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Summary

The internal shock or detonation loading of cylindrical shells involves loads that
propagate at high speeds� Several analytical models are available to calculate
the structural response of shells to this type of loading� These models show that
the speed of the load is an important parameter� In fact� for a linear model of a
shell of in�nite length� the amplitude of the radial de�ection becomes unbounded
when the speed of the shock or detonation is equal to a critical velocity� This
�resonance� is due to the excitation of �exural waves in the shell� The critical
velocity is a function of material and geometrical properties of the tube� It
is evident that simple �static� design formulas are no longer accurate in this
case� The present report deals with a numerical and experimental study on
the structural response of cylindrical shells to shock or detonation loading� In
part I of this report� the theoretical models are described� Several analytical
models were developed for tubes of in�nite length� By assuming an in�nite
tube� the problem reduces to a steady state problem� This greatly simpli�es the
analysis� However� re�ections and interference of waves can lead to high strains
and stresses in the tube� Therefore analytical models were developed to describe
the transient motion of �nite length thin cylindrical shells to shock or detonation
loading� Finally� transient �nite element models were developed� The �nite
element model enables a more realistic modelling of boundary conditions�
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Nomenclature

A� dispersion premultiplication factor
A� dispersion premultiplication factor
A� dispersion premultiplication factor
E Young	s modulus N�m�

F dimensionless loading function
Fx axial force N
Fs dimensionless static loading function
Fd dimensionless dynamic loading function
G shear modulus N�m�

L length of shell m
Mxx moment resultant N
Nxx axial stress resultant N�m
N�� circumferential stress resultant N�m
Qx shear stress resultant N�m
R shell mean radius m
T exponential decay factor s
aq static participation factor
bq dynamic participation factor
h shell thickness m
i imaginary unit
k wave number ��m
l shell length m
m�m��m� characteristic roots
n� n�� n� characteristic roots
p� pre
shock pressure Pa
p� post
shock pressure Pa
patm atmospheric pressure Pa
p� �nal pressure Pa
q mode index
r mode index
t time s
u axial de�ection m
u dimensionless axial de�ection
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v load speed m�s
vc� critical velocity m�s
vc� shear wave velocity m�s
vc� dilatational wave velocity in a bar m�s
vc� dilatational wave velocity m�s
vd dilatational wave speed m�s
vs shear wave speed m�s
w radial de�ection m
w dimensionless radial de�ection
wb dimensionless radial de�ection� bending
wI
b dimensionless radial de�ection region I

wII
b dimensionless radial de�ection region II

x axial coordinate m
� characteristic root
� shell thickness parameter
� dimensionless �moving� axial coordinate
�� dimensionless exponential decay factor
�p pressure dierence across shell Pa
� shear correction factor
� Poisson	s ratio
� density kg�m�

�x rotation

� rotation
�j excitation parameter �j � �� ����
�s
j excitation parameter �j � �� ����

�d
j excitation parameter �j � �� ����
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Chapter �

Introduction

��� General introduction

At the Aeronautics department of the California Institute of Technology the
behaviour of shock waves and detonations is studied� A detonation test tube
facility and several shock tube facilities are available for laboratory experiments�
During a shock or detonation test� the tube is exposed to high pressures� The
detonation or shock wave propagates down the tube and therefore the tube
is subjected to a moving pressure load� The problem has a strong dynamic
nature� This report deals with the structural response of cylindrical shells to
moving pressure loads� The results can be used for the analysis of tube systems�
both in industrial and military applications�

����� Shock tube

Shock tubes are used to investigate shock wave propagation� A shock is created
by the driver of the shock tube� The shock wave then travels down the tube
at a nearly constant speed� A typical measured pressure history for a point in
the tube is given in �gure ���� The �gure shows the measured pressure versus
time for a thin aluminium tube in the GALCIT � inch shock tube facility�
The character of the shock loading is a stepwise varying pressure� advancing at
constant speed� Therefore the loading for a shock tube will be represented by a
step pro�le in this report� The load is characterized by the pre
shock pressure
p�� the post
shock pressure p� and the velocity v �see �gure ����

����� Detonation tube

A detonation consists of a shock wave and a reaction zone that are tightly
coupled� For prompt detonation� at one side of the detonation tube an explosion
is initiated by a high explosive� The detonation then travels down the tube at
a nearly constant speed� the Chapman
Jouguet velocity� The pressure history
for this type of loading can be characterized by the initial pressure p�� the peak

��



3 4 5 6
Time (ms)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
re

ss
ur

e 
(b

ar
)

Time (s)

Pr
es

su
re

 (
Pa

)

P

P

1

2

Figure ���� Pressure versus time for shock loading

pressure p�� the �nal pressure p� and the exponential decay factor T �see �gure
�����
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Figure ���� Pressure versus time for detonation loading

For the prompt detonation case the pressure loads are well de�ned� However�
the case of de�agration to detonation �DDT� is more complex� In the de�agra

tion to detonation case there intitially is no detonation but only a propagating
�ame� The �ame compresses the unreacted gas ahead of the �ame and a spon

taneous explosion can occur in this unreacted gas� This can lead to extremely
high pressures� However� for a properly operated detonation facility the chance
of a DDT event is very low�

����� Structural response

In �gure ��� the measured circumferential strain versus time for shock loading
of a thin aluminium tube is depicted�

The measured strain shows a sharp peak when the shock passes� For the
shock under consideration� the strain exceeds the equivalent static strain by a
factor �� This example indicates that a simple static model of the tube cross
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Figure ���� Strain history for shock loading

section is not su�cient to predict this large strain� One could calculate the
maximum strains and stresses corresponding to the maximum load� but this
would result in stresses and strains that are too low� The key question now is�
what is the cause of the high strain� A somewhat more sophisticated model
takes into account the step character of the loading� However� unfortunately
the dierence with the simple static cross
sectional model is small� even when
the loading is located near a support�

It is now clear that the cause of the high strain is of a dynamic nature� The
most simple dynamical model is the dynamical version of the cross
sectional
model� This model describes the radial �breathing� motion of the cylinder cross

section� For shock loading� the maximum strain is twice the equivalent static
strain� Although signi�cantly higher strains are obtained with this model� it is
clear that an essential mechanism is still missing�

Experiments on shock tubes and gun tubes revealed that the speed of prop

agation of the shock wave is an important parameter� The high strains in the
experiments are due to �exural motion of the cylinder wall� Several models
were developed to describe this phenomenon� some including for instance rota

tory inertia and transverse shear deformation� The �exural models predict the
existance of a so
called critical velocity� When the shock travels at the critical
speed� the solution for the radial tube motion becomes unbounded� Evidently�
damping� non
linearities and plastic deformation will be the controlling mecha

nisms in this case� Nevertheless� the �exural models are able to predict the high
strains that were found in the experiments�

��� Formulation of the problem

The main aims of this study are�

��



� prediction of the structural reponse of a cylindrical tube to shock or det

onation loading and comparison with experimental data

� development of design criteria and design methods for tubes that are sub

jected to shock or detonation loading

Special attention will be paid to the following subjects�

� end eects
In most models the tube is assumed to be in�nite in length� However� in
practical situations one deals with short tube sections that are connected
by �anges� This will have important implications for the structural re

sponse and the design of the tube�

� limits of predictability
An important issue to keep in mind when developing models and design
concepts� is the subject of �limited predictability�� Due to variation in
the input data� e�g� material properties or geometrical properties� there is
a degree of uncertainty in the results�

��� Outline

This research is carried out in a number of steps� Accordingly� the report
is divided into three parts� In part I� the general theory for the structural
response of tubes to shock or detonation loading is presented� A number of
analytical models is described� These models are not new� However� for the
present study they were all rewritten into the same notation in order to put
them into perspective� Simple analytical models were developed to describe the
transient response of a �nite length shell� Finally� in order to describe more
complicated boundary conditions� a �nite element model was developed�

In part II of this report an analysis is presented for the GALCIT � inch
shock tube� Results from calculations and experiments are compared for a
thin aluminium tube subject to shock loading� The shock tube problem is well
de�ned and the important mechanisms and concepts can be analyzed for this
setup�

Finally� an analysis of the detonation tube problem will be described in part
III� The detonation tube is a thick walled tube that is constructed of relatively
short segments� connected by �anges� Theory and experiments will be used to
develop methods in the design process�

��



Chapter �

Literature

��� Related research �elds

The key issue in the shock and detonation problem is the reponse of a structure
to a moving load� This problem is related to several other research �elds �see
�gure �����

� vehicle dynamics� the reponse of structures to tra�c loads

� interaction between railroad tracks and soil

� structural response of gun tubes

� structural reponse of beam structures to moving loads

��
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Figure ���� Related research topics

��� Short literature overview

In the tables ��� and ��� a short overview of related literature is presented�
It is not the intention of the author to present a list with all publications on
this subject� For an overview on numerical methods� the reader is referred to
Mackerle ����
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Chapter �

Cross�sectional model

Consider a cross section of the tube� The tube is exposed to an internal over

pressure p �t� � The following assumptions are introduced to calculate the tube
response�

� rotatory symmetry

� linear elastic theory

The following dierential equation governs the structural response of the tube
cross section �see appendix A and �gure �����

R h
w

Figure ���� Cross sectional model


�w


t�
� ��w �

p �t�

�h
�����

where � is the frequency corresponding to the radial �breathing� motion�

� �

s
E

�R�
�����

��



The displacement is written in a non
dimensional form according to�

w �
w

h
�����

The basic equation now becomes�


�w


t�
� ��w �

p �t�

�h�
�����

��� Static response

In the static case with maximum pressure p�� the maximum tube response is
simply�

w �
�p� � patm�

�h���
�

�p� � patm�R�

Eh�
� �� �����

where the quantity �� is de�ned as�

�� �
�p� � patm�R�

Eh�
�����

Formula ����� is often used in the design of pressure vessels subjected to �quasi�
static loading� The maximum pressure is used to determine the dimensions
of the tube� However� in the case of shock or detonation loading� the pressure
loads are highly transient and propagate at high speeds� In these cases the static
design formula can give displacements that are too low� even when a seemingly
reasonable safety margin is taken into account�

��� Response to shock loading

The dynamic tube response is obtained from�


�w


t�
� ��w �

p �t�

�h�
�����

For simple pressure histories� the tube response can be calculated analytically�
for instance using Laplace transform� For the shock tube problem� the pressure
history is given by�

p �t� �

�
p� for t � �
p� for t � �

�����

The response of the tube cross
section to this pressure history is simply�

w �

��
�

�� for t � �

�� � ��� � ��� ��� cos ��t�� for t � �
�����

The maximum displacement is given by�

wmax � �� � � ��� � ��� ������

��



This expressions shows that the maximum displacement� expressed in terms of
the maximum static de�ection� depends on the loading values p� and p�� It is
more convenient to use the dierence in de�ection to the loads p� and p� as a
reference� The dierence in static displacement is�

�w � ��� � ��� ������

The maximum dierence in dynamic displacement is�

�wmax � � ��� � ��� ������

The dynamic ampli�cation factor� �� is now de�ned as the ratio between these
two quantities� For shock loading�

� � � ������

��� Response to detonation loading

For the detonation problem� the pressure history is�

p �t� �

��
�

p� for t � �

�p� � p�� e�
t
T � p� for t � �

������

The reponse is�

w �

��������
�������

�� for t � �

�� � ��� � ��� ��� cos ��t��

� ��� � ���

�
��T �

� � ��T �

� �
�

�T
sin ��t�� cos ��t� � e�

t
T

�
for t � �

������
The dynamic ampli�cation factor for detonation loading is�

� � max

�
�� � ��

�� � ��
��� cos ��t�� ������

�
�� � ��
�� � ��

�
��T �

� � ��T �

��
�

�T
sin ��t�� cos ��t� � e�

t
T

��
������

where max fg denotes the maximum of the expression for t � �� In appendix
A� the reponse to a slighty dierent loading is also given�

��



Chapter �

Flexural model� thin

in�nite shell

��� Basic equations

The model is based on the following assumptions�

� rotatory symmetry

� tube of in�nite length

� no transverse shear deformation

� no rotatory inertia

� linear elastic theory

Dimensionless quantities and a moving co
ordinate system are introduced ac

cording to �see �gure ���� ��

h

R

w

u

x

Figure ���� Flexural model

u �
u

h
 w �

w

h
 � �

p
��

h
�x� vt� �����

�This choice is made is order to enable direct comparison with the other models

��



The following parameters are used in this model�

�i �
�pi � patm�R�

Eh�
� excitation parameter �i � �� � or ��

vd �

s
E

� ��� ���
� dilatational wave velocity in a shell

� �
hp
��R

� non dimensional shell thickness parameter

� �
Nxx

�
�� ��

	
Eh

� prestress parameter

�����

where Nxx is the axial force per unit circumferential length due to prestress
eects�

Nxx �
Fx

�R
�����

Following Reismann ���� and Simkins ����� two additional assumptions are used
to simplify the model�

� v

vd
� �

� � � �

In this case the dierential equation reduces to the well
known form�

A�

�w


��
� A�


�w


��
� A�w � F ��� �����

where�

A� � �  A� �


�
v

vd

��

� �


 A� � ��

�
�� ��

	
�����

The right hand side of this equation contains loading and prestress terms� For
shock loading and detonation loading one has�

shock � F ��� � ��
�
�� ��

	 f�� � ��� � ��� ���H ����g � ���p
��

�����

detonation � F ��� � ��
�
�� ��

	 f�� � ��� � ��� ���H ����g

� ��
�
�� ��

	�
��� � ��� ���H ���� e

�

��

�

� ���p
��

�����

where H ��� is the step function and �� �

p
��vT

h
�

��



��� Dispersion equation

The solution of the dierential equation ����� is composed of a homogeneous
part and a particular part� The characteristic equation for the homogeneous

equation determines the relation between the axial wave number k �

p
���

ih
and the shock speed v� Upon assuming for the homogeneous part�

w � !we�� �����

the dispersion equation is�

A��
� � A��

� � A� � � �����

The solution is�

�� �
�

��� ��� ���

�
���


�
v

vd

��

� �


�

vuut
� v

vd

��

� �

�
� ��� ��� ���

�
��

������
There are four values of � for each value of v� appearing in pairs of complex
conjugates� Depending on the value of v� these values are either complex or
purely imaginary� Three cases can be distinguished�

� subcritical� v 	 vc�
values of � are complex� � � �n� im

� critical� v � vc�
values of � are purely imaginary and equal� � � �im

� supercritical� v � vc�
values of � are purely imaginary and distinct� � � �im� and � � �im�

Evidently� the critical velocity for this model is�

vc� � vd

qp
��� ��� ��� � � ������

The critical velocity increases when the axial prestress is tensile� and decreases
when the axial prestress is compressive� In terms of material and geometrical
properties�

vc� �

s
E

� ��� ���

sr
h� ��� ���

�R�
�
Nxx ��� ���

Eh
������

When no axial prestress is present�

vc� �

�
E�h�

���R� ��� ���

� �
�

������

��



��� Response to shock loading

����� Subcritical velocities

The solution has to remain bounded for � � ��� Furthermore� continuity
conditions have to be satis�ed at � � � for displacement� rotation� moment and
shear� A short derivation of the solution is given in appendix B� The result for
the displacement w in the �rst region� � 	 �� and the second region� � � � is�

wI � �s
� � ���p

��A�

������

� ��s
� � �s

��

�
� �

�

�
en�

�
�� cos �m�� � �

n� �m�

nm
sin �m��

��

wII � �s
� � ���p

��A�

������

� ��s
� � �s

��

�
�

�
e�n�

�
� cos �m�� � �

n� �m�

nm
sin �m��

��

where ��

n �
�

�

s�
vc�
vd

��

�
�
v

vd

��

 m �
�

�

s�
vc�
vd

��

�

�
v

vd

��

������

�s
i �

��
�
�� ��

	
A�

�i � �i ������

The maximum amplitude occurs in region I� behind the pressure step� The
dynamic ampli�cation factor for this case is�

� � � �
�

�
en�max

�
� np

n� � m�
�

�
n� �m�

�nm

�
mp

n� � m�

�
������

where �max is the �rst solution for � 	 � of�

tan �m�� �
m

n
������

Note that the initial displacement due to the load p� does not aect the dynamic
ampli�cation factor� since this displacement is of a static nature� The axial
prestress does not appear directly in expression ������� However� the axial
prestress aects the dispersion equation and the values of n� m� and vc��

����� Critical velocity

The solution for this case can not be determined� In fact� as v approaches vc��
the values for the displacement become unbounded for the sub and supercritical
case� n� � or m� � m��

��s
i
is introcuded to enable easy comparison with the model including shear deformation

and rotatory inertia

��



����� Supercritical velocities

Due to the fact that the characteristic roots are purely imaginary� the solution
is bounded for � � ��� In this case another condition is used to determine the
solution� Energy has to �ow away from the pressure step� Energy is transported
at the group speed� vg � In region II� ahead of the pressure step� the group speed
has to exceed the phase speed� In region I� the phase speed of the waves should
exceed the group speed� Furthermore� continuity conditions have to be satis�ed
at � � � for displacement� rotation� moment and shear� A short derivation of
the solution is given in appendix B� The results for the displacement w in the
�rst and second region is�

wI � �s
� �

���p
��A�

� ��s
� � �s

��

�
� �

�
m�

�

m�
� �m�

�

�
cos �m���

�
������

wII � �s
� �

���p
��A�

� ��s
� � �s

��

��
m�

�

m�
� �m�

�

�
cos �m���

�
������

where�

m� �
�

�

�
�
s�

v

vd

��

�

�
vc�
vd

��

�
s�

v

vd

��

�
�
vc�
vd

��
�
�

m� �
�

�

�
�
s�

v

vd

��

�

�
vc�
vd

��

�

s�
v

vd

��

�
�
vc�
vd

��
�
� ������

The dynamic ampli�cation factor for supercritical velocities is�

� � ��
�

m�
�

m�
� �m�

�

�
������

��



��� Response to detonation loading

����� Subcritical velocities

The solution for subcritical velocities is�

wI � �s
� �

���p
��A�

� ��s
�
� �s

��

�
� �

�

�
en�

�
�� cos �m�� � �

n� �m�

nm
sin �m��

��

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 �

�
en�

�

�� �

�
�

��

�
m� � �n�

n �n� � m��
�

�
�

��

��
�

n �n� � m��


cos �m��

�



n� �m�

mn
�

�
�

��

�
n� � �m�

m �n� � m��
�
�

�

��

��
�

mn
�
�

�

��

��
�

m �n� � m��


sin �m��

�

wII � �s
� �

���p
��A�

� ��s
�
� �s

��

�
�

�
e�n�

�
� cos �m�� � �

n� �m�

nm
sin �m��

��

�
�
�d
� � �d

�

	 �

�
e�n�

�

� �

�
�

��

�
m� � �n�

n �n� � m��
�

�
�

��

��
�

n �n� � m��


cos �m��

�



n� �m�

mn
�
�

�

��

�
n� � �m�

m �n� � m��
�
�

�

��

��
�

mn
�

�
�

��

��
�

m �n� � m��


sin �m��

�

where�

�d
i �

��
�
�� ��

	
A�

�
�
��

��
� A�

�
�
��

��
� A�

�i ������

����� Critical velocity

The solution of the problem can not be obtained when the velocity is equal
to the critical velocity� The solution becomes unbounded when the velocity
approaches the critical value�

����� Supercritical velocities

The solution for the supercritical case is�
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��� Response to arbitrary loading

In the sections ��� and ��� the response of the shell to shock and detonation
loading was described analytically� It is possible to develop a model for the
description of the response to arbitrary loading pro�les� Consider a loading
pro�le that is made up of dierent intervals �see �gure ����� In each interval�
the loading is described by a function F ���� The loading pattern propagates
down the tube at a constant velocity v� The tube is assumed to be in�nite in
length�

η η η ηj-1j-2 j j+1

j-1 j j+1

Figure ���� Arbitrary loading pro�le

For the calculation of the response� the tube is divided in intervals� Interval
j covers the range

�
�j��� �j

�
� For the intervals j � � and j the general solution

can be written as�
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where the roots ��� ��� �� and �� can be calculated from the dispersion equation
and wj

p is a particular solution for interval j due to the pressure loading� Next�
the continuity conditions have to be satis�ed for each interface� For the intervals
j � � and j this gives the following matrix
vector expression�
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Successively applying this relation gives the following relation between the con

stants in the �rst interval and the last interval�
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When the values of � constants are known� all other constants can be calcu

lated� The boundary conditions for � �� still have to be satis�ed� Based on
�boundedness� of the solution or the group velocity concept� � constants can be
eliminated� The other constants can then be determined from expression �������
Thus� the total solution of the problem is obtained�
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��� Damping

In order to account for damping eects� a damping term can be added to the
dierential equation �see Appendix C�� In general� the damping term causes the
characteristic roots to be complex for all velocities� The characteristic roots can
be determined with straightforward procedures for polynomials�

As in most structural dynamics problems� the estimation and prediction
of damping is di�cult� The question remains how to determine the value of
the damping constant that is used in the model� A theoretical prediction of
the damping constant for detonation and shock tubes is very di�cult� The
damping depends on for instance the clamping conditions and the use of rubber
rings� The quantitative predictability of the damping is therefore not very good�
However� there is a way to determine the order of magnitude of the damping
constant at least� By measuring the modal properties of the tube or a tube
section� one can make an estimation of the amount of damping in the system�
In appendix C a short description of the damping model is given�
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Chapter �

Flexural model� thin

in�nite shell including

rotatory inertia and shear

deformation

��� Basic equations

The model is based on the following assumptions� see e�g� Tang �����

� rotatory symmetry

� tube of in�nite length

� linear elastic theory

� no axial prestress

Dimensionless quantities and a moving co
ordinate system are introduced ac

cording to �see �gure �����

h

R

w

u

x
ψ

x

Figure ���� Flexural model including shear and rotatory inertia
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The displacement is split up into two parts�

w � wb � ws  �x � �
wb


�
�����

The following parameters are used in this model�
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Eh�
� excitation parameter
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s
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� dilatational wave velocity in a shell
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hp
��R

� non dimensional shell thickness parameter
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The following equations are obtained �see appendix D��
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The �nal result for this model is the following dierential equation�
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Note that the dierential equation shows a strong resemblance with the dif

ferential equation for the thin shell model� In fact� upon taking vs � � and
v
vd
� �� the model degenerates to the thin shell model�

��� Dispersion equation

The dispersion equation for this model is�
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where � is related to the wave number k through�
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p
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The values of the characteristic roots for each value of v can be determined
with straightforward procedures for polynomials� No closed
form solution will
be used in the present report� Five cases can be distinguished�

� case �� v 	 vc�
values of � are complex� � � �n� im

� case �� vc� 	 v 	 vc�
values of � are purely imaginary� � � �im� and � � �im�

� case �� vc� 	 v 	 vc�
values of � are real or imaginary� � � �n and � � �im

� case �� vc� 	 v 	 vc�
values of � are purely real� � � �n� and � � �n�

� case �� vc� 	 v
values of � are purely imaginary� � � �im� and � � �im�

In this model there are four �critical velocities�� The velocities are�
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the characteristic roots are found from�
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The critical velocity vc� can now be calculated from�
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shear wave speed
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p
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dilatational wave speed in a bar

� vc� � vd
dilatational wave speed

When the shock speed is equal to one of the critical velocities� a solution for the
problem can not be obtained�

��� Response to shock loading

A short derivation of the solution is given in appendix D�
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The displacement ws follows from expression �D��� and the axial displacement
follows directly from expression �D���� The total radial de�ection is then simply
w � wb � ws� The maximum displacement� wmax� is obtained for �max � It is
the �rst solution for � 	 � of�
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The last result shows that there are no waves ahead of the pressure front when
the shock speed exceeds the dilatational wave speed�

��� Response to detonation loading

A short derivation of the solution is given in appendix D� Note that for v
vd
� ��

�d
� � �d

� and �� � �� the solution of the detonation model reduces to the
solution of the shock problem�

��



����� Case �� � � v � vc�

wI
b � �s

� � ��s
�
� �s

��

�
� �

�

�
en�

�
�� cos �m�� � �

n� �m�

nm
sin �m��

��

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 �

�
en�

�

�� �

�
�

��

�
m� � �n�

n �n� � m��
�

�
�

��

��
�

n �n� � m��


cos �m��

�



n� �m�

mn
�

�
�

��

�
n� � �m�

m �n� � m��
�
�

�

��

��
�

mn
�
�

�

��

��
�

m �n� � m��


sin �m��

�

wII
b � �s

� � ��s
�
� �s

��

�
�

�
e�n�

�
� cos �m�� � �

n� �m�

nm
sin �m��

��

�
�
�d
� � �d

�

	 �

�
e�n�

�

� �

�
�

��

�
m� � �n�

n �n� � m��
�

�
�

��

��
�

n �n� � m��


cos �m��

�



n� �m�

mn
�
�

�

��

�
n� � �m�

m �n� � m��
�
�

�

��

��
�

mn
�

�
�

��

��
�

m �n� � m��


sin �m��

�

������

where ��

�d
i �

��
�
�� ��

	
A�

�
�
��

��
� A�

�
�
��

��
� A�

�i ������

����� Case �� vc� � v � vc�

wI
b � �s

� � ��s
�
� �s

��

�
� �

�
m�

�

m�
� �m�

�

�
cos �m���

�

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 � �

m�m� �m�
� �m�

��

��
m�m�



m�

� �

�
�

��

��


cos �m���

� m�

�
�

��

�

m�

� �
�

�

��

��


sin �m���

�

wII
b � �s

� � ��s
�
� �s

��

�
m�

�

m�
� �m�

�

�
cos �m��� ������

�For
v

vd
� � and �� ��� �d

i
� �i

��



�
�
�d
� � �d

�

	 � �

m�m� �m�
� �m�

��

��
m�m�



m�

� �

�
�

��

��


cos �m���

� m�

�
�

��

�

m�

� �

�
�

��

��


sin �m���

�

����� Case �� vc� � v � vc�

wI
b � �s

� � ��s
�
� �s

��

�
��

�
�

n� � m�

� �
�

�
m�en� � n� cos �m��

��

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 � �

nm �n� � m��

��
��

�
m



�nm� �

�
�

��

�
m� �

�
�

��

��

n �

�
�

��

��

en�

� nm



�m� �

�
�

��

��


cos �m�� �

�
�

��

�
n



�n� �

�
�

��

��


sin �m��

�

wII
b � �s

� � ��s
�
� �s

��

�
�

n� � m�

�
�

�
m�e�n� ������

�
�
�d
� � �d

�

	 � �

nm �n� � m��

��
��

�
m



�nm� �

�
�

��

�
m� �

�
�

��

��

n �

�
�

��

��

e�n�

�

����� Case �� vc� � v � vc�

wI
b � �s

� � ��s
�
� �s

��

�
� �

�

�

�
�

n�� � n��

� �
n��e

n�� � n��e
n��
��

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 � �

n�n� �n�� � n���

��
�

�
n�



n�n

�
� �

�
�

��

�
n�� �

�
�

��

��

n� �
�

�

��

��

en��

� �

�
n�



n��n� �

�
�

��

�
n�� �

�
�

��

��

n� �
�

�

��

��

en��

�

wII
b � �s

� � ���� � �s
��

�
��

�

�
�

n�� � n��

� �
n��e

�n�� � n��e
�n��

��
������

�
�
�d
� � �d

�

	 � �

n�n� �n�� � n���

��
��

�
n�



n�n

�
� �

�
�

��

�
n�� �

�
�

��

��

n� �

�
�

��

��

e�n��

� �

�
n�



n��n� �

�
�

��

�
n�� �

�
�

��

��

n� �

�
�

��

��

e�n��

�

��



����� Case �� vc� � v

wI
b � �s

� � ��s
�
� �s

��

�
� �

�
�

m�
� �m�

�

� �
m�

� cos �m����m�
� cos �m���

��

�
�
�d
� � �d

�

	
e

�

�� ������

�
�
�d
� � �d

�

	 � �

m�m� �m�
� �m�

��

��
m�m�



m�

� �

�
�

��

��


cos �m���

� m�

�
�

��

�

m�

� �

�
�

��

��


sin �m���

� m�m�



m�

� �

�
�

��

��


cos �m���

� m�

�
�

��

�

m�

� �

�
�

��

��


sin �m���

�

wII
b � � ������

��� Response to arbitrary loading

In the two previous sections the response of the shell to shock and detonation
loading was described analytically� For the model including rotatory inertia
and shear deformation� it is also possible to develop a model for the description
of the response to arbitrary loading pro�les� The procedure is similar to the
procedure for the thin shell model� For the model including rotatory inertia
and shear deformation only another dispersion equation has to be used� The
other formulas are the same as for the thin shell model� For the sake of brevity�
the derivation is not repeated here�

��� Damping

As in the simple thin shell model� a damping term can be added to the dier

ential equation� For a further description of damping� the reader is referred to
section ��� and appendix D�
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Chapter �

Flexural model� thick

in�nite shell

��� Basic equations

This model was described by Mirsky and Hermann ���� and Simkins ����� The
basic equations for this model are listed in appendix E� Dimensionless quantities
are introduced according to�
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The basic equations �nally result in a matrix
vector equation�
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where the elements depend on the following parameters�
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��� Dispersion equation

The dispersion equation can be obtained from the homogeneous equation� as

suming exponential behaviour of the quantities� The determinant should be
zero� resulting in a quite lengthy sixth order dispersion equation �see appendix
E�� For each value of the velocity v� the characteristic roots can be determined
from this equation� The roots appear in pairs of complex conjugates� The
corresponding eigenvectors are used to obtain the solution of the problem�

��� Solution of the problem

The response of the system is written as the sum of a homogeneous solution
and a particular solution� The homogeneous part is a linear combination of
eigenvectors� The particular solution is a constant solution� The participation
factors for each eigenvector are determined from the continuity conditions and
the fact that the solution has to remain bounded� A complete derivation of the
solution is given in appendix E�
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Chapter �

Transient analytical model�

thin shell

��� Basic equations

Consider a thin shell with length L �see �gure ����� As a starting point for the

L
x

h

R

Figure ���� Thin shell of �nite length

analytical transient model� the following equation is used �see section ���
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�w
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h�

w �
���

h�
F �x� t� �����

where F �x� t� is the excitation function� see section ���� The analytical solution
assumes that for each time t� the radial displacement is written as the sum of
eigenmodes �k�x�� The participation factors now have to be calculated� The
total solution is obtained by superimposing two parts�

� static solution corresponding to the initial load

� dynamic solution for an advancing load
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����� Static solution

The static equation is obtained by setting the time derivative zero�
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where Fs�x� is the static loading� The radial displacement is written as the sum
of eigenmodes �q�x��

w�x� t� �

�X
q������

aq�q�x� �����

Inserting this expression into the dierential equation gives� dropping the �x�
notation�

�X
q������
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Since the functions �q are eigenmodes� one can write�

�X
q������

��qaq�q �
���

h�
Fs�x� t� �����

where �q is the eigenfrequency for mode q� The eigenmodes are orthonormal�Z L

�

�q�rdx �

�
� for q �� r
� for q � r

�����

Multiplying equation ����� by eigenmode r� integrating with respect to x and
using the orthonormality �nally gives�

aq �
��v�d
��qh

Z L

�

�qFs�x�dx �����

For instance for a constant load� the participation factors can easily be calcu

lated�

����� Dynamic solution

As a starting point for the analytical transient model� the following equation is
used �see section ���
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where Fd�x� t� is the dynamic loading of the shell� The radial displacement for
each time t is written as the sum of eigenmodes �k�x��

w�x� t� �

�X
q������

bq�t��q�x� �����
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Note that the participation factors are now a function of time� Using this
expression� multiplying the equation ����� by eigenmode r� integrating with
respect to x and using the orthonormality properties �nally gives�


�bq

t�

� ��qbq �
��v�d
h

Z L

�

�qFd�x� t�dx ������

This is a simple second order dierential equation in terms of the participation
factor bq� In the next sections solutions will be presented for simply supported
shells and clamped shell subjected to shock or detonation loading�

����� Total solution

The total solution is obtained by superimposing the static and the dynamic
solutions�

w�x� t� �

�X
q������

�aq � bq�t���q�x� ������
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��� Simply supported shell

The modes of a simply supported shell are�
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r
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L
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L
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The corresponding eigenfrequencies are�
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����� Response to shock loading

Static solution

The static loading is constant�
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The static participation factors are simply�
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Dynamic solution

The dynamic loading function is�
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Because of the step function the equation for bq can be written as�
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This �nally gives the following dierential equation for bq�
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The boundary conditions are�
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The �nal solution is�
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����� Response to detonation loading

Static solution

The static loading is constant�

Fs�x� � ��
�
�� ��

	
�� ������

The static participation factors are simply�
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Dynamic solution

The dynamic loading function is�
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The �nal solution for the dynamic participation factors is�
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Chapter �

Transient �nite element

model

One of the basic assumptions in the simplest analytical models is that the tube
is in�nite in length� This greatly simpli�es the analysis and enables straightfor

ward analytical solutions for this steady state problem� However� in reality end
eects will aect the behaviour of the system� In fact� due to the re�ection of
structural waves at the end of a tube very high strains and stresses might result�
Therefore it is interesting to analyze the transient behaviour of the shell in more
detail� In the previous chapter an analytical model was developed to describe
the transient behaviour of �nite length shells� An alternative is oered by the
�nite element method� The �nite element method enables a realistic modelling
of geometries and boundary conditions� However� the generality of the packages
also usually implies a large amount of overhead�

	�� Flexural models

����� Mesh

The �nite element model can be constructed with dierent kinds of elements�
For a thin shell� rotatory symmetric � noded Mindlin type shell elements can be
used �see �gure ����� This element accounts for transverse shear deformation�
A thick shell can be modelled with rotatory symmetric solid elements �see �gure
�����

����� Boundary conditions

The �nite element model enables a realistic modelling of boundary conditions
and end eects� In the simplest situation the ends of a tube are for instance fully
clamped� simply supported or free� However� it is also possible to introduce for
instance an elastic clamping condition�

��
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Figure ���� Mesh with rotatory symmetric � noded Mindlin elements
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R

Solid element
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Figure ���� Mesh with rotatory symmetric solid elements

����� Structural response

In order to calculate the structural response� the problem can be split up into two
parts� a static calculation and a dynamic calculation� The static deformation
corresponding to the initial pressure dierence across the shell is calculated with
a linear elastic static model� The dynamical response to a shock or detonation
travelling at speed v is then calculated with a transient linear elastic �nite
element model� Both results are superimposed to obtain the �nal solution�
The load as a function of time is prescribed in each node� The response was
calculated with a normal mode superposition technique� The modes of vibration
of the shell were calculated �rst� These eigenmodes were then used to calculate
the transient shell response�
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Chapter �

Practical considerations

When calculating the structural response of shells to moving loads� one has to
be aware of the limitations and restrictions of interest� Some points of interest
are�

� limits of predictability
The critical velocity concept usually implies large speed for shells� of the
order of magnitude of for instance ���� m�s� The resulting structural
vibrations are high frequency signals� with typical frequencies ranging from
� kHz upto �� kHz� The behaviour of structures at these high frequencies
is sensitive to variation in the input data� As a consequence� a small
variation in material or geometrical properties can lead to relatively large
changes in the �nal result� For the designer this aspect should be of
concern regarding design tolerances and variation in material properties�

� damping
As already stated� the prediction of damping is di�cult� Structural damp

ing may be introduced by the material itself� but this amount of damping
is usually relatively small� Other damping mechanisms are the damping
in connections� seals and joints� Damping will be a restricting factor at
resonance� thus providing an extra margin of safety�

� end eects
The re�ection and interference of structural waves can be important� Es

pecially around the critical velocity there is a relatively strong precursor
wave� Re�ection of this precursor wave and interference with the bulk
signal can lead to very high strains�

� non
linear eects
The models presented so far are all based on linear theory� Any material
or geometrical nonlinearity is therefore neglected� The linear models are
only valid for small disturbances� When comparing calculations and ex

periments� it has to be ensured that the experimental results are in the

��



linear range� What tube design is concerned� the design will usually be
based on the fact that the structure should be operated within the linear
elastic regime�

� computational costs
An issue that is strongly related to the limited predictability is the com

putational cost� Numerical models are able to describe the response in
detail� When an increasing number of elements is used� �ner scales can
be resolved� However� due to the variation in input data and the increase
in computational cost very large calculations do not add much practical
value� Furthermore� more sophisticated material models should be used
for detailed analysis�

��



Conclusions

Several models were developed to describe the response of shells to shock or
detonation loading�

� analytical steady state models �in�nite shells�

 thin shell model

 thin shell model including rotatory inertia and transverse shear

 thick shell model

The steady state models show the importance of the critical velocity con

cept� The radial de�ection becomes unbounded when the velocity of the
load is equal to the critical velocity� Damping and transient eects are not
taken into account� For a �nite length shell� the amplitude of the radial
motion will increase with distance since the tube is initially at rest� This
development of the pro�le and the re�ection and interference of waves can
not be desribed with the steady state models� For the designer however
these are important issues�

� analytical transient models

 thin shell model

The transient models are able to describe the development� re�ection and
interference of waves� The analytical approaches however are limited to
thin walled tubes with simple boundary conditions�

� transient �nite element models

 thin shell model

 thick shell model

The transient �nite models are able to model arbitrary shells with more
complicated boundary conditions� The calculation times however are sig

ni�cant�
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Appendix A

Cross�sectional models

A�� Basic equations

The basic equations� governing the response of the cross
sectional model are�
see De Malherbe & Wing & Laderman & Oppenheim ���� and Shepherd �����
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where the stress resultant N�� is de�ned as�

N�� � Eh
w

R
�A���

The positive direction of the displacement is given in �gure A��� This gives

R h
w

Figure A��� Cross
sectional model

the following dierential equation�
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For a thin shell�
h
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�h
�A���

where � is the frequency for radial �breathing� motion of the cross
section�

� �

s
E

�R�
�A���

The response of the tube to selected pressure histories can be obtained by
Laplace transform� The Laplace transform W � ��w� of the displacement
w is obtained from�

W � ��w� �

Z
�

�

we�stdt �A���

In a similar way for the pressure�

P � ��p� �

Z
�

�

pe�stdt �A���

The dierential equation now reduces to the following relation between the
Laplace transforms�

W �
�

s� � ��
P �A���

By taking the inverse Laplace transform of W � the structural response of the
tube is obtained�

A�� Response to detonation loading

Another example of the response to detonation loading�
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Evidently� by taking �t� �� the last expression degenerates to the solution of
the �rst detonation problem �see chapter ���
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Appendix B

Thin shell equations

B�� Basic equations

The basic equations for the thin shell model are �� see e�g Simkins ����� Reismann
����� El
Raheb & Wagner ���� ����
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where the stress resultants Nxx� N�� and Mxx are de�ned as�
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The directions for the displacements and stress resultants are given in �gure
B���

Inserting the expression for Nxx into equation �B��� gives�
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�The term Nxx
�w

�x
is included to account for axial prestress e�ects
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Figure B��� Flexural model� displacements and stress resultants

Dimensionless quantities are introduced according to ��
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The following parameters are used in the analysis�
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� dilatational wave velocity in a shell
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� prestress parameter
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The equation for Nxx can now be written as�
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Integrating with respect to � and solving for
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where C is an arbitrary constant� Inserting this into the expression for Nxx

gives�
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�This choice is made is order to enable direct comparison with the other models
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If one now assumes�

� v

vd
� � � shock speed is low compared to dilatational wave speed

the following result for Nxx is obtained�

Nxx � C �B���

The axial stress resultant is a constant� resulting from axial prestress� This
result is not too surprizing� because the assumption implies that the velocity is
small compared to the dilatational wave speed� For the dilatational waves� the
motion is predominantly axial� Now using the fact that the axial stress resultant
is a constant� the second equation in �B��� can be written as �neglecting higher
order terms in ���

A�

�w


��
� A�


�w


��
� A�w � F ��� �B����
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�B����

When dynamic terms� prestress and �exural terms are neglected� the model
evidently degenerates to the static cross
sectional model�

B�� Continuity conditions

The following quantities have to be continuous at � � ��

� displacement� wI��� � wII���

� rotation�
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B�� Dispersion equation

The dispersion equation for the problem is�

A��
� � A��

� � A� � � �B����

where � is related to the wave number k through�

k �

p
���

ih
�B����
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B�� Group velocity

An important quantity that will be used in futher analysis is the group velocity�
The group velocity vg is the speed at which energy is transported� It is related
to the phase speed v of the wave as�

vg � k

v


k
� k �B����

The partial derivative of v with respect to k can be determined by for instance
dierentiating the dispersion equation with respect to k� The �nal result is
expressed in terms of ��

vg � vd
�
��
i

�
s

� �

�
i

�

��

� ��� ���

�B����

B�� Response to shock loading

The solution for shock loading is obtained from � the dierential equation �B����
with right hand side function�

F ��� � ��
�
�� ��

	 f�� � ��� � ��� ���H ����g
� ���p

��
�B����

The general solution for the two regions can be written as�

wI � CI
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B���� Subcritical velocities

The characteristic roots for the subcritical case are�

�� � n� im  �� � n � im  �� � �n � im  �� � �n� im �B����
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�The solution for the static problem is simply obtained by taking v � � in the solution for

the subcritical case
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The solution has to remain bounded for � � ��� CI
� � CI

� � CII
� � CII

� � ��
Furthermore the displacement� rotation� moment and shear have to be contin

uous for � � �� The constants can be solved with these conditions� The �nal
result is given in the main text�

B���� Critical velocity

When the velocity v is equal to the critical velocity� there are double roots� In
this case one has�

�� � �im  �� � im  �� � im  �� � �im �B����

where�
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p
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�
vc�
vd

�
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However� the solution for this case can not be determined� In fact� as v ap

proaches vc�� the values for the displacement become unbounded for the sub
and supercritical case� n� � or m� � m��

B���� Supercritical velocities

In the supercritical case� there are four purely imaginary roots�

�� � �im�  �� � im�  �� � �im�  �� � im� �B����

where m� and m� are real valued quantities according to��
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Due to the fact that the characteristic roots are purely imaginary� the solution
is bounded for � � ��� However� in this case another condition can be used
to determine the solution� Energy has to �ow away from the pressure step�
The energy is transported at the group speed� vg � In region �� ahead of the
pressure step� the group speed therefore has to exceed the phase speed� In
region �� the phase speed of the waves should exceed the group speed� This
gives� CI

� � CI
� � CII

� � CII
� � �� Furthermore� continuity conditions have to

be satis�ed at � � � for displacement� rotation� moment and shear� The �nal
result is given in the main text�
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B�� Response to detonation loading

The solution of the detonation problem is obtained from the same dierential
equation �B����� with a dierent forcing function�

detonation � F ��� � ��
�
�� ��
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The general solution for the two regions can be written as�
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Due to the fact that the right hand side forcing function is now a function of
the � co
ordinate� the continuity conditions are somewhat more complicated
than for the shock tube problem� However� the solution procedure is exactly
the same� Therefore the whole derivation will not be repeated in this section�
The results are given in the main text�
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Appendix C

Flexural model� thin

in�nite shell including

damping

C�� Basic equations

In order to investigate the in�uence of damping on the structural response of the
tube� a damping term is added to the thin shell equation ������ The damping
term is proportional to the radial velocity� corresponding to viscous damping�
The damping constant cd is introduced according to�

cd �
cp
���

�C���

where c is the damping constant that remains to be determined� The thin shell
equation including damping can be written as�
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C�� Dispersion equation

The dispersion equation for this problem is�
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�
� � ��

�
�� ��

	
� � �C���

In general� the damping term causes the roots to be complex for all velocities�
This implies that there is no unbounded behaviour� the damping forces restrict
the response to remain bounded� The characteristic roots can be determined
with straightforward procedures for polynomials�
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C�� Determination of the damping constant

As in most structural dynamics problems� the estimation and prediction of
damping is di�cult� The question now remains how to determine the value of
the damping constant c that is used in the model�

A theoretical prediction of the damping constant for detonation and shock
tubes is very di�cult� The damping depends heavily on for instance the clamp

ing conditions and the use of rubber rings� The quantative predictability of the
damping is therefore not very good� However� there is a way to determine the
order of magnitude of the damping constant at least� By measuring the modal
properties of the tube or a tube section� one can make an estimation of the
amount of damping in the system� Note however that this method is inconstis

tent with the model assumptions� The damping will be determined for a tube
of �nite length� whereas the theory assumes a tube of in�nite length�

Consider the dierential equation for the tube motion� without damping
and without loading� The eigenfrequencies of the tube can be determined by
assuming harmonic motion and using the appropriate boundary conditions� For
a tube with length l the eigenfrequencies � can be calculated from ��

�tan ��� � tanh ���� �tan ���� tanh ���� � � �C���

where�

� �
l

�h

�
����h�

v�d
� ����

�
�� ��

	� ��
�C���

For a given tube geometry and material properties� the eigenfrequencies can be
calculated from this equation� Because there is no damping in the system� the
eigenfrequencies are real valued�

If there is damping in the system� the eigenfrequencies become complex�

� � ��

hp
�� �� � i�

i
�C���

where �� is the eigenfrequency of the undamped system and � is the dimen

sionless viscous damping coe�cient� The quantities �� and � can be measured
or estimated� For lightly damped structures� � is of the order of magnitude of
������ For more heavily damped systems a typical value for � is �����

For the damped system� the eigenfrequencies follow from�

�tan �!�� � tanh �!��� �tan �!��� tanh �!��� � � �C���

where�
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�
�� ��

	� �
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Suppose the value of � �complex� is known� With this equation the value of c
can then be calculated�

�The two parts correspond to symmetric and asymmetric modes respectively
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Appendix D

Thin shell equations

including rotatory inertia

and shear deformation

D�� Basic equations

The basic equations for this model are �no prestress��
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where the stress resultants Nxx� N�� and Mxx are de�ned as�

Nxx �
Eh

�� ��

�

u


x
� �

w

R

�

N�� �
Eh

�� ��

�
�

u


x
�
w

R

�
�D���

Mxx �
Eh�

�� ��� ���


�x

x

Qx � �Gh

�
�x �


w


x

�
where � is the shear correction factor and �x is the rotation around the x

axis� The value of the shear correction factor is determined that waves with
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Figure D��� Flexural model� displacements and stress resultants

small wavelengths travel at the speed of Rayleigh waves� The directions for the
displacements and stress resultants are given in �gure D���

Dimensionless quantitities are introduced according to�
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h
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The following parameters are used in the analysis�
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� non dimensional shell thickness parameter
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The basic equations can be written as�
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The �rst equation is used to eliminate the axial displacement u� The displace

ment is now split up into two parts�

w � wb � ws

�x � �
wb


�
�D���
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Inserting these expressions into the equations� and integrating the last equation
with respect to � �nally gives ��
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The axial displacement follows from�
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The �nal result for this model is the following dierential equation�
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D�� Continuity conditions

The following quantities have to be continuous at � � ��

� displacement� wI
b��� � wI

s��� � wII
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�neglecting the
p
�� term on the right hand side
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However� since wb and ws are directly related� see �D���� The quantity �x can
be expressed in terms of derivatives of wb� Finally� the continuity conditions
can be expressed in terms of wb only�
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D�� Dispersion equation

The dispersion equation for this model is�

A� �
� � A� �

� � A� � � �D����

where � is related to the wave number k through�

k �

p
���

ih
�D����

The values of the characteristic roots for each value of v can be determined
with straightforward procedures for polynomials� No closed
form solution will
be used in the present report�

D�� Group velocity

An important quantity that will be used in futher analysis is the group velocity�
The group velocity vg is the speed at which energy is transported� It is related
to the phase speed of the wave v as�

vg � k

v


k
� k �D����

The partial derivative of v with respect to k can be determined by for instance
dierentiating the dispersion equation with respect to k�

D�� Response to shock loading

The solution for the shock problem is obtained from � the dierential equation
with forcing function�

F ��� � ��
�
�� ��

	 f�� � ��� � ��� ���H ����g
�The solution for the static problem is simply obtained by taking v � � in the solution for

the subcritical case
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The general solution for the two regions can be written as�

wI � CI
�e
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� e
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� e
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D���� Case �� � � v � vc�

The characteristic roots for case � are all complex�

�� � n� im  �� � n � im  �� � �n � im  �� � �n� im �D����

The solution has to remain bounded for ���� CI
� � CI

� � CII
� � CII

� � �� Fur

thermore the displacement� rotation� moment and shear have to be continuous
for � � �� The �nal solution is given in the main text�

D���� Case �� vc� � v � vc�

In the second case� there are four purely imaginary roots�

�� � �im�  �� � im�  �� � �im�  �� � im� �D����

Due to the fact that the characteristic roots are purely imaginary� the solution is
bounded for � � ��� Using the group speed concept gives� CI

� � CI
� � CII

� �
CII
� � �� Furthermore� continuity conditions have to be satis�ed at � � � for

displacement� rotation� moment and shear� The �nal result is given in the main
text�

D���� Case �� vc� � v � vc�

There are � characteristic roots� two real roots and two imaginary roots�

�� � n  �� � �n  �� � im  �� � �im �D����

The solution has to remain bounded� CI
� � CII

� � �� The group velocity concept
gives� CII

� � CII
� � �� The �nal result can be found in the main text

D���� Case �� vc� � v � vc�

There are � characteristic roots� all real�

�� � n�  �� � n�  �� � �n�  �� � �n� �D����

The solution has to remain bounded� CI
� � CI

� � CII
� � CII

� � �� The �nal
result is given in the main text�
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D���� Case �� vc� � v

In the �fth case� there are four purely imaginary roots�

�� � �im�  �� � im�  �� � �im�  �� � im� �D����

The group velocity concept gives� CII
� � CII

� � CII
� � CII

� � �� The result
shows that there are no waves ahead of the pressure front when the shock speed
exceeds the dilatational wave speed� The �nal expression for the displacement
is given in the main text�

D�� Response to detonation loading

The solution of the detonation problem is obtained from the same equation�
with a dierent forcing function�
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The general solution for the two regions can be written as�
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Due to the fact that the right hand side forcing function is now a function of
the � co
ordinate� the continuity conditions are somewhat more complicated
than for the shock tube problem� However� the solution procedure is exactly
the same� Therefore the whole derivation will not be repeated in this section�
The results are given in the main text�
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Appendix E

Thick shell equations

E�� Basic equations

The basic equations for the thick shell model are��
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Dimensionless quantities are introduced according to�
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The following quantities are used in further analysis�
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The equations are written in a dimensionless form and the axial displacement
is eliminated� The following assumptions are introduced�

� no axial prestress� Sxx � �

� internal overpressure only� q � p�
�
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The equations can be written in the following matrix form�
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E�� Dispersion equation

The dispersion equation is obtained from the homogeneous part of the equation
by substituting� ������

�����
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The determinant of the matrix the should vanish� resulting in the following quite
lengthy sixth order dispersion equation�
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For every value of the velocity v� the six roots can be solved from this equation�
The characteristic roots occur in pairs of complex conjugates� The eigenvector�
corresponding to the characteristic root �j is denoted as �third element is set
to one for normalization��

fejg �

��
�

ej�
ej�
�

��
� �E����

E�� Continuity conditions

The following continuity conditions have to be satis�ed�
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E�� Solution of the problem

The response is written as�
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The �rst part in the solution is a linear combination of the eigenvectors� while
the second part accounts for a particular solution� The particular solutions are�
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The solution has to remain bounded and continuity conditions have to be sat
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Once the constants are determined� the solution is known�
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Summary

The internal shock loading of cylindrical shells can be represented as a step load
advancing at constant speed� Several analytical models are available to calculate
the structural response of shells to this type of loading� These models show that
the speed of the shock wave is an important parameter� In fact� for a linear
model of a shell of in�nite length� the amplitude of the radial de�ection becomes
unbounded when the speed of the shock wave is equal to a critical velocity� It
is evident that simple �static� design formulas are no longer accurate in this
case� The present paper deals with a numerical and experimental study on
the structural response of a thin aluminum cylindrical shell to shock loading�
Transient �nite element calculations were carried out for a range of shock speeds�
The results were compared to experimental results obtained with the GALCIT
��inch shock tube facility� Both the experimental and the numerical results
show an increase in amplitude near the critical velocity� as predicted by simple
steady state models for shells of in�nite length� However� the �nite length of
the shell results in some transient phenomena� These phenomena are related to
the re�ection of structural waves and the development of the de�ection pro�le
when the shock wave enters the shell�

	



Nomenclature

E Young
s modulus N�m�

G shear modulus N�m�

Nxx axial stress resultant N�m
N�� circumferential stress resultant N�m
Mxx moment resultant N
Qx shear stress resultant N�m
R shell mean radius m
f frequency Hz
h shell thickness m
i imaginary unit
k wave number 	�m
l shell length m
m�m��m� characteristic roots
n characteristic root
p� pre�shock pressure Pa
p� post�shock pressure Pa
patm atmospheric pressure Pa
t time s
u axial de�ection m
u dimensionless axial de�ection
v shock speed m�s
vd dilatational wave speed m�s
vs shear wave speed m�s
w radial de�ection m
w dimensionless radial de�ection
wb dimensionless radial de�ection� bending
wI
b dimensionless radial de�ection region I

wII
b dimensionless radial de�ection region II

x axial coordinate m
� characteristic root
� shell thickness parameter
� dimensionless �moving� axial coordinate

�



�p pressure di�erence across shell Pa
� shear correction factor
� Poisson
s ratio
� density kg�m�

� rotation

� rotation
j excitation parameter �j�	���
s
j excitation parameter �j�	���

�
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Chapter �

Introduction

��� General introduction

At the Aeronautics department of the California Institute of Technology the
behaviour of shock waves and detonations is studied� A detonation test tube
facility and several shock tube facilities are available for laboratory experiments�
During a shock or detonation test� the tube is exposed to high pressures� The
detonation or shock wave propagates down the tube and therefore the tube
is subjected to a moving pressure load� The problem has a strong dynamic
nature� This report deals with the structural response of cylindrical shells to
moving pressure loads� The results can be used for the analysis of tube systems�
both in industrial and military applications�

����� Shock tube

Shock tubes are used to investigate shock wave propagation� A shock is created
by the driver of the shock tube� The shock wave then travels down the tube
at a nearly constant speed� A typical measured pressure history for a point in
the tube is given in �gure 	�	� The �gure shows the measured pressure versus
time for a thin aluminium tube in the GALCIT � inch shock tube facility�
The character of the shock loading is a stepwise varying pressure� advancing at
constant speed� Therefore the loading for a shock tube will be represented by a
step pro�le in this report� The load is characterized by the pre�shock pressure
p�� the post�shock pressure p� and the velocity v �see �gure 	�	�

����� Detonation tube

A detonation consists of a shock wave and a reaction zone that are tightly
coupled� For prompt detonation� at one side of the detonation tube an explosion
is initiated by a high explosive� The detonation then travels down the tube at
a nearly constant speed� the Chapman�Jouguet velocity� The pressure history
for this type of loading can be characterized by the initial pressure p�� the peak
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Figure 	�	� Pressure versus time for shock loading

pressure p�� the �nal pressure p� and the exponential decay factor T �see �gure
	����
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Figure 	��� Pressure versus time for detonation loading

For the prompt detonation case the pressure loads are well de�ned� However�
the case of de�agration to detonation �DDT� is more complex� In the de�agra�
tion to detonation case there intitially is no detonation but only a propagating
�ame� The �ame compresses the unreacted gas ahead of the �ame and a spon�
taneous explosion can occur in this unreacted gas� This can lead to extremely
high pressures� However� for a properly operated detonation facility the chance
of a DDT event is very low�

����� Structural response

In �gure 	�� the measured circumferential strain versus time for shock loading
of a thin aluminium tube is depicted�

The measured strain shows a sharp peak when the shock passes� For the
shock under consideration� the strain exceeds the equivalent static strain by a
factor �� This example indicates that a simple static model of the tube cross

	�
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Figure 	��� Strain history for shock loading

section is not su�cient to predict this large strain� One could calculate the
maximum strains and stresses corresponding to the maximum load� but this
would result in stresses and strains that are too low� The key question now is�
what is the cause of the high strain� A somewhat more sophisticated model
takes into account the step character of the loading� However� unfortunately
the di�erence with the simple static cross�sectional model is small� even when
the loading is located near a support�

It is now clear that the cause of the high strain is of a dynamic nature� The
most simple dynamical model is the dynamical version of the cross�sectional
model� This model describes the radial �breathing� motion of the cylinder cross�
section� For shock loading� the maximum strain is twice the equivalent static
strain� Although signi�cantly higher strains are obtained with this model� it is
clear that an essential mechanism is still missing�

Experiments on shock tubes and gun tubes revealed that the speed of prop�
agation of the shock wave is an important parameter� The high strains in the
experiments are due to �exural motion of the cylinder wall� Several models
were developed to describe this phenomenon� some including for instance rota�
tory inertia and transverse shear deformation� The �exural models predict the
existance of a so�called critical velocity� When the shock travels at the critical
speed� the solution for the radial tube motion becomes unbounded� Evidently�
damping� non�linearities and plastic deformation will be the controlling mecha�
nisms in this case� Nevertheless� the �exural models are able to predict the high
strains that were found in the experiments�

��� Formulation of the problem

The main aims of this study are�

		



� prediction of the structural reponse of a cylindrical tube to shock or det�
onation loading and comparison with experimental data

� development of design criteria and design methods for tubes that are sub�
jected to shock or detonation loading

Special attention will be paid to the following subjects�

� end e�ects
In most models the tube is assumed to be in�nite in length� However� in
practical situations one deals with short tube sections that are connected
by �anges� This will have important implications for the structural re�
sponse and the design of the tube�

� limits of predictability
An important issue to keep in mind when developing models and design
concepts� is the subject of �limited predictability�� Due to variation in
the input data� e�g� material properties or geometrical properties� there is
a degree of uncertainty in the results�

��� Outline

This research is carried out in a number of steps� Accordingly� the report
is divided into three parts� In part I� the general theory for the structural
response of tubes to shock or detonation loading is presented� A number of
analytical models is described� These models are not new� However� for the
present study they were all rewritten into the same notation in order to put
them into perspective� Simple analytical models were developed to describe the
transient response of a �nite length shell� Finally� in order to describe more
complicated boundary conditions� a �nite element model was developed�

In part II of this report an analysis is presented for the GALCIT � inch
shock tube� Results from calculations and experiments are compared for a
thin aluminium tube subject to shock loading� The shock tube problem is well
de�ned and the important mechanisms and concepts can be analyzed for this
setup�

Finally� an analysis of the detonation tube problem will be described in part
III� The detonation tube is a thick walled tube that is constructed of relatively
short segments� connected by �anges� Theory and experiments will be used to
develop methods in the design process�
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Chapter �

Analytical models

The analytical model used in this section was presented by Tang �	����� His for�
mulation was rewritten to enable an easy comparison with the model presented
by Simkins �	�����

��� Basic equations

The basic equations for this model are
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The stress resultants Nxx� N�� and Mxx are
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where � is the shear correction factor and � is the rotation� The value of
the shear correction factor is determined from the condition that waves with
very small wave numbers propagate at the speed of Rayleigh waves� Rotary
inertia and transverse shear deformation are included in the equations� Axial
prestress is neglected� For a discussion on axial prestress the reader is referred
to Reismann �	�����

We introduce the following dimensionless quantitities to facilitate discussion
of these equations

u �
u

h
� w �

w

h
� �x �

	p
	�
�x � � �
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	�

h
�x� vt� 
 �����

	�



The following parameters are used in the analysis�

j �
�pj � patm�R�

Eh�
� excitation parameters �j � 	� ��

vd �

s
E

� �	� ���
� dilatational wave velocity

vs �

s
�G

�
� shear wave velocity

� �
hp
	�R

� shell thickness parameter




�����

The �rst relation in Eq� 	 is used to eliminate the axial displacement u� The
radial displacement w is now split up into two parts�

w � wb � ws � �x � ��wb

��

 �����

Inserting these expressions into Eqs� ��	 and ���� and integrating with respect
to � gives

ws � �
�
vd
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��
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�
v

vd

��
�
��wb

���

 �����

The �nal result for this model is the following di�erential equation�
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��wb
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where
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For vs � � and
�

v
vd

	
� 	� the model reduces to that described by Simkins

�	����� In the Simkins model� the e�ects of transverse shear and rotary inertia
are neglected�
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��� Dispersion equation

The solution of Eq� ��� is composed of a homogeneous and inhomogeneous part�
By assuming an exponential dependence� w � exp����� for the homogeneous
part� the following dispersion equation is obtained�

A� �
� �A� �

� �A� � � �����

where � is related to the wave number k through

k �

p
	��

ih

 ���	��

The characteristic roots can be determined for each value of v by simply using
the quadratic formula� Based on the values of the speed v� �ve di�erent cases
can be distinguished� In the present investigation� only the �rst two cases
are relevant� In the �rst case� � 	 v 	 vc�� the values of � are complex�
� � �n � im� In the second case� vc� 	 v 	 vc�� the values of � are purely
imaginary� � � �im� and � � �im�� The speed vc� is the �rst critical velocity�
The values of each critical velocity can be calculated from the vanishing of the
discriminant

A�

�
� �A�A� � �
 ���		�

For the Tang model� there are four critical velocities� The other critical veloc�
ities are vc�� the shear wave speed vs� vc�� the dilatational wave speed in a
bar vd

p
	� ��� and vc�� the dilatational wave speed vd� For a more detailed

discussion on these �ve cases� the reader is referred to Tang �	�����

��� Case �� � � v � vc�

Case 	 is referred to as the subcritical case� The axial domain is split up into
two regions� Region I is after the shock� � 	 �� and region II is before the
shock� � � �� In the subcritical case there are four complex roots� Continuity
conditions have to be satis�ed at � � � for displacement� rotation� moment� and
shear� The solution also must remain bounded for � � ��� The �nal solution
is

wI
b � s
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�
� � ���	��
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The solution is oscillatory with an exponential decay as distance increases from
the shock wave� Note that there are waves �precursors� ahead of the pressure
front� The frequency of these precursor waves is equal to the frequency of
the main signal� which exists after the shock has passed� When the velocity
approaches vc�� the value of n goes to zero and the solution becomes unbounded�

��� Case �� vc� � v � vc	

Case � is referred to as the supercritical case� In the supercritical case there are
only purely imaginary roots� The axial domain is also split up into two regions
for this case� Continuity conditions must also be satis�ed at � � �� However�
the solution always remains bounded for � � ��� so other conditions have to
be used to solve the problem� The extra restrictions for this case are a radiation
condition� energy has to �ow away from the pressure step� By using the group
velocity concept� one �nally has

wI
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��
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The supercritical solution is purely oscillatory� Both before and after the shock
the amplitude of the signals is constant� but the frequencies are di�erent� The
precursor wave contains a higher frequency signal than the main wave� As
the velocity approaches vc�� m� approaches m� and the solution becomes un�
bounded�
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Chapter �

Finite element model

The �nite element calculations were carried out with the commercial package�
IDEAS� In order to calculate the structural response� the problem was split
up into two parts� a static calculation and a dynamic calculation� The static
deformation corresponding to the pressure di�erence �p��patm� was calculated
with a linear�elastic static model� The dynamical response to a pressure step
with amplitude �p� � p�� travelling at speed v was calculated with a transient�
linear�elastic� �nite�element model� Both results were combined to obtain the
�nal solution�

��� Static calculation

The static deformation due to a pressure di�erence �p� � patm� was calculated�
Rotary�symmetric� Mindlin�type� two�noded shell elements were used� The tube
of interest was divided into 	��� elements �see section ����� Both ends of the
tube were assumed to be fully clamped� The material and geometrical data are
given in section ����

��� Dynamic calculation

A transient� linear�elastic calculation was carried out to determine the struc�
tural response to a moving pressure step with amplitude �p��p��� For the tube
of interest� 	��� elements were used in the axial direction� This number was
determined by accuracy and calculation time considerations� A single case was
computed at a number of di�erent resolutions using from ��� to 	��� elements�
The maximum strain at several locations was plotted vs� the number of ele�
ments� and it was apparent that little gain in accuracy would result from using
more than 	��� elements� For the strain signals of interest� with a speed of
approximately 	��� m�s and a frequency of �� kHz� this means a resolution of
about �� elements per wavelength� The loading of the shell is highly transient�
In each node� a force was prescribed as a function of time�

	�



The force history for each point depends on its axial location� the speed
of the shock wave and the amplitude of the pressure step� The response was
calculated up to the time of re�ection of the shock wave at the end of the tube�
For the time integration� 	��� intervals were used� For the problem of interest
this means approximately �� steps per cycle� The response was calculated with
a normal mode superposition technique� The modes of vibration of the shell
were calculated �rst� These eigenmodes were then used as a basis to calculate
the transient shell response� In the calculations� ��� modes were used� The
eigenfrequencies of these modes range from � kHz to 	�� kHz�
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Chapter �

Experimental setup

��� GALCIT ��inch shock tube facility

The experiments were carried out with the GALCIT ��inch shock tube� The
gas in the driver and the driven sections were separated by a ���	� inch�thick
aluminum sheet� Both the driver and the driven sections of the shock tube were
evacuated before each run� The driven section was then slowly �lled with air
until the desired pressure p� was reached� Next� helium was slowly released
into the driver section until the diaphragm could not withstand the pressure
and ruptured� The aluminum diaphragm ruptured at a pressure di�erence of
approximately ��� kPa� Symmetric rupture of the diaphragm was ensured by
the use of sharp blades placed inside the shock tube� A shock wave was then
created in the vicinity of the diaphragm and propagated toward the test section�

��� Tube assembly

The test section consisted of a test tube� a transition tube� and a shield tube �
see Fig� ��	�� One end of the test tube was inserted into a hole in a �ange at
the end of the transition tube� The other end was connected to a 	
�� cm thick
end plate� O�rings were used at both ends to make gas�tight seal connections�

The transition tube was �
��� m long and made of �
�� mm thick steel with
an inner diameter of ��
�mm� The transition tube had two �anges at both ends�
One end of the tube was connected to the driven section of the ��inch shock
tube� The purpose of this tube was to prevent the expansion wave� generated
at the area change� from entering the test tube during the duration of the test�
The shield tube was made of �
�� mm thick steel with an inner diameter of
��
� mm� One end of the shield tube was bolted to the end plate and the other
end to one of the �anges of the transition tube� The shield tube was designed
to contain fragments in case of a failure of the test tube�
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Figure ��	� Tube assembly�

��� Instrumentation

PCB piezo�electric pressure transducers were used to determine the velocity
and position of the shock wave� Two pressure transducers� �
��� m apart�
were installed near the end of the driven section of the shock tube� These
transducers were used to measure the velocity in the shock tube� In addition�
the output from the �rst transducer was used to trigger the data�acquisition
system� Because the diameter of the test tube di�ers from the diameter of the
shock tube� the shock wave travels at a di�erent velocity inside the test tube�
In order to determine the velocity of the shock wave inside the test tube� two
additional pressure transducers were used� The third pressure transducer was
installed near the end of the transition tube� The fourth pressure transducer
was installed at the endplate� which was located �
���m from the third pressure
transducer�

Three Micro Measurements strain gages were used to record the transient
response of the test tube� The strain gages were installed �
	�� m apart� with
the �rst strain gage located �
��� m from the beginning of the test tube� The
strain gages were mounted to measure the circumferential strain� The output
from the strain gages was directed to unbalanced Wheatstone bridge circuits
and ampli�ed� The ampli�ers were set at a gain of 	�� and a bandwith of 	��
kHz� In this way the jump in strain relative to the initial compressive strain was
measured� The initial compressive strain was caused by the evacuation of the
tube to the subatmospheric pressure p�� Since the width of the strain gages is
small compared to the structural wave length� the high frequency strain signals
can be measured with su�cient accuracy�

��



��� Properties of the setup

The computed results are sensitive to variations in the input data� Therefore the
material and geometrical properties of the tube were determined accurately� The
inner diameter of the tube was measured at � points� The average inner diameter
was ��
��mm� The variation in inner diameter was smaller than �
�� mm� The
outer diameter of the test tube was measured at 	� equally spaced points� The
average outer diameter was ��
�� mm� with a variation smaller than �
�� mm�
The total length of the tube was �
��� m with a total mass of �
��� kg� The
e�ective length of the tube between the clamps is �
���m� The geometrical and
material data that were used in the calculations are summarized in table ��	�

R� ����� mm �� ���� kg�m�

h� 	���	 mm �� ����
l� ����� mm E� �� � 	�� N�m�

Table ��	� Geometrical and material properties

The critical velocity� calculated from the Tang model� is ���m�s� Neglecting
rotary inertia and transverse shear� the Simkins model� gives a critical velocity
of ��� m�s�

��� Pressure traces

The initial pressure was varied between ��� kPa and 	��� kPa in order to obtain
di�erent speed shock waves� This variation in pressure was accounted for in the
data reduction by scaling the measured deformations with the equivalent static
value based on the pressure jump across the shock� In Fig� ��� the pressure
signal of the third transducer is plotted for a shock speed of ���
� m�s�
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Figure ���� Pressure transducer � signal for v � ���
� m�s�
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Figure ��� shows that the pressure history is not a clearly de�ned step� After
the shock has passed� the pressure gradually drops� Therefore it is di�cult to
clearly identify the post shock pressure p�� The two PCB transducers in the
driven section of the shock tube also show a slight decrease in pressure following
the shock arrival� Due to the di�culty in de�ning the post�shock pressure� the
shock wave arrival times were used to compute shock speed and then we back�
calculated the pressure p� from the pressure p�� the speed of the shock wave v�
and the shock jump conditions�
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Chapter �

Results and discussion

��� Strain vs� time

In Fig� ��	� the jump in circumferential strain vs� time is plotted for a subcritical
shock speed of ���
� m�s� In Fig� ��� the strain is plotted for a supercritical
shock speed of ���
� m�s� In both cases the strain signi�cantly exceeds the
equivalent static strains� There are some clear di�erences between the subcriti�
cal and the supercritical strain traces� For the subcritical case� the strain signal
is oscillatory with an exponential decay� as predicted by the analytical models
and the �nite element model� The period of oscillation in the precursor wave
and the bulk signal is approximately the same�

In the supercritical case� the frequency in the precursor wave is higher than
the frequency of the bulk signal� as predicted by the theory� However� the
analytical model predicts a constant amplitude in the precursor wave� which
is clearly not the case in the experimental results� This is caused by transient
e�ects due to the �nite length of the tube� Initially the whole tube is at rest�
Therefore it takes time for the de�ection pro�le to develop� The fastest waves in
the shell are the dilatational waves that travel at about ���� m�s� Before these
waves arrive� the shell is at rest� The �nite element model is able to account for
these transient e�ects� The shape of the envelope of the precursor wave is also
an indication whether the speed of the shock wave is subcritical or supercritical�

Another transient e�ect is related to the re�ection of structural waves at the
end of the shell� Due to the re�ections at the end� there will be an interference
with forward travelling waves� which can lead to high strains especially near the
critical velocity� when the precursor wave is relatively strong�

��� Dispersion curve

The experimental and �nite element data are used to reconstruct the dispersion
curve for this setup� First� the lowest critical velocity is computed from the

��



implicit solution of Eq� ��		 by numerical iteration for the Tang model� The
Simkins model is a special case for which an analytic solution can be found

vc� �

s
Eh

�R

�
	

��	� ���

����

 ���	�

The dispersion curve is computed from Eq� ��� and the frequency is de�ned by
Eq� ��	�� where the wavenumber is given by k � ��f�v and f is the frequency�
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Figure ��	� Strain vs� time for v � ���
� m�s� Left column� measurements�
Right column� �nite element results� Top� strain gage 	�
Middle� strain gage �� Bottom� strain gage ��
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Figure ���� Strain vs� time for v � ���
� m�s� Left column� measurements�
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Figure ���� Ampli�cation factor vs� velocity� Top� strain gage 	�
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The analytical expressions� given in Sections ��� and ���� for the strain his�
tory are used to curve �t the experimental data� The value�s� of the parameter
m �subcritical case� or m� and m� �supercritical case� result from a nonlinear
least�squares �tting procedure that minimized the deviations between model
and experimental data over a portion of the strain history� These numbers
represent the �dimensionless� frequency of oscillation� The values of these pa�
rameters are determined for each strain gage before and after the shock� For
subcritical velocities� the curve �t is not very accurate� Due to the sharp ex�
ponential decay� the signal�to�noise ratio is poor and explains the large spread
in results for these velocities� However� for velocities near the critical velocity
or supercritical velocities� the frequency can be determined with a reasonable
degree of accuracy�
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Figure ���� Dispersion curve�

The shock velocity is plotted vs� the frequency of oscillation in Fig� ����
The �gure shows a clear branching of the dispersion curve as predicted by the
analytical models� For supercritical velocities� the precursor wave contains the
higher frequency signal �right branch�� and the main wave contains the lower
frequency signal �left branch�� The dispersion curve o�ers an alternative way
to extract the critical velocity from the experimental data� The branching in
the experimental data occurs between ��� m�s and ��� m�s and is close to the
values predicted by the analytical models� In general� the agreement between
theory and experiment is reasonable�
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��� Ampli	cation Factor

The dynamic ampli�cation factor is de�ned as the ratio between the maximum
jump in strain from the initial state to the �nal state in the dynamical case and
the static case� This dimensionless quantity indicates the degree of dynamic
deformation� this is not a�ected by the initial prestress� The ampli�cation factor
is a function of shock speed v� For the analytical models presented in Section ��
the dynamic ampli�cation factor becomes unbounded when the velocity of the
shock wave is equal to the critical velocity�

The experimental and �nite element results are now used to construct an
ampli�cation curve� When comparing these results to the results from the an�
alytical models� one must be aware that certain transient phenomena are not
included in the analytical models� Re�ections will a�ect the strain history near
the critical velocity� especially for the third strain gage� In the analytical models
there is always a clear maximum� However� the experimental strain traces are
more complicated due to the interference of the incident and re�ected waves �see
Fig� ��	 and Fig� ����� It is therefore di�cult to assign a peak value that is a
consequence only of forward traveling waves� as in the analytical models� In the
present investigation� the maximum jump in strain up to the time of re�ection
of the shock wave is used to calculate the ampli�cation factor� This means that
in some cases this value will include some contributions from re�ected waves�

The calculated and measured ampli�cation curves for the three strain gages
are plotted in Fig� ���� In order to calculate the ampli�cation factor� the maxi�
mum excursion in strain is divided by the static strain corresponding to the pres�
sure di�erence �p� � p��� The left column of Fig� ��� is based on static strained
computed from the initial pressure p�� the shock speed v� and the shock jump
conditions� The right column of Fig� ��� is based on the measured pressures�
As shown� there are no visible di�erences between the two approaches�

The ampli�cation curves clearly illustrate the importance of the critical ve�
locity concept� For subcritical cases� the ampli�cation factor is close to one� as
expected for a uniform static load� For supercritical cases� the amplication factor
is close to two� as expected for a suddenly�applied uniform load� The data show a
maximum de�ection near the critical velocity� however the measured maximum
ampli�cation factors are substantially lower than the values predicted by the
�nite element model� This discrepancy can partly be attributed to the fact that
no damping was included in the calculations� The �nite element model also pre�
dicts an increase of maximum ampli�cation factor with distance �see Fig� �����
In the experimental results� the ampli�cation factors for the �rst strain gage are
lower than the following two gages� consistent with this prediction�
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Conclusions

Calculations and experiments were carried out to study the structural response
of a shell to internal shock loading� In the experiments� strains exceeding the
static strain by a factor of up to ��� were obtained� The large strains can be
explained with the critical velocity concept�

The general agreement between calculations and experiments is reasonable�
The dispersion curve agrees well with the analytical predictions� The analytical
models and the �nite element model are able to predict the general shape of the
ampli�cation curves� However� near the critical velocity the predicted strains
are too high�

Typical transient e�ects were observed in the experiments� These e�ects
are related to the development of the deformation pro�le and the re�ection of
structural waves� These transient e�ects were taken into account in the �nite
element model�

This study provides a characterization only of the linear�elastic aspect of
this problem� Plastic deformation and processes leading to material failure will
be examined in future studies�
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Appendix A

Run conditions
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Run V P� P��c P��m Patm Tatm

��	 ����� 	�����E��� 	�����E��� 	�����E��� ������E��� ����
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��� ����	 	�����E��� 	��	��E��� 	��	��E��� ������E��� ����
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��� 	�	��� 	�����E��� 	����	E��� 	�	���E��� ������E��� ����
��� 	����� 	��	��E��� 	�����E��� 	�	���E��� ������E��� ����
��� ����� 	�����E��� 	���	�E��� 	�����E��� ����	�E��� ����
��	 ����� 	���	�E��� 	��	��E��� 	��	��E��� ������E��� ����
��� ����� 	�����E��� 	�����E��� 	�����E��� ����	�E��� ����
��� ����� 	�����E��� 	�����E��� 	����	E��� ������E��� ����
��� ��	�� 	��	��E��� 	�����E��� 	���	�E��� ������E��� ����
��� 	����� ������E��� ������E��� ������E��� ������E��� ����
��� 		���� ������E��� 	�����E��� 	�����E��� ������E��� ����
��� ����� 	���	�E��� 	�����E��� 	�����E��� ������E��� ����
��� ����� 	���	�E��� 	��	��E��� 	�����E��� ������E��� ����

Table A�	� Test conditions
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Appendix C

Ampli�cation data
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Summary

The structural response of the GALCIT detonation tube to internal detonation
loading was calculated and measured� Simple transient �nite element models
for clamped and simply supported thick walled tubes were developed for this
purpose� The detonation tube was instrumented with a number of strain gages
to monitor the circumferential strain as a function of time� A large number of
experiments was carried out under di�erent conditions� By varying the velocity
of the detonation� the critical velocity of the tube was measured to be ����m�s�
For this velocity strains were measured that exceed the equivalent static strain
by a factor of about �� This is an important result that has to be incorporated
in future tube design� The detonation tube is constructed of three segments�
connected by 	anges and T
pieces� The re	ection and interference of waves
at 	anges and at the end leads to high strains� The de	ection pro�le has to
develop as a function of distance� The connection between the tube parts cuts
o� this pro�le� in every tube section the build up of the pro�le starts over
again� The tube can therefore be regarded as a series of three independant tube
sections� The ratio between the cell size and the strutural wave length a�ects
the maximum strain� When the cell size is of the same order of magnitude as
the structural wave length� the 	exural waves are excited well� Calculations and
experiments show fair agreement� the �nite element models are able to predict
the maximum strains around the critical velocity�
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Nomenclature

E Young�s modulus N�m�

GF gage factor
L length of tube m
PH� partial pressure H� Pa
PO� partial pressure O� Pa
PAr partial pressure Ar Pa
Pcj Chapman
Jouguet detonation pressure Pa
Pfor amplitude of forward travelling detonation �Pcj� Pa
Pref amplitude of re	ected shock wave Pa
Pcj Chapman
Jouguet detonation pressure Pa
R�� R�� R�� R� resistor �
Rg resistance of strain gage �
Rp variable resistor �
Rin inner tube radius m
Rout outer tube radius m
T exponential decay factor s
Vin input voltage V
Vout output voltage V
Vr voltage di�erence v
i imaginary unit
p� pre
shock pressure Pa
p� post
shock pressure Pa
patm atmospheric pressure Pa
p� �nal pressure Pa
t time s
v load speed m�s
vcr critical velocity m�s
vcj Chapman
Jouguet detonation speed m�s
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x axial coordinate m
xI axial coordinate section I m
xII axial coordinate section II m
xIII axial coordinate section III m
� Poisson�s ratio
� density kg�m�

� cell size m
� circumferential strain
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Chapter �

Introduction

��� General introduction

At the Aeronautics department of the California Institute of Technology the
behaviour of shock waves and detonations is studied� A detonation test tube
facility and several shock tube facilities are available for laboratory experiments�
During a shock or detonation test� the tube is exposed to high pressures� The
detonation or shock wave propagates down the tube and therefore the tube
is subjected to a moving pressure load� The problem has a strong dynamic
nature� This report deals with the structural response of cylindrical shells to
moving pressure loads� The results can be used for the analysis of tube systems�
both in industrial and military applications�

����� Shock tube

Shock tubes are used to investigate shock wave propagation� A shock is created
by the driver of the shock tube� The shock wave then travels down the tube
at a nearly constant speed� A typical measured pressure history for a point in
the tube is given in �gure ���� The �gure shows the measured pressure versus
time for a thin aluminium tube in the GALCIT � inch shock tube facility�
The character of the shock loading is a stepwise varying pressure� advancing at
constant speed� Therefore the loading for a shock tube will be represented by a
step pro�le in this report� The load is characterized by the pre
shock pressure
p�� the post
shock pressure p� and the velocity v see �gure ����

����� Detonation tube

A detonation consists of a shock wave and a reaction zone that are tightly
coupled� For prompt detonation� at one side of the detonation tube an explosion
is initiated by a high explosive� The detonation then travels down the tube at
a nearly constant speed� the Chapman
Jouguet velocity� The pressure history
for this type of loading can be characterized by the initial pressure p�� the peak
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Figure ���� Pressure versus time for shock loading

pressure p�� the �nal pressure p� and the exponential decay factor T see �gure
�����

Time (s)

Pr
es

su
re

 (
Pa

)

Time (s)

Pr
es

su
re

 (
Pa

)

P

P

P

e

1

inf

2

-
t
T

Figure ���� Pressure versus time for detonation loading

For the prompt detonation case the pressure loads are well de�ned� However�
the case of de	agration to detonation DDT� is more complex� In the de	agra

tion to detonation case there intitially is no detonation but only a propagating
	ame� The 	ame compresses the unreacted gas ahead of the 	ame and a spon

taneous explosion can occur in this unreacted gas� This can lead to extremely
high pressures� However� for a properly operated detonation facility the chance
of a DDT event is very low�

����� Structural response

In �gure ��� the measured circumferential strain versus time for shock loading
of a thin aluminium tube is depicted�

The measured strain shows a sharp peak when the shock passes� For the
shock under consideration� the strain exceeds the equivalent static strain by a
factor �� This example indicates that a simple static model of the tube cross
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Figure ���� Strain history for shock loading

section is not su�cient to predict this large strain� One could calculate the
maximum strains and stresses corresponding to the maximum load� but this
would result in stresses and strains that are too low� The key question now is�
what is the cause of the high strain� A somewhat more sophisticated model
takes into account the step character of the loading� However� unfortunately
the di�erence with the simple static cross
sectional model is small� even when
the loading is located near a support�

It is now clear that the cause of the high strain is of a dynamic nature� The
most simple dynamical model is the dynamical version of the cross
sectional
model� This model describes the radial breathing� motion of the cylinder cross

section� For shock loading� the maximum strain is twice the equivalent static
strain� Although signi�cantly higher strains are obtained with this model� it is
clear that an essential mechanism is still missing�

Experiments on shock tubes and gun tubes revealed that the speed of prop

agation of the shock wave is an important parameter� The high strains in the
experiments are due to 	exural motion of the cylinder wall� Several models
were developed to describe this phenomenon� some including for instance rota

tory inertia and transverse shear deformation� The 	exural models predict the
existance of a so
called critical velocity� When the shock travels at the critical
speed� the solution for the radial tube motion becomes unbounded� Evidently�
damping� non
linearities and plastic deformation will be the controlling mecha

nisms in this case� Nevertheless� the 	exural models are able to predict the high
strains that were found in the experiments�

��� Formulation of the problem

The main aims of this study are�

��



� prediction of the structural reponse of a cylindrical tube to shock or det

onation loading and comparison with experimental data

� development of design criteria and design methods for tubes that are sub

jected to shock or detonation loading

Special attention will be paid to the following subjects�

� end e�ects
In most models the tube is assumed to be in�nite in length� However� in
practical situations one deals with short tube sections that are connected
by 	anges� This will have important implications for the structural re

sponse and the design of the tube�

� limits of predictability
An important issue to keep in mind when developing models and design
concepts� is the subject of �limited predictability�� Due to variation in
the input data� e�g� material properties or geometrical properties� there is
a degree of uncertainty in the results�

��� Outline

This research is carried out in a number of steps� Accordingly� the report
is divided into three parts� In part I� the general theory for the structural
response of tubes to shock or detonation loading is presented� A number of
analytical models is described� These models are not new� However� for the
present study they were all rewritten into the same notation in order to put
them into perspective� Simple analytical models were developed to describe the
transient response of a �nite length shell� Finally� in order to describe more
complicated boundary conditions� a �nite element model was developed�

In part II of this report an analysis is presented for the GALCIT � inch
shock tube� Results from calculations and experiments are compared for a
thin aluminium tube subject to shock loading� The shock tube problem is well
de�ned and the important mechanisms and concepts can be analyzed for this
setup�

Finally� an analysis of the detonation tube problem will be described in part
III� The detonation tube is a thick walled tube that is constructed of relatively
short segments� connected by 	anges� Theory and experiments will be used to
develop methods in the design process�
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Chapter �

Experimental setup

��� The GALCIT Detonation Tube

A drawing of the complete detonation tube is given in �gure ���� The plumbing
schematic is given in �gure ���� The tube consists of three sections� Each
section is about ��� m� long� The internal radius of the tube is �� cm and the
outer radius is ���� cm� The tube is made of stainless steel� The sections are
connected by 	anges�

Before each experiment� the tube is evacuated� After that the tube is �lled
to the desired pressure with the mixture of interest� The �ring plug on the left
of the tube is loaded with a thin wire� A high voltage capacitor is charged and
then discharged over the wire� Just before the discharge a small amount of a
sensitive driver mixture ��� kPa acetylene oxygen� is injected into the left end
of the tube� The exploding wire will initiate a detonation of the driver mixture�
The driver detonation on its turn will trigger a detonation in the testmixture�
The injection of driver gas initiates a detonation� also for less sensitive mixtures�
However� when for instance large amounts of diluents are used� the initiation can
fail� In case of a mis�re the glow plug can be used to burn the mixture� If the
initiation is successfull� a detonation travels down the tube at a high velocity�
Typical velocities range from ���� m�s to ���� m�s� A complete checklist for a
run is given in appendix A�
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Figure ���� The GALCIT Detonation Tube facility

Figure ���� Plumbing schematic of GDT
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��� Material and geometrical properties

The material and geometrical properties of a tube are given in table ���� The
length is the e�ective length of one tube section� The sections are connected
by 	anges see �gure ����� The 	anges� keys and bolts hold the two pieces of
tube together� There is clearance between the inner radius of the 	anges and
the outer radius of the tube� The motion of the tube is restricted by the 	anges
that press on the keys and the T
piece between two tubes� The e�ective length
of a tube is taken to be the length between the outer sides of two key grooves�
In the �nite element calculations� di�erent boundary conditions will be imposed
on the ends of the tube�

E ��� � ��� N�m�

� � � ��� kg�m�

� ����
Rin ������ m
Rout ������ m
L ���� m

Table ���� Material and geometrical properties

Figure ���� Tube connection
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��� Strain measurements

For the present investigation� �� strain gages are used� In a previous experiment�
three strain gages were already used gages ��� �� and ���� The other �� strain
gages were mounted on the tube at several locations� The locations and the gage
factors are given in table ��� and �gure ���� Note that the distances xI � xII and
xIII are measured from the key�

igniter end plate

1 2

x x xI II III

3 4 5 6 7 181413128 91011 15 1617

L

Figure ���� Strain gages

Gage x cm� x
l

Gage factor

� xI � ����� ����� ����
� xI � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
� xII � ����� ����� ����
�� xII � ����� ����� ����
�� xII � ����� ����� ����
�� middle ����
�� xIII � ���� ����� ����
�� xIII � ����� ����� ����
�� xIII � ����� ����� ����
�� xIII � ����� ����� ����
�� xIII � ����� ����� ����
�� xIII � ����� ����� ����

Table ���� Strain gage positions for strain measurements

The strain signals are used as input for balanced Wheatstone bridge circuits�
The output voltages are then ampli�ed and led to the data acquisition system�
A more detailed description of the setup is given in appendix B�
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��� Pressure measurements

The pressure is measured at three points� The �rst and the second transducer
are mounted on the second tube section see �gure ����� The third transducer
is mounted on the third tube section� The pressure signals are used to deter

mine the velocity of the detonation� The amplitude of the pressure is not very
accurate� Therefore the results will be normalized with respect to a calculated
pressure� the Chapman
Jouguet pressure of the detonation�

��� Flow visualisation

For the present investigations� the endplate is mounted on the end of the tube�
The detonation will re	ect o� the endplate� However� in �gure ��� the test
section and the cookie cutter are attached to the end of the tube� The cookie
cutter sticks back into the tube and �cuts out� a piece of the detonation that
then travels down the cookie cutter� The cross section of the cookie cutter is
rectangular and at the end the test section is attached� The test section is used
for di�erent visualisation experiments� It has windows on both sides� A ruby
laser and an optical system are used to visualize the detonation� This setup was
used for instance to investigate the di�raction of a detonation over a wedge and
the di�raction of a detonation from a small tube�
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��� Test mixture

The critical velocity of the tube is approximately� vcr � ���� m�s� A stochio

metric Hydrogen Oxygen mixture with variable amount of Argon as diluent was
used�

�H� �O� ��Ar ����

The amount of Ar can be used to control the velocity of the detonation� How

ever� by increasing the amount of diluent also the cell size increases� The pres

sure of the mixture also a�ects the velocity and the cell size� In order to set
up a series of measurements� the behaviour of the mixture was investigated for
a number of conditions� In �gure ��� the Chapman
Jougeut� velocity of the
detonation is plotted as a function of the amount of diluent� The velocity was
calculated with the STANJAN program� The cell size data was taken from the
detonation database� Data was taken from ��� �� �� �� �� �� ���
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The following observations can be made�

� the velocity decreases with increasing amount of diluent

� the velocity is not very sensitive to pressure variation

� the cell size increases with increasing amount of diluent

� the cell size is sensitive for pressure variation� it is inversly proportional
to the pressure

In the ideal case� the experimental conditions are chosen such� that only one
parameter is changed at a time� Since the detonation process depends on a
number of parameters� a careful choice has to be made� Based on the previous
considerations� the following test conditions were chosen�

� linearity of response
The linearity of the response is investigated by varying the pressure� If
the amount of diluent is kept low� the velocity is not a�ected very much�
The cell size then also remains su�ciently small compared to the structural
wavelength� For the conditions of interest the structural wavelength varies
between ��� and ��� m�

� velocity
The in	uence of the velocity is investigated by varying the amount of
diluent� The pressure is chosen high� ���kPa� so that the cell size remains
su�ciently small� Only for the high velocity shots a lower pressure� ��
kPa� is used to stay within the design limits of the tube what maximum
pressure is concerned� At these high speeds the amount of diluent is low
and the cell size is small�

� cell size
The in	uence of the cell size is investigated by varying the pressure at
high concentrations of diluent� The velocity is not a�ected very much�
whereas the cell size increases dramatically� The largest cell size in the
experiments is of the order of magnitude of the structural wavelength and
the tube diameter� Since both the pressure and the cell size vary� the
cell size in	uence can be extracted only if the process proves to behave
linearly�

��



��� Test matrix

����� Reference�reproducibility shots

After each series of shots a reference shot at ���� m�s is carried out� The data
of these shots were used to investigate the reproducibility of the experiments�
Extra shots were also carried out at velocities of ���� m�s and ���� m�s� The
strain gages and the test conditions are given in �gure ��� and table ����

igniter end plate
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Figure ���� Gages for reference�reproducibility shots

Nr Shot vCJ
v
vcr

p pfor pref �Ar pH� pO� pAr
m�s� kPa� MPa� MPa� kPa� kPa� kPa�

�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����

Table ���� Reference�reproducibility shots� test conditions

����� Development of pro�le

The �nite element calculations for the shock tube see part II� indicate that
the de	ection pro�le has to develop� For a tube of �nite length� the maximum
ampli�cation factor will always remain �nite� This indicates that the in�nite
amplitude� encountered in the simple analytical thin shell model� is only due
to the assumption of an in�nite tube� The development of the pro�le can be
calculated with the transient analytical and �nite element models�

A �rst comparison with data from the GALCIT � inch shock tube showed
results that seemed to be not in accordance with expectations� However� only
three strain gages were used in that experiment� Furthermore� the ratio between
tube length and wave length di�ers between the shock tube and the detonation
tube� For the shock tube� the ratio between length and wavelength is about
��� For the detonation tube this ratio is about ��� Preliminary strain measure

ments on the detonation tube indicate an increase of maximum ampli�cation
with distance� This phenomenon was studied now in more detail� The second

��



�middle� tube section was instrumented with a large amount of strain gages�
see �gure ���� The run conditions are given in table ����

igniter end plate
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Figure ���� Gages to monitor development of pro�le

Nr Shot vCJ
v
vcr

p pfor pref �Ar pH� pO� pAr
m�s� kPa� MPa� MPa� kPa� kPa� kPa�

� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ����� �����

Table ���� Development of pro�le� test conditions

����� Flanges and end e�ects

A correct description of the behaviour of the 	anges is needed for a good nu

merical model� In the �ideal� case� the 	anges would prevent radial motion and
act as local clamping conditions� This would mean that the tube sections are
decoupled as far as 	exural motion is concerned� In every section� the defor

mation pattern has to develop again� In a model� one would then only have to
model one section instead of the whole tube�
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However� the clamping assumption is an ideal situation� In reality there is
some clearance between parts of� the 	anges and the tube� A typical maximum
strain in a detonation experiment is of the order of magnitude of ����� For the
tube of interest� this corresponds to a radial displacement of only ����� mm�
This means that a clearance larger than ����� mm would not prevent radial
motion� The 	ange however does add inertia to the detonation tube� The
theoretical predictability of the behaviour of the connection is thought to be
rather poor� Therefore experiments were carried out to monitor the 	anges�

Because the 	anges are discontinuities as wave propagation is concerned�
part of the wave will re	ect at the 	anges� The interference between forward
travelling waves and re	ected waves can lead to high strains and stresses� At
the end of the tube the re	ected shock and the re	ected waves were expected
to give the highest strains� Therefore strain gages were mounted near the end
and the 	anges see �gure ����� The test matrix is given in table ����
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Figure ���� Gages to monitor 	anges and end e�ects

Nr Shot vCJ
v
vcr

p pfor pref �Ar pH� pO� pAr
m�s� kPa� MPa� MPa� kPa� kPa� kPa�

�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ����� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ����� �����

Table ���� Flanges and end e�ects� test conditions
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����� Linearity and comparison of sections

The calculations are all based on linear elastic theory� In order to investigate
the linearity� experiments are carried out with di�erent pressure levels for the
same detonation speed� By varying the initial pressure at low diluent concen

trations the pressure level changes� while the speed remains nearly constant see
section ����� The setup is also used to compare the behaviour of the three tube
sections� Two strain gages were mounted on �identical� positions on di�erent
tube sections for this purpose� If the tube can be considered as a series of inde

pendent short sections� the strains would have to be identical for two �identical�
positions �� There are some aspects that have to be kept in mind�

� the pressure pro�le has to develop

� the three sections are not completely identical

� re	ected waves interfere with forward travelling waves endplate�

The positions of the strain gages are given in �gure ���� The run conditions are
given in table ����
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Figure ���� Gages to monitor linearity and compare sections

Nr Shot vCJ
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p pfor pref �Ar pH� pO� pAr
m�s� kPa� MPa� MPa� kPa� kPa� kPa�

�� ��� ������ ����� ��� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ���� ���� �����
�� ��� ������ ����� ��� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ���� ���� ����

Table ���� Linearity and compare sections� test conditions

�discarding re�ections at the end
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����	 Cell size

A number of shots was carried out to investigate the in	uence of the cell size
on the structural response� At large diluent concentrations and low pressures�
the cell size is comparable to the structural wavelength� This might result in a
very e�ective excitation of these structural waves� Therefore shots are carried
out with increasing cell sizes� The strain gages that are used are given in �gure
����� The run conditions are given in table ���� The estimated cell size � is
given in this table�
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Figure ����� Gages for cell size shots

Nr Shot vCJ
v
vcr

p pfor pref �Ar pH� pO� pAr �
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�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� ��� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ���
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ���
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ��
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ���
�� ��� ������ ����� �� ���� ���� ����� ���� ���� ����� ���

Table ���� Cell size shots� test conditions

����
 High velocity shots

The critical velocity of the detonation tube is about ���� m�s� In the exper

iments described in the previous sections the velocity was varied around this
value� These speeds however are relatively low� in most cases the detonation
speed is ���� m�s to ���� m�s� In order to investigate the behaviour of the
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tube for the higher velocities� a number of experiments was carried out with low
diluent concentrations� The re	ected wave pressure increases with decreasing
amount of diluent� In order to stay within the design limits of the tube� the
experiments were carried out at a pressure of �� kPa� At low diluent concentra

tions the cell size remains very small compared to the wave length� The strain
gages are given in �gure ����� The run conditions are given in table ����
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Figure ����� Gages for high velocity shots

Nr Shot vCJ
v
vcr

p pfor pref �Ar pH� pO� pAr
m�s� kPa� MPa� MPa� kPa� kPa� kPa�

�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ���� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� �����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� ����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� ����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� ����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� ����
�� ��� ������ ����� �� ���� ���� ���� ����� ����� ����

Table ���� High velocity shots� test conditions
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Chapter �

Finite element model

The �nite element calculations were carried out with the package Ideas� A
transient linear elastic calculation was carried out to calculate the structural
response to a moving pressure load� For the tube of interest� ��� elements were
used in the axial direction and � in the radial direction� For the strain signals
of interest� with a speed of approximately ���� m�s and a frequency of � kHz�
this means a resolution of about �� elements per wavelength� The loading of
the shell is highly transient� In each node� a force was prescribed as a function
of time� The force history for each point depends on its axial location� the
speed of the detonation� the amplitude of the detonation� the �nal pressure
and the exponential decay rate T � In the calculations� a value of ���� � ����

was used for T� according to measurements on the second tube sections� The
exponential decay was approximated by �� linear segments� The values of the
initial pressure� the �nal pressure and the atmospheric pressure were set to zero
in the ampli�cation calculations� The response was calculated for the second
tube section� up to the time that the re	ected wave would enter the tube again
the tube� For the time integration� ���� intervals were used� For the problem
of interest this means approximately �� steps per cycle� The response was
calculated with a normal mode superposition technique� The modes of vibration
of the shell were calculated �rst� These eigenmodes were then used as a basis
to calculate the transient shell response�

R

Solid elementnode
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Figure ���� Finite element mesh clamped tube
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Solid elementnode
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Figure ���� Finite element mesh simply supported tube
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Chapter �

Results and discussion

��� Reference�reproducibility shots

The results for the reference�reproduccbility shots are given in �gure ���� The
ampli�cation factor is given as a function of velocity for the strain gages on the
second tube section� For convenience� the positions of the strain gages are given
again in �gure ����

igniter end plate
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Figure ���� Gages for high velocity shots

The ampli�cation factor is calculated by dividing the maximum strain by
the equivalent static strain� The equivalent static strain is obtained from the
Lame formula� with the Chapman
Jouguet pressure as the excitation� Note that
the experimental results are therefore scaled by a calculated value and not by a
measured pressure� The measured pressure level is not very reliable�

The results indicate that the shots are very reproducible for the gages �������
and ��� The maximum di�erence in ampli�cation for these gages between the
di�erent shots is less than ��� The reproducibility for the gages ��� and � is
less good� These were the strain gages that were already used in a previous
experiment� Due to the large speading� the results have to be interpreted with
care for these gages�
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Figure ���� Experimental results reference�reproducibility shots
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��� Development of pro	le

The strain gages for this measurements are given in �gure ����

igniter end plate
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Figure ���� Gages to monitor development of pro�le

A typical strain history for a subcritical velocity is given in the �gures ���
and ��� �� The corresponding pressure hisories are given in �gure ���� The strain
signals resemble the signals as predicted by simple analytical models� There is
a precursor wave� the frequency of which is about the same as the frequency of
the bulk signal� There is a peak when the detonation passes� The decay of the
signal is relatively strong� Due to the fact that the waves are decaying� relection
and interference is only clear for strain gage ��� This strain gage is mounted
near the end of the second section and the re	ection and interference causes
high strains�

A typical strain history for a speed around the critical velocity is given in the
�gures ��� and ��� �� The corresponding pressure histories are given in �gure
���� In this case the ampli�cation is larger� It is clear from the strain signals
that the the process is transient� time is required to build up the de	ection
pro�le� The maximum amplitude increases with distance� The precursor wave
is relatively strong and the interference causes high strains for gage ���

A typical strain history for a supercritical velocity is given in the �gures
���� and ����� The corresponding pressure hisories are given in �gure ����� The
amplitude of the precursor wave has decreased� The frequency of the precursor
signal is higher than the frequency of the bulk signal� as predicted by theory�
The wave now start propagating and the decay of the signal after the detonation
has passed is not very strong� The maximum amplitude is almost constant as
a function of distance� Only for strain gage �� the re	ection and interference
causes higher strains�

The ampli�cation factor as a function of the velocity is given in �gure �����
The experimental results are compared with �nite element results for a clamped
tube and a simply supported tube� The results clearly indicate the importance
of the critical velocity concept�

�The large spike that is present in all strain signals just after t � � comes from the discharge

of the capacitor
�The strain history for gage � shows a somewhat strange behaviour just after the detonation

has passed� This behaviour was only observed in some runs for the gages ��� and ��� The

reproducibility of these gages was low� These are the gages that were already used in previous

experiments

��



The experimental results indicate that the critical velocity for the tube is
about ���� m�s� This is somewhat lower than the value precited by the �nite
element model� which is about ���� m�s� The �nite element calculations were
carried out with material data that was taken from tables� There is a degree
of uncertainty in these and other parameters� Regarding the uncertainty in the
input parameters the results compare reasonably well with the experimental
results� The model for the clamped tube is able to predict the ampli�cation
caused by the re	ection and interference of waves at the 	anges�

An interesting point is the ampli�cation curve for gage �� The �nite element
results for the this strain gage show a somewhat strange behaviour around the
critical velocity� There are two broad peaks in the curve� By analyzing the
strain history� these peak could be attributed to the re	ection of waves� In the
�nite element model there is no damping� Any wave that starts propagating will
therefore re	ect and travel back to the �rst end of the section� The re	ection
and intereference at that end is the cause of the ampli�cation bumps� In the
experiments this behaviour was not observed� Due to the damping in the tube
and at the joints the amplitude of the wave decays�
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Figure ����� Development of pro�le� Solid� clamped� Dashed� simply supported
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��� Flanges and end e
ects

The strain gages for these measurements are given in �gure �����

igniter end platel
x x xI II III

1211 1615 171813

Figure ����� Gages to monitor 	anges and end e�ects

Typical histories for a speed around the critical velocity are given in the
�gures ���� and ����� The corresponding pressure histories are given in �gure
����� The ampli�cation as a function of velocity is given in �gure ����

Due to the re	ection and interference of waves� the ampli�cation for gage ��
is relatively high� The ampli�cation however is smaller than the ampli�cation
for gage ��� The signal for the gage on the T
piece indicates that the radial
de	ection is not zero� The ampli�cation for this gage varies around �� which
essentially means that it acts as a simple ring� The connection between the
tube and the 	ange only transmits a part of the wave to the T
piece around
the critical velocity� The strain history for this gages also shows di�erent type
of behaviour� The ampli�cation curve for the gage ��� mounted just behind
the 	anges� shows no ampli�cation e�ect� For the entire velocity range the
ampli�cation is essentially equal to one� This implies that the build up of
the pro�le starts all over again� Thus the design of 	anges and keys prevents
adequate transmission of structural waves between tube sections�

The strains near the end of the tube are relatively large� At the end of the
tube not only the structural waves� but also the detonation re	ects� This causes
very high strains over a relatively large velocity span� The strain traces show
the re	ection of waves and the passage of the re	ected shock� For this velocity
there is a relatively large precursor wave�
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��� Linearity and comparison of sections

The strain gages for these measurements are given in �gure �����

igniter end platel

1 2

x x xI II III

6 8 14 15

Figure ����� Gages to monitor linearity and compare sections

Typical histories for a supercritical velocity of ������ m�s are given in the
�gures ���� and ����� The corresponding pressure histories are given in �gure
����� The strain traces clearly indicate the the speed of the detonation is super

critical� The amplitude of the high frequency precursor is very low� The results
for the gages �� and �� show the excitation due to the re	ected shock� The
pressure traces show why the measured pressure is not very reliable� Due to
thermolizing e�ects the pressure drops below zero� Therefore a calculated value�
the Chapman
Jouguet pressure� is used to obtain the ampli�cation factor�

The ampli�cation factor as a function of the pressure Chapman
Jouguet
pressure� is plotted in �gure ���� for a velocity of ���� m�s� The results for
a velocity of ���� m�s are given in �gure ����� The �gures show that the
ampli�cation factor is not a function of the pressure� In that sense the problem
is linear� This is an important fact that supports the use of linear theory�
When comparing the di�erent sections� the ampli�cation factor does not vary
much� The identical positions on di�erent sections show similar behaviour�
except for gage ��� This gage shows a signi�cantly higher ampli�cation level
due to the re	ected wave� However� the conclusion that the sections behave
similarly requires additional information� The ampli�cation values for these
supercritical speeds is in all cases except gage ��� equal to �� as predicted by
simple models� The fact however that the pro�le has to develop all over again
when entering a new tube section� supports the assumption that the tube can
be regarded as a collection of independent sections�
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Figure ����� Experimental results for linearity�comparison shots at ���� m�s
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��� Cell size

The strain gages for this measurements are given in �gure �����

igniter end plate

3 4 5 6 7 8 9 10

Figure ����� Gages for cell size shots

Typical strain histories for a velocity of ������ m�s are given in the �gures
���� and ����� The corresponding pressure histories are given in �gure ����� The
pressure loads are not very well de�ned� Due to the large amount of diluent
and the low pressures� the cell size increases dramatically� The �
dimensional
structure becomes apparent as the distance between the transverse shocks in

creases� As a result� the loading of the tube is less smooth� especially for the
third transducer� Due to this behaviour the reproducibility of the process is
also less good� The change in excitation structure is also visible in the strain
traces for the gages ��� and ���

The ampli�cation factor as a function of the Chapman
Jouguet pressure is
given in �gure ���� for a velocity of ���� m�s� Since linearity was checked in
section ���� the increase in ampli�cation with decreasing pressure can be at

tributed to cell size e�ects� The cell size is inversly proportional to the pressure�
The structural wave length is usually much larger than the cell size ��� m ver

sus � mm�� As the cell size increases� the ratio between the cell size and the
strutural wave length increases� The �gure indicates that the ampli�cation is a
function of the ratio between the structural wavelength and the cell size� When
the cell size is of the same order of magnitude as the wavelength� the 	exural
waves in the tube are very well excited�

The ampli�cation factor as a function of the Chapman
Jouguet pressure is
given in �gure ���� for a velocity of ������ m�s� The ampli�cation increases
with decreasing pressure� The increase in ampli�cation can be attributed to cell
size e�ects� However� for very low pressures the ampli�cation seems to decrease
again� This can be explained by analyzing the pressure and strain histories� The
pressure histories for the ���� m�s shot are relatively well de�ned� However�
for a velocity of ������ m�s and a very low pressure� the pressure history for
the third transducer shows a very nonsmooth behaviour� There is a large spike
followed by a number of smaller spikes� The distance between these spikes
increases as the cell width increases� The decrease in ampli�cation at very large
cell widths is therefore due to the breakdown of the excitation�
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Figure ����� Experimental results for cell size shots at ������ m�s
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��� High velocity shots

The strain gages for this measurements are given in �gure �����

igniter end plate

3 4 5 6 7 8 9 10

Figure ����� Gages for high velocity shots

Typical strain histories for a velocity of ������ m�s are given in the �gures
���� and ����� The corresponding pressure histories are given in �gure �����
The pressure signals show the thermolizing e�ect� The strain signals indicate
supercritical behaviour� The maximum amplitude is nearly constant as a func

tion of distance� The ampli�cation factor as a function of the velocity is given
in �gure ����� The calculations and the experiments show reasonable agree

ment� For gage �� there is a broad peak in the calculated ampli�cation curves
at ���� m�s� By analyzing the strain signals� these peaks are due to successive
re	ection and interference of waves see also section �����
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Figure ����� Results high velocity shots
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��� Total velocity range

The results for the development measurements and the high velocity measure

ments are now combined to visualize the behaviour of the tube over the total
velocity range�The strain gages are given in �gure �����

igniter end plate

3 4 5 6 7 8 9 10

Figure ����� Gages for development and high velocity shots

The measured and calculated curves are given in �gure ����� The general
agreement between theory and measurements is reasonable� when taking into
account the simplicity of the models and the variation in the input data� The
ampli�cation around the critical velocity is predicted fairly well�
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Conclusions

The following conclusions are drawn from the present investigation�

� The critical velocity for the GALCIT detonation tube is ���� m�s� The
existance of a critical velocity was experimentally veri�ed� Ampli�cation
factors in the ranging from � to � were measured�

� The critical velocity concept is important for tube design� In the opera

tional range of the tube ampli�cations of � to ��� were measured� It is
evident that this should be incorporated in detonation tube design�

� Calculations and experiments show fair agreement� The �nite element re

sults predict the transient development of the pro�le� The calculations for
a clamped tube show reasonable agreement with the experimental results�

� The de	ection pro�le has to develop� Measurements indicate that the
	anges cut o� the waves� when the detonation enters a new tube section
the pro�le has to develop all over again�

� The re	ection and interference of waves leads to high strains� Measure

ments and calculations show that structural waves are re	ected at the
	anges and at the end of the tube� The re	ection of waves at the 	anges
leads to strains that are about ��� times the strain without interference�
Since at the end the detonation also re	ects� ampli�cations were especially
high near the end of the tube�

� The structural response of the tube is linear with respect to the pressure
load� The experiments indicate that the ampli�cation factor is not a�ected
by the excitation level�

� The cell size of the detonation a�ects the ampli�cation factor� The ra

tio between the cell size and the structural wave length is important�
When the cell size and the structural wave length are of the same order
of magnitude� the 	exural wave are excited well� This leads to the highest
ampli�cation factor measured in the present study� �� Large cell sizes
are usually obtained at very low pressures� so for tube design this aspect
should be of less concern�
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Appendix A

Shot checklist

GDT Shot Checklist �No Ammonia�Last Modi�ed	 �
 November ����

Shot	 Date	 Time	

Operator�s�	 Series	

Estimated reected
wave pressure	

bar Driver Controller Settings	

Ignition Delay sec

Flow Duration sec

Preparation and Pump Down

�� Load �ring plug with wire

�� Check that clamp bolts are snug and clamp movement is clear

�� Mount �ring plug in place� do not force in

�� Make sure that the soot foil anchor is secure

�� Align endplate with tube end and make contact between sealing surfaces


� Check that Driver Controller is o�

�� Enable Main Control Panel power

�� Turn on Main Control Panel �� V relay and close it

�� Open E� �circulation valve�

��� Open T�� T� �and T�� �detonation tube isolation valves�

��� Open V� and V� �vacuum isolation valves�

��� Switch on thermocouple vacuum gauge �TG� or TG�� and Heise pressure
gauge

��� Open G� �gas supply isolation valve�

��� Open N� �gas supply needle valve�

��� Close L� �vacuum manifold leak�up valve�

�
� Check that EDL is not using vacuum pump

��� Open vacuum manifold valve �at pump�� set vacuum pump status indicator

��� When �ring plug is sucked in place� align backing plate under clamps

��� Pressurize hydraulics� make sure all clamps engage backing plate surface

��



��� Pressurize hydraulics above ���� psi

��� Tighten endplate bolts

��� Connect Capacitor Box to Firing Plug

��� Check bridge wire continuity

��� Wait for pressure to drop below �� millitorr � Final level	 milli�
torr

��� Set Heise gauge zero

�
� Close V� and V� �vacuum isolation valves�

��� Close vacuum manifold valve �at pump�� set vacuum pump status indicator

Gas Fill Procedure

��� Turn o� thermocouple vacuum gauge

��� Check that end �ange bolts are tight

��� Check that hydraulic pressure is above ���� psi

��� Turn on warning lights and check that doors are closed � Laboratory
Access is Restricted

��� Turn on gas supply wall switch

Fill to desired pressure using external block valves� gas supply valves� and N��
If atmospheric air is used� �ll it �rst� using V� and L��

Gas Target Fraction Target Partial Pressure Target Final Pressure Final Pressure

kPa kPa kPa

kPa kPa kPa

kPa kPa kPa

kPa kPa kPa

kPa kPa kPa

��� Turn o� gas supply wall switch

��� Close N� and gas supply ball valves

��� Run circulation pump for � minutes

�
� Final pressure	 kPa Final Temperature	 oC

��� Close T�� T� �and T��

��� Close E� and G�

��� Open L� to vent vacuum manifold

Firing Procedure

��� Arm data acquisition system�s�

��� Close Heise gauge isolation valve�s�

��� Turn o� electronic Heise gauge

��� Align tube to ��re� position� check that movement is free�

��� Switch o� �� V relay �on Main Control Panel�

��� Check that Fire Ready light is on

�
� Switch TM��� Toggle to Driver Controller

��� Turn on Driver Controller

��� Remove shorting cable from capacitors

��� Clear personnel from ignition area

��



��� Turn on TM���

��� Turn on Hipotronics power supply

��� Raise Hipotronics voltage to � kV �charge for � minutes�

��� Check data acquisition system�s�� rearm if necessary

��� Engage �� V Power Relay on Driver Controller

��� Arm Driver Controller

�
� To initiate shot� press and hold red Fire button Time	

��� If system mis�res� execute Mis�re Procedure and continue with item 
�

��� Turn down Hipotronics voltage and switch it o�

��� Turn o� TM���


�� Turn o� Driver Controller


�� Download data


�� Discharge capacitors with grounding stick


�� Short capacitors with shorting cable


�� Turn o� warning lights � Laboratory Access is Unrestricted

Tube Venting Procedure


�� Switch on �� V relay on Main Control Panel and close it



� Switch on Heise gauge and thermocouple vacuum gauge


�� Close L�


�� Check that EDL is not using pump


�� Open vacuum manifold valve �at pump�� set vacuum pump status indicator

��� Open V�� V�� E�� and Heise gauge isolation valve Final pressure	
kPa

��� When pressure drops to about ��� millitorr� open T�� T� �and T��

��� When pressure reaches ��� millitorr� close T� and V�

��� Turn o� thermocouple vacuum gauge

��� Close vacuum manifold valve �at pump�� set vacuum pump status indicator

��� Open L� to vent vessel up to atmospheric pressure

Record wave speeds	
� � � CJ Speed

Times �s �s �s
Speeds m�s m�s m�s

Remarks�
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Appendix B

Strain measurements

1RRg

R2

Rp

R3

Rp

Vout
R4

Vin

Figure B��� Wheatstone bridge circuits

The output voltage for the Wheatstone bridge is�

Vout
Vin

�
R� �R� �Rp

R� �R� �R� �Rp

�
R�

Rg �R�

B���

The strain� �� is then calculated from�

� �
��Vr

GF � � �Vr�
B���

where Vr is calculated from the di�erence between the strained and the un

strained case ��

Vr �
Vout
Vin

�
�
�
�
s

�
Vout
Vin

�
�
�
�
u

B���

�For a balanced bridge the output voltage in the unstrained case is set to zero by varying

the resistance Rp

��



For the measurements� an input voltage of �� V was used� The ampli�ers
were set at a gain of ��� and a bandwidth of �� kHz� The other spcei�cations
are given in table B��� The setup is given in �gure B��� The power schematic is
given in �gure B��� Note that the ground and the negative were connected in
order to eliminate �� Hz noise�

The weakest point in the strain setup is the connection between the wires
from the strain gages and the bananaplugs� Before each run the connections
were checked� The bridges were balanced and the wires were �wiggled�� If the
motion introduces a shift in output voltage of the bridge� the connection has to
be renewed�
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Description of components

Strain gages�

Micro Measurement strain gages type WK
��
���BF
��C
Resistance Rg� ���� � � ���
Gage length� ���� mm� Overall length� ���� mm
Grid width� ���� mm� Overall width� ���� mm�
Matrix size� ���� mm x ��� mm L x W�
Wheatstone bridge circuits�

R� and R�� � k�� �� metal�lm� �

�
W

R�� ��� �� �� metal�lm� �

�
W

R�� ���� �� �� metal�lm� �

�
W

Trimmer Rp� �� turn wirewound� ��� �
Scale dial� �� turn
Ampli�ers�

��� Preston Scienti�c ���� XWB� Pool nr� �
��
��� Preston Scienti�c ���� XWB� Pool nr� �
��
��� Preston Scienti�c ���� XWB� Pool nr� �
��
��� Preston Scienti�c ���� XWB� Pool nr� �
��
��� Preston Scienti�c ���� XWB� Pool nr� �
�
��� Princeton Applied Research ���� Pool nr� �
�
��� Princeton Applied Research ���� Pool nr� �
��
��� Princeton Applied Research ���� Pool nr� �
��
BNC cable�

BNC 
 type RG
�� 
 �� �

Table B��� Speci�cations equipment strain measurements

Br #1

Gage #3 Gage #4 Gage #5 Gage #6 Gage #7 Gage #8 Gage #9 Gage #10

Br #2 Br #3 Br #4 Br #5 Br #6 Br #7 Br #8 Br #9

Ch #1 Ch #2 Ch #3 Ch #4 Ch #5 Ch #6 Ch #5 Ch #6

#1
Amp Amp Amp Amp Amp Amp Amp Amp

#2 #3 #4 #5 #6 #7 #8

Data acquisition system: slot 3 Data acquisition system: slot 1

Figure B��� Equipment for strain measurements
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Br #1 Br #2 Br #3 Br #4 Br #5 Br #6 Br #7 Br #8 Br #9

#1
Amp Amp Amp Amp Amp Amp Amp Amp

#2 #3 #4 #5 #6 #7 #8

Isolation
transformer

Power supply
12 V DC

Connect - to gnd

110 V AC 

Figure B��� Power supply for strain measurements
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