Fig. S1, which also included
electrolyte and cathode resistances). The large uncertainties in
this comparison reinforce the need to separate microstructure
from other complicating variables, including utilization gradients,
impurities, polarization, and polarization history, all of which have
been shown to be important in overall anode performance18.

For a TPB to contribute to anode electrochemistry
(equation (1)), the gaseous, ionic, and electronic phases adjoining
the TPB must have a contiguous connection to the rest of the
microstructure. That is, the pore must be connected through the
surrounding pore network to the fuel stream, the Ni phase to
the external electrical circuit, and the YSZ phase to the bulk YSZ
electrolyte. As an initial step in evaluating phase connectivity, we
have developed an algorithm to identify each of the contiguous
TPB regions in the sample. (Note that contiguous TPBs imply
contiguous adjoining phases.) In Fig. 3, different colours are
assigned to these individual TPB segments. Analysis of the data
indicates that 63% of TPBs are interconnected and 19% are short
unconnected segments where the three phases may have poor
connectivity with the rest of the microstructure; the remaining
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Figure 3 3D map of the three-phase boundaries in the anode. Each colour
represents a set of contiguous TPBs. The majority of the TPB length (63%) is
connected (coloured white/grey). The remaining length consists of shorter,
disconnected TPB segments (having colours other than white/grey). A fraction of
these intersect the sample boundaries, and hence may be connected to larger
segments existing outside the sample volume. However, a substantial fraction (19%)
of the TPBs contact neither the highly inteconnected white/grey TPBs nor the sample
boundaries, that is, they are actual short segments.

18% of the TPBs are undetermined because they contact the
sample boundaries.

A related question is tortuosity of the ionic, electronic, and
gas-phase transport pathways within the electrode network. For
example, a high gas-phase tortuosity at the anode inhibits the
exchange of H2O and H2; this can limit cell performance and
is most readily observed as a limiting current behaviour at high
current densities (for example, the rapid drop in cell voltage above
≈4 A cm−2 seen in Supplementary Information, Fig. S1). As a
first attempt at evaluating gas-phase tortuosity, we assumed that
transport within the pore subdomains is described by Laplace’s
equation. Recent flux-based Monte Carlo simulations in porous
media suggest that such an approach should generally be valid
for both molecular and Knudsen diffusion, provided that the
porosity is higher than ∼10% (ref. 26). Figure 4 schematically
illustrates the calculation procedure. We first converted the 3D
reconstructed volume of the gas pores shown in Fig. 2 into a
finite-element mesh. In practice, the no-flux boundary condition
at the pore–solid interface was replaced by setting the diffusivity
in the solid to be much smaller than that in the pore and solving
∇ · (D(x)∇ψ) = 0 instead, where D(x) is the position-dependent
diffusivity and −∇ψ is the flux. The test results using artificial
microstructures showed that using a factor of 100 between the
two diffusivities ensured that the results were not altered by this
approximation. We used FEMLAB, commercial software from
Comsol, to obtain ψ. The tortuosity was then recovered by equating
the macrohomogeneously defined flux to the volume-average flux
within the sample volume:

− ε

τ
∇ψMF = − 1

V

∫∫∫

V

∇ψdV ,

where V is the sample volume, ε is the porosity, and τ is the
tortuosity. This procedure was carried out for the three primary
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Figure 1.5. A view of a three-dimensional reconstructed SOFC anode, showing Ni (green), YSZ (translu-
cent/gray), and pore (blue) phases. Picture and description from Wilson et al. [65].

Using advanced materials and advanced nanoengineering methods, combined with a better under-

standing of the interplay between microstructure and transport (as well as electrochemistry), it is

possible to completely change how SOFC electrodes are made, resulting in potentially much higher

performance, and greatly reducing cost per kilowatt.

1.2 Organization of Thesis

The goal of this thesis is to provide a picture of the internal framework of a traditional SOFC anode,

and based on the data presented, to offer suggestions that may improve SOFC performance.
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Chapter 2 is aimed to provide the reader with an introduction to the kinetic theory of gases as

it relates to the work that follows. The mathematical and physical framework for many concepts

and quantities used throughout this thesis are established in this chapter. Chapter 3 contains the

background and description of the simulation method used to model mass transport in porous media.

The chapter includes discussion on how model porous materials are created, ranging from simple straight

capillaries, to packed spheres, to 3D reconstruction techniques used to represent real SOFC anodes.

Mass transport is simulated using a Monte-Carlo-based tracer-diffusion scheme that is not novel in its

implementation. The term tracer-diffusion refers to the technique of tracking the passage of molecules,

or tracers, through the system. The significant contribution of this thesis comes from taking advantage

of the tracer-diffusion scheme to probe the inner networks of the porous media itself. Most notably,

simulations of tracer molecules following ballistic trajectories from one wall collision to the next are

used to estimate the pore-size distribution from the distribution of chord lengths between each gas-

solid collision. These findings are presented in chapter 4. Chapter 5 provides some quantitative data

describing the complex networks that make up the SOFC anode microstructure. Until recently, little

has been known about the physical makeup and structure of the separate phases that make up the

anode. Data pertaining to TPB density and activity can be found in this chapter, as well as volume,

surface area, and connectivity information for each of the phases. Finally, chapter 6 is the concluding

chapter building from the results of the previous two. Here, an alternative design for a SOFC-MEA

is discussed and analyzed using the techniques developed in earlier chapters. Although the proposed

design follows from earlier concepts, this thesis presents new and unique results that should provide

the basis for future studies in this field.
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Chapter 2

Kinetic Theory and Gas Diffusion

“Here we have the kinetic theory picture of a gas—a crowd of molecules, each moving on its own indepen-

dent path, entirely uncontrolled by forces from the other molecules, although its path may be abruptly altered

as regards both speed and direction, whenever it collides with another molecule or strikes the boundary of the

containing vessel. The molecules move so swiftly that even gravity has practically no controlling effect on their

motions...that we may, without appreciable error, think of the molecules as moving in straight lines at uniform

speeds...” [27]

2.1 Introduction

The purpose of this chapter is to provide the reader with an introduction to the kinetic theory of gases.

The mathematical and physical framework and background for the quantities I discuss in this thesis

are established, all with primary emphasis on gas diffusion. For a more complete discussion on kinetic

theory, the reader is referred to Kennard [32], Jeans [27], and Present [49].

Kinetic theory originated to explain and correlate the physical properties of gases and gaseous

phenomena on the bases of the molecular hypothesis: that matter is composed of small discrete units

known as molecules, that the molecule is the smallest quantity of a substance that retains the chemical

properties of that matter (whereas an atom is the smallest portion of matter which has the property

of remaining essentially intact in every chemical reaction) [32], that all molecules of a given substance

are alike, and that the three states of matter differ essentially in the arrangement and state of motion

of the molecules [49]. Apart from the molecular hypothesis, kinetic theory is further developed based
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on conservation of momentum and energy, as well as the use of statistical methods. In regards to the

need for statistical descriptions, Present writes:

Because of the tremendous number of molecules involved in any practical sample of a gas, the

actual behavior of the gas is expected to be the same as would be predicted from the average

behavior of the molecules. In order to calculate this average behavior, we must assume that,

after taking into account the dynamical laws and the conditions of the problem, the motions

of the molecules are governed by pure chance...

It is necessary to stress that kinetic theory is a statistical theory. In dealing with systems that are much

too complicated to permit explicit predictions of their behavior, a representative collection of similar

systems are used to develop averages and most probable behavior.

2.2 Statistical Methods and Distribution Functions

Statistical information about a gas or any physical system is embodied in a so-called distribution

function. This section presents several useful and very important distribution functions, including the

velocity and free-path distributions.

2.2.1 The Maxwell-Boltzmann Law and the Velocity Distribution Function

The integro-differential Boltzmann equation is used in this section to present a rigorous derivation of

the Maxwell-Boltzmann distribution law for an equilibrium gas. The Boltzmann equation for a pure gas

is simply stated, rather than explicitly derived. For a detailed and rigorous derivation and discussion

of the Boltzmann equation, the reader is referred specifically to Present [49] and Bird [3], as well as

any generally regarded text on kinetic theory.

Consider a sample of gas containing N identical molecules that is homogeneous in physical space.

Each molecule has a velocity v with components vx, vy, and vz aligned with the Cartesian axes specified

by subscript. Just as physical space is defined in the Cartesian sense with position coordinates x, y,

and z, velocity space is defined by the three velocity components, as shown in figure 2.1. The velocity
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distribution function f(v) is then defined by

dN = Nf(v)dvxdvydvz = Nf(v)dv, (2.1)

where dN is the number of molecules in the sample of gas (in all physical space) with velocity compo-

nents in the range [vx, vx+dvx], [vy, vy+dvy], and [vz, vz+dvz], i.e., the number of molecules contained

in the velocity-space control volume in figure 2.1. Since dN and N refer to the molecules in the same

volume of physical space, the above expression may be written as

dn
n

= f(v)dv, (2.2)

where the number density n has been used. The velocity distribution function is normalized

∞∫

−∞

f(v)dv =

∞∫

−∞

∞∫

−∞

∞∫

−∞

f(v)dvxdvydvz = 1, (2.3)

and further, f(v) can never be negative, and must have finite bounds in velocity space or tend to zero

as c (molecular speed—magnitude of v—chosen to avoid possible confusion between symbols) tends to

infinity.

physical space
dr = dxdydz

v

v

v

velocity space
dv = dv dv dvx y z

z

y

x

y

z

x

r

dz
dy dx

dr

v

dv

dvz

dvy dvx

Figure 2.1. Representative control-volume elements in physical and velocity space.
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Macroscopic properties of the gas can be obtained from various moments of the velocity distribution.

For example, the average value of any molecular quantity Q can be found from the average over the

molecules in an element of physical space,

Q =
1
N

∫
QdN,

such that substituting for dN from equation (2.1) gives

Q =
∫
Qf(v)dv. (2.4)

For the purposes of kinetic theory, the instantaneous state of a gas is completely specified if the dis-

tribution function for molecular velocities and positions is known throughout the gas (just as a gas

flow in the classical sense would be completely described by the position, velocity, and internal state of

every molecule at a particular instant—but a real gas contains such a large number of molecules that

we must resort to statistical descriptions in terms of probability distribution functions).

Using the velocity distribution (herein denoted simply as f for f(v)), the Boltzmann equation for

a simple dilute gas is [3]

∂

∂t
(nf) + v · ∂

∂r
(nf) + F · ∂

∂v
(nf) =

∞∫

−∞

4π∫

0

n2(f?f?1 − ff1)crσdΩdv1. (2.5)

If each term is considered to act on a phase-space volume element (i.e., dvdr), each has a physical

meaning. The left-most term refers to the rate of change of the number of molecules in the element.

The processes that contribute to this rate of change of molecules are represented by the additional terms

in the equation. The middle term on the left-hand side describes the convection of molecules across

the face of dr by the molecular velocity v. The final term on the left is also a convective term. Just as

the middle term represents molecules moving into physical space carried by a velocity, the final term

represents molecules moving into velocity space carried by an acceleration produced by an external force

F. The velocity, or rate of change of position, is responsible for moving molecules through physical

space. Similarly, the acceleration, or rate of change of velocity, is responsible for moving molecules
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through velocity space. The delineation of physical and velocity space emphasizes the fact that v and

r are treated as independent variables.

The sole remaining term on the right-hand side of equation (2.5) embodies the scattering of molecules

into and out of the phase-space element dvdr as a result of intermolecular collisions. The gas is

considered to be dilute, in that the spacing between molecules is large compared to the molecular

diameter. This assumption has two major implications: (1) a collision is consequently considered to

be an instantaneous event at a fixed position in physical space, but causes a molecule to jump from

one point to another in velocity space; and (2) all collision events are assumed to be binary. Since

we seek the scattering of molecules into and out of the phase element, we must consider precollision

and postcollision velocities of the molecules participating in collisions. In particular, we are concerned

with the collision of a molecule of class v with one of class v1, such that their respective postcollision

velocities are v? and v?1. This class of collisions is responsible for scattering molecules out of the phase

element, as v, v1 → v?, v?1. The inverse is true for collisions that scatter molecules into the phase

element, moving them from v?, v?1 → v, v1. In the way we have defined f to denote the value of the

velocity distribution at v (i.e., f = f(v)), the variables f1, f?, and f?1 are used to denote the values of

f at v1, v?, and v?1, respectively.

A molecule of class v may be chosen as a test particle moving with relative speed cr (magnitude of

v − v1) as viewed in the frame of reference of class v1 molecules. The volume swept out in physical

space by the cross section for this class of collision is given by crσdΩ, where σdΩ is the differential cross

section and dΩ is the unit solid angle centered about the post-collision relative velocity.

Of the term in parenthesis on the right-hand side of equation (2.5), f?f?1 is indicative of molecules

scattered into the phase space and ff1 those scattered out of phase space via binary collisions. Inte-

gration of the whole expression over the entire collision cross section, followed by integration of v1 over

all velocity space, yields the total number of molecules of class v scattered into the phase element.

The full Boltzmann equation given in equation (2.5) is the starting point for the derivation of the

Maxwell-Boltzmann distribution law for a gas in equilibrium. The equilibrium state is defined as one in

which the distribution of molecular velocities is independent of position and time. For such a state, in

the absence of an external force field, the entire left-hand side of equation (2.5) must vanish. The first
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term vanishes for any steady state, as well as the equilibrium state. The middle term involves gradients

of the number density n = n(r, t) and velocity distribution function f . In equilibrium, the density must

be uniform in the absence of an external field. Additionally, the equilibrium state is defined such that

the velocity distribution is independent of position. Hence, the middle term vanishes. The third term

on the left vanishes because there is no external force field. Under these assumptions, the Boltzmann

equation of equation (2.5) reduces to

0 =

∞∫

−∞

4π∫

0

n2(f?f?1 − ff1)crσdΩdv1. (2.6)

One possible solution of equation (2.6) requires the vanishing of the term in parenthesis for all values

of v and v1, to give the condition

f?f?1 = ff1, or equally f(v?)f(v?1) = f(v)f(v1). (2.7)

However, since the integrand can have either sign (i.e., positive indicates molecules are scattered into

the phase element due to collisions, and negative gives a net number of molecules scattered out of the

element), the vanishing of the integral does not require the condition of equation (2.7). Instead, all

that is required is a mutual cancellation of the positive and negative contributions to the value of the

integral from different parts of the region of integration. Therefore, the condition in equation (2.7) is

sufficient for equilibrium, but the analysis to this point cannot conclude that it is necessary.

Before proof of necessity via the Boltzmann H-theorem is established, it is helpful to present a mo-

ment of the Boltzmann equation by multiplying equation (2.5) by the quantity Q, and then integrating

over all velocity space, just as moments of the velocity distribution are found through equation (2.4).

The quantity Q relates to a single molecule and is either a constant or function of the molecular ve-

locity v. Omitting details of the derivation, the moment equation produced from multiplication of

equation (2.5) by Q and subsequent integration over velocity space is [3]

∂

∂t
(nQ) + ∇ · (nvQ)− nF · ∂Q

∂v
= ∆[Q], (2.8)
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where

∆[Q] =

∞∫

−∞

∞∫

−∞

4π∫

0

n2Q(f?f?1 − ff1)crσdΩdv1dv. (2.9)

Though not shown here, the moment equations can be used to obtain the monatomic gas version of the

conservation equations of a continuum gas [3].

For the case of a spatially homogeneous pure gas in the absence of a field, the Boltzmann equation

reduces to equation (2.6), except the left-hand side now contains n(∂f/∂t). Under the assumptions

above, the number density n is constant, all spatial gradients (i.e., ∂/∂r) are zero, and the external

forces F are zero. Therefore, the equation of interest simplifies to

∂f

∂t
= n

∞∫

−∞

4π∫

0

(f?f?1 − ff1)crσdΩdv1. (2.10)

The so-called Boltzmann H-theorem makes use of the Boltzmann H-function, defined as

H = ln(nf) =

∞∫

−∞

f ln(nf)dv,

where I have substituted Q = ln(nf) according to equation (2.4). Using this value of Q in the simplified

version of equation (2.8) corresponding to equation (2.10), gives [3]

∂H

∂t
= −n

4

∞∫

−∞

∞∫

−∞

4π∫

0

ln(f?f?1 /ff1)(f?f?1 − ff1)crσdΩdv1dv. (2.11)

The integrand of equation (2.11) is nonnegative for all values of the variables of integration (specifically,

if f?f?1 > ff1, then ln(f?f?1 /ff1) > 0 and (f?f?1 − ff1) > 0, and alternatively, if f?f?1 < ff1, then

ln(f?f?1 /ff1) < 0 and (f?f?1 − ff1) < 0). Hence, the quantity ∂H/∂t ≤ 0 where the equality is only

true if the integrand vanishes everywhere, for all values of v and v1. This is true only if f?f?1 = ff1, and

therefore, equation (2.7) is both necessary and sufficient for equilibrium. This equilibrium condition

can be written as

ln f? + ln f?1 = ln f + ln f1.

This equation shows that ln f is a collisional invariant at the equilibrium state, i.e., it is a conserved
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quantity for binary molecular collisions. The only other collisional invariants for a simple monatomic

gas are the mass m, momentum mv, and kinetic energy mc2/2, set forth by conservation laws. The

quantity ln f must therefore be a superposition of these possibilities,

ln f = Amc2/2 + B ·mv + C, (2.12)

where A, B, and C are constants. The velocity can be written in terms of the mean or free stream or

mass velocity v0 and the thermal or fluctuating or random velocity v′, as v = v0 + v′. The square of

the speed becomes c2 = v ·v = c20 + 2v0 ·v′+ c′2 (note again that I use the convention of v to represent

a velocity vector, and the scalar speed c is the norm of that vector). This result and the expanded

relation for v can be substituted into equation (2.12) to give

ln f = Amc′2/2 +m(Av0 + B) · v′ +Amc20/2 + B ·mv0 + C.

By definition, the random or fluctuating velocities of an equilibrium gas must have no preferred direction

so that the distribution is isotropic. This requires the coefficient of the second term to be zero, such

that B = −Av0, and

ln f = Amc′2/2−Amc20/2 + C,

which leads to an expression for the velocity distribution f ,

f = exp(Amc′2/2−Amc20/2 + C)

= exp(−Amc20/2 + C) exp(Amc′2/2).

As defined after equation (2.3), the distribution f must be bounded, requiring Am/2 < 0 (note that

the first term is simply a finite constant, and the term we must bound is the second term involving c′2).

For convenience, let Am/2 = −β2 so that

f = exp(β2c20 + C) exp(−β2c′2).
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The constant exp(β2c20 + C) can be determined from the normalization condition,

∞∫

−∞

fdv = exp(β2c20 + C)

∞∫

−∞

exp(−β2c′2)dv′ = 1,

where
∞∫

−∞

exp(−β2c′2)dv′ =

∞∫

−∞

∞∫

−∞

∞∫

−∞

exp[−β2(v′2x + v′2y + v′2z )]dv′xdv′ydv′z = π3/2/β3,

so exp(β2c20 + C) = β3/π3/2, and

f(v) = fM = (β3/π3/2) exp(−β2c′2), (2.13)

is the equilibrium or Maxwellian distribution of thermal velocities (where c′2 = v′ · v′). The constant

β can be related to the temperature of the gas through the average kinetic energy

3
2
kBT =

1
2
mc′2

=
1
2
m

∞∫

−∞

c′2fMdv′

=
1
2
m

β3

π3/2

∞∫

−∞

c′2 exp(−β2c′2)dv′,

where

∞∫

−∞

c′2 exp(−β2c′2)dv′

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

(v′2x + v′2y + v′2z ) exp
[
−β2(v′2x + v′2y + v′2z )

]
dv′xdv′ydv′z

= 3

∞∫

−∞

exp(−β2v′2y )dv′y

∞∫

−∞

exp(−β2v′2z )dv′z

∞∫

−∞

v′2x exp(−β2v′2x )dv′x

= 3
(
π1/2

β

)(
π1/2

β

)(
π1/2

2β3

)
.

Therefore,

3
2
kBT =

3
4
m

1
β2
,
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giving

β2 =
m

2kBT
. (2.14)

Since I have assumed an equilibrium gas, the translational and thermodynamic temperatures are equal,

so there is no need to distinguish between the two.

The distribution of molecular velocities can be used to derive the distribution of molecular speeds.

It follows from equation (2.13) and equation (2.14) that the equilibrium distribution of molecular speeds

is given by

f(c′) = (4/π1/2)β3c′2 exp(−β2c′2). (2.15)

The most probable thermal speed c′m and mean thermal speed c′ can be found from the above distri-

bution as

df(c′)
dc′

∣∣∣∣
c′=c′m

= 0→ c′m = 1/β, (2.16)

c′ =

∞∫

0

c′f(c′)dc′ = 2/(π1/2β) = (2/π1/2)c′m. (2.17)

The distributions and other quantities derived above will be used extensively in this work.
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Figure 2.2. Plot of the probability distribution function for molecular speeds, f(c′), from equa-
tion (2.15). The maximum or most probable speed occurs at βc′ = 1 as given by equation (2.16).

2.2.1.1 Sampling Molecular Speeds from the Equilibrium Distribution

Statistical simulation generally requires sampling values from a prescribed distribution through the

use of random numbers. The acceptance-rejection method can be used to sample speeds from f(c′).
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While the method involves a repetitive process which may require the evaluation of a large number of

functions and many random fractions, it is quite efficient for this case.

In order to make direct use of a random fraction rf distributed uniformly over the range [0, 1], the

distribution function is normalized,

F =
f(c′)
f(c′m)

,

where f(c′m) corresponds to the maximum value of the distribution function on the interval [0,∞).

This normalization requires F to be on [0, 1]. A value of c′ is chosen at random, on the basis of c′ being

uniformly distributed between its limits. However, since the upper limit is ∞, an arbitrary cutoff value

of 3/β is used. The fraction of values of c′ lying outside the range [0, 3/β] is 0.00043985. Hence, c′ is

sampled from

c′ = 3rf/β,

which leads to

F =
f(c′)
f(c′m)

=
c′2 exp(−β2c′2)
c′2m exp(−β2c′2m)

= 9r2
f exp(1− 9r2

f ),

where the two instances of r2
f indicate the same random fraction (as opposed to generating two separate

random fractions, one for each instance). A second random fraction rf2 is then generated and, if

F > rf2, the value of c′ is accepted. If, on the other hand, F < rf2, the value of c′ is rejected and the

process is repeated (i.e., generate new rf for c′, compute F , then generate another rf2 and compare to

F) until a value of c′ is accepted.

2.2.2 Scattering of Molecules from a Surface

At equilibrium, the flux of molecules to a surface (incident molecules) must be equal to the flux of

molecules leaving the surface (emitted molecules). Hence, there is no net mass flow, just as there can

be no net energy or momentum transfer. Because the rates of adsorption and desorption are equal, the

coverage is constant. Equilibrium also requires the gas and surface temperatures to be equal.

It follows that the angular distributions of the incident and emitted molecules must be identical

(and hence, no flow directionality). The conservation laws do not mean that when a molecule hits a

surface, resides there for some time, and subsequently desorbs it enters the gas phase with exactly the
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Figure 2.3. Spherical polar coordinates in physical space. In velocity space, in a frame of reference
moving with the stream velocity, r → c′ and the x, y, and z axes become v′x, v′y, and v′z, respectively.

same energy it had before it became adsorbed [35]. The beauty of thermodynamics is that, even though

no individual molecule returns to the gas phase with exactly the same energy and direction of travel,

when averaged over all molecules in the system, the energy and propagation directions do not vary in

time for a system at equilibrium when averaged over a sufficiently long time.

A good discussion on the arguments and issues related to ad/desorption phenomena and angular

distributions can be found in Kolasinski [35] and Greenwood [21]. Essentially, at equilibrium, since the

angular distribution of molecules incident on the surface follows a cosine distribution, based on simple

geometric arguments, the angular distribution of the desorbing molecules must also follow a cosine dis-

tribution. This is often referred to as the Knudsen cosine law, though Kolasinski notes “that Knudsen’s

proposition should attain the status of a ‘law’ is remarkable because (1) it was incorrectly derived and

(2) experiments of the type he [Knudsen] performed to prove it should exhibit deviations from a [cosine]

distribution.” Nevertheless, subsequent work (see references in Kolasinski, §3.8) established that the

second law of thermodynamics demands the validity of the cosine law for the angular distribution of

molecules that leave a surface.

For a system of spherical-polar coordinates, as shown in figure 2.3, the volume of the velocity space
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Figure 2.4. Molecules crossing a surface dA in direction dΩ with speed c′ must lie in the volume element
c′ cos θdAdt. The solid angle dΩ makes an angle θ with the surface normal n. The two vectors tangent
to the surface are t1 and t2.

element pictured in figure 2.1 is

dv = c′2 sin θdθdφdc′. (2.18)

Combining equation (2.2), equation (2.13), and equation (2.18), the fraction of molecules with speed

between c′ and c′+dc′, which make an angle between θ and θ+dθ with the polar direction, and between

φ and φ+dφ with the azimuth (i.e., traveling in the direction defined by the solid angle dΩ = sin θdθdφ)

can be written as

dn/n= fMc
′2 sin θdθdφdc′

= (β3/π3/2)c′2 exp(−β2c′2) sin θdθdφdc′.

I can write this more simply as

dn/n = f(c′)dc′
dΩ
4π

,

where f(c′) is given in equation (2.15). Consider now the picture in figure 2.4. The flux of molecules

dJ = dn/(dAdt) (molecules/m2·s) crossing surface element dA in time dt is

dJ = nc′ cos θf(c′)dc′
dΩ
4π

.
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Figure 2.5. Three-dimensional polar plot of the angular distribution functions. The right image shows a
cutaway through the vertical midplane of the left image. The rotational symmetry is due to the uniform
distribution of the azimuthal angle over 2π as given by g(φ) = 1/2π. The lopsided shape evident in the
cutaway image is the shape of the polar angle distribution function h(θ) = 2 cos θ sin θ.

This expression can be used to obtain several important quantities and distributions. The first is the

total flux of molecules crossing the surface from one side (relative to the orientation of the surface

normal),

J± = n±
∞∫

0

c′f(c′)dc′
π/2∫

0

1
2

cos θ sin θdθ

2π∫

0

dφ
2π

=
n±c′

4
, (2.19)

where the + and − superscripts serve only to signify the flux from each side of the surface and the

dependence on the concentration n± on that side. For zero net flux across a surface, J+ = J− and

n = n+ = n−.

2.2.2.1 Sampling from the Angular Probability Distributions

The equation for J+ and J− reveals the distribution functions for the polar angle θ and azimuthal

angle φ. These distributions give the angular probability of a molecule incident on or leaving from a

surface. The normalized distribution functions are

g(φ) = 1/(2π),

h(θ) = 2 cos θ sin θ.

These distributions are illustrated in the plots of figure 2.5 and figure 2.6.

For a set of random fractions rf , uniformly distributed on [0, 1], the inverse-cumulative method
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Figure 2.6. Plot of the probability distribution function for the polar angle, h(θ) = 2 cos θ sin θ, for
molecules incident on or leaving a surface. The most probable angle is π/4.

gives a simple way to sample each of the angles,

rf =

φ∫

0

g(φ)dφ =
1

2π

φ∫

0

dφ =
φ

2π
→ φ = 2πrf ,

and

rf =

θ∫

0

h(θ)dθ = 2

θ∫

0

cos θ sin θdθ = 2

sin θ∫

0

sin θd(sin θ) = sin2 θ → sin θ = r
1/2
f .

Likewise, since sin2 θ + cos2 θ = 1 and because 1 − rf is no different from rf , the variable θ can be

sampled through cos θ = r
1/2
f . Successive values of rf are used to obtain values for each of the angles.

Sampling from the angular distributions is tremendously important each time a molecule collides with

a solid surface. A new speed and new direction must be randomly generated for each molecule at every

collision.

2.2.2.2 Sampling from the Speed Distribution at a Surface

The distribution of molecular speeds at a surface is not prescribed by the Maxwell distribution f(c′).

Instead, equation (2.19) reveals that the distribution of speeds is actually of the form c′f(c′) such that

the normalized distribution is

fs(c′) =
c′f(c′)
c′

= 2β4c′3 exp(−β2c′2), (2.20)
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Figure 2.7. Comparison of the probability distribution functions for a Maxwell-Boltzmann speed dis-
tribution, f(c′) from equation (2.15), and the distribution of speeds across a surface, fs(c′) from
equation (2.20).

where the superscript s indicates surface, f(c′) is given by equation (2.15), and the mean speed c′

follows from equation (2.17). The most probable and mean speed for molecules striking the surface are,

respectively,

c′sm = (3/2)1/2/β = (3/2)1/2c′m,

c′s =

∞∫

0

c′fs(c′)dc′ = 3π1/2/(4β) = (3π/8)c′ = (3π/8)1/2c′sm.

Figure 2.7 gives a comparison of f(c′) and fs(c′). The overall shape of the distribution remains fairly

consistent, but the distribution of speeds at the surface is shifted toward higher speeds.

As is the case for the Maxwell speed distribution, sampling of speeds at a surface can be done

relatively efficiently using the acceptance-rejection method described previously.

2.2.3 Distribution of Free Paths

One of the most useful concepts of kinetic theory is that of the mean free path [49] and the probability

of a free path of given length. As with the other distribution functions, knowledge of the distribution

of free paths will be particularly useful in modeling gas transport within a porous substrate.

Let f(`) represent the probability that a molecule has a free-path length at least equal to `, i.e.,

that no collision occurs in the distance `. After the molecule has traveled a distance `, the chance of

collision within a further distance d` is proportional to d` and can be written simply as αd` where α is
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a proportionality constant, to be determined later. In general, α will depend on the number density of

gas molecules, the molecular size, the speed, and the pressure. Since αd` is the probability of collision

between ` and ` + d`, then the chance of no collision occurring within the same distance is simply

1− αd`. The total probability that no collision occurs in the distance `+ d` is given by the product

f(`)(1− αd`).

By definition, this must be equal to f(`+ d`) which can be written in differential form as

f(`) +
df(`)

d`
d`,

so that

f(`)(1− αd`) = f(`+ d`) = f(`) +
df(`)

d`
d`,

to give the differential equation,

df(`)
d`

= −αf(`).

As defined, the parameter α > 0 and obviously f(0) = 1. Imposing these conditions leads to a solution

for the distribution of free paths,

f(`) = e−α`.

The probability of a free path terminating between ` and `+ d` is given by

f(`)d` = f(`)− f(`+ d`) = −df(`)
d`

d` = αf(`)d` = αe−α`d`.

The mean free path λ can be calculated as

λ = ` =

∞∫

0

`f(`)d` = α

∞∫

0

`e−α`d` = 1/α.
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Therefore, the distribution of free paths is given by the exponential function,

f(`) = e−`/λ.

A plot of f(`) is provided in figure 2.8.
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Figure 2.8. Plot of the probability distribution function for free paths, f(`) = e−`/λ. The exponential
shows that free paths that are many times greater than the mean free path λ are rare.

2.2.3.1 Sampling from the Free-Path Distribution

Again, as in the sampling of molecular speeds, I assume the availability of a successive set of random

fractions rf that are uniformly distributed on the interval [0, 1]. Free paths can be sampled without

the use of the acceptance-rejection method. Instead, the inverse-cumulative method allows for quick

sampling since the cumulative distribution can be inverted to solve for the free path in terms of rf (this

is not the case for the distribution of speeds in the previous section). For the free-path distribution, a

free-path length may be selected by allowing

rf =

`∫

0

f(`)d` =
1
λ

`∫

0

e−`/λd` = 1− e−`/λ.

Noting that 1− rf is the same as rf , a free path ` can be randomly generated as

` = −λ ln rf .
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It is very important to note that the chance of a collision is independent of the dynamical history of

the molecule.

2.3 Diffusion

The diffusion coefficient is the proportionality constant relating the gradient in species concentration to

mass flux. It is one of the three main transport coefficients that appear as parameters in the macroscopic

conservation equations for mass, momentum, and energy [30]. The rigorous mathematical derivation

of transport properties is very complex [4, 9], and it is not my intention to derive them. I am simply

presenting the important results used extensively in the following chapters of this thesis.

2.3.1 Normal Diffusion in Capillaries

It is convenient to first consider the normal one-dimensional diffusion of gases through capillary tubes.

For binary diffusion, the usual equation for the molecular flux of each species can be written as [49, 4]

Ji = −D12
∂ni
∂z

+ xiJ, i = 1 or 2, (2.21)

where n = n1 + n2 is the total molecular concentration, xi = ni/n is the mole fraction of species i,

and J = J1 + J2 is the net flux of molecules. It is assumed that the capillary axis is aligned with the

coordinate z. The parameter D12 is the normal diffusion coefficient and is the focus of this section.

Deriving an expression for D12 requires a rigorous, complex, and specialized theory in statistical

mechanics and molecular interactions [30, 9]. The detailed derivation begins with the Boltzmann

equation of equation (2.5) and is solved using a method of successive approximation known as Chapman-

Enskog theory [9]. The solution method is not presented here, though its elegance ought to be noted;

I am concerned more with the results. For a binary gas mixture, Chapman-Enskog theory provides

D12 =
3
16

√
2πk3

BT
3/m12

pπσ2
12Ω(1,1)?

12

=
3
16

√
2πkBT/m12

nπσ2
12Ω(1,1)?

12

,

where m12 = m1m2/(m1 + m2) is the reduced or inertial molecular mass, σ12 is a length scale corre-
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sponding to the interaction of a molecule of type 1 and one of type 2 (often called the collision diameter),

and Ω(1,1)?
12 is the so-called collision integral, which depends on temperature and the interaction poten-

tial between molecules. The pressure has been related to the molecular concentration through the ideal

gas law,

p = nkBT.

For hard spheres, when 1 and 2 are indistinguishable, the collision integral is defined to equal unity

and σ12 = d, where d is the sphere diameter. Deviations of Ω(1,1)?
12 from unity are a measure of the

deviations of the intermolecular forces from forces between rigid spheres [18]. For indistinguishable

rigid spheres, the Chapman-Enskog result reduces to

Dii =
3

16
√

2

√
8k3
BT

3/πm

pd2
=

3
16
√

2

√
8kBT/πm
nd2

, i = 1 or 2, (2.22)

where m1 = m2 = m and Dii is called the self-diffusion coefficient.

Let me now reiterate some useful results derived in the previous sections. I assumed that molecules

in the gas consist of rigid, hard spheres of mass m and diameter d that are constantly in motion.

Collisions between molecules are binary and instantaneous, and the molecules travel in ballistic trajec-

tories from one collision to the next. The mean speed of a molecule from equation (2.17) together with

equation (2.16), and equation (2.14) is

c′ =
(

8kBT
πm

)1/2

.

This can be substituted into equation (2.22) to give

Dii =
3

16
√

2
c′

nd2
, i = 1 or 2,

where the hard-sphere diameter can be related to the gas molecule mean free path by

λ =
kBT√
2πpd2

=
1√

2πnd2
.
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Using this result, another form of the self-diffusion coefficient is

Dii =
3
16
πλc′, i = 1 or 2.

2.3.2 Diffusion as a Random Walk

The general diffusion equation can be derived from the Boltzmann moment equation of equation (2.8)

and equation (2.9) letting Q = m. Noting that m is a collision invariant (i.e., mass is always conserved

in collisions), the collision integral of equation (2.9) vanishes. The appropriate averaged quantities are

easily calculated from equation (2.4) to give

∂

∂t
(nm) + ∇ · (nmv)− 0 = 0.

Since the mass m is constant, it can be divided out from both remaining terms. In addition, note that

the molecular flux J = nv, so that

∂n

∂t
+ ∇ · J = 0.

Generalizing equation (2.21) to three dimensions, and assuming no net flux with uniform diffusivity

over all phase space leads to the diffusion equation:

∂n

∂t
−D∇ ·∇n = 0,

or rearranging,

∂n

∂t
= D∇2n. (2.23)

The theory discussed above is based on the concept of a local concentration of gas molecules, requir-

ing a large number of molecules to average out randomness in the instantaneous positions. However, in

efforts to relate molecular-level phenomena to observed rates of transport, it is more natural to focus

on the motion of a single molecule, or Brownian particle. The position of such a molecule can only be

described in terms of probabilities, so that the calculation becomes a stochastic problem.

The derivation that follows concerns the motion of a single molecule executing a random walk.
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The molecule is assumed to move independently of other molecules, and chemical reactions are not

considered. Denote the probability density of finding the molecule at position r at time t as P(r, t).

The molecule moves in discrete steps of length ` in random directions. The time required for such a

step is τ . All directions are equally available, so the probability that a given step will end somewhere

on a spherical surface of radius ` centered about the current position is unity. Let R be the vector

from the current position to the next position a distance ` away in a random direction. The probability

density describing R is

S(R) =
δ(|R| − `)

4π`2
,

where δ(|R| − `) is the Dirac delta function indicating that jumps are only allowed to be of length `.

This function is normalized so that integration over all possible R gives unity:

∫
SdR =

2π∫

0

π∫

0

∞∫

0

δ(r − `)
4π`2

r2 sin θdrdθdφ =
1
`2

∞∫

0

δ(r − `)r2dr = 1. (2.24)

The probability of finding the molecule at position r at time t + τ , i.e., P(r, t + τ), is the prod-

uct of P(r − R, t) and the probability describing the the jump S(R), integrated over all possible R.

Mathematically, this translates to

P(r, t+ τ) =
∫
P(r−R, t)S(R)dR. (2.25)

After a large number of jumps, and assuming ` and τ are small compared to the length and timescales of

interest, P(r, t) can be approximated as a continuous function so that the probabilities in equation (2.25)

can be written as Taylor expansions about position r and time t. The expansion in time of the left-hand

side gives

P(r, t+ τ) = P(r, t) +
∂P
∂t
τ +O(τ2),

and the expansion for the term in the integral gives

P(r−R, t) = P(r, t)−R ·∇P +
1
2
RR : ∇∇P +O(R3),
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where all derivatives are evaluated at r and t. Substituting the leading terms of these expansions into

equation (2.25) produces

P(r, t) +
∂P
∂t
τ = P(r, t)

∫
SdR−∇P ·

∫
RSdR +

1
2
∇∇P :

∫
RRSdR. (2.26)

There are three integral terms on the right-hand side of the equation. The first
∫
SdR = 1 by equa-

tion (2.24). The second represents the average value of the displacement vector R. Since the vector

has no directional bias, this average is expected to vanish:

∫
RSdR =

2π∫

0

π∫

0

∞∫

0

{r sin θ cosφ, r sin θ sinφ, r cos θ}δ(r − `)
4π`2

r2 sin θdrdθdφ

=
1

4π`2

2π∫

0

π∫

0

∞∫

0

{sin2 θ cosφ, sin2 θ sinφ, sin θ cos θ}δ(r − `)r3drdθdφ

=
1

4π`2

π∫

0

∞∫

0

{0, 0, 2π sin θ cos θ}δ(r − `)r3drdθ

=
1

4π`2

∞∫

0

{0, 0, 0}δ(r − `)r3dr = 0.

The third integral gives the average value for the dyadic product RR:

∫
RRSdR

=

2π∫

0

π∫

0

∞∫

0




sin3 θ cos2 φ sin3 θ sinφ cosφ sin2 θ cos θ cosφ

sin3 θ sinφ cosφ sin3 θ sin2 φ sin2 θ cos θ sinφ

sin2 θ cos θ cosφ sin2 θ cos θ sinφ sin θ cos2 θ




δ(r − `)
4π`2

r4drdθdφ

=
1

4π`2

π∫

0

∞∫

0




π sin3 θ 0 0

0 π sin3 θ 0

0 0 2π sin θ cos2 θ



δ(r − `)r4drdθ

=
1

4π`2

∞∫

0




4π/3 0 0

0 4π/3 0

0 0 4π/3



δ(r − `)r4dr =

`2

3
δ,
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where δ is the identity matrix. Substituting the integral results into equation (2.26) yields

P(r, t) +
∂P
∂t
τ = P(r, t)− 0 +

`2

6
∇∇P : δ.

Simplifying the above expression and using the identity ∇∇P : δ = ∇2P gives a diffusion-type equation,

∂P
∂t

=
`2

6τ
∇2P.

This result is analogous to equation (2.23). While the equation above was derived for a single molecule,

it applies to all molecules individually. Summing each side over all molecules changes the probability

density P to a number density or concentration. Consequently, this is exactly what appears in equa-

tion (2.23). Therefore, the self-diffusivity D is related to the jump distance and time as D = `2/6τ so

that

∂P
∂t

= D∇2P. (2.27)

In the absence of any directional bias, the probability density P is expected to be spherically sym-

metric and therefore, P = P(r, t) only. The solution to equation (2.27) must satisfy the normalization

condition that the probability of finding the molecule somewhere in space is unity. Also, one expects

P → 0 as r →∞. The PDE is readily solved under the stated conditions to give

P(r, t) =
1

8(πDt)3/2
e−r

2/4Dt.

This solution enables us to relate D to measured molecule positions (e.g., as obtained in experiments or

simulations). By observing and recording the results for a large number of random-walking molecules,

certain average properties of the position can be evaluated. The mean displacement of a molecule

follows from

〈r〉 =
∫

rPdV = 0,

as a result of spherical symmetry. This result contains no information about D. The mean-square



33

displacement is subsequently

〈r2〉 =
∫
r2PdV =

4π
8(πDt)3/2

∞∫

0

r4e−r
2/4Dtdr = 6Dt.

By measuring the displacements of a large number of molecules over a fixed time interval t, the diffusivity

D can be calculated from the average of the squares of these displacements 〈r2〉 as

D =
〈r2〉
6t

=
〈|r(t)− r(0)|2〉

6t
. (2.28)

This is an incredibly useful result for the evaluation of diffusion coefficients from experimental obser-

vations or molecular simulations! This result is heavily relied on in this thesis.

2.3.3 Diffusion in Porous Media and Free-Molecule Diffusion in Capillaries

Normal diffusion in porous media is analogous to diffusion in tubes, and can be described by the same

equations if suitable parameters characterizing the porous medium are inserted [18]. Typically, an

effective diffusion coefficient is substituted in place of D12 to give

Ji = −Deff
12

∂ni
∂z

+ xiJ, i = 1 or 2, (2.29)

where Ji and J now refer to a flux based on unit area of porous medium and Deff
12 is the effective

diffusivity, proportional to D12. The constant of proportionality accounts for the internal structure of

the porous medium, and includes the porosity ε and tortuosity τ as [18, 4]

Deff
ij = εDij/τ, i, j = 1 or 2.

Like the porosity, the tortuosity is considered to be a macroscopic parameter, characteristic of the

porous material itself. It is an all-inclusive measure of the complexity of the pore network, accounting

for the twisting and turning of pores, necking, and so on. The benchmark case is a straight, cylindrical

pore of constant cross section, which has τ = 1. All other systems have a tortuosity greater than this.

Free-molecule or Knudsen diffusion in porous media is drastically different from normal diffusion.
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The transport of any individual species is unaffected by the presence of others. Therefore, gas-gas

collisions are negligible, and the flow is dominated by collisions between gas molecules and the pore

surfaces. The importance of the last statement cannot be overstated. The only influence on the

flow is the structure of the porous medium. Understanding the internal framework of the porous

medium is necessary if Knudsen flow is to be optimized. Since gas-gas interactions can be ignored, the

Knudsen diffusivity DiK becomes identical with the permeability coefficient Ki, which is defined by the

expression [18]

Ji = − Ki

kBT

∂pi
∂z

= −Ki
∂ni
∂z

,

where pi is the partial pressure of species i. In place of equation (2.29), Knudsen flow gives

Ji = −DiK
∂ni
∂z

, (2.30)

which has no convective term. The Knudsen diffusivity is generally given by the expression [49, 66, 4]

DiK =
2
3
R
(

8kBT
πm

)1/2

=
2
3
Rc′, (2.31)

where R has dimensions of length. Just as ε and τ appearing in Deff
ij are characteristic of the porous

medium, R is a constant of the medium. Knudsen diffusion in capillaries is well covered in the liter-

ature [34, 11, 32, 49, 15, 3]. For the simple case of diffusion in a tube, the parameter R is the tube

radius. Because of this, many people have extended the assumption that R is equal to the mean pore

radius for a wide range of porous materials. While this seems perfectly reasonable for the ideal case of

tubelike pores, most engineering applications involve highly complex materials with both macropores

and micropores of highly unstructured shapes. It seems insufficient to describe such a material using

only a mean pore radius. Understanding more about the pore-size distribution is a necessary step to

understanding the diffusive transport within the porous medium. In fact, all of chapter 4 of this thesis

is devoted specifically to investigating the pore-size distribution function. The length scale R is further

discussed in that chapter.

It is interesting to note the pressure dependence of the normal self-diffusion coefficient Dii and the
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Knudsen diffusivity DiK . The former is inversely proportional to pressure but the latter is independent

of pressure. In the transitional flow limit, or intermediate pressure region, the diffusion coefficient is

generally calculated using the formula of Bosanquet [6]

DiB =
(

1
Dii

+
1

DiK

)−1

. (2.32)

This formula can be used for all pressures since the appropriate diffusivity term will dominate—Dii for

high pressures, and DiK for low pressures. For all pressures, the effective diffusivity for single species

flow in porous media follows as

Deff
iB = εDiB/τ.

Note that the self-diffusion coefficient of equation (2.28) was derived by assuming a molecule had all

physical space available to it through which to move. However, only a fraction of this space is available

in a porous sample, and the effective diffusivity is εD. This can be related to DiB using the equation

above,

εD = εDiB/τ,

so that

εD/DiB = ε/τ. (2.33)

The above ratio between the effective diffusion coefficient and the coefficient of diffusion in the free gas

is a dimensionless constant smaller than unity, which is characteristic of the porous material—denote

this constant as the diffusibility. This ratio is used in the following chapters.
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Chapter 3

Mass Transport in Porous
Structures

“The influence on [diffusion] of not only porosity, but also particle shape, was clearly shown and there can there-

fore be no unique relationship for all materials, as often supposed, between diffusion rates and porosity.” [14]

3.1 Introduction

Gas transport in porous solids has received a great deal of attention because of its importance to

a wide range of engineering applications. Processes that intimately depend on diffusion in porous

media span from catalytic reactors, to nutrient delivery in biological systems, to methane recovery

in coal beds. Because of the complexity of the diffusion processes that take place in porous media,

there is an enormous body of literature dealing with experimental determination and the theoretical

prediction of effective diffusivities. These complexities involve bulk, Knudsen, and surface diffusion

and in realistic systems, takes place in the presence of adsorption, reaction, temperature gradients,

and convective transport [33]. In porous catalysts, reactions at pore walls are often transport limited

by the delivery of reactants to (and removal of products from) active surfaces. In general, reactant

delivery and product removal from reactive sites are frequently hindered by transport limitations due

to the complex three-dimensionality of the pore network. These limitations control reaction rates as

well as surface coverages of adsorbing species. Despite the importance this has on a broad spectrum of

technologies, it is of particular importance to solid-oxide fuel cells (SOFCs).

Approaches to understand transport in porous media are as diverse as the problems they attempt
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to solve, from early theory and experiments by Derjaguin [16], Hoogschagen [23], Millington [45],

Currie [13, 14], and Weissberg [62], to the “Dusty-Gas” model of Evans III et al. [18, 19], Mason et

al. [41], and Mason and Malinauskas [42], Monte-Carlo type simulations apparently initiated by Evans

et al. [17] and Abbasi et al. [1] on up to the more recent Zalc et al. [67, 68], and the emergence of the

lattice Boltzmann method used by Chiu et al. [10], Joshi et al. [29, 28], and Asinari et al. [2].

There are several mechanisms governing the complex nature of mass transport in porous solids,

including molecular diffusion, Knudsen diffusion, viscous and slip flow, as well as surface diffusion along

pore walls [66]. An accurate understanding of mass transport in a SOFC involves several challenges [10]:

• mass transfer by diffusion occurs at high temperature (600–1000 ◦C) and through submicron

pore sizes with Knudsen number (Kn = λ/d, where λ is the gas mean free path and d is the

characteristic dimension of a pore) of order unity or greater—therefore, continuum theory is no

longer valid;

• depending on the fuel, a large number of gaseous species may be present and Fick’s law (only

valid for binary diffusion) does not apply;

• gas molecules can adsorb/desorb on the solid pore surface and undergo electrochemical and ref-

ormation reactions;

• the complex pore geometry is difficult to characterize and realistically represent in predictive

models.

A comprehensive model for SOFC mass transfer should include all these effects, and using such a model

as a pore-level design tool can have a significant impact on optimizing the SOFC microstructure.

Until recently, pore-scale models of SOFC mass transfer were not very practical, due in part to a

lack of quantitative data describing the SOFC electrode microstructure in detail. A majority of past

investigations consider a simplified one-dimensional (1D) model of the SOFC electrode, and condense

the description of the electrode microstructure into a few parameters, most notably the porosity, mean

pore size, and tortuosity. The mean pore size may not always be a good descriptor of the pore network

and corresponding pore-size distribution (PSD). This is discussed in much more detail in chapter 4.

Further, the tortuosity is difficult to measure, and presumably serves as an all-inclusive benchmark of
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the complexity (i.e., the twisting and turning, necking, connectivity, etc.) of the pore network. It is

often used as a fitting parameter to correlate model predictions with experimental data, without regard

to details of the microstructure (mostly because these details were not known). The Dusty-Gas model,

for example, is commonly used to simulate 1D multicomponent mass transfer outside of the continuum

flow regime. Once calibrated, these simplified models have proved to be very useful in predicting

SOFC performance and studying the impact of a few input parameters. Unfortunately, these models

lack the capability to analyze and optimize SOFC electrode microstructures and are limited to simple

geometries.

Recent advancements in high-resolution imaging techniques (see Wilson et al. [64] and the references

therein) have paved the way for pore-scale mass-transport models of SOFC electrodes. Not only have

these recent developments opened the door for studying mass transport in complex porous SOFC

microstructures, but details of the network morphology can be exposed (as we shall see in chapter 5).

In particular, with regard to modeling mass transport, Monte-Carlo-based tracer methods are quite

suitable for the analysis of multicomponent, noncontinuum mass transfer within a complex geometry

like porous SOFC electrodes. This chapter reviews some of the numerical methods used to model mass

transport, focuses on recent work related to Monte-Carlo-based methods, describes the simulation

procedure used in this work, and presents results for a SOFC anode microstructure analyzed in two

very different ways: (1) as a particle-based structure represented by a collection of various size spheres;

and (2) as a voxel-based mesh of a digitally reconstructed anode.

3.2 Background

Traditional computational fluid dynamics (CFD) models for SOFCs are suitable for the macroscopic

analysis of flow or heat transfer in gas channels or SOFC stacks (e.g., see figure 3.1). However, the

application of these models to particle scales (submicron) is problematic due to noncontinuum effects,

complex geometries with various length scales, and in general, a large number of diffusing species.

There are several modeling approaches for multicomponent mass diffusion under these conditions.

One of the most fundamental techniques is molecular dynamics (MD), but it is also the most compu-

tationally expensive. Monte-Carlo (MC) methods are less expensive and work best for free-molecular



40

RTC_intro_4/06.p3

Colorado School of MinesAnsys, Inc. California Institute of TechnologyNaval Research Laboratory

Knowledge and understanding at certain scales

informs design and optimization at other scales

RTC_intro_4/06.p4

Colorado School of MinesAnsys, Inc. California Institute of TechnologyNaval Research Laboratory

This RTC has significantly advanced the state-of-
the-art in modeling electrochemical processes

Major accomplishments and new modeling tools

   • Incorporate electric field effects into electronic-structure computation

   • Build reaction mechanisms based on atomic-level understanding

   •!Predict homogeneous chemistry of molecular-weight growth

   • Closely couple elementary thermal and electrochemical reactions

   • Couple elementary chemistry with complex porous-media transport

   • Distributed charge-transfer within porous electrode structures

   •!Represent cermet electrode structures at the particle level

   • Develop major new general-purpose CANTERA software

   • Couple CANTERA and FLUENT as an extraordinarily powerful capability

Demonstrate new capabilities by collaboration with fuel-cell developers

   • Assist the development of new cell architectures

   •!Assist the development of full systems

Figure 3.1. Knowledge and understanding at certain scales informs design and optimization at other
scales. Image courtesy of R. J. Kee.

or Knudsen flow. In this limit, gas-gas collisions can be neglected, and gas behavior is only influenced

by gas-surface interactions. The Dusty-Gas model works very well for 1D-multicomponent diffusion,

but extension to complex geometries is a major drawback. Lattice Boltzmann methods (LBM) are

growing in popularity, and are well-suited to this type of problem (for recent work and review, see Chiu

et al. [10]). Monte-Carlo tracer algorithms provide an excellent middle ground between MD (and even

more complex direct-simulation MC approaches) and LBM. They are not nearly as computationally

demanding as MD, yet they retain more of the underpinning physics than LBM methods. Another

advantage is intrinsic to the method itself, in that tracing molecule paths can provide insight into the

influence of the internal pore architecture.

Monte-Carlo methods for predicting gas transport in porous media are essentially the same as those

used to calculate molecular flow rates through tubes of various shapes [15]. These geometries provide an

excellent starting point and model validation because they have been the subject of various theoretical

analyses [34, 11, 48]. Extension of the MC method to more complex geometries of modeled porous

media was initiated by Evans et al. [17] and Abbasi et al. [1]. In the following years, the same MC

techniques were adopted by Smith and Huizenga [55] and Huizenga and Smith [24] for systems of packed

spheres, and favorably compared to experimental results obtained by the same authors. There is a large

body of work between these pioneering efforts and recent years, all utilizing a MC approach. For some

of the most notable, the reader is referred to Burganos and Sotirchos [8], Reyes and Iglesia [51, 50],
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Tomadakis and Sotirchos [58], Meyerhoff et al. [43], Riley et al. [52], Transvalidou and Sotirchos [59],

Trinh et al. [60], and Zalc et al. [67, 68].

3.3 Simulation Procedure

This section first describes the Monte-Carlo tracer algorithm for diffusing molecules in a cylindrical

tube, then extends the method to more complex packed-sphere models and three-dimensional (3D)

voxel-based mesh geometries representing real SOFC electrodes. The fundamentals of the MC method

are not new, but modifying it to be used in voxel-based geometries is original to this work.

3.3.1 Tracer Diffusion in Tubes

Consider an infinite cylinder of radius a centered about the z-axis, so that any point on the surface of

the cylinder is given by x = a cos θ, y = a sin θ, z. The polar angle θ is measured counterclockwise from

the positive x-axis. The surface of the cylinder is assumed to be a purely diffuse reflector of molecules

incident on it. It is a solid surface representing the pore wall (i.e., in this case the pore happens to be

a simple cylinder).

In the free-molecule limit, gas molecules do not interact with one another, so each may be treated

independently. Under this assumption, a molecule, or tracer, is placed at a random position inside the

cylinder (i.e., inside the pore). The random position is chosen uniformly from all those available so that

doing this for a large number of tracers essentially “fills” the tube with gas molecules. The probability

of finding a molecule at a specific radius is proportional to that radius (i.e., more molecules will be

located at larger radii). Random starting positions are selected from a random radius and polar angle

given by

r0 = ar
1/2
f1 ,

θ0 = 2πrf2,



42

where

x0 = r0 cos θ0,

y0 = r0 sin θ0,

z0 = Lrf3,

and rf1, rf2, and rf3 represent subsequent random fractions on [0, 1]. In order to simulate an infinite

tube, I set a finite range 0 ≤ z ≤ L and apply periodic boundary conditions at z = 0 and z = L.

Therefore, the initial z position z0 is just a uniform random position on [0, L]. Let r(t) denote the

vector position of the tracer at time t, so that r(0) = {x0, y0, z0} is the starting position at t = 0.

The molecule is then assigned a random direction, selected from those available to it (e.g., the

starting position has all directions available, so the direction is chosen from the unit sphere),

cos θ= −1 + 2rf1,

sin θ= (1− cos2 θ)1/2,

φ= 2πrf2, (3.1)

where θ is the polar angle between 0 and π, φ is the azimuthal angle, and the subsequent random

fractions rf1 and rf2 are different from those used to define the initial position. The direction vector

follows as

dr = {dx, dy, dz} = {sin θ cosφ, sin θ sinφ, cos θ}. (3.2)

The final step is choosing a molecular speed c′ according to the method described in §2.2.1.1.

The molecule now has a starting position and velocity vector from which to start its motion. The

next step is to calculate the first collision location. A free-path length ` is generated according to the

method described in §2.2.3.1. In addition, the collision location on the cylinder surface is calculated

using vector geometry and ray-tracing algorithms. The cylinder is defined by the equation x2 +y2 = a2

on 0 ≤ z ≤ L, and the caps by x2 + y2 ≤ a2 at z = 0 and z = L. The ray or vector of the molecule
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along its direction of travel is given by

R(s) = r(0) + sdr,

where the desired value for s is the path length to collision with the tube surface. Therefore, I am

interested only in the smallest positive value of s. The components of the ray equation are substituted

into the equation for the cylinder to give

(x0 + sdx)2 + (y0 + sdy)2 − a2 = 0,

which produces a quadratic equation in the variable s,

As2 +Bs+ C = 0→ s =
−B ±

√
B2 − 4AC
2A

,

with

A= dx2 + dy2,

B = 2(x0dx+ y0dy),

C = x2
0 + y2

0 − a2.

Two solutions for s are obtained: one positive (along the direction dr) and one negative (in the direction

opposite to dr)—technically, no solution is a possibility since the molecule could be moving exactly

parallel to the z axis (though highly unlikely, if this were the case, the molecule would never intersect

the tube and it is of little interest). Only positive solutions for s are of interest since these represent

the molecule moving along the desired path to collision.

If s < `, the molecule collides with the tube before moving a free-path length. In this case, the new

vector position is given by

r(t) = {x, y, z} = r(0) + sdr,

where t = s/c′ is the time required to move a distance s at speed c′. The only exception arises if the z
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coordinate of the new position exceeds the computational domain defined on 0 ≤ z ≤ L. In this case,

appropriate periodic boundary conditions are applied to translate z to the range of interest. The z

coordinate in the computational domain is referred to as the local position, and the actual z position

before applying the boundary conditions is called the global position. The local position is used in the

simulation so that z remains on the order of x and y, and the global position is used to calculate overall

molecule displacement from its initial position. Once the new position r(t) is set, a new set of directions

and a new speed are chosen according to §2.2.2.1 and §2.2.2.2, respectively. For the new directions,

cos θ = r
1/2
f is aligned with the normal direction (i.e., the radial direction perpendicular to the cylinder

axis). In Cartesian coordinates, the direction vector for a molecule leaving the cylinder surface is

dr = {x/a, y/a, 0} cos θ + {−y/a, x/a, 0} sin θ cosφ+ {0, 0, 1} sin θ sinφ

=
{x
a

cos θ − y

a
sin θ cosφ,

y

a
cos θ +

x

a
sin θ cosφ, sin θ sinφ

}
.

On the other hand, if ` < s, the molecule will move a free-path length ` before colliding with

the cylinder. This situation arises when shifting attention from the free-molecule limit so that gas

interactions start to play a role on mass transport. Without directly simulating gas-gas collisions,

this method allows their inclusion while being less computationally expensive relative to true direct-

simulation MC or MD algorithms. The new position is given by the same equation for r(t) above, but

t = `/c′. A new direction and speed follow from equation (3.1), equation (3.2), and §2.2.1.1.

The simulation procedure above repeats from the updated position with the new direction and

speed, calculating the next collision location and so on. This continues for a preset amount of time or

until the molecule has experienced a preset number of collisions. Throughout the simulation, various

quantities can be monitored and saved, including the tracer positions, the path lengths between each

collision (called chord lengths), the distribution of speeds given to the tracer, the tracer displacement

from its initial position over the specified time interval, and so on. These data are gathered for a large

number of tracers so that a wealth of statistical information is available from a single simulation.

The single tube model is of particular importance because it provides a base case, or perfect-pore

model of a single, straight, cylindrical pore. Further, results for free-molecule flow in the tube are easily
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Figure 3.2. Transmission probability of molecules through a diffuse-reflecting cylindrical tube of length
L and radius a for Knudsen flow. The solid dark line is the analytic result from Clausing [11] reproduced
in equation (3.3) and the points are from Monte-Carlo (MC) tracer simulations. The MC results are
the average of three cases at each L/a using 106 molecules per case. In each case, the molecules have
different random starting positions at the tube entrance.

validated to analytic results from Clausing [11]. When a negative pressure difference ∆p is maintained

across a cylindrical tube of length L and radius a, the net molecular flux J across the tube is given by

J = −
(
Qc′

4
L

)
1

kBT

∆p
L
,

where T is the gas temperature, and Q is the probability that a gas molecule entering the tube will exit

a distance L away. This equation is strikingly similar to equation (2.30) and is written such that the

term in parentheses is the Knudsen diffusivity DiK . The remaining terms express the concentration

gradient over the length of the tube. The total number of molecules incident on the tube entrance is

given by equation (2.19) with n = ∆p/(kBT ) from the ideal gas law. The quantity nQ is the total

number of molecules incident on the exit plane at z = L (assuming the axis of the tube is parallel to

the z-axis and the entrance is located at z = 0). Clausing’s result expresses Q in terms of the tube

dimensions,

Q =
1− 2α
3a2L

[
4a3 + (L2 − 2a2)(L2 + 4a2)1/2 − L3

]
+ α+

1− α
2a2

[
L2 − L(L2 + 4a2)1/2 + 2a2

]
, (3.3)

with

α = f

(
a

L
,

2a
√

7
3L+ 2a

√
7

)
,
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Figure 3.3. Transmission probability of molecules through a 90◦ cylindrical elbow calculated using
a Monte-Carlo (MC) algorithm for Knudsen flow. The tubes composing the cylindrical elbow have
constant radius a, a length A before the elbow (upstream), and length B after (downstream). The solid
line is a fit to results for MC calculations by Davis [15] and the points are MC data from the present
work. As B/a→ 0, each of the lines approaches the value from figure 3.2 for A/a = L/a.

and

f
( a
L
,
z

L

)
= f

(
a

L
,
L− z
L

)
=

{
(L− z)

[
(L− z)2 + 4a2

]1/2 − (L− z)2
}
−
{
z
[
z2 + 4a2

]1/2 − z2
}

Lz2−[2z−L][z2+4a2]

[z2+4a2]1/2 − L(L−z)2−[2(L−z)−L][(L−z)2+4a2]

[(L−z)2+4a2]1/2

,

where z is the distance along the tube.

For the validation case, the tracer simulation proceeds as described previously, with the exception

that the initial z position of the molecules is z0 = 0 (i.e., all molecules begin their travel on one end

of the tube). The molecules move between collisions as before, and their maximum penetration depth

into the tube is stored. Each molecule is allowed to move until it returns to the plane z = 0 where it

started, or reaches some maximum penetration limit. Molecules penetrating a depth L into the tube

are said to have been transmitted that distance. Figure 3.2 shows the results of the MC simulation

compared to Clausing’s analytic formula. The results are in excellent agreement and it is concluded

that the simulation method is valid for Knudsen flow.

The code was also validated against other MC results for Knudsen flow through a cylindrical elbow

and in a cylindrical annulus [15]. These data are shown in figure 3.3 and figure 3.4, respectively, and

are also in excellent agreement.
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Figure 3.4. Transmission probability of molecules through a cylindrical annulus calculated using a
Monte-Carlo (MC) algorithm for Knudsen flow. The annulus has length L, outer radius a, and inner
radius ri. The solid line is a fit to results for MC calculations by Davis [15] and the points are MC
data from the present work. The case ri/a = 0 (not shown) reproduces the cylindrical tube results of
figure 3.2.

3.3.2 Tracer Diffusion Between Aggregates of Sphere Particles

The simulation procedure for molecules moving around and colliding with spherical particles is not

inherently different from the method described in the previous section. However, there are a few

outstanding differences that will be mentioned here. While the tube model provides a simple, single-

pore representation, it is not a good model for most real porous materials. There has been some work

extending the single tube idea to create parallel-pore models and other capillary networks [8, 22]. The

general idea is that on some size scale, a pore can essentially be described by a cylinder which eventually

intersects other pores forming nodes.

It seems the most popular models for porous media are packed-sphere models. Here, the sphere

particles represent the solid network, and the space between them the pores. By specifying a particle size

distribution and certain packing rules, various forms of porous media can be created. These models

seem to more closely represent porous materials found in engineering applications because the pore

shapes are more irregular and, often times, highly unstructured.

There has been much work focused on gas diffusion through porous media modeled as packed

spheres. Some of the work has focused on random packed-sphere models [17, 55, 24, 44, 51, 67, 68],

while others have concentrated their efforts on ordered particle arrangements [46, 60]. In addition,

the same ideas have been extended to packed arrangements of other geometrical bodies [33, 60] and

fractal-based geometries [39, 12, 40].
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(a) (b) (c)

Figure 3.5. Classic examples of ordered, isotropic, monodisperse packed spheres and their unit-cell
representations. The three figures show (a) simple cubic (SC) packing at maximum packing ratio
(MPR), i.e., 47.6% porosity; (b) body-centered cubic (BCC) at MPR, i.e., 32% porosity; (c) face-
centered cubic (FCC) at MPR, i.e., 26% porosity.

3.3.2.1 Generation of Porous Solids Using Packed Spheres

Consider the three classic packings of uniform spheres shown with their unit cells in figure 3.5. For

modeling purposes, an infinite isotropic porous sample can be created by periodically repeating the

unit cell in all directions, so that sphere particles comprise the solid phase and the space between them

the void phase. A range of porosities can be achieved for each configuration by allowing the particles

to shrink or grow, while maintaining their central coordinate. The maximum packing ratio (MPR) is

the state at which the distance between nearest neighbors equals one particle diameter, i.e., nearest

neighbors are just touching.

Figure 3.6 illustrates two examples of porous solids created from disordered or random sphere

particles. The left image started as a BCC array, but particles were allowed to move a random distance

up to one radius length in a random direction. There is no requirement for a particle to maintain contact

with another particle. This would be necessary for the structural stability of a real structure, but the

simulation case includes “floating”/unconnected particles. The image on the right is an aggregation of

various-sized spheres. It represents a particle-based reconstruction of the 3D-SOFC anode previously

pictured in figure 1.5. The method for creating this reconstruction is discussed in §3.3.3.1.
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Figure 3.6. Randomized array of uniform-size sphere particles at 39.6% porosity (left), and a packing
of various-sized spheres at 17.5% porosity (right).

3.3.2.2 Monte-Carlo Simulation of Tracer Molecules in Particle-Based Geometries

As in the tube case, a tracer simulation begins by placing molecules at random positions within the

void network. This is done by choosing a random point in the computation domain and checking to

see if it lies within one of the particles representing the solid phase. If it does not, this is a valid point.

If it does, a new point is chosen and the process repeats. The ratio of valid points to total number of

iterations (i.e., the total number of points tried) gives a good estimate of the porosity ε of the modeled

porous medium. The initial position of the valid point is given by r(0) = {x0, y0, z0}, just as before.

The tracer is assigned a random direction dr according to equation (3.1) and equation (3.2), and

a molecular speed c′ according to the method described in §2.2.1.1. The tracer then moves a distance

equal to the smaller of: a free-path length ` generated according to the method described in §2.2.3.1, or

the distance to the nearest surface in the direction of dr. As before, the collision locations are calculated

using a ray-tracing method. The ray defining the molecule path is R(s) = r(0) + sdr. Each sphere

particle composing the solid-phase network is defined by the equation (x−xci)2 +(y−yci)2 +(z−zci)2 =

a2
i or in vector notation,

|R−Rci|2 − a2
i = 0,

where Rci and ai represent the center and radius of sphere particle i, respectively. Following the same

method described for the tube case, the ray equation is substituted into the sphere equation to solve
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for the path length to intersection s. This produces

|r(0) + sdr−Rci|2 − a2
i = 0,

to give

A= dr · dr = 1,

B = 2dr · [r(0)−Rci],

C = [r(0)−Rci] · [r(0)−Rci]− a2
i ,

which leads to

s =
−B ±

√
B2 − 4AC
2A

.

Only the positive real solutions to this equation are considered, and more specifically, the smallest

positive nonzero solution. Possible solutions occur only when the discriminant is positive (a negative

discriminant means there is no intersection between the ray and sphere). If the discriminant is positive,

the smallest positive nonzero solution is chosen for s. These equations are solved for all possible

intersections between the ray and each sphere particle i that falls within its path. The smallest value

of s is stored, as well as the index i of the sphere with which the molecule intersected.

This represents diffuse reflection from the surface of the sphere, aligned with the local unit normal.

Figure 3.7. Pictorial illustration of gas behavior under different flow conditions.
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If, instead, ` < s, the tracer moves a distance `, the position is updated, and a new set of directions

and speed are assigned to the tracer from equation (3.1), equation (3.2), and §2.2.1.1.

If s < `, the molecule collides with sphere i and the position is updated. Once the new position

r(t) is set, a new set of directions and a new speed are chosen according to §2.2.2.1 and §2.2.2.2,

respectively. For the new directions, cos θ = r
1/2
f is aligned with the normal direction (i.e., the radial

direction pointing outward from the sphere particle). In Cartesian coordinates, the direction vector for

a molecule leaving the sphere surface is

dr = {cos Φ sin Θ, sin Φ sin Θ, cos Θ} cos θ

+{cos Φ cos Θ, sin Φ cos Θ,− sin Θ} sin θ cosφ

+{− sin Φ, cos Φ, 0} sin θ sinφ

= {cos Φ sin Θ cos θ + cos Φ cos Θ sin θ cosφ− sin Φ sin θ sinφ,

sin Φ sin Θ cos θ + sin Φ cos Θ sin θ cosφ+ cos Φ sin θ sinφ,

cos Θ cos θ − sin Θ sin θ cosφ},

where

cos Θ = (z − zci)/ai,

sin Θ = (1− cos2 Θ)1/2,

cos Φ = (x− xci)/(ai sin Θ),

sin Φ = (y − yci)/(ai sin Θ).

This process repeats continuously until a certain diffusion time has been reached. The entire proce-

dure repeats for a large number of tracers to provide complete sampling of the void network. Collision

data, free-path (or chord) lengths between collisions, displacements, and so on are collected for each

tracer.
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3.3.3 Tracer Diffusion in Three-Dimensional Voxel-Based Geometries

The MC methods used to simulate gas diffusion are not limited to solid-phase geometries constructed

from sphere particles. In fact, any geometric object could be used. One of the goals of this work

is to compare how estimated transport parameters in simple particle-based models relate to known,

measured, or other predicted values in actual SOFC structures. If a set of rules can be developed so that

particle-based models produce relatively accurate results compared to actual structures, these models

will facilitate the ability to better study and understand SOFCs. Consider the actual SOFC anode

reconstruction pictured in figure 1.5, created from a sequence of images obtained through focused ion-

beam milling and scanning electron microscopy (FIB-SEM) [65]. In order to directly compare results

between particle-based models and more realistic representations of the geometry, the first step is to

create a geometric model for each case. There has been little work using MC to simulate gas diffusion

in binary, pixelated, or voxel-based models [43, 7, 47].

3.3.3.1 Creating Three-Dimensional Cermet Data from Two-Dimensional FIB-SEM Im-

ages

The following description on how to construct a modeled cermet from two-dimensional (2D) images

is transcribed from personal communication with another member of my research group, Vaughan

Thomas.

The first step in rendering is to put the data in the form of a locus of tagged points. Each point

represents a location within the cermet and the type of matter at that point in the cermet, in this case,

nickel, YSZ, or pore. This locus can be readily reconstructed from graphics files of the cross sections

of the cermet. In the case of figure 1.5, the source images were provided from Wilson et al. [65] in the

form of 2D “.tif” files. These images will be referred to as the Barnett data. The “.tif” data from 82

separate sections were reinterpreted into one data object, where each pixel from the “.tif” files was used

to set the location and type of a volume element, a voxel, within a 3D structure. The voxels are then

used to determine the type, size, and placement of spherical particles in a particle-based cermet model.

The process is detailed below.

The Barnett data is organized into 82 “.tif” files. Each “.tif” file represents one 2D image of the



53

Figure 3.8. FIB-SEM data as a “.tif” image (nickel: white, YSZ: gray, pore: black).

Figure 3.9. Image comparison with original image on the left and reduced image on the right.

cermet and can be read in MATLAB as an ordered 2D array of pixel color data. The Barnett data

contains only three colors: white for nickel, 50/50 gray for YSZ, and black for void. The overall

dimensions of the cermet in the x, y, and z directions are, respectively, 6×5.2×3.4 µm. Each “.tif” file

represents a slice at constant z, showing the x-y plane. In the x and y directions each file is 430× 370

pixels, respectively. Based on the aforementioned dimensions, the implied spacing for the pixels is

δx = δy = 14 nm, δz = 42 nm, so that the spacing in the z direction is three times the spacing the x

and y directions.

Using this method, 82 new “.tif” images are generated at the lower resolution, 143× 123 for x and

y. At this point, the implied distance between pixels in the x, y, and z directions are equal, that is,

δx = δy = δz = 42 nm. In addition, the pixels can be readily interpreted as cubic voxels in a 3D

structure. The next step is to translate these voxels into a series of spheres. Note that the volume can

equivalently be viewed as a lattice of equidistant cubes with an edge length equal to δx, or as a lattice
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of equidistant overlapping spheres with radius
√

2δx/2. Choosing the radii of the replacement spheres

has a strong impact on the final geometry and its fidelity to the original cubic voxel reconstruction. If

the sphere radius is r =
√

2δx/2, then, at the boundaries between the solid phases and the void phase,

a cap volume will project into the void space, distorting the geometry and reducing the volume of void

space. At the same time, the apparent surface area of the solid phases is increased and the length of

the triple-phase boundary (TPB) will be increased as well. At each interface of a solid-phase voxel in

contact with a void-phase voxel, the void volume is reduced by δVv =
(√

2π−3
18

)
δx3 if the solid-phase

voxel is represented as a sphere with radius r =
√

2δx/2. Alternatively, this means the volume of the

solid-phase voxel has increased by an amount 6δVv.

In this case, the void fraction of the sphere-based reconstruction will be smaller than the void

fraction of the voxel-based reconstruction. When a resolution of one sphere per voxel is used in the

reconstruction, this does not make a material difference, but it will be shown that in other cases this

distortion can become significant. An alternative is to make the volume of the spheres match the volume

of the voxels. In this case, the radii of the spheres are r = (3/4π)1/3δx. This approach still changes the

geometry of the boundaries between the void- and solid-phase voxels, but preserves the void fraction

and the relative solid fractions. However, there is a distortion to the geometry and the TPB.

The formula of using one sphere per voxel results in a system with 1,424,709 spheres. Calculations

with this many particles would be very computationally intensive and time-consuming. In order to

make useful calculations, it is necessary to reduce the complexity of the system without losing important

information. A simple solution is to group homogenous voxels and represent them with a single sphere.

This is accomplished by evaluating, for each voxel, the matter type of the neighboring voxels. In this

way, we determine the largest cube of side length n · δx centered on the voxel being evaluated, where n

is a positive integer. Once this neighborhood is determined, a sphere of that matter type is placed, its

center being the center of the voxel under examination, and the radius of the sphere being equivalent

to (n+ 1) · δx. An example of a sphere-based structure based on this technique for a single “.tif” file is

shown in figure 3.10. The full 3D reconstructed cermet structure is pictured in figure 3.11. Table 3.1

gives a breakdown of the size and number of particles used in the reconstruction.

In order to directly compare results from the particle-based reconstruction shown on the bottom
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Figure 3.10. Image file and resulting particle array (nickel: green, YSZ: blue, pore: black).LETTERS
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Figure 2 3D anode reconstruction. A view of the 3D reconstruction showing the Ni
(green), YSZ (translucent/grey), and pore (blue) phases.

4.28 × 106 m cm−3. Although TPB lengths have previously been
estimated from 2D images of La0.8Sr0.2MnO3–YSZ cathodes10, this
is the first direct measurement known to the authors.

We are currently developing detailed electrochemical models
of porous anode and cathode performance that connect TPB
length and other microstructural information quantitatively to
performance. In the meantime, a crude assessment can be done
to determine if the measured TPB density reported above is
consistent with the measured SOFC performance. We can estimate
the expected anode area-specific resistance by multiplying the
above TPB density by previously measured values of the length-
specific resistance (LSR) of the TPB, and an approximate anode
active depth (≈10 µm (refs 17,21)). On the basis of various studies
including point-contact18,22 or patterned23,24 electrodes, reported
LSR values vary in a range from 5 × 104 to 5 × 106 ! cm at
700 ◦C, yielding anode area-specific resistance of 0.1–10 ! cm2.
Although broad, this range encompasses typical values for this
type of SOFC anode25 and is consistent with our total SOFC
area-specific resistance at 700 ◦C (≈0.7 ! cm2, from the data in
the Supplementary Information, Fig. S1, which also included
electrolyte and cathode resistances). The large uncertainties in
this comparison reinforce the need to separate microstructure
from other complicating variables, including utilization gradients,
impurities, polarization, and polarization history, all of which have
been shown to be important in overall anode performance18.

For a TPB to contribute to anode electrochemistry
(equation (1)), the gaseous, ionic, and electronic phases adjoining
the TPB must have a contiguous connection to the rest of the
microstructure. That is, the pore must be connected through the
surrounding pore network to the fuel stream, the Ni phase to
the external electrical circuit, and the YSZ phase to the bulk YSZ
electrolyte. As an initial step in evaluating phase connectivity, we
have developed an algorithm to identify each of the contiguous
TPB regions in the sample. (Note that contiguous TPBs imply
contiguous adjoining phases.) In Fig. 3, different colours are
assigned to these individual TPB segments. Analysis of the data
indicates that 63% of TPBs are interconnected and 19% are short
unconnected segments where the three phases may have poor
connectivity with the rest of the microstructure; the remaining
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Figure 3 3D map of the three-phase boundaries in the anode. Each colour
represents a set of contiguous TPBs. The majority of the TPB length (63%) is
connected (coloured white/grey). The remaining length consists of shorter,
disconnected TPB segments (having colours other than white/grey). A fraction of
these intersect the sample boundaries, and hence may be connected to larger
segments existing outside the sample volume. However, a substantial fraction (19%)
of the TPBs contact neither the highly inteconnected white/grey TPBs nor the sample
boundaries, that is, they are actual short segments.

18% of the TPBs are undetermined because they contact the
sample boundaries.

A related question is tortuosity of the ionic, electronic, and
gas-phase transport pathways within the electrode network. For
example, a high gas-phase tortuosity at the anode inhibits the
exchange of H2O and H2; this can limit cell performance and
is most readily observed as a limiting current behaviour at high
current densities (for example, the rapid drop in cell voltage above
≈4 A cm−2 seen in Supplementary Information, Fig. S1). As a
first attempt at evaluating gas-phase tortuosity, we assumed that
transport within the pore subdomains is described by Laplace’s
equation. Recent flux-based Monte Carlo simulations in porous
media suggest that such an approach should generally be valid
for both molecular and Knudsen diffusion, provided that the
porosity is higher than ∼10% (ref. 26). Figure 4 schematically
illustrates the calculation procedure. We first converted the 3D
reconstructed volume of the gas pores shown in Fig. 2 into a
finite-element mesh. In practice, the no-flux boundary condition
at the pore–solid interface was replaced by setting the diffusivity
in the solid to be much smaller than that in the pore and solving
∇ · (D(x)∇ψ) = 0 instead, where D(x) is the position-dependent
diffusivity and −∇ψ is the flux. The test results using artificial
microstructures showed that using a factor of 100 between the
two diffusivities ensured that the results were not altered by this
approximation. We used FEMLAB, commercial software from
Comsol, to obtain ψ. The tortuosity was then recovered by equating
the macrohomogeneously defined flux to the volume-average flux
within the sample volume:

− ε

τ
∇ψMF = − 1

V

∫∫∫

V

∇ψdV ,

where V is the sample volume, ε is the porosity, and τ is the
tortuosity. This procedure was carried out for the three primary
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Figure 3.11. Full reconstruction of the Barnett data pictured on the top. Bottom left: voxel-based
reconstruction of the 3D-SOFC anode. Bottom right: particle-based reconstruction at 17.5% porosity
(nickel: green, YSZ: blue, pore: translucent/gray).

right in figure 3.11 to predictions from the actual structure pictured on the top, a voxel-based repre-

sentation of the SOFC anode can be used. The voxelated porous solid is shown on the bottom left in

figure 3.11. Developing voxel-based models of porous structures allows for more complicated geome-

tries to be studied, and are seemingly only limited by the resolution of the images from which they

are constructed. The voxel size must be of the order of the size of the smallest structural features one

hopes to model.
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Table 3.1. Breakdown of the size and number of particles used in the particle reconstruction of a SOFC
anode

Radius (µm) Number
0.0846 17,945
0.1268 4,969
0.1691 1,871
0.2114 761
0.2537 300
0.2959 127
0.3382 32
0.3805 10
0.4228 6
0.4650 1
Average Total
0.1059 26,022

3.3.3.2 Surface Normals

The main requirement of tracer MC methods used in this work is knowledge of surface normals at pore-

surface interfaces. Surface normals and tangent vectors are necessary to define the local orientation

of a surface and the resulting influence this has on gas-surface interactions. For simple particle-based

models of the porous solid, defining the surface normal at a point (i.e., a gas-surface collision location)

is straightforward because all particle centers and radii are known. The real difficulty in defining

surface orientations is inherent to voxel-based porous solids. The method used here is explained in the

paragraphs below for a 2D (pixelated) system. Extension to 3D (voxels) is as simple as applying the

method to the extra dimension.

To construct the surface normal of the pixel at which a gas-surface collision occurred, the pixel hit

by the molecule is not considered isolated, but together with its eight nearest neighbors (twenty-six for

voxels). As an example, consider the pixel system shown in figure 3.12, where dark pixels indicate the

solid phase and white pixels (including those labeled with ∗) indicate the void phase through which

molecules move. The pixel hit by a molecule (in this case, the pixel labeled 0), is always taken as the

center with its nearest neighbors surrounding it. This is the pixel for which the surface normal is desired.

Assume the molecule originated from one of the void pixels to the right of or above pixel 0, i.e.,

those labeled with ∗. In this case, the local solid surface is only formed by the pixels labeled 0, 1,

and 3. The normals for each of these pixels at their shared interface with a ∗ pixel is determined. For

pixel 1, this gives {1, 0, 0} in the local coordinate system (meaning a unit vector pointing to the right).
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Figure 3.12. Illustration of how the surface normal is determined for a two-dimensional pixel system.
Dark pixels represent the solid phase and white pixels the void phase. The large arrow indicates the
local surface normal at pixel 0 in the direction of the void pixels labeled with ∗. Note the surface normal
in the direction of the blank void pixel would be a vector pointing left and down at 45◦.

Pixel 0 is bordered by a ∗ pixel to the top and right, so there are two outward normals giving {1, 1, 0}.

For pixel 3 we are only interested in the normal in the direction of the ∗ pixels representing the region

from which the molecule was located before collision. Hence, pixel 3 provides {1, 0, 0}. All of these

vectors are illustrated as small arrows in figure 3.12. The surface normal at pixel 0 is then taken as

the normalized sum of these smaller unit vectors, or {3, 1, 0}/
√

10 (making an angle of 18.43◦ with the

horizontal). This vector is represented as the larger arrow in figure 3.12. Likewise, the same analysis

would lead to a surface normal in the direction of the blank pixel pointing left and down at 45◦, or

{−1,−1, 0}/
√

2.

3.3.3.3 Monte-Carlo Simulation of Tracer Molecules in Voxel-Based Geometries

Following a similar procedure to that described in §3.3.1 and §3.3.2.2, begin by choosing a random void

voxel, and then a random starting position within that voxel given by

r(0) = {x0, y0, z0} = {xci + δx(rf1 − 0.5), yci + δx(rf2 − 0.5), zci + δx(rf3 − 0.5)},

where Rci = {xci, yci, zci} is the center coordinate of void voxel i, δx is the voxel dimension (the voxels

are cubic, so δx = δy = δz), and rf1, rf2 and rf3 are three subsequent random fractions on [0, 1].

A random direction dr is chosen, based on equation (3.1) and equation (3.2). Likewise, a molecular

speed c′ is assigned according to the method described in §2.2.1.1. The simulation procedure then

deviates somewhat from that described previously. Instead of using ray-tracing algorithms to calculate
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the next collision location, the molecule takes a small step in its direction of travel. A good step size

was found to be

δs = 2.5× 10−3rfδx,

where rf is a random fraction on [0, 1]. From this equation, the step length is uniformly distributed

from 0 to 2.5 × 10−3δx. Choosing δs in this manner provides good results without requiring a large

amount of computational time. With this step length, the molecule position is updated according to

r(t) = r(0) + δsdr,

where t = δs/c′ is the time required to take the step. Then a check is performed to determine which

voxel center Rci is closest to the current tracer position. If the molecule is still in a void voxel, it

continues moving along its current path taking steps of random length δs. When a step results in a

position inside a solid-phase voxel (of type nickel or YSZ), a simulated collision occurs. A new set of

directions and a new speed are chosen according to §2.2.2.1 and §2.2.2.2, respectively. For the new

directions, cos θ = r
1/2
f is aligned with the unit normal direction n = {nx, ny, nz} as determined by the

method described in §3.3.3.2. The unit tangent vectors at the central voxel are calculated as

t1 =





{ny,−nx, 0}/
√
n2
x + n2

y : nx 6= 0,

{0, nz,−ny}/
√
n2
y + n2

z : otherwise,

and

t2 = n× t1.

The new direction vector is therefore

dr = n cos θ + t1 sin θ cosφ+ t2 sin θ sinφ,

which represents diffuse reflection at the voxel described by surface normal n. The tracer is moved back

to the center of the last void voxel it was in before collision, and the program continues with the new

velocity vector. The program continues for a set diffusion time (constantly updated as t = t+δs/c′) and
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for a specified number of tracer molecules. The various data are recorded throughout the simulation.

3.3.4 General Issues With Tracer Simulations in Systems With Complex

Geometry

Molecule intersections with the boundaries of the control volume (i.e., the boundaries of the volume

representing the porous solid) generally result in elastic reflection back into the domain (in some cases,

periodic boundary conditions are more suitable). Tracer displacements must be monitored within the

local control volume, as well as in a global coordinate system determined by the boundary conditions

on the control volume. The global position is required for displacement calculations.

One major drawback of the tracer method is that initial placement of a molecule randomly in the

pore space may result in an initial position inside an isolated pore. In reality, gas molecules would

never have access to such regions. Since there is no way to a priori determine whether or not an initial

position lies within an isolated pore, the statistics from these tracers (distribution of path lengths,

displacements, etc.) must be removed from the data. This is accomplished by removing tracers that

never undergo a boundary collision with the control volume (since isolated pores never intersect the

boundaries). This requires the diffusion time be chosen large enough so that tracers starting deep

within the porous solid can diffuse to the boundary.

3.4 Results and Discussion

Diffusivity results for MC-tracer simulations in various models of porous media are presented here.

Additional results and their implications will be presented and analyzed in the following chapters.

3.4.1 Diffusivity Results for Cylindrical Pores and Other Capillary Models

The main purpose for calculating diffusion in cylindrical pores was to use it as a base case and validation

of the simulation method. This is because analytic results are more easily obtained for Knudsen flow

in a cylinder as compared to more complex geometries. That said, the fundamental results used for

validation of the methodology, ray-tracing algorithms, random number generation, and so on were

previously presented in figure 3.2, figure 3.3, and figure 3.4. Because of the level of agreement between
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the results, the aforementioned highlights are assumed to be accurate. No other tests were performed

to confirm additional validation (e.g., the random number generator was not tested separately).

3.4.2 Diffusivity Results for Packed-Sphere Models

Recall the diffusibility ratio introduced at the end of chapter 2. The ratio is a dimensionless constant

between zero and unity, which is characteristic of the porous material. Diffusibility results for the four

packed sphere arrangements are shown in figure 3.13. The points are the results of MC simulations

of Knudsen flow, and the line is a least-squares best-fit fourth-order polynomial used for clarity. For
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Figure 3.13. Diffusibility versus porosity for various computational porous media composed of uniform
sphere particles. The solid points are MC data from the present work for Knudsen flow. The line
is a least-squares best-fit fourth-order polynomial used for clarity. Data are obtained for geometries
in which the sphere particles overlap or are just touching (known as the maximum packing ratio)—
this point is indicated with a star (?). Larger porosities are not investigated since this results in
“floating”/unconnected particles.
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Figure 3.14. Diffusibility versus porosity for various experimental and computational porous media
composed of sphere particles. There is a noticeable difference between random and ordered structures
using sphere particles. The bottom plot is a zoom of the highlighted window in the top plot. Diffusion
data for SC, BCC, FCC, and RAND structures are the result of Knudsen flow simulations presented in
figure 3.13.

SOFCs, mass transfer occurs in submicron pores to give Knudsen numbers of order unity or greater [10].

Under this assumption (which will be upheld in the next chapter), only Knudsen diffusion simulations

are considered. Data are obtained for the three regular classical structures (SC, BCC, and FCC) at

various porosities up to the maximum packing ratio (MPR) for each structure. The porosity is varied

by allowing particles to grow and overlap, while maintaining the location of their center. Beyond the
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MPR (i.e., at higher porosities), particles are unconnected and floating in space. The porosity range

for the RAND structure was allowed to extend over the entire range. The best-fit curves are plotted in

figure 3.14 and shown with various experimental and computational results.

For uniform particles, there is a very clear difference between random and regular arrangements.

All three regular structures give higher diffusibilities at any given porosity than the random one. The

BCC (red line) arrangement appears to yield the highest diffusibility. The curve for FCC (green)

arrangements almost parallels the SC (blue) curve, giving slightly lower diffusibilities over the range

of applicable porosities. The fourth-order polynomial fit for the FCC structure results in a negative

value for the predicted diffusibility between 0% and 5% porosity. A negative number is unrealistic

since the diffusibility can only vary between zero and unity; this is the direct result of the polynomial

fit and not from tracer-diffusion simulations. The RAND (purple) curve shows good agreement with

experimental results and the results obtained by Trinh et al. [60], who used a different computational

approach than the one adopted here (a jump-diffusion scheme). The experimental data of Huizenga and

Smith [24] was obtained specifically for Knudsen diffusion in random assemblages of uniform spheres.

The RAND curve clearly passes through their data and the mass of other experimental data focused

between porosities of 35% to 40%.

3.4.3 Diffusivity Results for Particle- and Voxel-Based SOFC Models

Table 3.2 and table 3.3 present results from diffusion simulations based on mean-square displacements

for particle- and voxel-based SOFC models, respectively. Perhaps the most important parameter listed

in the tables is the tortuosity factor. This is essentially a measure of how much the pore network

affects gas diffusion as compared to a diffusing gas under the same conditions in the absence of the

porous medium. Previously reported values for the pore network of the SOFC electrode studied here

are (τx, τy, τz)Pore = (2.1, 2.2, 1.9) [65]. It is believed that the anisotropy is due to the limited sample

volume, and is a first indication of the accuracy that can be achieved for a given sample volume [65].

Similar values were recently reported by Iwai et al. [25] for a SOFC anode having volume fractions close

to 26% Ni, 25% YSZ, and 49% pore space (a significant difference from the present case of 26% Ni,

54% YSZ, and 20% pore). Despite the fact that the pore space volume fraction differs by a factor of
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Table 3.2. Summary of Knudsen transport data for the three-dimensional SOFC particle-reconstructed
anode

Ni YSZ Pore
Phase volume (%) 26.4 56.1 17.5

Mean chord length,a 〈`〉 (µm) — — 0.192
Mean-squared chord length, 〈`2〉 (µm2) — — 0.092
Ratio, 〈`2〉/(2〈`〉2) — — 1.251

β of equation (4.4)b — — 0.442

Diffusibility,c εD/DiB — — 0.027
Tortuosity, τ — — 6.42

τx — — 10.14
τy — — 8.08
τz — — 4.08

a The mean chord length gives an estimate of the mean pore
radius, R, as appearing in equation (2.31) from the relation
〈`〉 = 2R.

b The parameter β provides a measure of the nature of re-
directing collisions at gas-solid interfaces. It is discussed in
chapter 4.

c The parameter D is defined by equation (2.28), and DiB in
equation (2.32) using DiK = DDer

iK from equation (4.3).

almost two and a half, Iwai et al. obtain virtually the same tortuosity factors for a significantly larger

sample volume. These authors report values of (τx, τy, τz)Ni = (22.10, 29.46, 6.91), (τx, τy, τz)YSZ =

(27.89, 14.95, 9.86), and (τx, τy, τz)Pore = (2.05, 1.99, 1.78).

Iwai et al. [25] first reported tortuosity values for all three phases of an SOFC anode; the present

work is the second. Though gases do not diffuse in the two solid phases, the tracer-diffusion scheme

was used to obtain data for these phases in addition to the pore phase; this is done to provide some

information on the complexity (or lack thereof) of the two solid phases and the transport pathways

within the electrode network. The large discrepancy in tortuosity values (varying by a factor of ten or

more between the pore and solid phases) reported by Iwai et al. is somewhat disturbing. While it is

hard to make comparisons between the two different anodes (especially since the YSZ and pore volume

fractions are opposite), Iwai et al. obtain tortuosity factors an order of magnitude higher for each of

the solid phases. Each of these phases has a slightly higher volume fraction than the pore phase of the

anode studied here and by Wilson et al. (approximately 25% versus 19%). It is presumed that Iwai et

al. would obtain a pore-phase tortuosity factor for the present anode on the order of or greater than the
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Table 3.3. Summary of Knudsen transport data for the three-dimensional SOFC voxel -reconstructed
anode

Ni YSZ Pore
Phase volume (%) 25.85 54.29 19.86

Mean chord length,a 〈`〉 (µm) 0.525 0.557 0.261
Mean-squared chord length, 〈`2〉 (µm2) 0.535 0.673 0.137
Ratio, 〈`2〉/(2〈`〉2) 0.971 1.084 1.000

β of equation (4.4)b 0.516 0.419 0.499

Diffusibility,c εD/DiB 0.046 0.335 0.039
Tortuosity, τ 5.56 1.62 5.05

τx 10.50 1.99 8.39
τy 5.90 1.57 5.93
τz 3.64 1.41 3.26

a The mean chord length gives an estimate of the mean pore
radius, R, as appearing in equation (2.31) from the relation
〈`〉 = 2R. For Ni and YSZ, this could represent the mean
radius of a solid particle.

b The parameter β provides a measure of the nature of re-
directing collisions at gas-solid interfaces. It is discussed in
chapter 4.

c The parameter D is defined by equation (2.28), and DiB in
equation (2.32) using DiK = DDer

iK from equation (4.3).

tortuosity factors obtained for the Ni and YSZ components—i.e., because of the disparity in pore-phase

volume fractions between the two anodes, and since the anode used here has a pore volume fraction

more in line with the two solid-phase volume fractions of the other anode, it is reasonable to assume

Iwai et al. would calculate a pore-phase tortuosity factor of 20 or greater. However, it is still interesting

that Wilson et al. and Iwai et al. obtain tortuosity values around 2 for their respective SOFC anodes,

seemingly showing an independence from the volume fraction of pore space in the anode. There is

discrepancy in the tortuosity value of 5 reported here, compared to an approximate value of 2 reported

by Wilson et al. In addition, present results compared to Iwai et al. only show good agreement for

the phases making up the majority of the anode—here the YSZ phase makes up 54% of the anode and

tortuosity for that phase agrees with the reported value from Iwai et al. for the pore phase, which

makes up 49% of their anode. The two Ni phases should be in better agreement since they each make

up the same fraction of the anode.

The tortuosity parameter is almost “mystical” in its definition, and various authors calculate it

differently. Wilson et al. [65] assume that transport within the pores is described by Laplace’s equation,
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Figure 3.15. The data from figure 3.14 with included results from the SOFC models.

and recover the tortuosity by equating the macrohomogeneously defined flux to the volume-averaged flux

within the sample volume. Recent flux-based Monte-Carlo simulations suggest that such an approach

should generally be valid for both molecular and Knudsen diffusion [68]. Iwai et al. [25] use both a

random-walk calculation and a lattice Boltzmann method to calculate the tortuosity; both approaches

give similar results. The random-walk calculation assumes each walker jumps from a voxel to one of

its neighbors. If the neighbor is of the same voxel type, the computation repeats, but if the selected

voxel is of different type, the walker stays in the original voxel and waits for the next time step.

Mean-squared displacements of the walkers are computed, and the tortuosity follows from the ratio of

calculated diffusivity in the absence of the porous medium, to the calculated diffusivity in the presence

of the porous medium (using equation (2.28) to calculate diffusivities from mean-squared displacements

and time). Values reported here are based on the same principle, but the scheme to model molecular

movement is different. Tortuosities are calculated from equation (2.33) as,

τ = DiB/D,

where D is defined by equation (2.28), and DiB in equation (2.32) using DiK = DDer
iK from equa-

tion (4.3). The curves in the plots showing εD/DiB versus ε have slopes equal to 1/τ . When the curves



66

become nearly linear, the tortuosity approaches a constant value with respect to porosity.

The diffusibility values for all phases are plotted on figure 3.14 to produce figure 3.15. It is imme-

diately evident that current SOFC electrodes are very far from being optimized for gas transport (at

least compared to what can be achieved with packed spheres). Gas diffusion is severely limited within

the porous anode, which directly impacts the delivery of fresh reactants to electrochemically active sites

near the anode/electrolyte interface.

3.5 Conclusions

Comparison between experiments and simulations clearly indicate that the coefficient of diffusion

through a porous medium is a function of both internal geometry and porosity. Even when considering

only transport through structures of sphere particles, there is a significant difference between regular

and random arrangements, and still a clear difference between each of the regular geometries. Extending

the computation scheme to the more complex geometries of reconstructed SOFC anodes shows that gas

diffusion in traditional electrode designs is greatly hindered by the complexity of the porous network.

The current method for producing such electrodes (high-temperature sintering of ceramic powders) is

not optimal for gas diffusion; an optimal electrode will combine high porosity and connectivity for en-

hanced gas transport. In fact, one could achieve higher diffusivities if uniform packed spheres were used

as the framework for the SOFC anode. For the geometries studied and a given porosity around 20%,

the diffusibility ranges from approximately 0.4 to 0.18 (for the SOFC anode and BCC, respectively)—a

factor of four and a half! In order of most optimal for gas transport, the structures are BCC, SC,

FCC, RAND, and the SOFC anode. Random structures like RAND and the SOFC anode will contain

isolated pores which do not contribute to available space for gas transport. This is perhaps one reason

why these structures result in lower gas diffusibilities.
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Chapter 4

Turning Porous Media Inside Out:
What the Pore-Size Distribution
Suggests About the Internal
Structure

4.1 Introduction

Typical porous solids are inherently complex three-dimensional (3D) structures. Apart from macro-

scopic properties, e.g., porosity and tortuosity, the distribution of pore sizes may arguably have the most

signicant impact on the resistance of the structure to a flow moving within the void space. Pore shape,

necking, and connectivity are certainly important as well, but these parameters are fundamentally more

difficult to measure and characterize independently (at least the first two are, and connectivity can be

scrutinized to some extent as we shall see later). Understanding the distribution of pore sizes in a

variety of porous media can lead to signicant advancements in a wide range of phenomenon that rely

on flow in these structures.

The pore space in a typical porous solid consists of a highly convoluted network of interconnected

paths. Details of the morphology control the rate and mechanism by which molecules of a gas move

within the porous network. Transport mechanisms depend on pore-size distributions (PSDs), which

cause local variations in diffusion rates [68]. Diffusion can occur via bulk, Knudsen, or surface pro-

cesses, controlled by molecule-molecule interactions, molecule-wall collisions, or adsorption/desorbtion

phenomena, respectively. For diffusion within the voids (as opposed to surface diffusion), the relation-

ship between gas mean-free path and relevant pore dimensions determine the nature of the transport
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mechanism. For example, flow within large pores (relative to the gas mean-free path) can exhibit tran-

sitional or continuum behavior, while flow within small pores must be analyzed under the Knudsen-flow

assumption.

Though these phenomena have been well understood for some time, the difficulty arises in the

correlation between molecular mechanisms and influence of the physical structure of the pore network.

In fact, the network structure itself is not well understood, so the relationship between structure and

diffusion fluxes is not easily delineated. Apart from the porosity, most theories and models used to

predict diffusion in porous media only consider a mean pore size and the tortuosity parameter [24, 46,

8, 50, 58]. The idea of adopting a mean pore size is born out of well-developed theories for diffusion

in capillaries [34, 11, 48, 15]. In the case of a smooth pore-size distribution, we can readily define a

mean pore size and the type of distribution (which turns out to be exponential in form for random

packed spheres [38]), but some structures have several peaks in their distribution functions, and this is

an interesting result because the distribution is not well described by its mean. Using a simple mean

(i.e., the first moment of the pore-size distribution) is sometimes not enough to define or accurately

represent the distribution. For multimodal distributions, it is necessary to account for transport at each

mode. Further, specific engineering applications may benefit from smooth distributions, while others

may rely on multimodal distributions targeted at optimizing some specific process, or even a host of

processes at the same time.

4.2 Background

There is no known way to a priori estimate the mean pore size of a porous solid, and, in any case, a simple

one-parameter representation of the PSD can neglect potentially useful and significant information

about the pore structure. Little work has been concerned with the shape of the PSD and its effects on

mass transport in porous media.

It is useful to first address how a PSD is obtained computationally for a particular structure. The

PSD is assumed to relate to the distribution of chord lengths in the void spaces of a porous material.

The distribution of chord lengths is obtained from tracer-diffusion simulations. Suppose we have a

model pore structure, and gas molecules moving within the pore space. In the low-pressure limit
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(rarefied or Knudsen-flow assumption), collisions between molecules can be neglected, so that the only

influence on molecule behavior is the interaction between a molecule and the walls of the structure.

Hence, molecules move from one wall collision to the next and their paths can be traced. A molecule,

or tracer, is allowed to move for a given time, and the distribution of path lengths between collisions

can be stored and analyzed for a large number of tracers dispersed throughout the porous network.

This distribution of path lengths, or chord-length distribution, is used to represent the PSD since the

chords provide a set of lengths which span the pores. Gas-surface interactions are prescribed by the

cosine law [21] as a consequence of the second law of thermodynamics (see, for example Steckelmacher

and Lucas [57] and Kolasinski [35], §3.8). The cosine law ensures that incident and reflection angles,

and therefore, successive path lengths between collisions, are uncorrelated.

Lu and Torquato [38] showed that ballistic tracers moving under the Knudsen-flow assumption

in voids between random packed spheres follow free-path distributions equivalent to the PSD of the

network. Further, this distribution was found to be exponential of the form,

f(`) =
1
〈`〉 exp

(
− `

〈`〉

)
, (4.1)

where ` is the distance between surface collisions under the Knudsen-diffusion assumption (molecules

travel in straight lines from wall collision to wall collision), and 〈`〉 is the first moment of the distribution,

or mean-free path to collision. The function f(`) represents the probability distribution function for

finding a pore of size `.

Derjaguin [16] was perhaps the first to study the nature of length distributions between wall collisions

in the Knudsen regime. Studying the behavior of the gas in the Knudsen limit removes any affect the

molecules have on one another, so their paths are simply a measure of the distances between wall

collisions. The PSD is purely a structural feature, and studying transport in the Knudsen limit means

the only influence on the molecules is interactions with the structure. Derjaguin’s work also included

the role of redirecting collisions and was later utilized by Levitz [36, 37] to characterize the void space

within a dense random packing of hard spheres. Structural properties in packed beds have also been

examined by Reyes and Iglesia [51]. Results of the work discussed above are very interesting but seem

to garner little attention, recently appearing with good discussion in Zalc et al. [68]. The collective
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analysis of these studies reveal that the ubiquitous use of a mean pore size as the relevant length scale

is nonrigorous for some void structures. Generally, the length scale R appearing in equation (2.31) is

approximated as R = 〈`〉/2, and equation (2.31) becomes

DiK =
1
3
〈`〉c′. (4.2)

The proposed correction factor of Derjaguin accounts for the second moment of the pore-size distribution

as well as the nature of the redirecting collisions to give

DDer
iK =

1
3
〈`〉
[ 〈`2〉

2〈`〉2 − β
]
c′, (4.3)

where the nature of redirecting collisions is captured in

β = −
m=∞∑

m=1

〈cos γm〉, (4.4)

and 〈cos γm〉 is the average cosine of the angles between trajectory segments separated by m wall

collisions [68]. Derjaguin showed that the Knudsen cosine law leads to 〈cos γm〉 = (−4/9)m for a

stream of molecules striking randomly placed spheres. This results in β = 0.3077. The value of β is

different depending on the geometry, reflection law, and diffusion process.

Though highly useful, these works do not particularly focus on how the PSD changes for various

structures, and consequently, what impact this has on Derjaguin’s originally proposed correction factor

(or on mass transport in general). To the author’s knowledge, no work has rigorously examined the

differences in PSDs in random and ordered materials.

4.3 Methods

Procedures for generating model porous solids and simulating tracer diffusion are described in chapter 3.

The Monte-Carlo (MC) computational scheme used herein and discussed previously is similar to that

well documented in the literature [15, 17, 55, 67, 68]. Under the Knudsen-flow assumption, tracers

follow ballistic trajectories that are independent of each other and may be generated as such. Data
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is gathered for a large number of tracer molecules moving within the pore network. Among the data

stored during this process are the many path lengths between surface collisions. This distribution of

path lengths is used as a representation of the pore-size distribution. It is essentially the same as

computing the distribution of distances from a surface to all other surfaces in all directions. However,

the MC computation allows this to be computed in situ with tracer-diffusion calculations from the

previous chapter.

4.4 Results and Discussion

The chord-length distribution for each geometry is obtained from Knudsen-diffusion simulations of at

least 10,000 molecules placed randomly in the voids of the structure. Molecules move from wall collision

to wall collision until experiencing a minimum of 1,000 collisions, and collisions are assumed to be diffuse

(post-collision directions are not dependent on incident angles). Each path length, or chord, between

collisions is stored. Using a larger number of molecules or allowing them to undergo more collisions

does not have any appreciable impact on the distribution.

The figures presented in this section will show typical chord distributions for several geometries.

These distributions are plotted as normalized probability distribution functions with area under each

curve equal to unity. The thick lines in the plots are from tracer data, and thin lines give the expo-

nential distribution (when applicable) of equation (4.1) using the mean from the tracer data. For each

distribution, data is presented on two side-by-side figures using different horizontal scales, linear (left)

and log (right). The log scale is used to reveal more details at smaller chord or pore sizes. These figures

are meant to illustrate the vast differences in estimated pore-size distribution for different structures,

even for those structures that appear quite similar. The shape of the distribution is useful in identifying

pore types (e.g., cylindrical or tube like pores versus spherical pores versus any other shape), and can

prove useful in design applications where one pore type will suit the design guidelines and transport

requirements better than another. The distributions are also useful in trying to pinpoint why two

structures with the same porosity differ in diffusibility, i.e., why one structure results in more facile gas

transport compared to another. Cumulative probability distributions are also presented.
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Figure 4.1. Probability distributions of chord lengths for molecules “bouncing” around inside cylinders
of various aspect ratios L/R. The area under each curve is one. The molecule reflects diffusely from
the inner surface of the cylinder after each collision. Curves are produced from data obtained in tracer
simulations.
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Figure 4.2. Cumulative probability distributions of chord lengths for molecules “bouncing” around
inside cylinders of various aspect ratios L/R.

4.4.1 Short and Long Cylinders

The chord distributions from the inside of short and long cylinders are shown in figure 4.1. The

distributions for short cylinders lack the tail at larger chord lengths that appear for longer cylinders.
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This is because low-angle trajectories (i.e., those that are close to parallel with the cylinder axis) result

in molecules exiting the tube (for the short-tube case) rather than suffering a collision after a long path

length (like the long-tube case). All distributions peak at or very near `/R = 2, meaning the most

probable length is the cylinder diameter and the most probable direction for a molecule leaving the

surface is radially inward. For cases when `/R ≥ 100, the distributions are more or less symmetric, so

the most probable length is also the mean. Cumulative distributions are shown in figure 4.2.

The effect of cylinder length-to-radius ratio, L/R, on mean chord length is shown more clearly in

figure 4.3. The data confirm that when `/R ≥ 100, the mean chord length is equal to the diameter

of the cylinder. Interestingly, most pores in random porous media (especially those considered for

SOFC electrodes) do not resemble long cylinders with large aspect ratios. Instead, the aspect ratios

are probably closer to unity as a result of the isotropic nature of the pore network.
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Figure 4.3. Effect of cylinder aspect ratio, L/R, on mean chord length.

4.4.2 Inside a Single Closed Sphere

The chord distribution from the inside of a single diffuse-reflecting sphere appears in figure 4.4. Here,

we see a probability that increases with increasing chord length, up to the sphere diameter. The

distribution is linear, peaking at the sphere diameter. This means the most probable direction for a

molecule leaving the surface is radially inward, and is consistent with what is seen in the cylinder case.

The mean of the distribution occurs at 〈`〉/R = 4/3. The cumulative distribution is shown in figure 4.5.
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Figure 4.4. Probability distribution of chord lengths for molecules “bouncing” around inside a sphere.
The area under the curve is one. The molecule reflects diffusely from the inner surface of the sphere
after each collision. The curve is produced from data obtained in a tracer simulation. The distribution
has a mean of 〈`〉/R = 4/3, and most probable chord length at the sphere diameter, i.e., `/R = 2.
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Figure 4.5. Cumulative probability distribution of chord lengths for molecules “bouncing” around inside
a sphere.

4.4.3 Monodisperse Simple Cubic Packing of Spheres

Consider an infinite array of SC-packed spheres according to the unit cell shown in figure 3.5(a).

The geometric chord-length distribution (or geometric PSD) obtained for such a structure (at various

porosities) is shown in figure 4.6. Each of the thick colored lines represents the PSD obtained from

tracer data. The thin lines are used only as reference, and they illustrate an exponential distribution

with mean equal to the corresponding mean of the thick-line data. Clearly, the PSDs are multimodal,

and assuming a single mean pore size as the relevant length scale is nonrigorous.

To explain the multimodal nature, focus on the PSD for the case at R = RMPR. The first mode,

or peak, falls in the range [0, 2) for `/R (if you imagine the tail of this mode to continue out past

`/R ≈ 0.8). Referencing the unit cell in figure 3.5(a) and using geometric arguments, this peak is

caused by tracers moving from the surface of a particle to another particle in a neighboring cell that

shares a face with the unit cell (six total). The smallest possible path length in this case is identically
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Figure 4.6. Probability distributions for chord lengths in the void space between simple cubic (SC)
arrangements of spheres. Each row represents a different particle radius (and therefore, a different
porosity). The radius RMPR is the radius that gives maximum packing ratio, or the point at which
nearest-neighbor particles are just touching. In terms of the unit cell pictured in figure 3.5(a), RMPR =
L/2, where L is the length of any one side of the cubic unit cell. Thick lines are from tracer simulations
and the thin line is an exponential distribution having the same mean. The area under each curve is
one.

zero (because the particles are touching), and the maximum possible path length that intersects both

particles is exactly twice the particle radius.

From the same geometrical arguments, the second mode is the result of tracers moving to a neigh-

boring cell that shares an edge with the unit cell (twelve total). Geometry will predict the location of

this mode to be 2
√

2− 2 ≤ `/R ≤ 2
√

2 (or 0.828 . `/R . 2.828); these are obtained by analyzing the

closest and furthest approach for a molecule traveling from one particle to another across a shared edge.

This is exactly what we see on the plot. Likewise, the third peak results from movement across a shared

vertex (eight total), located near 2
√

3−2 ≤ `/R ≤ 2
√

2 (or 1.464 . `/R . 2.828). There is clearly a lot
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Figure 4.7. Cumulative probability distributions for chord lengths in the void space between simple
cubic (SC) arrangements of spheres.

of overlap between the second and third modes, and they each decay to the same furthest approach, or

maximum chord length. A fourth mode is also evident in the PSD in the approximate range (2.8, 3.8)

for `/R. It is caused by tracers traveling more than one unit cell before collision. Trajectories of this

nature have a higher relative probability at higher porosities (because there is more open space), and

this trend is confirmed since this peak decreases as the particle size increases (decreasing the porosity).

The shape of these distributions will result in a cumulative volume distribution that has a step-

function behavior, meaning large chunks of volume are contained in only a few different pore sizes. This

is shown in figure 4.7.
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Figure 4.8. Probability distributions for chord lengths in the void space between body-centered cubic
(BCC) arrangements of spheres. Each row represents a different particle radius (and therefore, a
different porosity). The radius RMPR is the radius that gives maximum packing ratio, or the point at
which nearest-neighbor particles are just touching. In terms of the unit cell pictured in figure 3.5(b),
RMPR =

√
3L/4, where L is the length of any one side of the cubic unit cell. Thick lines are from tracer

simulations and the thin line is an exponential distribution having the same mean. The area under
each curve is one.
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Figure 4.9. Cumulative probability distributions for chord lengths in the void space between body-
centered cubic (BCC) arrangements of spheres.
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4.4.4 Monodisperse Body-Centered Cubic Packing of Spheres

Refer to figure 4.8 for PSDs of BCC arrangements of spheres. The BCC structure is more dense than a

SC arrangement, and therefore the distributions shift slightly toward smaller pore sizes. The same kind

of geometrical arguments can be applied to explain peak locations for this set of PSDs, and consequently,

the cumulative volume distribution is characterized by a slight stepping behavior as shown in figure 4.9.

With respect to the unit cell in figure 3.5(b), the first peak is caused by movement between the center

particle and one of the vertex particles, or first nearest-neighbor interactions; the second is characterized

by movement between vertex particles sharing an edge of the unit cell, or equivalently, between center

particles of neighboring unit cells, known as second nearest-neighbor interactions. Notice how the first

and second peaks are very much overlapped because the spacing in these situations does not differ

significantly. In fact, there is little difference between the first two modes at low porosities. The third

mode has a much lower probability than the first two, and is the result of movement from one vertex

particle to another diagonally across a face of the unit cell, or third nearest-neighbor interactions. This

is the equivalent of a molecule traveling from center particle to center particle in unit cells sharing an

edge. Additional peaks are more prominent at higher porosities, as was true for the SC results These

modes arise from molecules traveling greater distances in the increased void space before suffering a

collision.

4.4.5 Monodisperse Face-Centered Cubic Packing of Spheres

As with the previous two cases, PSDs for FCC structures have multiple modes and are illustrated in

figure 4.10. The FCC packing is the most dense arrangement of the three already discussed. The PSDs

have relatively smaller secondary (and so on) peaks, and it is worthwhile to note that as the porosity

decreases in general over the range of ordered sphere packings, the lesser peaks become increasingly less

prominent. That is, the PSDs tend closer to the exponential form shown as the thin line. It becomes

increasingly difficult for a tracer molecule to move very far without reaching a surface. However, when

the porosity gets too low, the pores become isolated and the peaks of the distribution will be sharper.
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Figure 4.10. Probability distributions for chord lengths in the void space between face-centered cubic
(FCC) arrangements of spheres. Each row represents a different particle radius (and therefore, a
different porosity). The radius RMPR is the radius that gives maximum packing ratio, or the point at
which nearest-neighbor particles are just touching. In terms of the unit cell pictured in figure 3.5(c),
RMPR =

√
2L/4, where L is the length of any one side of the cubic unit cell. Thick lines are from tracer

simulations and the thin line is an exponential distribution having the same mean. The area under
each curve is one.
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Figure 4.11. Cumulative probability distributions for chord lengths in the void space between face-
centered cubic (FCC) arrangements of spheres.
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Figure 4.12. Probability distributions for chord lengths in the void space between a random (RAND)
arrangement of spheres. Each row represents a different particle radius (and therefore, a different
porosity). Since this arrangement started as a BCC array as described in §3.3.2.1, the radius RMPR is
the radius that gives maximum packing ratio for the BCC structure. In terms of the unit cell pictured
in figure 3.5(b), RMPR =

√
3L/4, where L is the length of any one side of the cubic unit cell. Thick

lines are from tracer simulations and the thin line is an exponential distribution having the same mean.
The area under each curve is one.

4.4.6 Random Monodisperse Sphere Particles

Pore-size distributions for a single random array of sphere particles is presented in figure 4.12. Vari-

ous porosities were achieved by allowing the particles to grow or shrink uniformly, while holding their

position constant. This is the same method used to vary the porosity in SC, BCC, and FCC arrange-

ments. Though results are only presented for one random structure, the reader should be informed

that all simulated random structures using uniform size particles produced similar PSDs, regardless of

the amount of allowable particle overlap, and regardless of the algorithm used to create the particle

packing.
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Figure 4.13. Cumulative probability distributions for chord lengths in the void space between a random
(RAND) arrangement of spheres.

Randomized structures do not contain repeated patterns of the microstructure, common to the

ordered counterparts SC, BCC, and FCC. Hence, the PSD does not have multiple peaks that are evident

in the latter cases and the cumulative volume distribution is very smooth (see figure 4.13). Instead,

the PSD of random particle-based structures can be approximated quite well with the exponential

distribution of equation (4.1). For porosities below ε = 0.4 the PSD is essentially exponential in nature.

4.4.7 Real Structures: Particle- and Voxel-Based Reconstruction of a Solid-

Oxide Fuel Cell Anode

New imaging techniques have made possible the 3D reconstruction of actual SOFC electrodes (see, for

example Wilson et al. [65] and Gostovic et al. [20] for focused ion beam scanning electron microscopy

(FIB-SEM), and Izzo Jr. et al. [26] for high-resolution X-ray tomography (XCT)). More details and
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Figure 4.14. Particle-based model of the reconstructed SOFC anode. Moving clockwise, the top left
image shows the entire anode, the top right shows a cutout down the midplanes of the three major axes
for particles in that region, the bottom right illustrates the oxide (YSZ) phase (translucent/gray), and
the bottom left the metal (Ni) phase (green). Note that particles of different phases, shown separately
in the two bottom images, do overlap.
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Figure 4.15. Probability distribution for chord lengths in the pore phase of a particle-based three-
dimensional SOFC reconstructed anode. Particles are allowed to overlap; chord lengths are normalized
by the average particle radius, R = 0.1059 µm; porosity ε = 17.5%. A total of 26,022 particles are in
a 6.04553× 5.2× 3.42439 µm box. The mean chord length is 〈`〉 = 0.192 µm. The thick curve is from
a tracer simulation and the thin line is an exponential distribution having the same mean. The area
under the curve is one.

background on these techniques can be found in the next chapter.

Using image data from Wilson et al. [65], the 3D-SOFC anode has been modeled using spherical

particle-based reconstruction techniques, and a voxel-based mesh approach (discussion of the recon-

struction technique can be found in §3.3.3.1, while discussions about the two model microstructures are
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addressed in the next chapter). The particle-based model used here contains 26,022 spheres of various

sizes, with pore-space volume fraction ε = 17.5% (compared to 19.5% calculated by Wilson et al. from

their reconstruction). Images of the particle-based structure are shown in figure 4.14.

The PSD for the particle-based anode is presented in figure 4.15. The shape of the curve is quite

peculiar; there are a lot of chords with length `/R . 0.4, while there is a dip in the number between

0.4 < `/R . 2.6, as compared to the exponential distribution (thin line). This feature is presumed

to be an artifact of the particle model. Additional results have shown that changing the distribution

of particle sizes can greatly reduce the deviation of the PSD from an exponential distribution, and we

saw previously that the void space in a random packing of uniform-size spheres is characterized by the

exponential distribution. Most of the area under the curve is found at chord lengths less than a micron,

meaning it is likely that most pores are on the order of a micron or smaller.

The PSD for the voxel-based anode is presented in figure 4.17. The shape of the curve is significantly

different from the particle-based model except at the tail of the distribution. The voxel-based model

results show a dramatic sawtooth behavior. This is solely an artifact of the resolution of the voxel

model. The “teeth” occur at multiples of the voxel dimension, δx = δy = δz = 42.28 nm because

molecules must travel through some integer number of voxels between every collision. Consequently,

this shows up as a jump in the distribution at integer multiples of the voxel dimension followed by a

decay in the probability to the next integer multiple. Several test cases using different voxel dimensions

confirms this trend. Note that the smallest chord length that can be resolved is set by the resolution

of the model, or the voxel dimension (this appears as the magenta vertical line). Practically all of the

area under the curve is found at chord lengths less than a micron, agreeing with observations from the

particle model, and likely indicating that most pores are on the order of a micron or smaller.

The cumulative probability distribution for chord lengths in the pore phase of the particle- and

voxel-based anodes are shown in figure 4.18 and figure 4.19, respectively. Note that the horizontal axis

is the normalized chord length, `/R. For the particle model, the normalizing radius is the average

particle size, 0.1059 µm. However, the normalizing radius in the voxel model is 1 µm since there

existed no particle radius to use for normalization. As such, the cumulative distributions are actual

quite similar if considered as a function of the chord length only (as opposed to the normalized chord
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Figure 4.16. Voxel-based model of the reconstructed SOFC anode. Moving clockwise, the top left
image shows the entire anode, the top right shows the void phase (blue), the bottom right illustrates
the oxide (YSZ) phase (translucent/gray), and the bottom left the metal (Ni) phase (green). Note,
due to graphic-plotting limitations, the structure shown here is for a voxel dimension of 84.56 nm. The
actual structure analyzed has a voxel dimension of 42.28 nm, giving a single-voxel volume eight times
smaller than those pictured.
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Figure 4.17. Probability distribution for chord lengths in the pore phase of a voxel-based three-
dimensional SOFC reconstructed anode. The chord lengths are normalized using R = 1 µm; porosity
ε = 19.8%. A total of 1,424,709 cubic voxels are in a 143 × 123 × 81 array with a single voxel having
dimension 42.28 nm on a side. The two vertical lines indicate the voxel dimension (magenta) and
exactly twice this (orange). The mean chord length is 〈`〉 = 0.261 µm. The thick curve is from a tracer
simulation and the thin line is an exponential distribution having the same mean. The area under the
curve is one.

length). Each is smooth, and reaches full probability around a chord length of ` = 1 µm. Again, this

confirms that essentially all pore volume is contained in pores smaller than one micron.
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Figure 4.18. Cumulative probability distribution for chord lengths in the pore phase of a particle-based
three-dimensional SOFC reconstructed anode. Refer to the caption of figure 4.15 for more information
regarding the model.
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Figure 4.19. Cumulative probability distribution for chord lengths in the pore phase of a voxel-based
three-dimensional SOFC reconstructed anode. Refer to the caption of figure 4.17 for more information
regarding the model.

4.4.8 Moments of the Chord Distribution

From each of the PSDs in figure 4.6, figure 4.8, figure 4.10, figure 4.12, and figure 4.15, the first

and second moments of the distribution can be determined and plotted versus the porosity. The first

moment is nothing more than the average chord length, which many have made ubiquitous use of as a

descriptor of the PSD, without regard for the shape of the distribution. The first moment of the chord

distributions for SC, BCC, FCC, RAND, and the particle-based 3D-SOFC are plotted in figure 4.20.

Also shown on the plot is an exponential fit for the four arrangements composed of uniformly sized

particles. Over the entire range of porosity, this fit can be used to estimate the mean chord length—or

mean pore size—for packed-sphere models using a single sphere size. The predicted mean chord length

is obtained from 〈`〉 = R exp(−1.50 + 3.83ε), where R is the particle size. When the particle size is

greater than that pertaining to the maximum packing ratio, the particles overlap and there is some

deviation from the prediction. Nonetheless, the general result can be substituted into equation (4.2)



87

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ç

ç

ç ç

ç

ç

ç

ç

ç

ç

ç

ç

ø

ø

ø

Particle 3D-SOFC

X{\�R = expH-1.50 + 3.83ΕL

X{\�R = 4Ε�H3H1 - ΕLL

æ SC
æ BCC
æ FCC
æ RAND

ç

ç

ç

ç

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.5

1.0

2.0

5.0

10.0

Porosity, Ε

M
ea

n
ch

or
d

le
ng

th
,X

{
\�

R
Figure 4.20. Mean chord lengths of the pore space in sphere-based structures. All points are for
uniform packed spheres except for the single black point from the particle-based 3D-SOFC model.
Sphere particles are allowed to overlap or just touch (i.e., there are no floating particles, except perhaps
in the RAND structure), and the star (?) indicates the maximum packing ratio for the structure (i.e.,
when nearest particles are just touching). The mean chord lengths are normalized using the particle
radius (in the case of the 3D-SOFC model, the average particle radius is used). The solid line is an
exponential fit through the data for uniform spheres only (SC, BCC, FCC, and RAND). The dashed
line is generally regarded as a fit for nonoverlapping particles.

so the Knudsen diffusivity can be written in terms of known, easily measured, or easily calculable

quantities, such as the particle size, the porosity, and the mean thermal speed. This substitution gives

DiK =
1
3
R exp(−1.50 + 3.83ε)c′ ≈ 0.074Rc′e3.83ε.

This result allows one to estimate the Knudsen diffusivity through a porous medium composed of

uniform packed spheres without a priori information regarding the internal structure. The dashed

curve in figure 4.20 is the expression 〈`〉/R = 4ε/(3(1 − ε)), and is derived from a ratio of available

volume to surface area for nonoverlapping, uniform packed spheres [55]. For particle-based models

of porous media using spheres, this expression is generally used to estimate the mean pore diameter

using the mean chord length [55, 24, 50]. The estimate is in good agreement with the three points

denoted with a star (?), which represent the cases when particles are just touching for the three ordered

arrangements. However, this relationship is only valid for nonoverlapping spheres of uniform size and

clearly does not agree with the cases that involve overlapping particles. The result presented here is

more general, and applies to a greater range of porosities and sphere geometries.

The second moment of the distribution is the mean-squared chord length, and these are plotted

in figure 4.21 with a power-law fit, 〈`2〉/R2 = exp(−2.39 + 7.73ε). The fits for the first and second
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Figure 4.21. Mean-squared chord lengths of the pore space in sphere-based structures. All points are
for uniform packed spheres except for the single black point from the particle-based 3D-SOFC model.
Sphere particles are allowed to overlap or just touch (i.e., there are no floating particles, except perhaps
in the RAND structure), and the star (?) indicates the maximum packing ratio for the structure (i.e.,
when nearest particles are just touching). The mean-squared chord lengths are normalized using the
square of the particle radius (in the case of the 3D-SOFC model, the average particle radius is used).
The solid line is an exponential fit through the data for uniform spheres only (SC, BCC, FCC, and
RAND).

moments can be used in the corrected version of the Knudsen diffusivity appearing in equation (4.3).

This substitution produces

DDer
iK ≈ 0.074Rc′e3.83ε

(
0.92e0.07ε − β

)
= DiK

(
0.92e0.07ε − β

)
.

It is important to note that these predictions are obtained from architectures of uniform spheres. The

results for the particle 3D-SOFC, which is composed of spheres of various sizes, deviates significantly

from these estimates. This is perhaps due to normalization using the mean particle size. It might be

more appropriate in such a case to normalize using the particle size in which most of the solid-phase

volume is contained. The mean particle size for the particle-reconstructed anode is 0.1059 µm. The size

in which the majority of the volume is contained is difficult to determine. Table 3.1 gives a breakdown of

the size and number of particles making up the reconstructed anode. However, due to varying amounts

of overlap between particles, and the fact that the same amount of overlap between a small and large

particle eclipses a higher percentage of the volume of the small particle, estimating the particle size in

which most of the volume is found is a challenging effort indeed.

For an exponential distribution like that of equation (4.1), the mean is 〈`〉 and the variance is

Var(`) = 〈`〉2. Since the variance can be written for any distribution as Var(`) = 〈`2〉−〈`〉2, substitution
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Figure 4.22. A measure of the deviation of a chord-length distribution from an exponential distribution,
based on the first and second moments. All points are for uniform packed spheres except for the single
black point from the particle-based 3D-SOFC model. Sphere particles are allowed to overlap or just
touch (i.e., there are no floating particles, except perhaps in the RAND structure), and the star (?)
indicates the maximum packing ratio for the structure (i.e., when nearest particles are just touching).
The solid line is a fit through the data for uniform spheres only (SC, BCC, FCC, and RAND). The
dashed line at a value of 〈`2〉/(2〈`〉2) = 1 is indicative of the exponential distribution of equation (4.1).

requires 〈`2〉/(2〈`〉2) = 1 for the exponential distribution. This ratio appears in the Derjaguin [16]

correction factor found in equation (4.3). That said, we can plot this ratio for the particle models,

producing the lines in figure 4.22. In a way, this plot gives a measure of the deviation of a particular

distribution from exponential. The solid line is the ratio based on the functional fits and shows a slight

upward trend. This ratio is close to unity for the cases studied. Even though many of the distributions

had several peaks, those for SC, BCC, FCC, and RAND networks at least follow the general trend

of the exponential distribution. In these cases, it is a good predictor of the average behavior of the

distributions.

4.5 Conclusions

Results clearly show that the pore-size distribution (PSD) of the space between overlapping and nonover-

lapping sphere particles is highly dependent on the structure architecture. For any process that relies

on transport in porous materials, analysis of the PSD can potentially be used to optimize the process

or change the design to achieve better results. A multimodal PSD can be used to predict the various

types of transport phenomena occurring within the material. In addition, while most models and pre-

dictors use a mean pore size as the only relevant length scale, we see that is nonrigorous for some void
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structures. Structures characterized by a multipeaked PSD are more properly described by multiple

length scales, one corresponding to each peak in the PSD. The pore network can then be characterized

as a system of macropores (perhaps those in which the pore size is greater than the mean-free path

of the gas moving within), mesopores, and micropores (a small pore size relative to the gas mean-free

path). Such materials can be referred to as multiscale porous materials.

The distribution of pore sizes in the SOFC models shows that the majority of pores are smaller than

a micron. This perhaps is one of the causes of hindered gas transport, and upholds the assumption

that Knudsen diffusion will dominate because typical pressures are not enough to force continuum

dynamics. “Real” microstructures such as the SOFC anode model are likely characterized by spheres

with a size distribution, rather than a single size, or by random packing. This means a multipeaked

PSD is atypical, and the exponential distribution might be a good approximation.
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Chapter 5

Piecing Together the Puzzle:
Analysis of Solid-Oxide Fuel Cell
Anode Microstructure

5.1 Introduction

Current solid-oxide fuel cell (SOFC) electrodes are typically produced from high-temperature sintering

of powders embedded with pore formers. The resulting structures are highly tortuous, complex three-

dimensional (3D) networks, optimal neither for gas transport nor electrochemistry. Not until the

recent work of Wilson et al. [65] have we been able to visualize and analyze the microstructure of a

SOFC cermet anode. The results of a 3D reconstruction of a cermet anode using focused ion-beam

milling and scanning electron microscopy (FIB-SEM) are shown in figure 1.5. The microstructure is

highly convoluted and only partially connected—Wilson et al. report that only 63% of the triple-phase

boundary (TPB) regions are well connected to the metal, oxide, and pore networks. A large proportion

(19%) of the TPB is formed by short segments disconnected from one or more networks, and therefore

inactive for electrochemistry. Such a random, tortuous structure is clearly not optimized for its desired

purpose, and clearly not what one would design with better control over the fabrication process.

There is a lack of quantitative data describing the complex networks that make up the SOFC

electrode microstructure. A SOFC demands high connectivity of all three phases, so that each phase

can supply (or remove) reactants (or products) to (from) the TPB. That is to say, the metal (Ni) phase

must be well connected from the electrolyte to the interconnect (see figure 5.1) for optimal electron

transport. Likewise, the pore phase must be well connected for gas transport and the oxide (YSZ) phase
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Fig. 3: Expanded view of the three-phase region in a membrane-

electrode assembly. Primary particles of electrode and electolyte

material are typically on the order of a micron.

The electrolyte must have sufficient conductivity to sup-
port the ion current without substantial ohmic losses. Un-
fortunately, even “good” ion conductors offer considerable
resistance to ion transport. Resistance can be reduced by in-
creasing operating temperature or making electrolyte layers
thinner. Since reducing operating temperature is desirable
for other reasons, electrolytes are usually made to be very
thin. Achieving electrolyte thickness of around 10 microm-
eters is practical, even for large-area MEAs.
Ceria doped with either gadolinium or samarium has

higher ion conductivity than YSZ, but also suffers some
electronic conductivity at high temperatures [6, 7]. Ceria
based systems usually operate around 600 ◦C or below, be-
cause electronic conductivity increases to unacceptable lev-
els at higher temperatures.

2.2. Electrodes

Electrodes are designed to accomplish several impor-
tant functions. These include structural support, gas-phase
transport, electron transport, catalytic chemistry, and elec-
trocatalysis. In SOFCs the electrodes are fabricated as
porous ceramics or ceramic-metallic composites (i.e., cer-
mets), which are porous structures that provide interpen-
etrating, continuous, three-dimensional metal, oxide, and
gas networks. The porosity, metal fraction, and ceramic
fraction are each typically around 33%.

2.2.1. Anode

Within the porous anode fuel is transported from the flow

channel through open pores toward the dense-electrolyte
interface, whereupon it may participate in charge-transfer
reactions. In a system like Ni-YSZ, charge-transfer reac-
tions occur in the vicinity of a three-phase boundary (TPB),
which is formed at the intersection of the gas, electrolyte
(YSZ), and an electronic conductor (Ni). The products of
the charge-transfer process (i.e., gas-phase species and elec-
trons) must be transported away from the three-phase re-
gion. The gaseous product species are transported (diffu-
sively and convectively) through the porous structure back
toward the flow channel where they mix with the unspent
fuel and flow toward the exhaust. For a hydrocarbon fuel
the net gas flow is from the electrolyte interface towards
the fuel channel (e.g., for each mole of C4H10 oxidized, five
moles of H2O and four moles of CO2 are produced). The
electrons are carried in the anode metal toward the intercon-
nect. The metallic phase in the anode must be contiguous
and offer relatively little electrical resistance.

As illustrated in Fig. 3 the ceramic in the anode is an
ion conductor, often the same material as the electrolyte.
Since ions can be conducted up into the porous anode,
the effective length of the three-phase region is extended
greatly. This, in turn, improves the effectiveness of the
charge-transfer process.

Because the electrolyte layer must be thin, one of the
electrodes usually serves as the structural support for the
MEA. Either electrode can provide this function. The sup-
porting electrode is typically around 1 millimeter thick,
with the other electrode being only a few tens of microns
thick. The thick electrode should have a thermal-expansion
coefficient that is closely matched to that of the electrolyte.
As the system is cycled between room temperature and op-
erating temperature, it is important that the thin ceramic
electrolyte not be over-stressed and crack. Any gas leaks
between the fuel and air channels lead to thermal oxidation
(i.e., combustion), which produces no electricity and can
overheat and damage the system.

With hydrocarbon fuels, there may be a preference for
anode support. In this case the electron-carrying metal (e.g.,
Ni) could serve as a reforming or catalytic partial oxidation
(CPOX) catalyst. On the other hand, a thick anode may also
lead to long gas-phase residence times that could promote
molecular-weight growth and the deleterious formation of
carbon deposits.

2.2.2. Cathode

The cathode’s job is to reduce oxygen using electrons
and provide oxygen ions to the electrolyte. In the highly
oxidizing high-temperature region where the cathode must
operate, metals like Ni are very rapidly oxidized to nickel
oxides. Therefore, cathodes are usually porous ceramic
composites of an electrolyte (e.g., YSZ) and a mixed ionic-
electronic conductor (MIEC). In this case there is no metal
to serve as the electrocatalyst and current collector. Rather
the MIEC serves this function. For example a perovskite
material like strontium-doped lanthanum manganite (LSM)
is an MIEC material that shows good performance [1]. As
with the anode the structure must be porous to enable trans-
port of oxygen to the three-phase region.

2.3. Interconnect

3

Figure 5.1. Expanded view of the triple-phase boundary region in a membrane-electrode assembly.
Primary particles of electrode and electrolyte material are typically on the order of a micron. Picture
and description from Kee et al. [31].

must provide a contiguous path for O2−-ion transport. Additionally, a high density of electrochemically

active TPB will provide abundant regions for power-producing reactions.

5.2 Background

Perhaps one of the first studies to make use of digital images to represent a practical porous support

was published by Meyerhoff et al. [43]. The authors present a two-dimensional (2D) method for de-

termining effective Knudsen-diffusion coefficients for a gas moving within the pores, and provide some

characteristics of the pore texture, such as the connectivity. More recent 2D analyses applicable to

SOFCs can be found in Wilson and Barnett [63] and discussed more in Wilson et al. [64]. The 2D

methods give reasonably accurate measures of volume fractions, surface areas, and TPB densities but

are unable to quantify inherently 3D properties like tortuosity and phase connectivity. The development

of high-resolution tomography has made possible the ability to reconstruct actual 3D-SOFC electrodes

[65, 20, 26, 25], without relying on particle-based sphere-packing models (e.g., see Zalc et al. [68]).

However, the question of whether or not a particle-based model is sufficient to represent an actual

3D-SOFC is one of the concerns addressed in this work. Comparison between particle-based models

and voxel-based meshes of real anodes will be used to inform better designs and study the effects of
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microstructure on gas transport.

The method described here is based on that first presented by Wilson et al. [64]. The labels

“dead-end” and “across” used by Wilson and colleagues are well-intentioned but give classification

to sometimes very different or very similar networks for which a more appropriate label should be

“unknown.” For example, “dead-end” is defined as a network containing exactly one boundary label.

This means it enters the volume analyzed and dead-ends within. This in itself is not misleading.

However, the network may connect externally to one of the other “dead-end” regions or even to one of the

“across” regions. In fact, these networks could even represent isolated regions if they are unconnected to

anything outside of the representative volume. Albeit, within the volume analyzed, which is presumed

connectivity while not decreasing that of YSZ significantly.
In reality, however, the very low ionic conductivity of YSZ
compared to gas diffusivity in pores and electronic conduc-
tivity in Ni must be considered. Thus, a TPB with a connec-
tion to the electrolyte via a very narrow YSZ pathway may
be effectively equivalent to a disconnected TPB, which is not
the case for Ni or pores. The higher YSZ content presum-
ably yields similar effective degrees of connectivity of the
three phases, such that transport through one individual
phase does not become a dominant rate-limiting step. A full

treatment of these effects may require finite element analy-
sis, as in previous pore tortuosity gas diffusion calculations
~Wilson et al., 2006!

CONCLUSIONS

A technique was developed for using 3D image data to
identify the separate contiguous networks constituting each

Figure 4. Three-dimensional visualization
of the networks constituting the Ni
phase. ~a! Shows the entire Ni phase;
~b! highlights the isolated Ni networks in
red, and the dead-end networks in blue.
The axis units are microns.

3D Analysis of SOFC Ni-YSZ Anode Interconnectivity 75

Figure 5.2. Three-dimensional visualization of the networks constituting the Ni phase. (a) Shows the
entire Ni phase; (b) highlights the “isolated” Ni networks in red, and the “dead-end” networks in blue.
The axis units are microns. Picture and description from Wilson et al. [64].



94

to be large enough to be representative of the anode, these are in fact dead-end networks. However,

some of the networks labeled as “across” are also dead-end networks. The “across” label is used to

define networks intersecting more than one boundary, and are considered contiguous throughout the

electrode. There exists a gray area somewhere between what is a “dead-end” and what is a contiguous

network spanning “across” the electrode (or at least the volume). Refer to the color visualization of the

networks shown in figure 5.2, taken from Wilson et al. [64], and the two regions located approximately

at x ∈ (2, 5), y ∈ (4, 5), and z ∈ (3, 3.5). In images (a) and (b) one region lies more-or-less due north

and the other just to the right of the first. They both intersect the top (z ≈ 3.5) and back (y ≈ 6)

boundaries (top and back respective to the viewpoint of the images), in which case they have been

labeled “across.” Inspection of the image resolves more networks sharing a similar difficulty. Clearly

these networks are no different than those labeled “dead-end” in that they enter the volume and dead-

end within. Nothing can be said for the structure outside of the volume, and they too could be isolated

regions, true dead ends, or connected to a contiguous network. Based on the volume analyzed, it is

possible to have a transport flux through the “across” networks from one boundary to another given

appropriate boundary conditions. However, it is impossible for this to occur for “dead-end” networks

(as conservation requires no net flux across the single boundary since these networks are not connected

within the volume). So, perhaps that is the defining difference. However, it would be more appropriate

to assign all such regions an “unknown” label. The catch-22 is that even the most well connected

region across the volume could be assigned the “unknown” label. The only certainty is that “isolated”

networks will indeed remain isolated for a larger volume. With this noted, the definitions of Wilson et

al. to label networks as “isolated,” “dead-end,” or “across” are used in this research.

5.3 The Method

Details of the voxel reconstruction of the 3D-SOFC anode from digital images is described in §3.3.3.1.

The focus in this chapter is on the methods used to analyze the voxel representation of the SOFC

anode. The voxel-based model used here contains 1,424,709 cubic voxels (143×123×81 in the x×y×z

directions, respectively) of side length 42.28 nm, giving a sample size of 6.05× 5.20× 3.42 µm. A single

voxel has volume 75,560.5 nm3. Volume fractions of the three phases are 19.86% pore space, 25.85% Ni,
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and 54.29% YSZ. This is consistent with the original reported values of 19.5%, 25.9%, and 54.6% [65].

Images of the voxelated structure are shown in figure 4.16.

Determining the different phase networks starts with the complete set of voxels making up that

particular phase. For the purposes of this explanation, this set will be called the original list. The

search process begins with the first voxel and studies the six nearest neighbors to that voxel (i.e.,

the neighboring voxels that share a face with the original). Of course, only interior voxels have six

neighbors, and the algorithm is amended as needed for boundary voxels. If any of the nearest neighbors

are of the same phase type as the original voxel, they are appended to a new list representing one

network of the phase. The same nearest-neighbor search continues with all the voxels added to the new

list until the end of the list is reached. At this point, the list represents a set of voxels making up one

particular network of the phase. A new voxel is chosen from the original list of all those making up the

phase, ensuring that it has not already been added to any of the existing network lists. This voxel is

the starting point of a new network, and the process continues as above until all voxels of the original

list have been added to a network. The separate networks may contain only one voxel (in which case

none of the nearest neighbors were of the same phase type), or there could feasibly be only one network

containing all the voxels (which means all the voxels were connected to each other). This method also

enables calculation of phase-boundary areas as well as the average connectivity of each voxel to another

for any phase-type pair. Extending the scheme to consider more than the six nearest neighbors (for

example, by allowing voxels that share an edge or vertex to connect) is not expected to change the

network data.

The method for calculating the TPB segments is similar to that used by Wilson et al. [64]. Starting

with the voxel at coordinate location (or corresponding index) (0, 0, 0), consider the three edges in the

direction of the remaining volume to analyze (because edges laying within a boundary plane cannot

possibly be part of the TPB as a result of the nature of the geometric problem—this also prevents

double counting TPB segments as the edges of each subsequent voxel are studied). At each of the three

edges, the four voxels sharing that edge must contain at least one pore, one metal, and one oxide voxel

as shown in figure 5.3. When all three are found to share an edge, that edge is added to the TPB.

Upon finding a connection, or if all three phases do not share an edge, the search starts over at the next
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Figure 5.3. Triple-phase boundary (TPB) curves of the voxel anode are made up of line segments. Each
segment contributes 42.28 nm to the total TPB length, and is an edge shared by a metal (Ni), oxide
(YSZ), and pore voxel. Edges that share endpoints are connected to form curves.

edge. When the three edges have been searched, the algorithm moves to the next voxel and the process

repeats. After all edge segments (each having length 42.28 nm) have been added to the TPB, these

can be grouped into different curves based on whether or not segments are connected. A connection

between segments is formed if they share a common endpoint, and TPB curves are constructed by

joining these segments until no more connections exist.

A different methodology is implemented to determine the phase networks and TPB density for

particle-based anodes like the one shown in figure 4.14. Since the center coordinates and radius of all

particles are known, a list is created that contains all pairs of intersecting particles, i.e., the distance

between their centers is smaller than the sum of their radii. Pairs of particles of the same phase type

are linked to other pairs to build up the different phase networks. Pairs of different phase types are

used to determine shared surface areas and the TPB, because a TPB requires the intersection of metal

and oxide in the presence of the gas (void) phase. Noting that an intersection between particles i and

j is the same intersection between j and i, the list is further reduced to avoid this double-counting. At

this point, the list only contains pairs of particle indices i and j for which

|Rci −Rcj |2 < (ai + aj)2 and Type(i) 6= Type(j),

where Rci and ai represent the center and radius of particle i, respectively. The intersection region
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Pore space

Figure 5.4. Triple-phase boundary (TPB) curves of the particle anode are made up of discretized
circular arcs. Circles are formed at the intersections of metal (Ni) and oxide (YSZ) particles, and the
radius depends on the amount of overlap of the particles. The circles are discretized using 100 points,
so that each point represents 1/100 of the length of the original circle. Points contained within another
particle are removed and do not contribute to the total TPB length because they are not exposed to
the pore space. Arcs are connected to form curves if their closest approach is less than the sum of the
representative distances of the points that represent that arc.

between any two sphere particles is a circle that can be parametrized as follows:

1. Let n be the unit normal pointing from the center of particle j to the center of particle i,

n =
Rci −Rcj

|Rci −Rcj |
.

2. Let R?
cij denote the circle center and a?ij the radius. The law of cosines can be used to first

determine θ?ij , the angle between the vector n and a radial vector pointing from the center of

particle i to any point on the circle. Note that this vector has magnitude ai. The complete

triangle is formed by this vector, its counterpart pointing from the center of particle j to the same

point on the circle (having magnitude aj), and the vector between the centers of i and j. Using

this triangle, the angle θ?ij is opposite the side with length aj , such that

θ?ij = cos−1

(
a2
i + |Rci −Rcj |2 − a2

j

2ai|Rci −Rcj |

)
.
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The circle radius and center follow as

a?ij = ai sin θ?ij ,

R?
cij = Rci − nai cos θ?ij .

3. Let u be a unit vector perpendicular to n = {nx, ny, nz} so that u ·n = 0 and u follows simply as

u =





{ny,−nx, 0}/
√
n2
x + n2

y : nx 6= 0,

{0, nz,−ny}/
√
n2
y + n2

z : otherwise.

4. A third unit vector is found from v = n× u.

5. A point on the circle is given by

p = R?
cij + a?ij(u cosφ+ v sinφ),

where φ is the parameter. To discretize the circle into N equally spaced points, the angle φ varies

from 0 to 2π − 2π/N in steps of ∆φ = 2π/N .

After all the intersection regions have been parametrized by a set of N points per circle, it is

necessary to determine which of these points actually represent a segment of the TPB (see figure 5.4

where N = 100). A check is performed to determine if each of the points lies within another particle

(i.e., the distance between the point and that particle’s center is less than the particle radius). This

test excludes the two particles for which the point lies on their intersection. Points that are contained

within another particle cannot possibly contribute to the TPB because they are not exposed to the gas

phase, and consequently, they are disregarded. Only points that are not contained contribute to the

total TPB, where each point represents a length segment of 2πa?ij/N . Connections between segments

are made if the points are separated by a distance that is less than the sum of their representative

lengths, and TPB curves are formed by building these connections until no more are found.
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5.4 Results and Discussion

Table 5.1 gives a summary of the volume, surface area, and connectivity information for the networks in

each phase in the 3D-SOFC voxel-reconstructed anode. The Ni phase was found to be 90.2% connected

between two boundaries of the anode, 8.5% made up of regions that contacted a single boundary and

dead-ended within the volume, and 1.3% isolated or stand-alone networks. The respective numbers

reported by Wilson et al. [64] are 86%, 12.7%, and 1.3% so there is a discrepancy between the “across”

and “dead-end” volume fractions. It is interesting to note that 66.2% of the Ni phase is composed of

a single connected network (this agrees with the value of 68% reported in Wilson et al.). Likewise,

the YSZ phase is essentially 100% connected and the pore phase is 96.3% connected with the largest

network of the pore phase constituting 90.6% of its volume. The numbers for the YSZ and pore phases

agree with those reported by Wilson et al. The high connectivity of the YSZ phase is expected since it

composes 54.3% of the anode by volume. However, it is interesting that the pore phase has a smaller

volume fraction than the Ni phase (19.9% compared to 25.9%) yet it is better connected. Also reported

in table 5.1 are the average connectivities of an interior voxel to a voxel of each phase type.

The calculated total phase-boundary areas per unit volume are found to be 2.30 µm−1 for Ni

(including interfaces with YSZ and pores), 4.21 µm−1 for YSZ (including interfaces with Ni and pores),

and 3.41 µm−1 for pores (including interfaces with Ni and YSZ). The breakdown of these volume-

specific phase-boundary areas can be found in table 5.1. Previously reported values for the same anode

are 1.6 µm−1 for Ni, 3.0 µm−1 for YSZ, and 2.4 µm−1 for pores [65]. Though the numbers are not

in excellent agreement by value, the ratio between the three is very close—1:1.835:1.485 (Ni:YSZ:pore,

present results), and 1:1.875:1.5 (Ni:YSZ:pore, Wilson et al.).

Similarly, table 5.2 gives a summary of the volume, surface area, and connectivity information for

the networks in each phase in the 3D-SOFC particle-reconstructed anode. The Ni phase was found to

be 87.2% connected between two boundaries of the anode, 11.5% made up of regions that contacted a

single boundary and dead-ended within the volume, and 1.3% isolated or stand-alone networks. These

numbers are in excellent agreement with the results reported by Wilson et al. [64] and also in line with

the values in table 5.1 for the voxel anode mesh. The remaining data listed in each of the tables is very

similar, confirming that such a simple particle model can be used in lieu of a detailed 3D data set to
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Table 5.1. Volume, surface area, and connectivity information for the networks of each phase in the
three-dimensional SOFC voxel -reconstructed anode having total volume of 107.65 µm3

Ni YSZ Pore
Total number of separate networks 53 11 143
Number of “isolated” networks 18 4 71
Number of “dead-end” networks 20 3 50
Number of “across” networks 15 4 22

Phase volume (µm3) 27.83 58.45 21.38
(%) 25.85 54.29 19.86

Volume % of “isolated” networks 1.31 0.020 1.35
Volume % of “dead-end” networks 8.49 0.013 2.33
Volume % of “across” networks 90.19 99.97 96.32

Number of voxels in largest network 243,937 772,847 256,191
Volume % of largest network 66.23 99.92 90.56

Estimated specific phase-boundary area (µm2/µm3)
Ni-to- — 1.551 0.746

YSZ-to- 1.551 — 2.665
Pore-to- 0.746 2.665 —

Total estimated specific phase-boundary area 2.297 4.216 3.411

Average connectivity of an interior voxel (max is six neighbors)
Ni-to- 5.623 0.254 0.123

YSZ-to- 0.122 5.667 0.211
Pore-to- 0.1596 0.5699 5.2705

Table 5.2. Volume, surface area, and connectivity information for the networks of each phase in the
three-dimensional SOFC particle-reconstructed anode having total volume of 107.65 µm3

Ni YSZ Pore
Total number of separate networks 48 11 —
Number of “isolated” networks 13 3 —
Number of “dead-end” networks 21 3 —
Number of “across” networks 14 5 —

Phase volume (µm3) 28.42 60.39 18.84
(%) 26.4 56.1 17.5

Volume % of “isolated” networks 1.32 0.024 ∼1.5
Volume % of “dead-end” networks 11.51 0.022 —
Volume % of “across” networks 87.17 99.95 —

Number of particles in largest network 5,247 17,310 —
Volume % of largest network 64.44 99.90 —

Estimated specific phase-boundary area (µm2/µm3)
Ni-to- — 1.880 —

YSZ-to- 1.880 — —
Pore-to- — — —
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represent a SOFC anode, at least in terms of phase volumes and connectivities.

Figure 5.5, figure 5.6, and figure 5.7 give a graphical representation of the network phase volumes

and network types for the Ni, YSZ, and pore phases, respectively. The top plot in each shows the

relationship between a network and those equal or smaller in size, whereas the bottom plot is the

cumulative volume distribution of the networks. Steep gradients on the top plots are indicative of

many networks of similar size. The bottom plots are useful to see how much of the volume is contained

in each of the separate networks making up that phase, as well as what the network classification is. As

expected, most of the smaller networks are isolated within the volume, and most of the larger networks

are connected across the sample volume. Lines are used to connect the points for clarity. The network

type and size distributions compare very well between the voxel and particle models. For all phases, it

is optimal to have all networks span across the anode to facilitate transport in that phase. The number

of different networks is less important and there probably exists a balance between number of networks

and available surface area for reactions. For the pore phase, almost 20% of networks by number (not

volume) are composed of a single voxel or two voxels, as indicated by the stack of points at the vertical

lines on the top plot of figure 5.7. The bottom plot reveals that these do not contribute significantly to

the volume of pore space. Networks composed of only one or two voxels are most likely due to inherent

errors in converting the FIB-SEM images to a usable model. The scheme of building networks based

only on voxels that share a face also contributes, since expanding this to allow connections between

shared edges or vertices will reduce the number of single-voxel networks and cause them to be absorbed

into larger networks. Additional computations show that the overall volume percentages of the different

connected networks remains unchanged under these circumstances, so the data presented here is not

dependent on the methodology used to construct the different phase networks.

Figure 5.8, figure 5.10, and figure 5.12 provide a 3D visualization of the “isolated” and “dead-

end” networks in each of the phases for the voxel anode (and analogously, figure 5.9, figure 5.11, and

figure 5.13 for the particle anode). “Isolated” networks are colored red and “dead-end” regions blue.

Recall that a “dead-end” network is defined as one that intersects only one boundary of the sample

volume, so nothing can be transported across the volume through these networks. However, their true

classification remains unknown, since we do not know if these form isolated regions in the entire anode,
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or are parts of larger connected networks spanning the anode. In fact, two “dead-end” networks of

different phase types may still contribute to “active” TPB regions. Assume that a Ni and YSZ network

enter the sample volume and dead end within, but still intersect each other. While it is true that

ionic and electronic transport paths will ultimately dead end because of this, the TPB created at their

intersection (assuming the pore phase is also present) can still be active due to transport of ions and

electrons to/from the reactive site.

The plots and 3D visualizations presented here were created to allow direct comparison to those

presented in Wilson et al. [64], one of which is reproduced in figure 5.2. Wilson et al. only provide

visualization data for the Ni phase, and results for all three phases for each of the model reconstructions

are presented here.

Phase network connectivity has a direct impact on electrochemical kinetics and subsequently, the

TPB regions of electrochemical activity. A TPB represents a reactive site where all three phases come

together so that all constituents for the electrochemical reaction are present (electrons in the Ni/metal

phase, O2−-ions in the YSZ/oxide phase, and gas or fuel in the pore phase). In order for a TPB to be

active, it must lie on connected networks so that reactants and products can be transported to and from

the site. Therefore, the distinction must be made that active TPB sites are found only on connected

or “across” networks, and inactive sites on “isolated” networks. The activity of TPB edges falling

on “dead-end” networks is unknown. More TPB length means more active sites, and thus, a higher

probability that a reaction will occur. Optimization of the TPB can be achieved through processes that

affect the microstructure or by using mixed ionic-electronic conducting materials.

Table 5.3 summarizes the calculated TPB densities and activities for the voxel-based anode. It was

found that 13.3% of the total TPB length falls on “isolated” regions (and is therefore inactive), 16.8% on

“dead-end” networks (unknown activity), and 69.9% on connected networks (electrochemically active).

On the scale of an entire anode, it is reasonable to assume that TPB curves of unknown classification

will mimic the connectivity of those contained within the sample volume. If it is assumed that 13.3%

of the 16.8% of unknown TPB is actually inactive—and the remainder is active—the amended TPB

length is 15.5% inactive and 84.5% active. Of the 5.8 µm−2 total TPB density, this results in 0.9 µm−2

inactive and 4.9 µm−2 active. Wilson et al. [64] report an amended value of 3.7 µm−2 active TPB,
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Table 5.3. Summary of the triple-phase boundary (TPB) density, activity, and curve lengths in the
three-dimensional SOFC voxel -reconstructed anode having total volume of 107.65 µm3—each edge has
a length 42.28 nm

“isolated” “dead-end” “across”
Inactive Unknown Active Total

Total number of separate edges 1,964 2,485 10,333 14,782
Total number of separate curves 73 82 147 302

Length of TPB (µm) 83.03 105.06 436.84 624.93
(µm/µm3) 0.77 0.98 4.06 5.81
(%) 13.29 16.81 69.90 100

Amended TPB (µm/µm3) 0.90 — 4.91 5.81
(%) 15.52 — 84.48 100

Number of edges in longest curve 122 536 1,247 —
Length of longest curve (µm) 5.16 22.66 52.72 —

(µm/µm3) 0.048 0.21 0.49 —
As % of curve type (%) 6.21 21.57 12.07 —

Table 5.4. Summary of the triple-phase boundary (TPB) density, activity, and curve lengths in the
three-dimensional SOFC particle-reconstructed anode having total volume of 107.65 µm3—each point
represents a different distance based on the radius of circle that parametrizes each particle intersection

“isolated” “dead-end” “across”
Inactivea Unknowna Activea Total

Total number of Ni-YSZ particle intersections — — — 24,434
Total number of TPB points (using 100/circle) 25,311 102,404 448,616 576,331
Total number of separate connected curves 47 123 471 641

Length of TPB (µm) 73.36 302.32 1,323.73 1,699.41
(µm/µm3) 0.68 2.81 12.30 15.79
(%) 4.32 17.79 77.89 100

Amended TPB (µm/µm3) 0.80 — 14.98 15.79
(%) 5.085 — 94.915 100

Length of longest curve (µm) 15.66 91.41 715.85 —
(µm/µm3) 0.15 0.85 6.65 —

As % of curve type (%) 21.35 30.24 54.08 —

a The TPB activity classification is based only on the Ni and YSZ networks—if the pore net-
work were included, some of the curves currently labeled as active will change to unknown
or inactive.
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from a total density of 4.2 µm−2. Differences in reported values despite similar calculation methods

may be sourced to the original conversion process of the 2D image data to a usable 3D model.

Figure 5.14 gives a graphical representation of the TPB curve lengths and activity types. The top

plot shows the relationship between each curve and those equal or smaller in length, whereas the bottom

plot is the cumulative length distribution of all TPB curves. Steep gradients in the top plots indicate a

high concentration of curves at that length. For the voxel anode (left plots), most curves have lengths

between 0.8 and 3 µm, and the bottom plot reveals that these constitute approximately 40% to the

overall TPB length. Most of the inactive TPB curves are shorter than 3 µm, and active curves are

distributed throughout the range, from 0.1 to 50 µm. The total TPB length is 625 µm, as reported in

table 5.3. Figure 5.15 provides a visualization of the entire set of TPB curves in the voxel-based anode

and highlights the inactive curves in red, unknown in blue, and active in white/light gray. This figure

was created to allow direct visual comparison to Figure 5 in Wilson et al. [64], not reproduced here

because the two images are very similar. It also facilitates comparison to the 3D visualization of TPB

curves from the particle reconstruction in figure 5.16.

The particle-based TPB density and activity data is presented in table 5.4. The particle model

phase volume fractions and connectivities are roughly the same as those in the voxel reconstruction.

However, the resulting TPB density is much larger, calculated as 15.8 µm−2. This is approximately

2.7 times greater than the total voxel TPB density (5.8 µm−2) which is almost 1.4 times larger than

the number reported by Wilson et al. [64] (4.2 µm−2). Connectivity and phase-volume information

for the pore phase of the particle-based anode were not analyzed in detail, and therefore, the activity

classification of the TPB curves is based only on the network information from the Ni and YSZ phases.

It is clear, however, that the particle representation grossly exaggerates the amount of TPB in the

anode sample. The set of plots on the right of figure 5.14 shows the length distributions of the different

TPB curves in the particle reconstruction. Because the resolution of the original data was reduced to

42.28 nm, features smaller than this should be disregarded. Vertical lines on the plots indicate this

resolution. The slope of the curve in the top plot is related to the number of TPB curves at that length.

The steepest slope indicates the highest density of TPB curves. Most curves have a length less than

the resolution of the data, and this is an artifact of the particle model and the method for extracting
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TPB curves from particle intersections (e.g., one of the causes originates from the fact that particles

that barely overlap result in very short TPB curves). There is a lack of TPB curves having length

between 0.002 and 0.1 µm, but only points to the right of the vertical lines are considered to be valid

TPB curves of the model. Even though a large number of curves have lengths less than 42.28 nm, they

contribute little to the overall TPB length. This is evident in the bottom plot which does not start

increasing significantly until lengths greater than 0.1 µm.

Classifying the pore phase in the particle-based anode is much more difficult than its voxel counter-

part. Being able to count voxels, determine their connectivity, and quickly highlight regions of interest

is not a possibility in the particle anode. The only thing representing the pore space is the fact that

it is the void between the particles composing the Ni and YSZ phases. In an attempt to highlight the

“isolated” regions of the pore-space in the particle anode, consider the escape probability of a molecule

placed within the anode sample. Each molecule moves only under the influence of Knudsen diffusion, so

that after a long time, some molecules will diffuse to one of the six boundary planes of the anode (i.e.,

they escape), while others never make it to a boundary. For a sufficiently long time, the molecules that

never escape are assumed to be trapped in an isolated pore. The difficulty in this method is determining

what a sufficiently long diffusion time is, so that molecules starting deep within the anode can diffuse

to the boundary. In addition, a large number of simulated molecules must be used to provide good

sampling of the pore space.

Figure 5.17 highlights results from the method described in the paragraph above. Each red point

represents the starting position of a molecule that never intersects a boundary of the sample anode.

Hence, these positions represent “isolated” regions in the anode, and a high localized density sheds

some light on the size of these regions, at least visually. The ratio of trapped molecules to total number

of simulated molecules provides an estimate of the predicted volume fraction of “isolated” networks.

Moving from left to right in figure 5.17 shows the effect of using more simulated molecules to fill the

pore space. Moving from top to bottom shows the effect of increasing the allowed diffusion time, or

analogously, the maximum allowed number of surface collisions per molecule. For example, moving

down the first column (so that 105 molecules were used in each simulation), we see the number of red

points decrease since molecules in small pores or deep within the anode eventually diffuse to a boundary.



106

There is a significant drop from Nmax
coll = 1000 to Nmax

coll = 2000, and a smaller, but noticeable drop from

Nmax
coll = 2000 to Nmax

coll = 3000. The difference between the bottom three images is minimal, so that

qualitatively, it appears as though Nmax
coll = 3000 provides a sufficiently long time for molecules that are

not trapped to escape the anode.

This finding is confirmed in figure 5.18 which provides a more quantitative representation of the

data in figure 5.17. The results show an insensitivity to number of molecules used, though it should be

noted that more molecules gives better sampling of the entire pore space. The percentage of trapped

molecules changes little for Nmax
coll > 3000 and the curve asymptotes to around 1.5%. This means

that an estimated 1.5% of the pore space in the particle-based reconstructed anode is “isolated” which

compares favorably to 1.35% in the voxel anode. A 3D visualization of the comparison between the red

“isolated” networks of the pore space can be made between figure 5.12 (bottom) and figure 5.13. While

the result from the particle model is littered with low-density scattering of red points—due in part to

the method used—it is remarkable how well the larger significant volumes compare to the voxel model.

5.5 Conclusions

A method similar to that used by Wilson et al. [64] was developed and extended to analyze the mi-

crostructure of a 3D-SOFC voxelated anode reconstruction. The technique allows determination of

volume, surface area, and connectivity information for the networks composing each phase (Ni/metal,

YSZ/oxide, pore/gas) in the anode sample. Network size distributions and their level of connectivity

are broken down to provide a description of the inner architecture of the anode framework. In addition,

TPB edges are identified, connected to form curves, and classified based on expected activity.

The results from these calculations are compared to the same type of data from a particle-based

reconstruction of the same anode. Since one cannot simply count voxels and edges for the particle model,

a new method was develop to analyze the volume fractions, connectivity, and TPB information. Most of

the volume and connectivity data between the two models are in agreement, but the major difference is

the particle model exaggerates the TPB density by a factor of two to three. The parameters presented in

this chapter are necessary to develop reliable SOFC models for numerical simulations and provide insight

into previously unknown quantities. It is impractical to conclude that those in the fuel-cell community
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and beyond need to use FIB-SEM (or other imaging techniques) and detailed 3D reconstructed models

for every structure to be examined. Particle-based models provide a simple alternative; they are easy to

generate, easy to use for computational purposes, and are a good representation of the actual structure,

especially if using them as transport models (for all phases). The sensitivity of the particle model on

particle size has a strong influence on TPB density, so these types of models are probably not as useful

for reactive simulations unless corrections are made to account for the exaggerated TPB. It would be

useful in the future to study more particle-based models to help reduce this sensitivity, or perhaps use

an entirely different method to better represent the anode structure—level set methods, for example.

Though results are presented and compared for a single anode, the methods can easily be extended

to other datasets. At the time, the data provided by Wilson et al. [65] was the first of its kind, but

more are expected to become available. In fact, Iwai et al. [25] just published results for a much larger

set of data, and it would be interesting to use the methods presented herein to provide a more detailed

picture of the 3D structure appearing in that article.
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Figure 5.5. Distribution of network phase volumes for Ni in the three-dimensional SOFC reconstruc-
tions. The top plots show the relationship between the separate networks (53 in the voxel anode versus
48 in the particle anode) based on the number of networks that are equal or smaller in size. The
bottom plots are the cumulative volume percent. For reference, the two vertical lines on the voxel plot
are drawn at the single-voxel volume of 75,560.5 nm3 (magenta) and exactly twice this (orange).



109

´

´

´

´

ò

ò

ò

ç

ç

ç

ç

Voxel anode HYSZL
´ isolated

ò dead-end

ç across

1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.
0

20

40

60

80

100
1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.

Network volume HΜm3L

%
N

et
w

or
ks

sm
al

le
r

in
vo

lu
m

e

´

´

´

ò

ò

ò

ç

ç

ç

ç

ç

Particle anode HYSZL
´ isolated

ò dead-end

ç across

1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.
0

20

40

60

80

100
1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.

Network volume HΜm3L
%

N
et

w
or

ks
sm

al
le

r
in

vo
lu

m
e

´ ´ ´ ´ò òòç ç ç

ç

Voxel anode HYSZL
´ isolated

ò dead-end

ç across

1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.
0

20

40

60

80

100
1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.

Network volume HΜm3L

C
um

ul
at

iv
e

vo
lu

m
e

%

´ ´´òò òç ç ç ç

ç

Particle anode HYSZL
´ isolated

ò dead-end

ç across

1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.
0

20

40

60

80

100
1E-5.1E-4.1E-3. 0.01 0.1 1. 10. 100.

Network volume HΜm3L

C
um

ul
at

iv
e

vo
lu

m
e

%

Figure 5.6. Distribution of network phase volumes for YSZ in the three-dimensional SOFC reconstruc-
tions. The top plots show the relationship between the separate networks (11 in both cases) based on
the number of networks that are equal or smaller in size. The bottom plots are the cumulative volume
percent. For reference, the two vertical lines on the voxel plot are drawn at the single-voxel volume of
75,560.5 nm3 (magenta) and exactly twice this (orange).
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Figure 5.7. Distribution of network phase volumes for pores in the three-dimensional SOFC voxel
reconstruction. The top plot shows the relationship between the 143 separate networks based on the
number of networks that are equal or smaller in size. The bottom plot is the cumulative volume percent.
For reference, the two vertical lines are drawn at the single-voxel volume of 75,560.5 nm3 (magenta)
and exactly twice this (orange).
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Figure 5.8. The entire Ni phase (top) and highlights of the “isolated” (red) and “dead-end” (blue)
networks for the phase (bottom) in the voxel anode.
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Figure 5.9. The entire Ni phase (top) and highlights of the “isolated” (red) and “dead-end” (blue)
networks for the phase (bottom) in the particle anode.
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Figure 5.10. The entire YSZ phase (top) and highlights of the “isolated” (red) and “dead-end” (blue)
networks for the phase (bottom) in the voxel anode.
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Figure 5.11. The entire YSZ phase (top) and highlights of the “isolated” (red) and “dead-end” (blue)
networks for the phase (bottom) in the particle anode.



115

Figure 5.12. The entire pore phase (top) and highlights of the “isolated” (red) and “dead-end” (blue)
networks for the phase (bottom) in the voxel anode.
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Figure 5.13. Highlights of the “isolated” networks for the pore phase in the particle anode. The image
shows starting positions of molecules that did not escape the anode after a maximum of 3,000 allowable
surface collisions. There are 17,804 points from a total of 106 simulated molecules. The volume percent
of “isolated” networks was calculated as 1.35% for the voxel-based anode (see table 5.1) and estimated
to be around 1.5% for the particle-based anode (see figure 5.18).
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Figure 5.14. Distribution of triple-phase boundary (TPB) length for the three-dimensional SOFC
reconstructions. The top plots show the relationship between the separate curves (302 in the voxel
anode versus 641 in the particle anode) based on the type and number of curves that are equal or
smaller in size. The bottom plots are the cumulative percent of the overall TPB length. The total
volume of the reconstructed sample is 107.65 µm3. For reference, the two vertical lines on the voxel
plot are drawn at the single-voxel dimension of 42.28 µm (magenta) and exactly twice this (orange).



118

Figure 5.15. Highlights of the “isolated”/inactive (red), “dead-end”/unknown (blue), and
“across”/active (white/light gray) triple-phase boundary curves for the three-dimensional SOFC voxel
anode.

Figure 5.16. Highlights of the “isolated”/inactive (red), “dead-end”/unknown (blue), and
“across”/active (white/light gray) triple-phase boundary (TPB) curves for the three-dimensional SOFC
particle anode. The TPB classification is based only on the Ni and YSZ network connectivity, with-
out considering the pore space. Including the pore space information would cause a shift toward an
increased number of inactive curves.
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N = 1× 105 N = 2× 105 N = 5× 105 N = 1× 106

Nmax
coll = 1000

Nmax
coll = 2000

Nmax
coll = 3000

Nmax
coll = 4000

Nmax
coll = 5000

Figure 5.17. Three-dimensional visualization showing the dependence of escape probability on number
of simulated molecules N and number of maximum allowed collisions Nmax

coll . Each red-colored point is
the starting position of a molecule that did not escape the anode sample after the prescribed number
of allowable collisions. These are presumed to represent “isolated” pore regions in the particle-based
anode. By choosing a sufficient number of molecules (to sample the entire phase space) and a sufficient
time to move within the anode, those that never intersect a boundary plane are deemed to be trapped
within an isolated pore.
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Figure 5.18. Sensitivity analysis to determine a sufficient simulation time for molecules to escape the
particle-based three-dimensional SOFC anode based on the results in figure 5.17. The maximum allowed
collisions is proportional to the residence time of a molecule in the anode and therefore is proportional
to the computational time. The results show an insensitivity to the number of simulated molecules (at
least in the range tested), but more molecules gives better sampling of the entire phase space. The
percentage of trapped molecules is representative of the volume percent of “isolated” networks in the
pore phase. The curve asymptotes to a value near 1.5%.
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Chapter 6

An Alternative Vision:
Architecturally Engineered
Multiscale Fuel Cell Structures

6.1 Summary and Recommendations

Much of the following was extracted from a joint proposal submitted to the Global Climate and En-

ergy Program (GCEP) at Stanford University by my previous advisor, David G. Goodwin (principal

investigator), and another Caltech professor and member of my committee, Sossina Haile (coprincipal

investigator). The major focus of the proposal was on fabrication itself. The subsequent data presented

here is all original and supports the vision described below.

The goal of this thesis was to provide a picture of the internal framework of a traditional solid-

oxide fuel cell (SOFC) anode, and based on the data presented, to offer suggestions to improve SOFC

performance, or at least improve SOFC modeling capabilities. Chapter 3 described a method to create

model porous media and predict Knudsen diffusivities of a gas moving within the porous network.

Among the porous samples studied were two reconstructions of an actual SOFC porous anode. Both

models of the modern SOFC anode reveal a highly tortuous structure that severely hinders gas transport.

Based on how sensitive the particle-based reconstruction was to particle sizes and resolution, it would

be interesting to extend this research by constructing a third model, perhaps using a level set method

to map the surfaces of the anode. Chapter 4 and chapter 5 are focused on probing the inner networks

of the porous sample. Many of the structures studied elucidate a unique distribution of pore sizes,

characterized by chord distributions of molecules moving within the pores. Some distributions were
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smooth and exponential in behavior, while others had many peaks, perhaps signifying discrete pore

sizes. No conclusions were made regarding which type of distribution had the biggest influence on gas

diffusion. However, all of the materials having multimodal distributions resulted in larger diffusibility

predictions as compared to those with smoother distributions at similar void fractions. In addition

to estimating pore-size distributions, each of the phase networks of the three-dimensional (3D) SOFC

models was analyzed in detail. Data pertaining to triple-phase boundary (TPB) density and activity

were presented, as well as volume, surface area, and connectivity information for each of the phases.

Aside from a few recent publications which are not as comprehensive, this is one of the first known

works to present such detailed data regarding traditional SOFC anodes. Many of the numbers leave

a lot to be desired—as far as optimizing anode performance—so the potential for increasing SOFC

performance by redesigning the anode is huge.

The requirements that must be met to produce high power-density membrane-electrode assemblies

(MEAs) are far beyond what can be achieved with conventional powder-based fabrication methods. If

one tries to produce a high-porosity cermet with traditional manufacturing techniques, the result is low

connectivity between the solid phases and therefore poor electrochemical activity; if one tries to create

more surface area for electrochemistry by creating smaller pores, the result is hindered gas transport.

Instead of random cermet architectures resulting from current manufacturing processes, achieving truly

high-performance SOFCs will require engineered architectures that span a range of length scales—from

the micron scale of the framework through which gas flows, to the nanometer scale of the catalysts.

This in turn will prohibit the use of the very high processing temperatures required for sintering ceramic

particles; therefore, powder-based fabrication methods must give way to ones in which structures are

grown from vapor-phase or solution-phase precursors.

A conceptual design of a high-current-density cell is shown in figure 6.1. A thin, dense electrolyte

layer separates two 3D engineered ion-conducting oxide lattice frameworks, shown here in cross section.

The lattices have “beam” thicknesses of order 1 µm to facilitate ion conduction, separated by distances

of the same order, for facile gas diffusion throughout the lattice. The lattice has a regular structure

with high porosity and open area, low tortuosity, and full connectivity. The oxide lattices may be tens

of microns thick, or even thicker on the anode side if additional surface area for catalytic (nonelectro-
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methods must give way to ones in which structures are grown from vapor-phase or solution-phase 

precursors. 

A conceptual design of a high-current-density cell is shown in Figure 4. A thin (here 3 µm) dense 

electrolyte layer separates two three-dimensional engineered ion-conducting oxide lattice frameworks, 

shown here in cross section. The lattices have “beam” thicknesses of order 1 µm to facilitate ion 

conduction, separated by distances also of order 1 µm, for facile gas diffusion throughout the lattice.  The 

lattice has a regular structure with high porosity and open area, low tortuosity, and full connectivity. The 

oxide lattices may be tens of microns thick, or even thicker on the anode side if additional surface area for 

catalytic (non-electrochemical) chemistry is needed to preprocess the fuel (e.g. to reform hydrocarbons to 

H2 and CO), or for structural support.  

The surfaces of the oxide framework are covered with a thick carpet of nanowires 20 to 50 nm in 

diameter, which provides a high surface area for nanostructured catalysts. The nanowires may be short, as 

shown here, or might extend further throughout the network, depending on how much surface area is 

required.  They touch one another, creating multiple redundant current paths, and could even be multiply 

Figure 4: Conceptual design of an engineered, high-performance MEA. 

Figure 6.1. Conceptual design of an engineered, high-performance membrane-electrode assembly. Image
courtesy of D. G. Goodwin, Caltech.

chemical) chemistry is needed to preprocess the fuel (e.g., to reform hydrocarbons to H2 and CO), or

for structural support.

The surfaces of the oxide framework are covered with a thick carpet of nanowires 20 to 50 nm

in diameter, which provides a high surface area for nanostructured catalysts. The nanowires may be

short, as shown here, or might extend further throughout the network, depending on how much surface

area is required. They touch one another, creating multiple redundant current paths, and could even

be multiply branched. The nanowires have an electronically conducting core, and are coated with an

appropriate thin redox-active oxide catalyst. The coating could be continuous, as shown here, or in the

form of discrete nanoparticles.

Such a structure can combine high porosity for gas diffusion, high connectivity for ion conduction,

and high surface area for chemistry and electrochemistry. In recent years, synthetic chemists, materials

scientists, and engineers have focused considerable attention on developing methods to deliberately

engineer the microstructure of materials, creating ordered structures on nanometer to micron length

scales. One such structure of particular interest to this work are inverse opals (see figure 6.2).
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Figure 6.2. Example of inverse opals. SEM image of Ce0.5Zr0.5O2 macroporous inverse opals showing
the continuous oxide framework and pore network (inset). Image and description from Umeda et al. [61].

 9 

The most impressive results obtained using oxide anodes have been those of Goodenough and colleagues 

(Huang, 2006) as briefly described above. Given the very early nature of those results, little is known 

about the electrochemical oxidation pathways and consequently it is not possible to immediately identify 

the most optimal architecture. We plan to explore using SMM as the catalyst, in addition to ceria. In this 

case, we propose to use well-defined anode structures of Sr2MgMnO6-! to first address the question of 

reaction mechanisms, and with the insight gained design the ideal structure. Irrespective of the precise 

details of the reaction pathway, our ability to vastly enhance the concentration of active sites can be 

expected to immediately and dramatically enhance anode kinetics. 

4.2 Architectures 

We plan to use three main architectural elements to construct high-performance, engineered SOFC 

MEAs. Oxide frameworks, composed of inverse opals and similar structures with 100 nm to several 

micron feature sizes, will provide high-porosity fully-connected electrode structures to minimize 

resistances to flow of both gas and oxygen ions, while providing structural support. Self-assembled 

arrays of monodisperse nanoparticles, will be used as catalysts and seeds for CVD growth. Single- and 

multishell nanowires, with 10-50 nm diameters, and lengths ranging from ~200 nm to ~5 µm will serve 

as catalysts supports and provide electronic conductivity. From these basic “building blocks” a very wide 

variety of MEA structures can be built. 

The Oxide Framework. The structural backbone of 

the MEA is the oxide “skeleton” or framework. This 

consists of the electrolyte layer, and the oxide structures 

extending from the electrolyte on each side. The 

prototypical framework is shown in Figure 8.  A size-

graded inverse opal structure is used for each electrode, 

with smaller pores near the electrolyte and larger ones 

further away. This is done to provide facile ion current 

flow to or from the electrochemically active region near 

the electrolyte, and to allow rapid gas transport through 

the outer layers of the electrode. In Figure 8, only four 

layers are shown in each inverse opal; in the actual 

structures, there will likely be tens or even hundreds of 

layers. Especially on the anode side, the extra surface 

area may be needed to support nanostructured catalysts 

for fuel reforming or other non-electrochemical 

catalysis. A sufficient thickness is also required for 

structural stability. 

Variants of this basic structure are also of interest. For example, vertical vias (holes) extending through 

the electrode to the electrolyte may be useful to rapidly bring fresh reactant gas (fuel or air) down to the 

electrochemically active region, where it may then diffuse laterally through the smaller pores of the 

inverse opal. The ideal here would be to create a multiscale network of pores to efficiently distribute fuel 

and/or air to nanostructured catalyst surfaces.  

On the anode side, the framework will generally be fabricated of the same oxide material as the 

electrolyte (e.g. SDC), and the fabrication of the anode + electrolyte will be done in one step. The cathode 

framework will be added in a second step, and may or may not be composed of the electrolyte material. It 

may be possible to fabricate the cathode framework from the catalyst BSCF, or from a mixture of BSCF 

and SDC. 

 

Figure 8: The oxide framework. Figure 6.3. The oxide framework. Image courtesy of David G. Goodwin, Caltech.

Inverse opals are 3D periodic honeycomb-like structures, originally developed for use as photonic

crystals. They may be fabricated using templates of polystyrene spheres that are later burned out and

would serve very well as the oxide lattice framework for an engineered, high-performance SOFC-MEA.

Unlike random-particle arrays, these structures provide a fully connected network at high porosities.

A prototypical framework making use of inverse opal structures is shown in figure 6.3. A size-graded

inverse opal structure is used for each electrode, with smaller pores near the electrolyte and larger ones

further away. This is done to provide facile ion current flow to or from the electrochemically active

region near the electrolyte, and to allow rapid gas transport through the outer layers of the electrode.

Only four layers are shown, but the actual structure will likely consist of tens or even hundreds of layers.

Variants of this basic structure are also of interest. For example, vertical vias (holes) extending
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Figure 6.4. Diffusibility results for a uniform periodic simple cubic array of inverse opals (left), shown
together with data from chapter 3 (right).

through the electrode to the electrolyte may be useful to rapidly bring fresh reactant gas down to the

electrochemically active region, where it may then diffuse laterally through the smaller pores of the

inverse opal. The ideal here would be to create a multiscale network of pores to efficiently distribute

fuel and/or air to nanostructured catalyst surfaces.

6.2 A First Glance Inside a New Design

Consider the simple case of uniform inverse opals stacked in all directions and varying the amount

of overlap to achieve different porosities. The greater the allowed overlap, the higher the porosity

(for optimized gas diffusion), but less lattice material is then available for mechanical support or to

grow catalyst nanowires (necessary for power-producing reactions). Diffusibility results are shown in

figure 6.4. Comparison to current technology (shown as the particle- and voxel-based SOFC) shows

significant improvement in predicted diffusibility and dramatically lower tortuosity, as expected. This

is because inverse opal structures allow much higher porosity without losing material connectivity and

structural support. These results were obtained for a simple cubic (SC) packing of inverse opals. Gener-

ally, face-centered cubic (FCC) packing is obtained experimentally—FCC has twelve nearest neighbors

rather than six for SC. Using FCC would potentially result in even higher predicted diffusibilities and

lower tortuosities since there are more opportunities to escape a given pore.

Table 6.1 presents these results for four inverse opal geometries (achieved by varying only the
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Table 6.1. Comparison of Knudsen transport data for inverse opals and the three-dimensional SOFC
reconstructed anodes

Particle Voxel Opal 1 Opal 2 Opal 3 Opal 4
Porosity (%) 17.5 19.86 55.6 60.4 63.7 68.7

Mean chord length,a 〈`〉 (µm) 0.192 0.261 1.415 1.552 1.651 1.822
Mean-squared chord length, 〈`2〉 (µm2) 0.092 0.137 2.386 3.119 3.744 4.772
Ratio, 〈`2〉/(2〈`〉2) 1.251 1.000 0.596 0.648 0.687 0.719

β of equation (4.4)b 0.442 0.499 0.474 0.448 0.427 0.398

Diffusibility,c εD/DiB 0.027 0.039 0.306 0.469 0.508 0.594
Tortuosity, τ 6.42 5.05 1.82 1.29 1.25 1.16

a The mean chord length gives an estimate of the mean pore radius, R, as appearing in
equation (2.31) from the relation 〈`〉 = 2R. The opal radius, R, is 1 µm and 〈`〉/R for a
closed sphere is 4/3 (see §4.4.2).

b The parameter β provides a measure of the nature of redirecting collisions at gas-solid
interfaces. It is discussed in chapter 4.

c The parameter D is defined by equation (2.28), and DiB in equation (2.32) using DiK = DDer
iK

from equation (4.3).

amount of allowable overlap). The predicted diffusibility for inverse opal architectures is an order of

magnitude higher than conventional anodes produced from powder-based fabrication methods. Further,

the tortuosity is reduced by a factor of three to five (which, of course, contributes to the increased

diffusibility). All of this is achieved by allowing less than 10% overlap (based on the opal radius)

between neighboring opals, so there remains a great deal of lattice structure for necessary support and

on which to grow carpets of nanowire catalysts necessary for power-producing reactions.

As more opal overlap is allowed, the network moves from one of connected spherical pores, to

one that resembles a 3D network of perpendicular intersecting cylinders. Increasing overlap shifts the

pore-size distribution from that obtained for a single closed sphere (see figure 4.4) to one with multiple

peaks. Each peak symbolizes a new transport pathway for a diffusing molecule as the increased opening

between inverse opals allows it to move more freely from one inverse opal to the next. Small necking

areas between larger pores provide connections for a molecule to move from one pore to the next.

6.3 Concluding Remarks

Gas transport analysis revealed that the coefficient of diffusion through a porous medium is a function

of both internal geometry and porosity. Gas diffusion in traditional SOFC electrode designs is greatly
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hindered by the complexity of the pore network. Current methods for producing such electrodes (high-

temperature sintering of ceramic powders) result in random convoluted networks in the SOFC anode.

These networks are made up of submicron pores which limit the ability of the gas to move freely.

It is impractical to conclude that those in the fuel-cell community and beyond need to use FIB-

SEM (or other imaging techniques) and detailed 3D reconstructed models for every structure to be

examined. Particle-based models provide a simple alternative; they are easy to generate, easy to use for

computational purposes, and are a good representation of the actual structure, especially if using them

as transport models (for all phases). The sensitivity of the particle model on particle size has a strong

influence on TPB density, so these types of models are probably not as useful for reactive simulations

unless corrections are made to account for the exaggerated TPB. It would be useful in the future to

study more particle-based models to help reduce this sensitivity, or perhaps use an entirely different

method to better represent the anode structure—level set methods, for example.

In any case, fuel cells of the future should take advantage of the opportunity to precisely engineer the

components of the MEA. Perhaps the only limit will be our own imaginations and ability to innovate

any structure we choose. As micro- and nanofabrication processes improve and expand, so too will the

possibilities for engineered structures. This opens the door to an expanse of exciting new research in

fuel cell technology and energy in general.



128

Bibliography

[1] M. Abbasi, J. Evans, and I. Abramson. Diffusion of gases in porous solids: Monte Carlo simulations

in the Knudsen and ordinary diffusion regimes. AIChE J., 29(4):617–624, July 1983.

[2] P. Asinari, M. Quaglia, M. von Spakovsky, and B. Kasula. Direct numerical calculation of the

kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the

lattice Boltzmann method. J. Power Sources, 170:359–375, 2007.

[3] G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, 2nd

edition, 1994.

[4] R. Bird, W. Stewart, and E. Lightfoot. Transport Phenomena. John Wiley & Sons, 2nd edition,

2002.

[5] S. Bogart, K. Schulz, L. Brown, and B. Russ. Production of liquid synthetic hydrocarbon fuels

from air, water, and nuclear power on ships and at shore bases for military use. Reno, NV, 2006.

International Congress on Advances in Nuclear Power Plants.

[6] C. Bosanquet. Technical report, British TA Rept. BR-507, 1944.

[7] V. Burganos. Gas diffusion in random binary media. J. Chem. Phys., 109(16):6772–6779, October

1998.

[8] V. Burganos and S. Sotirchos. Knudsen diffusion in parallel, multidimensional or randomly oriented

capillary structures. Chem. Eng. Sci., 44(11):2451–2462, 1989.

[9] S. Chapman and T. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge

University Press, 3rd edition, 1970.



129

[10] W. Chiu, A. Joshi, and K. Grew. Lattice Boltzmann model for multi-component mass transfer in

a solid oxide fuel cell anode with heterogeneous internal reformation and electrochemistry. Eur.

Phys. J. Special Topics, 171:159–165, 2009.

[11] P. Clausing. The flow of highly rarefied gases through tubes of arbitrary length. J. Vac. Sci. Tech.,

8(5):636–646, 1971.

[12] M. Coppens and K. Malek. Dynamic Monte-Carlo simulations of diffusion limited reactions in

rough nanopores. Chem. Eng. Sci., 58:4787–4795, 2003.

[13] J. Currie. Gaseous diffusion in porous media: Part 1.–A non-steady state method. Brit. J. Appl.

Phys., 11:314–317, August 1960.

[14] J. Currie. Gaseous diffusion in porous media: Part 2.–Dry granular materials. Brit. J. Appl. Phys.,

11:318–324, August 1960.

[15] D. Davis. Monte Carlo calculation of molecular flow rates through a cylindrical elbow and pipes

of other shapes. J. Appl. Phys., 31(7):1169–1176, July 1960.

[16] B. Derjaguin. Measurement of the specific surface of porous and disperse bodies by their resistance

to the flow of rarefied gases. Prog. Surf. Sci., 45:337–340, 1946.

[17] J. Evans, M. Abbasi, and A. Sarin. A Monte Carlo simulation of the diffusion of gases in porous

solids. J. Chem. Phys., 72(5):2967–2973, March 1980.

[18] R. Evans III, G. Watson, and E. Mason. Gaseous diffusion in porous media at uniform pressure.

J. Chem. Phys., 35(6):2076–2083, December 1961.

[19] R. Evans III, G. Watson, and E. Mason. Gaseous diffusion in porous media. II. Effect of pressure

gradients. J. Chem. Phys., 36(7):1894–1902, April 1962.

[20] D. Gostovic, J. Smith, D. Kundinger, K. Jones, and E. Wachsman. Three-dimensional reconstruc-

tion of porous LSCF cathodes. Electrochem. Solid-State Letters, 10(12):B214–B217, 2007.

[21] J. Greenwood. The correct and incorrect generation of a cosine distribution of scattered particles

for Monte-Carlo modelling of vacuum systems. Vacuum, 67:217–222, 2002.



130

[22] M. Hollewand and L. Gladden. Modelling of diffusion and reaction in porous catalysts using a

random three-dimensional network model. Chem. Eng. Sci., 47(7):1761–1770, 1992.

[23] J. Hoogschagen. Diffusion in porous catalysts and adsorbents. Ind. Eng. Chem., 47(5):906–912,

May 1955.

[24] D. Huizenga and D. Smith. Knudsen diffusion in random assemblages of uniform spheres. AIChE

J., 32(1):1–6, January 1986.

[25] H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Mat-

suzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, and H. Yoshida. Quantification

of SOFC anode microstructure based on dual beam FIB-SEM technique. J. Power Sources,

195:955–961, 2010.

[26] J. Izzo Jr., A. Joshi, K. Grew, W. Chiu, A. Tkachuk, S. Wang, and W. Yun. Nondestructive

reconstruction and analysis of SOFC anodes using X-ray computed tomography at sub-50 nm

resolution. J. Electrochem. Soc., 155(5):B504–B508, 2008.

[27] S. J. Jeans. Kinetic Theory of Gases. Cambridge University Press, 1st edition, 1940.

[28] A. Joshi, A. Peracchio, K. Grew, and W. Chiu. Lattice Boltzmann method for continuum, multi-

component mass diffusion in complex 2D geometries. J. Phys. D: Appl. Phys., 40:2961–2971,

2007.

[29] A. Joshi, A. Peracchio, K. Grew, and W. Chiu. Lattice Boltzmann method for multi-component,

non-continuum mass diffusion. J. Phys. D: Appl. Phys., 40:7593–7600, 2007.

[30] R. Kee, M. Coltrin, and P. Glarborg. Chemically Reacting Flow: Theory and Practice. John Wiley

& Sons, 2003.

[31] R. Kee, H. Zhu, and D. Goodwin. Modeling electrochemistry and solid-oxide fuel cells: I. Basic

principles. J. Combust. Soc. Jpn., 47(141):192–204, 2005.

[32] E. Kennard. Kinetic Theory of Gases. McGraw-Hill Book Company, 1st edition, 1938.



131

[33] J. Kim, J. Ochoa, and S. Whitaker. Diffusion in anisotropic porous media. Trans. Por. Med.,

2:327–356, 1987.
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