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Abstract

The early stage of laminar-turbulent transition in a hypervelocity boundary layer

is studied using a combination of modal linear stability analysis, transient growth

analysis, and direct numerical simulation. Modal stability analysis is used to clarify

the behavior of first and second mode instabilities on flat plates and sharp cones

for a wide range of high enthalpy flow conditions relevant to experiments in impulse

facilities. Vibrational nonequilibrium is included in this analysis, its influence on

the stability properties is investigated, and simple models for predicting when it is

important are described.

Transient growth analysis is used to determine the optimal initial conditions that

lead to the largest possible energy amplification within the flow. Such analysis is per-

formed for both spatially and temporally evolving disturbances. The analysis again

targets flows that have large stagnation enthalpy, such as those found in shock tun-

nels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies

the effects of Mach number and wall temperature on the amplification achieved. Di-

rect comparisons between modal and non-modal growth are made to determine the

relative importance of these mechanisms under different flow regimes.

Conventional stability analysis employs the assumption that disturbances evolve

with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal

analysis). Direct numerical simulations are employed to relax these assumptions and

investigate the downstream propagation of wave packets that are localized in space

and time, and hence contain a distribution of frequencies and wavenumbers. Such

wave packets are commonly observed in experiments and hence their amplification is

highly relevant to boundary layer transition prediction. It is demonstrated that such
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localized wave packets experience much less growth than is predicted by spatial stabil-

ity analysis, and therefore it is essential that the bandwidth of localized noise sources

that excite the instability be taken into account in making transition estimates. A

simple model based on linear stability theory is also developed which yields compa-

rable results with an enormous reduction in computational expense. This enables

the amplification of finite-width wave packets to be taken into account in transition

prediction.
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Chapter 1

Introduction

1.1 Motivation

Air-breathing hypersonic aircraft have the potential to offer access to space with

many advantages over conventional, rocket-based launch systems. As detailed by Bi-

lardo et al. (2003), these benefits include reductions in launch and maintenance costs,

improvements in turn-around time, and increased reliability and mission flexibility.

However, these benefits are accompanied by serious challenges which have thus far

prevented air-breathing launch systems from being realized. One such challenge is

coping with the enormous surface heating loads, which are much larger for the ascent

trajectories of proposed air-breathing launch systems that take off horizontally than

for conventional launch systems (Tauber et al., 1987, Bilardo et al., 2003). The larger

heating load anticipated for air-breathing vehicles is the result of extended flight at

higher density, which is needed to develop sufficient thrust to accelerate to orbital

speeds (Tauber et al., 1987).

These heating loads must be accommodated by a suitably-designed Thermal Pro-

tection System (TPS). Proposed air-breathing launch systems employ slender vehicles

for which the heat transfer rate is governed by the flow characteristics within the thin

boundary layer. The heat flux to the vehicle’s surface depends strongly on whether

the boundary layer flow is laminar or turbulent, with heating loads increasing by a

factor of 2-10 for turbulent flow (White, 1974, Lin, 2008, Lau, 2008) in comparison

to laminar flow. This must be taken into account to design an effective TPS, and
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care must be taken to provide sufficient margins to accommodate uncertainties in the

heating load while avoiding the extraneous weight of an overly-conservative design.

Predicting the location or region over which transition to turbulence takes place is

therefore a key design consideration, yet it remains extremely challenging to predict

reliably. The difficulties in predicting hypersonic boundary transition lie in the enor-

mous parameter space involved, the high sensitivity of boundary layer transition to

each parameter, uncertainties regarding the disturbance environment that initiates

transition, and the inherent complexity of the nonlinear processes involved in the

final stages of transition to turbulence.

Because the subsystems of hypersonic aircraft are highly-integrated, boundary

layer transition can have a significant influence on an overall vehicle design. As an

example, boundary layer transition was identified as a major source of design uncer-

tainty in the National Aerospace Plane (NASP) program, one of the early scramjet

technology demonstrators. After reviewing the NASP program, the Defense Science

Board found that aircraft designs based on different assumptions about the transition

location differed by about a factor of two in takeoff weight (Defense Science Board,

1988, 1992). The members of the Defense Science Board concluded that “[Boundary

layer transition] is by far the single area of greatest technical risk in the aerodynamics

of the NASP program.” They furthermore recommended that “It would seem prudent

to delay initiation of detailed vehicle design until that effort [a proposed analytical

and experimental program] has narrowed the uncertainty in location of the transition

point to an acceptable tolerance.” This project demonstrated how uncertainty in

the prediction of boundary layer transition can impede the development of an entire

aircraft system.

Since the end of the NASP program in the early 1990s, much progress has been

made in the prediction of boundary layer transition. Because of the enormous in-

crease in computational resources over the last two decades, boundary layer sta-

bility calculations can now be made for more complicated geometries, and various

high-temperature phenomena can be included, such as chemical reactions and ther-

mochemical nonequilibrium flow. However, even with modern computational tools
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Figure 1.1: Diagram of pathways by which a boundary layer might transition to
turbulence (reproduced with permission from Fedorov (2011)).

and massively-parallel computing facilities, high fidelity direct numerical simulation

(DNS) of boundary layer transition remains infeasible for all but the simplest ge-

ometries and is far too expensive for use as a design tool. Instead, transition pre-

diction is usually carried out using linear stability theory (LST), in which unstable,

exponentially-growing eigenmodes of the linearized Navier-Stokes equations are iden-

tified, their growth rates are computed, and their amplification is correlated with

boundary layer transition.

1.2 Paths to transition

The current understanding of boundary layer transition is graphically portrayed in

Figure 1.1, which was originally conceived by Morkovin et al. (1994) and is reproduced

here from Fedorov (2011). According to this framework, boundary layer transition

consists of three stages, which are known as receptivity, linear growth, and nonlinear

breakdown.
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1.2.1 Receptivity

Interactions between environmental disturbances and the smooth, laminar boundary

layer excite oscillatory modes within the boundary layer, a process which is called

receptivity. These environmental disturbances can take the form of wall roughness,

particle impacts, acoustic waves impinging from the freestream, or nonuniformities

of the freestream velocity and temperature (vorticity and entropy spots). The extent

to which these disturbance sources excite waves in the boundary layer depends on

the frequency and wavelength of the disturbances and the local properties of the

boundary layer.

For low speed boundary layers, there is a large disparity between the frequencies

and length scales of boundary layer modes and the forcing of environmental distur-

bances in the freestream, and hence a scale-conversion mechanism is needed in order

to excite the boundary layer modes (Saric et al., 2002). Potential scale-conversion

mechanisms are wall roughness (Goldstein, 1985) and regions of the flow where the

boundary layer thickness varies rapidly, such as near the leading edge of a plate or

cone (Goldstein, 1983). In contrast, for high speed flows the boundary layer modes

and freestream disturbances can have similar length scales and hence receptivity can

potentially occur without such a scale conversion mechanism (Fedorov, 2003, Fedorov

and Khokhlov, 1991, 1993).

Under flight conditions, acoustic waves in the freestream are known to have small

amplitudes, so transition on smooth surfaces is thought to result from vorticity and

entropy disturbances in the freestream. However, waves that are initially of the vor-

ticity or entropy type can produce acoustic waves upon crossing the oblique shock

wave at the leading edge of the body (McKenzie and Westphal, 1968), so all types of

disturbances are relevant to boundary layer transition in free flight. Nevertheless, the

amplitudes of forcing waves from the freestream in free flight are hypothesized to be

quite small. Comparatively, in conventional wind tunnels the level of acoustic noise in

the freestream is quite high, since the turbulent boundary layers that develop on the

walls of the nozzle and test section radiate acoustic waves into the flow. Experiments
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have demonstrated high sensitivity of transition measurements to the level of acoustic

noise in the tunnel (Schneider, 2001, 2015), which suggests that the boundary layer

transitions much earlier in wind tunnel experiments than it would in real flight. This

has led to considerable difficulties in drawing meaningful conclusions about transition

in real flight from ground-based measurements (Reshotko, 1976). A major source of

difficulty is that current computational methods of predicting boundary layer tran-

sition, which are calibrated against experimental data, do not yet take into account

the amplitudes or frequency spectra of environmental disturbances that participate

in boundary layer transition. Therefore computational transition estimates that are

calibrated against ground-based wind tunnel data are not predictive of transition in

free flight.

Because environmental disturbances in the freestream feature a large parame-

ter space of possible wave types, wavelengths, frequencies, and angles of incidence,

the problem of receptivity remains largely unsolved for hypersonic boundary layers.

No general framework for performing receptivity calculations exists, but many DNS

calculations (Balakumar, 2009, Fedorov et al., 2013, Ma and Zhong, 2003a,b, 2005,

Zhong and Ma, 2006) and asymptotic analyses (Fedorov and Khokhlov, 1991, 1993,

Fedorov, 2003, Fedorov and Tumin, 2003) have clarified various features of the re-

ceptivity problem for simple geometries like a flat plate or sharp cone. Nevertheless,

an enormous amount of work remains since the effects of realistic flow features on

receptivity, such as angle of attack and boundary layer three-dimensionality, remain

for the most part unexplored.

1.2.2 Linear Growth

After the small-amplitude, oscillatory modes in the boundary layer have been excited,

they may amplify by a variety of different mechanisms as indicated in Figure 1.1.

Path A refers to unstable modes of the boundary layer, which consist of a fixed mode

shape that grows exponentially as it travels downstream. This path is called “modal

growth” and has historically received the most attention in the literature, especially
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for compressible flows.

Paths B, C, and D involve the transient growth, or non-modal growth, of distur-

bances. Unlike modal growth, this amplification mechanism involves a collection of

boundary layer modes (an “optimal disturbance”) that are all damped, but super-

pose in such a way that their linear combination grows for a short time despite the

eventual exponential decay of all modes involved. This amplification mechanism first

began to be appreciated after the work of Trefethen et al. (1993), who showed that

transient growth offers a potential transition mechanism for flows like Couette flow

and pipe flow that are completely stable according to path A.

Paths B, C, and D in Figure 1.1 refer to three different manifestations of transi-

tion growth. Path B describes the situation in which transient growth excites a mode

that is linearly unstable, which then grows exponentially. This mechanism appears

to not be important in boundary layers because unstable modes and optimal dis-

turbances from transient growth have very different frequencies, wavenumbers, and

mode shapes, and hence it is unlikely that optimal disturbances will strongly excite

unstable modes. Nevertheless, in Chapter 6, some examples of interactions between

modal and non-modal amplification are observed. Path C refers to pure transient

growth leading directly to secondary instabilities and production of nonlinear har-

monic waves. Path D refers to the transient growth that occurs when a boundary

layer is excited by a broad spectrum of disturbances rather than a particular optimal

disturbance (Reshotko, 2001).

1.2.3 Nonlinear Breakdown

As the disturbances amplify according to the above-mentioned mechanisms, their am-

plitude eventually becomes large enough to modify the laminar flow profile and cause

non-linear interactions between modes. Because of these nonlinear interactions, ad-

ditional length and time scales are excited at harmonics of the dominant disturbance

frequencies and the flow rapidly breaks down into the chaotic motion and broad-band

frequency spectrum of turbulence. Path E in Figure 1.1 accounts for disturbances
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that are initially of such large amplitude that no amplification is needed in order to

reach the nonlinear regime, which is often called bypass transition.

1.3 Modal Instabilities

The most widely-studied amplification mechanism for disturbances is modal instabil-

ity, path A in Figure 1.1. Modal stability analysis was pioneered for incompressible

flows by Rayleigh (1879, 1880), Tollmien (1936), and Lin (1944). Although linear

stability theory was initially met with some skepticism, a significant advancement of

the theory was made by the experiments of Schubauer and Skramstad (1947), who

immersed a vibrating ribbon in an incompressible boundary layer and conclusively

demonstrated the downstream growth of instability waves using hot wire measure-

ments. Because they qualitatively confirmed many of the results predicted by linear

stability theory, these experiments were largely responsible for the acceptance of lin-

ear stability theory as a useful description of the flow characteristics leading up to

transition (Mack, 1977).

The first major theoretical effort to study linear instabilities in compressible

boundary layers was undertaken by Lees and Lin (1946). Rayleigh (1879) and

Tollmien (1936) had previously shown that incompressible flows are stable to invis-

cid, temporally-growing disturbances unless the mean velocity profile Ū(y) contains

an inflection point, Ū ′′ = 0, where primes designate differentiation in the wall normal

direction. Lees and Lin (1946) extended this result to compressible flows by exam-

ining the balance of kinetic and internal energy integrated over the boundary layer.

They showed that the 2D, inviscid boundary layer cannot be unstable unless the mean

velocity and density profiles feature a generalized inflection point defined by:

∂

∂y

(
ρ̄
∂Ū

∂y

)
= 0 (1.1)

where y is the wall-normal height. Lees and Lin observed that when the wall is highly

cooled, the laminar boundary layer over a flat plate or cone does not have a generalized
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inflection point, which led to the remarkable conclusion that such boundary layers are

absolutely stable under the action of inviscid disturbances. However, in arriving at

this result Lees and Lin had to assume that the local Mach number of the disturbances

relative to the mean flow velocity was everywhere less than one, and hence their

analysis applies only to a subset of the possible modes in a boundary layer. In a

subsequent paper, Lees (1947) extended his previous work to include the effects of

viscosity, which can be important because Tollmien-Schlichting waves can be more

unstable at finite Reynolds numbers than in the inviscid limit (Lin, 1944). Lees

found that stabilization of the boundary layer by wall cooling was also possible at

finite Reynolds numbers, a finding that was confirmed by the calculations of Van

Driest (1952).

Only after Mack (1969, 1984, 1975, 1987) began to produce numerical simulations

of the dispersion relation was it realized that an additional class of modes was also

present in the boundary layer, and these so-called “Mack modes” could be highly un-

stable at high Mach numbers. These modes travel supersonically with respect to the

mean flow over some portion of the boundary layer, thus violating the assumptions

originally made by Lees and invalidating their proof that the boundary layer is com-

pletely stabilized by wall cooling. It has since been realized that the analyses of Lees

and Lin only apply to compressible Tollmien-Schlichting waves, which Mack called

“first mode” waves. The additional modes, which Mack called the “second mode”

and “higher modes”, behave differently and in fact can experience growth rates that

are many times larger than those of the Tollmien-Schlichting waves at high Mach

numbers. Nevertheless, the prediction of Lees that compressible Tollmien-Schlichting

waves are stabilized by wall cooling have indeed been born out for first mode waves

(Masad et al., 1992).

The calculations of Mack (1969, 1984, 1975, 1987) revealed that the “Mack modes”

are acoustic waves reflecting between the wall and the relative sonic line. This in-

terpretation follows from the behavior of the disturbance pressure, which is shown in

Figure 1.2 for the first three of the acoustic modes. The quantity plotted in the figure

is the real part of the complex pressure mode shape as a function of wall normal
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Figure 1.2: Pressure eigenfunctions for second, third, and fourth mode instabilities.
Flow is air over a flat plate at Mach 5 with an adiabatic wall. Reynolds number is
Rex = 4 million.

distance y, and the flow is Mach 5 air flowing over a flat plate. As shown in the

figure, the higher acoustic modes experience increasing numbers of oscillations inside

the boundary layer, with each successive mode featuring an additional zero of the

pressure mode shape.

These acoustic modes exist because the relative sonic line serves as an acoustic

waveguide that traps the disturbances within the boundary layer (Fedorov, 2011).

The disturbances propagate subsonically with respect to the mean flow above the

relative sonic line and supersonically below it. As a result, acoustic waves transition

from being oscillatory waves inside of the sonic line to being evanescent waves outside

of it, which leads to a partial reflection of the wave back into the boundary layer.

This behavior is illustrated in Figure 1.3, which shows contours of the pressure

mode shape for an unstable, second mode disturbance. The three dashed lines in the

figure indicate the boundary layer thickness δ99, the critical layer at which the real

part of the disturbance phase velocity cr equals the base flow velocity Ū , and the

relative sonic line cr = Ū + ā, where ā is the mean sound speed profile. The contour

plot shows that the disturbance experiences a change in phase across the relative sonic

line, which is indicative of the partial reflection of the wave back into the interior of
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Figure 1.3: Contours of the pressure eigenfunction for second mode instability at
Mach 5 with an adiabatic wall.

the boundary layer.

Unlike the Tollmien-Schlichting waves mentioned above which can be stabilized by

wall cooling, the acoustic modes are destabilized, an effect which is mainly caused by

the reduction in boundary layer thickness that occurs when the wall is cooled. This

destabilization can be thought of in the following way: as the boundary layer becomes

thinner, the wavelength of the second mode waves also decreases since they are rever-

berating within the boundary layer. The amplification per unit wavelength remains

approximately constant, and hence the amplification per unit distance (the growth

rate) increases as the boundary layer is made thinner, since there are more waves per

unit distance. This explanation is demonstrated quantitatively in Section 5.4.2.

For boundary layer flows that have a high stagnation enthalpy, the tempera-

ture in the interior of the boundary layer can become large enough that the vi-

brational energy of polyatomic molecules becomes significant, such that the gas can-

not be treated as calorically perfect. Dissociation reactions can also become signifi-

cant at sufficiently high enthalpies. Furthermore, the rates of chemical reactions or

vibrational-translational energy transfer can be comparable to flow timescales, leading

to a nonequilibrium flow. A number of researchers have considered these nonequilib-
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rium flow effects on the stability of boundary layers, and in some cases conflicting

results were obtained. For example, Hudson et al. (1997) concluded that “...thermal

nonequilibrium has a destabilizing effect”, whereas Bertolotti (1998) determined that

“Vibrational relaxation has a large destabilizing influence.” Johnson et al. (1998)

concluded that “translational-vibrational energy transfer can be either stabilizing or

destabilizing.” As will be shown in Chapter 5, vibrational relaxation produces two

competing effects which can result in net stabilization or destabilization, depending

on the flow conditions. Chapter 5 investigates these mechanisms and clarifies the flow

conditions under which net stabilization or destabilization can be expected.

1.4 Non-modal Amplification

Although initial efforts to predict transition to turbulence focused on the modal in-

stability mechanisms described above, it was soon realized that modal instabilities

could not explain all the phenomena observed in experiments. In particular, certain

canonical flows, such as pipe flow and Couette flow, have no unstable modes, and yet

transition to turbulence is readily achieved in experiments (Schmid and Henningson,

2001). Other flows, like plane Poiseuille flow, transition at low Reynolds numbers for

which the linear theory predicts that the flow is stable.

It was eventually realized that modal analysis only takes into account the long-time

fate of disturbances, which may be exponentially growing or decaying, but entirely ne-

glects their short-time dynamics. Ellingsen and Palm (1975) was one of the first to re-

port the growth of disturbances in flows that are exponentially stable. Similar results

were obtained by Landahl (1980) and Hultgren and Gustavsson (1981), who showed

that inviscid parallel shear flows can experience a particular class of linearly-growing

disturbances. Such algebraic growth of disturbances was subsequently popularized

by Trefethen et al. (1993), who developed a framework for analyzing algebraically-

growing disturbances. This type of amplification is now referred to by the names

“non-modal amplification” or “transient growth.”

Transient growth of disturbances is usually largest when streamwise vortical per-
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turbations appears in the flow, for instance, behind a small, sharp-edged roughness

element. The vertical velocity generated by these vortices then carries low momentum

fluid up from the wall and high momentum fluid down from the freestream, thereby

producing streaks of high and low streamwise velocity. The existence of this mecha-

nism has been demonstrated in experiments involving roughness elements placed in

incompressible boundary layers. Such experiments have reproduced many features

predicted by transient growth calculations, including the downstream evolution of

disturbance kinetic energy and the shape of the amplified disturbances (White, 2002,

White et al., 2005, Ergin and White, 2006).

1.5 Wave Packets

Time traces from hot wire probes, pressure transducers, and interferometers have

shown that in hypersonic wind tunnel experiments the second mode instability waves

leading up to boundary layer transition consist of many isolated, localized wave pack-

ets. A good example of this was reported by Heitmann et al. (2011) and is reproduced

in Figure 1.4. Although that paper also considered the excitation of disturbances

using laser-generated shock waves, the traces shown in Figure 1.4 correspond to “nat-

ural” transition of the boundary layer. Two packets of second mode waves are clearly

visible in the time traces, and similar results have been observed in many other exper-

iments. Pulsed laser Schlieren photographs of high speed boundary layers have also

captured full-field images of disturbance wave packets of this type (Parziale, 2013,

Laurence et al., 2012, 2014, Casper et al., 2013a,b). These images show that the

structure of these wave packets, including the wavelength and wall-normal density

profile, closely matches the predictions of linear stability theory, indicating that these

are indeed packets of second mode instability waves.

If boundary layer transition is triggered by a succession of isolated wave packets, as

is suggested by Figure 1.4 and many other similar results, then the amplification of a

particular wave packet moving downstream is highly relevant for transition prediction.

Although both experimental (Gaster and Grant, 1975, Cohen et al., 1991, Cohen,
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Figure 1.4: Experimental surface pressure traces for flow over a sharp cone at Mach
6, reproduced with permission from Heitmann et al. (2011).

1994) and theoretical (Gaster, 1975, 1982a,b) studies of wave packet development

exist for incompressible boundary layers, these efforts have never been extended to

high speed flow. In spite of the fact that wave packets frequently appear in hypersonic

flow experiments, their downstream evolution has never been analyzed and reported.

Instead, the data sets are usually Fourier-transformed and the downstream growth

of individual Fourier modes is reported. Only a few direct numerical simulations,

such as those of Mayer et al. (2011) and Sivasubramanian and Fasel (2014), have

considered packets of waves. Like the experiments, these simulations deal primarily

with the amplification of Fourier modes rather than the growth of the wave packet in

physical space. Theoretical analysis by Forgoston and Tumin (2006) did consider the

propagation of a physical wave packet, but only in a perfectly parallel boundary layer,

so they could not analyze the development of the wave packet over large downstream

distances for which boundary layer growth is significant.

Because there have been no detailed studies of wave packet propagation in non-

parallel, compressible boundary layers, it is unknown how wave packets develop, how

their amplification relates to linear stability theory, or ultimately how their develop-

ment influences boundary layer transition. Current methods of predicting boundary

layer transition are based entirely on the downstream amplification of Fourier modes,
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rather than on the amplification of physical wave packets. However, Figure 1.4 sug-

gests that wave packet amplification may in fact be more relevant to boundary layer

transition than that of Fourier modes. There is of course a connection between these

two points of view, since the wave packet itself consists of an integration over many

modes, each corresponding to a particular frequency. However, using knowledge of

the Fourier mode amplification to reconstruct the wave packet evolution has not been

attempted for compressible flow. In Chapter 7, linearized direct numerical simulations

(LDNS) are used to clarify the downstream evolution of second mode wave packets.

1.6 Scope of present work

This work is divided into three parts, which focus on the three mechanisms of dis-

turbance amplification described above. After the physical models and base flow

calculation are described in Chapters 2-3, the first mechanism, modal instability, is

investigated in Chapters 4 and 5. The results presented in Chapter 5 significantly

extend the set of flow conditions for which linear stability calculations are available,

and this comprehensive assessment of the stability characteristics enables several new

trends to be identified. The influence of vibrational nonequilibrium on the stability

results is also discussed in detail, and simplified yet predictive models that clarify the

various nonequilibrium processes involved are discussed.

The second mechanism of disturbance amplification, transient growth, is inves-

tigated in Chapter 6. The simulations detailed in that chapter again provide un-

precedented coverage of the parameter space and the identification of new trends. Of

particular value are results relevant to experiments in high enthalpy impulse facili-

ties, for which transient growth calculations have not been made in the past. Direct

comparisons between modal and non-modal growth are also carried out to clarify the

relative importance of these mechanisms in different flow regimes.

The third mechanism of disturbance amplification is the downstream propagation

of localized wave packets. Although these packets involve the same modal insta-

bility mechanism from Chapter 5, the wave packet evolution combines results from
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many different frequencies, which obscures the connection with spatial linear stability

theory. Chapter 7 clarifies the downstream evolution of linear wave packets in the

boundary layer over a flat plate using linearized DNS, and a simple model is proposed

that enables wave packet evolution to be accounted for in transition prediction.
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Chapter 2

Physical Models

This chapter describes the governing equations, thermochemical models, and trans-

port properties that are used to simulate the gasdynamics of high enthalpy compress-

ible flows. The focus is on gas mixtures containing nitrogen, oxygen, and carbon

dioxide. Nitrogen and oxygen are chosen because of the many engineering applica-

tions involving air, and carbon dioxide is chosen because of its large vibrational energy

capacity and short relaxation time, which make highly nonequilibrium flow situations

possible at relatively modest flow enthalpies. This enhances the influence of nonequi-

librium processes on boundary layer transition and enables the physics involved to be

more easily characterized.

In this work, vibrational nonequilibrium is included in the modeling, but chemical

reactions are neglected. This limits the peak temperatures for which the present

model is applicable. A simple estimate of the temperature limitation can be found

by comparing the enthalpy hfr of a chemically inert gas with the enthalpy heq under

conditions of thermal equilibrium:

err =
heq − hfr

heq
(2.1)

This metric compares the energy released by dissociation reactions to the total energy

of the flow, and hence is an estimate of the maximum relative error in enthalpy

that could be incurred by neglecting chemistry. The results obtained depend on the

reference enthalpy used in calculating Equation 2.1; here we set the enthalpies to zero
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Figure 2.1: a) Relative difference in enthalpy for chemically frozen (hfr) and chemical
equilibrium (heq) gases. Pressure is 20 kPa. Enthalpies are zero at 300 K. b) Relative
difference in cp of chemically frozen (cp,fr) and chemical equilibrium (cp,eq) gases at
20 kPa.

at 300 K, and the results have been found to be reasonably insensitive to this choice.

Equation 2.1 is plotted in Figure 2.1a as a function of temperature for air and CO2.

The results suggest that the chemically frozen analysis will be acceptable up to about

2400 K for air and 1900 K for CO2, which are the temperatures at which the enthalpy

error first reaches 5%. These estimates depend slightly on the pressure, which was

taken to be 20 kPa. The results of Figure 2.1 were calculated using the Cantera

software package (Goodwin, 2003) with reaction data taken from a high temperature

version of the GRI30 mechanism, which extends its range to 6000 K.

For stability analysis, in which the equations of motion are linearized about a

base configuration, the specific heat cp is more important than the actual enthalpy

of the flow. This is because one is interested in fluctuations in enthalpy rather than

its absolute magnitude. Figure 2.1b shows the relative difference between the cp

of chemically frozen and equilibrium flows. It is observed that the assumption of

chemically frozen flow results in much smaller errors for the cp than for the enthalpy.

This suggests that the chemically frozen assumption may perform better in stability

analysis than in calculating a mean boundary layer profile. This possibility is explored

in Section 4.4.3, where chemically frozen stability calculations are compared with a

reacting analysis.
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2.1 Governing Equations

For a chemically inert gas mixture, the nonlinear equations describing the transport

of mass, momentum, vibrational energy, and total energy are the following (Park,

1990):

∂ρ∗

∂t∗
+∇ · (ρ∗u∗) = 0 (2.2a)

ρ∗
Du∗

Dt∗
+∇p∗ = ∇ · τ ∗ (2.2b)

ρ∗
De∗v
Dt∗

= −∇ · q∗v +Q∗ (2.2c)

ρ∗
Dh∗tr
Dt∗

+ ρ∗
De∗v
Dt∗
− Dp∗

Dt∗
= −∇ · (q∗tr + q∗v) + τ ∗ : ∇u∗ (2.2d)

Here asterisks denote dimensional quantities, boldface symbols refer to vectors, and

τ is the viscous stress tensor. The system is closed by the equation of state:

p∗ = ρ∗R∗T ∗ (2.3)

Thermal nonequilibrium is included in the model by dividing the flow enthalpy into

a translational/rotational enthalpy h∗tr and a vibrational energy e∗v. Likewise, the

heat flux vector is split into a vibrational part q∗v and a translational part q∗tr. The

exchange of energy between translational and vibrational modes is taken into account

by the source term Q∗.

2.2 Vibrational Nonequilibrium Modeling

It is convenient to express the vibrational energy e∗v in terms of a vibrational temper-

ature T ∗v . The relationship between these two variables is defined using equilibrium

statistical mechanics and treating molecules as simple harmonic oscillators (Vincenti

and Kruger, 1967). Under conditions of thermal equilibrium, the flow is characterized

by a single temperature T ∗, and this temperature is related to the vibrational energy
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by:

e∗v =
gR∗Θ∗v

eΘ∗
v/T

∗ − 1
(2.4)

This equation provides a monotonic, invertible relationship between vibrational en-

ergy and the temperature. Therefore we define the temperature in Equation 2.4 to be

the vibrational temperature T ∗v . The vibrational temperature simply parameterizes

the vibrational energy while satisfying the intuitive property that the translational

and vibrational temperatures should be equal under conditions of thermal equilib-

rium.

In Equation 2.4, R∗ is the gas constant, g is the degeneracy of the vibration mode,

and Θ∗v is the characteristic temperature of the vibration mode. Symmetric diatomic

molecules like N2 and O2 have a single vibrational mode with a degeneracy of 1,

whereas more complicated polyatomic molecules like CO2 can have multiple vibra-

tional modes with degeneracies greater than 1. Carbon dioxide is a linear, triatomic

molecule which has three modes of vibration: symmetric stretching along its axis,

asymmetric stretching along its axis, and bending transverse to its axis. The last of

these modes has a degeneracy of g = 2 since transverse bending can occur along two

orthogonal planes. The multiplicity of vibrational modes gives carbon dioxide the

ability to store a larger fraction of its total internal energy in vibrational modes com-

pared to diatomic molecules. Table 2.1 lists the characteristic vibration temperatures

and degeneracies relevant to mixtures of carbon dioxide and air.

The total vibrational energy of a gas mixture is computed by summing Equa-

tion 2.4 over all species and all vibrational energy modes, weighting the sum by the

species mass fractions Y .

e∗v =

nsp∑

i=1

M∑

m=1

Yi
gmR∗iΘ∗v,i,m

exp(Θ∗v,i,m/T
∗
v )− 1

(2.5)

In this equation the species is indexed by i and the vibrational modes (of which

there are M total) are indexed by m. The model used in Equation 2.5 assumes that
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Table 2.1: Characteristic vibration temperatures and degeneracies for carbon dioxide
(McQuarrie, 1976) and air (Vincenti and Kruger, 1967).

Species Mode g Θ∗v (K)
N2 1 1 3390
O2 1 1 2270

CO2 1 2 960
2 1 1997
3 1 3382

the vibrational energy states of each molecule satisfy a Boltzmann distribution char-

acterized by the vibrational temperature T ∗v . By using a single value of T ∗v during

this summation, one also assumes that all species share the same vibrational temper-

ature, T ∗v . This is true only if the rate of vibration-vibration (V-V) energy exchange

between unlike molecules (e.g., N2 and O2) is much faster than vibration-translation

(V-T) energy exchange.

Taylor and Bitterman (1969) compiled vibrational energy transfer rates for a num-

ber of different vibrational energy exchange processes involving mixtures of carbon

dioxide and air. Selected energy exchange rates are listed in Table 2.2 at temperatures

of 1000 - 3000 K, which represents the range of temperatures of interest in this study.

In the reactions listed in this table, asterisks are used to designate vibrationally ex-

cited states and M is either N2 or O2; each of these molecules deactivates nitrogen

and oxygen at a similar rate, so only one rate is given in the table. The tabulated

data reveal that V-V transfer between N2 and O2 is several orders of magnitude faster

than V-T transfer for N2, but is slightly slower than V-T transfer for O2. This sug-

gests that for pure air, the use of a single vibrational temperature is a reasonable first

approximation, but more accurate results would be obtained if separate vibrational

temperatures were used and the V-V exchange process were explicitly included in the

model. For simplicity, a single vibrational temperature is assumed here.

With the assumption of a single vibrational temperature, the rate Q∗ of V-T

energy exchange is computed using the Landau-Teller model (Vincenti and Kruger,
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Table 2.2: Vibrational energy transfer rates for several V-V and V-T
processes relevant to high temperature air. Data from Taylor and
Bitterman (1969).

Reaction
Rate at 1000 K Rate at 2000 K Rate at 3000 K

[cm3/s] [cm3/s] [cm3/s]
N2
∗ + M 
 N2 + M < 10−17 4× 10−16 4× 10−15

O2
∗ + M � O2 + M 2× 10−15 4× 10−14 2× 10−13

N2
∗ + O2 � N2 + O2

∗ 6× 10−16 8× 10−15 4× 10−14

1967, Park, 1990):

Q∗ = ρ∗
nsp∑

i=1

Yi
e∗v,i(T

∗)− e∗v,i(T ∗v )

τ ∗i
(2.6)

Here Yi is the species mass fraction and τ ∗i is the effective relaxation time for species

i, which accounts for collisions between molecules of type i and all other types of

molecules. The effective relaxation time τ ∗i is given by (Millikan and White, 1963):

τ ∗i =

[
nsp∑

j=1

Xi

τ ∗ij

]−1

(2.7)

where Xi is the mole fraction of species i and τ ∗ij is the relaxation time for a dilute

species i in an isothermal bath of molecules j. For N2 and O2, the relaxation time

is computed using the correlations of Millikan and White (1963). They fitted the

relaxation times with a semi-empirical relation of the form:

ln
(
τ ∗ijp

∗) = AijT
∗−1/3 +Bij (2.8)

where Aij and Bij are constants which are determined based on the collision part-

ners involved. Millikan and White (1963) experimentally determined the following

correlations for these coefficients:

Aij = 1.16× 10−3√µijΘ∗4/3v,i (2.9a)

Bij = −0.015Aijµ
1/4
ij − 18.42 (2.9b)
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where Θ∗v is the vibrational activation temperature and µij is the reduced mass of the

colliding pair based on the molecular weights W :

µij =
WiWj

Wi +Wj

The model above is used for air, but for pure carbon dioxide the values of A and B

are determined instead from the experimental measurements of Camac (1966). These

measurements are more accurate than the correlation of Millikan and White (1963),

which was intended primarily for diatomic molecules.

2.3 Transport Properties

2.3.1 Thermal Conductivity

With the assumption of a single vibrational temperature, the vibrational and trans-

lational heat flux vectors can be written in terms of the temperature gradients:

q∗v = −k∗v∇T ∗v (Translational/rotational) (2.10a)

q∗tr = −k∗∇T ∗ (Vibrational) (2.10b)

where k∗ is the translational thermal conductivity and k∗v is its vibrational counter-

part. For each species, the thermal conductivity is evaluated using Euken’s relation

(Vincenti and Kruger, 1967), in which the total conductivity is split into transla-

tional/rotational and vibrational parts:

k∗i =
5

2
µ∗i c
∗
v,tr,i (2.11a)

k∗v,i = µ∗i c
∗
v,v,i (2.11b)

Here cv,tr,i is the translational/rotational specific heat of species i and cv,v,i is its

vibrational specific heat. After evaluating the thermal conductivities for each species,

the effective conductivity of the mixture is obtained using Wilke’s mixing rule (Wilke,
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Table 2.3: Sutherland model coefficients fitted to data of Cole and Wakeham (1985)
and Trengove and Wakeham (1987).

Species µref [µPa-s] Tref [K] S [K]
N2 18.50 300 123.8
O2 21.28 300 153.4
CO2 15.14 300 266.5

1950). At low temperatures, the vibrational thermal conductivity vanishes and the

Prandtl number reduces to a constant value of 0.737.

2.3.2 Viscosity

Separate viscosity models are needed for each species in order to apply Euken’s re-

lation in Equation 2.11. Sutherland models for N2 and O2 were deduced by fitting

Sutherland’s coefficient to the correlations of Cole and Wakeham (1985), which are

suitable for the temperature range of 110-2100 K for nitrogen and 110-2500 K for

oxygen. For carbon dioxide, the Sutherland model was fitted to the data of Trengove

and Wakeham (1987), which is valid for 200 < T < 1500 K. Values of the fitted

coefficients are given in Table 2.3 and conform to Sutherland’s model in the form:

µ

µref
=

(
T

Tref

)3/2
S + Tref
S + T

(2.12)

After determining the species viscosities from the Sutherland models mentioned

above, the viscosity of the mixture is calculated using Wilke’s mixing rule. To ver-

ify that mixture viscosity calculated in this way is suitable, the mixture viscosity is

compared for air with the measurements of Kadoya et al. (1985) in Fig. 2.2. The agree-

ment is within 4% over the temperature range 85-2000 K. Also shown in the figure

are the commonly-used viscosity model of White (1974) (originally from Hilsenrath

(1955)), which is accurate only for low temperatures, and the viscosity model used in

the Cantera software package (Goodwin, 2003).
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Figure 2.2: Comparison of current viscosity model with several other models. Can-
tera: Viscosity determined by Cantera using chemically frozen air with GRI30 mech-
anism. White: Sutherland model given by White (1974). Kadoya: empirical correla-
tions determined by Kadoya et al. (1985).

2.4 Dimensionless governing equations

Equations 2.2 are made dimensionless using the following nondimensional variables:

ρ =
ρ∗

ρ∗e
T =

T ∗

T ∗e
Tv =

T ∗v
T ∗e

u =
u∗

U∗e
p =

p∗

ρ∗eU
∗2
e

t =
t∗Ue
L∗

cv,v =
c∗v,v
c∗p,tr

x =
x∗

L∗
k =

k∗

k∗e
k∗v =

k∗v
k∗e

τ =
τ ∗

µ∗eU
∗
e /L

∗ Q =
Q∗ν∗e

ρ∗ec
∗
p,trT

∗
e U
∗2
e

(2.13)

In these equations, subscript e refers to the edge conditions and L∗ is a reference

length. The translational specific heat c∗p,tr is a constant since the gas composition

is fixed. The vibrational source term Q is nondimensionalized using the volumetric

energy density ρ∗ec
∗
p,trT

∗
e and the timescale ν∗e/U

∗2
e .

After re-writing the governing equations (2.2) in terms of these nondimensional

parameters and subtracting the vibrational energy equation from the total energy
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equation, the result is:

∂ρ

∂t
+∇ · (ρu) = 0 (2.14a)

ρ
Du

Dt
+∇p =

1

ReL
∇ · τ (2.14b)

ρcv,v
DTv
Dt

=
1

ReLσe
∇ · (kv∇Tv) +ReLQ (2.14c)

ρ
DT

Dt
−M2(γe − 1)

Dp

Dt
=

1

ReLσe
∇ · (k∇T )

+
M2(γe − 1)

ReL
(τ : ∇u)−ReLQ (2.14d)

γeM
2p = ρT (2.14e)

Here M is the frozen Mach number in the freestream, σe = c∗p,trµ
∗
e/k

∗
e is the Prandtl

number, γe is the ratio of frozen specific heats, and ReL is the Reynolds number.

The equations for the vibrational and translational temperatures are coupled only by

the vibrational source term Q (c.f. Equation 2.6) and the dependence of kv on the

temperature T . The dimensionless equations (2.14) form the basis of the mean flow

calculations and stability analysis presented in the chapters that follow.
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Chapter 3

Mean Flow Calculation

The first step in the linear stability analysis is to compute the steady, laminar base

flow for which the stability characteristics are desired. For flows having low stagnation

enthalpy, the classical similarity solution obtained using the Levy-Lees transformation

(Schlichting and Gersten, 2000) provides an excellent representation of the flow over

a flat plate. However, flows at higher stagnation enthalpies can experience thermal

and/or chemical non-equilibrium and similarity solutions are no longer admissible.

In this chapter, a method for computing boundary layer profiles in thermal non-

equilibrium flows over flat plates and cones is described.

3.1 Boundary Layer Equations

By applying Prandtl’s boundary layer scaling arguments (Schlichting and Gersten,

2000) and assuming zero pressure gradient, the compressible Navier-Stokes equations
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(2.14) are reduced to the boundary-layer equations:

∂

∂x
(ρ̄Ū) +

∂

∂y
(ρ̄V̄ ) = 0 (3.1a)

ρ̄Ū
∂Ū

∂x
+ ρ̄V̄

∂Ū

∂y
=

1

ReL

∂

∂y

(
µ̄
∂Ū

∂y

)
(3.1b)

ρ̄

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y

)
=

1

ReLσe

∂

∂y

(
k̄
∂T̄

∂y

)

+
(γe − 1)M2

ReL
µ̄

(
∂Ū

∂y

)2

−ReLQ̄ (3.1c)

ρ̄c̄v,v

(
Ū
∂T̄v
∂x

+ V̄
∂T̄v
∂y

)
=

1

ReLσe

∂

∂y

(
k̄v
∂T̄v
∂y

)
+ReLQ̄ (3.1d)

where over-bars are used to indicate mean flow quantities. These are the classical

compressible boundary layer equations supplemented by a vibrational energy equation

(3.1d) and a vibrational source term ReLQ̄ which couples the two energy equations.

3.1.1 Boundary Conditions

The velocity boundary conditions at the wall are Ū = V̄ = 0. For temperature,

the two most common boundary conditions at the wall are those of isothermal and

adiabatic flow:

T̄ (0) = Tw (Isothermal) (3.2a)

k̄v
∂T̄v
∂y

∣∣∣∣
y=0

+ k̄
∂T̄

∂y

∣∣∣∣
y=0

= 0 (Adiabatic) (3.2b)

Here Tw is an imposed wall temperature. The adiabatic or isothermal condition by

itself is insufficient to completely specify the problem, and an additional boundary

condition relating the vibrational and translational temperatures at the wall is re-

quired. A common assumption is that the wall catalyzes energy exchange between

translational and vibrational modes, such that T̄v(0) = T̄ (0), and this assumption

is adopted in this work. There is, however, some evidence that a slip condition on

the vibrational temperature can develop at the wall for conditions that are relevant
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to high enthalpy shock tunnels. For example, Nompelis et al. (2003) found that a

vibrational temperature slip was needed to match experimentally measured heat flux

data in double-cone experiments.

The relevant boundary conditions in the freestream are that the flow variables

approach their edge values:

Ū = 1

T̄ = 1 y →∞ (3.3)

T̄v = T ∗v,e/T
∗
e

The form of the boundary condition on T̄v arises from the fact that all temperatures

are nondimensionalized using the edge translational temperature T ∗e .

3.1.2 Freestream Flow Behavior

It must be noted that the freestream flow is not necessarily uniform in the streamwise

direction. For example, in a reflected shock tunnel as the gas from the high tempera-

ture reservoir expands through the nozzle, the translational temperature can decrease

much more rapidly than the vibrational temperature, leading to a “vibrationally hot”

flow with T ∗v,e > T ∗e . These two edge temperatures gradually approach one another as

one moves downstream. Conversely, in free flight if the shock wave emanating from

the leading edge of the body is fairly strong, the translational temperature will rise

quickly and the vibrational temperature can take some time to follow, leading to a

“vibrationally cold” freestream with T ∗e > T ∗v,e. Again, the freestream vibrational and

translational temperatures approach one another as the gas moves downstream.

To a good approximation, the relaxation of the freestream is described by the one
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Figure 3.1: Variation of freestream properties with streamwise distance for a) vibra-
tionally hot flow; b) vibrationally cold flow. In both cases, the flow is CO2 with a
Mach number of 5 based on γ = 9/7, and P ∗e = 10 kPa.

dimensional inviscid flow problem:

Dρ

Dt
+ ρ

∂u

∂x
= 0 (3.4a)

Du

Dt
+

1

ρ

∂p

∂x
= 0 (3.4b)

cv
DT

Dt
+ cv,v

DTv
Dt

+ p
∂u

∂x
= 0 (3.4c)

cv,v
DTv
Dt

= Q (3.4d)

which is supplemented by the equation of state p = ρRT . For steady flow, this system

of equations can be easily solved numerically. The results of two numerical simulations

are given for carbon dioxide in Figure 3.1. In Figure 3.1a, the flow is vibrationally

hot: the edge temperature is T ∗e = 1000 K while the vibrational temperature is T ∗v,e =

1500 K. This is representative of a reflected shock tunnel in which the translational

temperature of the gas flowing out of a high temperature reservoir decreases too

rapidly for the vibrational temperature to maintain equilibrium. Figure 3.1b is the

opposite situation of vibrationally cold flow: the edge temperature is T ∗e = 1000 K

while the vibrational temperature is 300 K.

An important observation from these simulations is that the pressure changes

significantly as the freestream flow relaxes toward vibrational equilibrium. In fact, the
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velocity and density (not shown) remain nearly constant while the pressure varies in

proportion to the translational temperature. This pressure gradient in the freestream

is inconsistent with our original assumption of a zero pressure gradient boundary layer.

Therefore the boundary layer calculation employed here is restricted to situations for

which the freestream is either near equilibrium or relaxing slowly in the downstream

direction, such that the pressure gradient can be ignored.

In practice this is not too prohibitive a restriction. For flows that relax rapidly

towards equilibrium, such as the carbon dioxide flows considered in Figure 3.1, the

gas emanating from a nozzle or passing through a bow shock will reach equilibrium

over a short distance (a few cm for the examples in the figure) and hence the pressure

gradient is only important upstream or at the leading edge of the body. For flows

having longer relaxation times, such as those involving nitrogen, the pressure gra-

dient associated with vibrational relaxation is small and our zero pressure gradient

approximation is good.

As mentioned previously, the velocity in the freestream is nearly constant during

the relaxation process. Consequently, the energy equations (3.4c-3.4d) are approxi-

mately decoupled from the rest of the system:

DTv
Dt

=
Q

cv,v

DT

Dt
≈ −cv,v

cv

DTv
Dt

= −Q
cv

(3.5)

In essence, this approximation neglects flow work associated with dilatation of the

fluid (p∇·~u), which is small given the uniformity of the freestream velocity. Figure 3.2

compares the temperature profiles computed using this reduced model with those

from the full equations (3.4). The agreement is quite good, although there is a slight

difference in relaxation rate which is associated with the pressure gradient described

above. The full model includes the rising pressure in the downstream direction,

which reduces the vibrational relaxation time (τ ∝ p−1), whereas the reduced model

assumes that the freestream pressure is constant. Given the good agreement between

the simple model (3.5) and the full model (3.4), the simple model is used in all

boundary layer calculations involving a nonequilibrium freestream.
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Figure 3.2: Relaxation of translational and vibrational temperatures for a vibra-
tionally hot flow of CO2 at M=5 and P ∗e = 10 kPa. Full model is Equations 3.4,
whereas the reduced model is Equation 3.5 with the assumption of constant freestream
pressure.

3.1.3 Coordinate transformation

Since the boundary layer equations (3.1) are singular at the leading edge of a flat

plate or cone, it is convenient re-scale the vertical coordinate y by the local Blasius

boundary layer thickness, introducing the similarity variable η:

η = y∗

√
U∗e
ν∗ex

∗ (3.6)

Even though the flow is generally not self-similar, this transformation is beneficial

since it removes the leading-edge singularity and enables the use of a fixed grid and

a fixed computational domain size. When the boundary layer equations (3.1) are
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rescaled in this manner, the result is:

(
x∗

∂

∂x∗
− η

2

∂

∂η

)
(ρ̄Ū) +

√
Rex

∂

∂η
(ρ̄V̄ ) = 0 (3.7a)

ρ̄Ū

(
x∗
∂Ū

∂x∗
− η

2

∂Ū

∂η

)
+ ρ̄V̄

√
Rex

∂Ū

∂η
=

∂

∂η

(
µ̄
∂Ū

∂η

)
(3.7b)

ρ̄Ū

(
x∗
∂T̄

∂x∗
− η

2

∂T̄

∂η

)
+ ρ̄V̄

√
Rex

∂T̄

∂η
=

1

σe

∂

∂η

(
k̄
∂T̄

∂η

)

+ (γe − 1)M2
e µ̄

(
∂Ū

∂η

)2

−RexQ̄

(3.7c)

ρ̄Ū c̄v,v

(
x∗
∂T̄v
∂x∗
− η

2

∂T̄v
∂η

)
+ ρ̄V̄ ¯cv,v

√
Rex

∂T̄v
∂η

=
1

σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
+RexQ̄ (3.7d)

3.1.4 Flow Timescales

In general, the vibrational source term Q̄ in Equations 3.7 precludes self-similar so-

lutions of the boundary layer profiles. The non-similarity of the flow is caused by the

presence of multiple timescales (viscous, convective, and vibrational), as opposed to

frozen or equilibrium boundary layers which involve only the viscous and convective

timescales.

In practice, one is often interested in using a frozen or equilibrium flow model

wherever possible since a self-similar solution is then admissible, which can be com-

puted relatively easily. In doing so, one must determine whether frozen or equilibrium

flow is in fact a good approximation for the flow of interest. Intuitively, one expects

the frozen and equilibrium flow solutions to perform well when the vibrational re-

laxation time is very large or very small; however, the largeness or smallness of the

relaxation time must be judged in comparison with flow timescales. There are in fact

two flow timescales in this problem: one is the viscous timescale τvisc = ν∗e/U
∗2
e and

the other is the convection timescale τconv = x∗/U∗e . However, since we are interested

in high Reynolds number flows and τconv/τvisc = Rex, the convective timescale is the
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timescale to which the vibrational relaxation time should be compared. One then

expects the frozen flow approximation to be appropriate when U∗e τ
∗/x∗ � 1 (and

vice versa for equilibrium flow).

The same result can be derived directly from the equations of motion. For exam-

ple, in a gas consisting of a single diatomic species, the dimensionless source terms in

Equations 3.7 are (c.f. Equation 2.6):

RexQ̄ = Rex
Q∗ν∗e

ρ∗ec
∗
p,trT

∗
e U
∗2
e

=

(
x∗

U∗e τ
∗

)(
ρ̄∗

ρ∗e

)(
e∗v(T̄ )− e∗v(T̄v)

c∗p,trT
∗
e

)

≈
(

x∗

U∗e τ
∗

)(
ρ̄∗

ρ∗e

)(
c∗v,v
c∗p,tr

)(
T̄ ∗ − T̄ ∗v
T ∗e

)
(3.8)

The dimensionless density (ρ̄∗/ρ∗e) is usually on the order of 0.1-10. From the rest of

the terms, it is concluded that vibrational nonequilibrium is negligible if:

1. The flow is already close to vibrational equilibrium, |T̄ ∗ − T̄ ∗v | � T ∗e ;

2. The temperature is low enough that only a small fraction of the internal energy

is contained in vibrational modes (c∗v,v/c
∗
p,tr � 1);

3. The relaxation time is long compared to the convective timescale, x∗/U∗e τ
∗ � 1.

Given that the relaxation time τ ∗ is nearly constant as one moves downstream, it is

to be expected that a high enthalpy boundary layer always begins with vibrationally

frozen flow at the leading edge (x∗/U∗e τ
∗ � 1), features a non-equilibrium region

further downstream, and then approaches equilibrium flow as Rex →∞.

3.2 Self-Similar Solutions

For situations in which there is a large disparity between the vibrational and con-

vective timescales, Equations 3.7 admit self-similar solutions that have no explicit

dependence on x∗. Rather than using the usual density-weighted Levy-Lees transfor-

mation (Schlichting and Gersten, 2000), it is convenient here to perform the boundary
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layer calculation using un-stretched coordinates. By integrating the continuity equa-

tion (3.7a) with respect to η and using integration by parts, one finds the relation

ρ̄V̄ = − 1√
Rex

(
2x∗

∂g

∂x∗
− 1

2

[
ρ̄Ūη − 2g

])
(3.9)

where g is defined following the notation of Klunker and McLean (1953):

g ≡ 1

2

∫ η

0

(ρ̄Ū)dη′ (3.10)

Using (3.9) to eliminate the vertical velocity, the momentum and energy equations

(3.7b-3.7d) can be written in terms of the similarity variable as follows:

ρ̄Ūx∗
∂Ū

∂x∗
− ∂

∂η

(
µ̄
∂Ū

∂η

)
− ∂Ū

∂η

(
g + 2x∗

∂g

∂x∗

)
= 0

(3.11a)

ρ̄Ūx∗
∂T̄

∂x∗
− 1

σe

∂

∂η

(
k̄
∂T̄

∂η

)
− (γe − 1)M2µ̄

(
∂Ū

∂η

)2

+RexQ̄−
∂T̄

∂η

(
g + 2x∗

∂g

∂x∗

)
= 0

(3.11b)

ρ̄Ū c̄v,vx
∗∂T̄v
∂x∗
− 1

σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
−RexQ̄− c̄v,v

∂T̄v
∂η

(
g + 2x∗

∂g

∂x∗

)
= 0

(3.11c)

The flow can be treated as vibrationally frozen if the vibrational source term

RexQ̄ is small. This occurs at the leading edge x∗ → 0 or when the temperature

is low enough that the vibrational energy is small. In either case, the source terms

are neglected and terms involving derivatives with respect to x∗ are ignored. This

produces the self-similar equations of Klunker and McLean (1953) along with a de-
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coupled vibrational energy equation:

g
∂Ū

∂η
+

∂

∂η

(
µ̄
∂Ū

∂η

)
= 0 (3.12a)

g
∂T̄

∂η
+

1

σe

∂

∂η

(
k̄
∂T̄

∂η

)
+ (γe − 1)M2µ̄

(
∂Ū

∂η

)2

= 0 (3.12b)

gc̄v,v
∂T̄v
∂η

+
1

σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
= 0 (3.12c)

These equations can be solved using the method of successive approximations

described by Klunker and McLean (1953). This technique begins with an initial

guess of the flow profiles; for instance, the uniform profiles Ū(η) = 1, T̄ (η) = 1,

T̄v(η) = T ∗v,e/T̄
∗
e work quite well as an initial guess. With the help of an integrating

factor the X momentum, energy, and vibrational energy equations (3.12) can then be

written in the form:

∂

∂η

[
µ̄
∂Ū

∂η
exp

(∫ η

0

g(ξ)

µ̄(ξ)
dξ

)]
= 0 (3.13a)

∂

∂η

[
k̄

σe

∂T̄

∂η
exp

(∫ η

0

g(ξ)σe
k̄(ξ)

dξ

)]
=

−(γe − 1)M2µ̄

(
∂Ū

∂η

)2

exp

(∫ η

0

g(ξ)σe
k̄(ξ)

dξ

)
(3.13b)

∂

∂η

[
k̄v
σe

∂T̄v
∂η

exp

(∫ η

0

g(ξ)c̄v,v(ξ)σe
k̄v(ξ)

dξ

)]
= 0 (3.13c)

Each of these equations can be numerically integrated twice to yield the profiles of

velocity, temperature, and vibrational temperature. In computing these integrals, the

profiles of µ̄, k̄, k̄v, g, and c̄v,v are evaluated using the current guess of the solution.

The evaluation of the integrals then provides a new solution estimate. The integrals

above are evaluated repeatedly until convergence is reached. The convergence cri-

terion used in this work is that the L2 norm of the difference between successive

iterations must be less than 10−7. This procedure provides a fast and robust means

of calculating self-similar boundary layer profiles.
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For equilibrium flow situations in which the rate of vibrational energy exchange

is rapid enough that T̄v = T̄ , the translational and vibrational energy equations

(3.12b-3.12c) can be added together to obtain the result:

g
∂Ū

∂η
+

∂

∂η

(
µ̄
∂Ū

∂η

)
= 0 (3.14a)

g(1 + c̄v,v)
∂T̄

∂η
+

1

σe

∂

∂η

(
(k̄ + k̄v)

∂T̄

∂η

)
+ (γe − 1)M2µ̄

(
∂Ū

∂η

)2

= 0 (3.14b)

These equations again admit self-similar solutions which can be computed using the

method of successive approximations described above.

3.3 Non-Similar Solutions

Because of the source term Q̄, Equations 3.11 do not in general admit self-similar

solutions. However, since the boundary layer equations are parabolic, the steady

laminar boundary layer can be solved as an initial-value problem in the streamwise

direction with solutions determined by downstream marching. As x∗ → 0, the vibra-

tional source terms in Equations 3.11 disappear because they are pre-multiplied by

the Reynolds number. Therefore the self-similar, vibrationally frozen solutions from

Equations 3.12 can be used as initial conditions to start the downstream march.

To proceed with the non-similar analysis, Equations (3.11) are discretized us-

ing fourth order finite differences in the wall-normal direction and implicit, first-order

finite differences in the streamwise direction. The low order of accuracy in the stream-

wise direction is acceptable because the slow evolution of the boundary layer profiles

in the streamwise direction is easily captured by a low order method. The discretized
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boundary layer equations (3.7) are:

E = 0 =
x

∆x

(
Ū

T̄
− Ū (k−1)

T̄ (k−1)

)
− η

2

∂

∂η

(
Ū

T̄

)
+

∂

∂η

(
¯̄V

T̄

)
(3.15a)

F = 0 =
Ūx

∆x

(
Ū − Ū (k−1)

)
+

(
¯̄V − ηŪ

2

)
∂Ū

∂η
− T̄ ∂

∂η

(
µ̄
∂Ū

∂η

)
(3.15b)

G = 0 =
Ūx

∆x

(
T̄ − T̄ (k−1)

)
+

(
¯̄V − ηŪ

2

)
∂T̄

∂η
− T̄

σe

∂

∂η

(
k̄
∂T̄

∂η

)

− T̄ (γe − 1)M2
e µ̄

(
∂Ū

∂η

)2

+ T̄RexQ̄ (3.15c)

H = 0 =
Ū c̄v,vx

∆x

(
T̄v − T̄ (k−1)

v

)
+ c̄v,v

(
¯̄V − ηŪ

2

)
∂T̄v
∂η

− T̄

σe

∂

∂η

(
k̄v
∂T̄v
∂η

)
− T̄RexQ̄ (3.15d)

In these equations, E, F , G, and H are residuals corresponding to the continuity,

x momentum, energy, and vibrational energy equations. The variable ¯̄V = V̄
√
Rex

is the vertical velocity re-scaled by the Reynolds number. Superscripts indicate the

stream-wise grid location with local grid spacing ∆x; however, for clarity we omit

the superscripts corresponding to marching step k, at which most of the terms are

evaluated, and indicate only the terms that are evaluated at the previous stream-

wise point k − 1. All terms without superscripts are evaluated at the marching step

k. Wall-normal differentiation is carried out using either 4th order finite differences

or differentiation matrices based on the Chebyshev polynomials collocated at the

Gauss-Lobatto points (Canuto et al., 1988).

Suppose that a column vector X contains the current guess of Ū , V̄ , T̄ , and T̄v at

location k along the boundary layer, and a column vector R contains the residuals

E, F , G, and H defined by Equation 3.15. The residual vector R is then driven to

zero using Newton iteration, in which the solution vector X is updated according to
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the formula:

J(Xn+1 −Xn) = −R (3.16)

where J is the Jacobian matrix and n is the Newton iteration number. These iterations

are repeated until the L2 norm of the residual vector R falls below 10−10. At each

iteration the Jacobian matrix is evaluated analytically, and its elements are provided

in Appendix B.

3.4 Verification

Verification of the boundary layer calculation was carried out by making comparisons

with Navier-Stokes simulations which were conducted using the STABL stability soft-

ware package developed at the University of Minnesota (Johnson et al., 1998, Wright

et al., 1998, Johnson, 2000). This software package includes a shock-capturing finite

volume solver that models non-equilibrium, chemically reacting flows. The Navier-

Stokes simulations shown here were conducted using a grid of 450× 450 points, with

exponential clustering of points at the wall and near the leading edge of the plate.

Convergence was checked using a finer grid of 600 streamwise by 650 wall-normal

points, which led to no significant differences in the flow profiles. For cases with

air, the Navier-Stokes simulations employed a 5 species air model containing N2, O2,

NO, N, and O, with a freestream composition of 78% N2 and 22% O2 by mole. For

simulations with carbon dioxide, a 5 species model was also used with CO2, CO, C,

O2, and O included in the model, and with a pure CO2 freestream.

For the present non-similar boundary-layer solver described in the preceding sec-

tions, the mesh resolution was 300 wall-normal points and 150 marching steps in the

streamwise direction, which has been found to produce a converged solution. Veri-

fication was carried out for flows of both air and carbon dioxide; in both cases the

geometry is a flat plate with a sharp leading edge.
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Figure 3.3: Comparison of boundary layer profiles at Rex = 2.25 million from STABL
Navier-Stokes solver (symbols) and boundary layer code (solid lines). Profiles are
velocity (5), translational/rotational temperature (�), and vibrational temperature
(�). a) Low enthalpy, P ∗e = 5 kPa, M = 5, T ∗w = 300 K, T ∗e = T ∗v,e = 300 K. b) High
enthalpy, P ∗e = 20 kPa, M = 5, T ∗w = 300 K, T ∗e = T ∗v,e = 1500 K.

3.4.1 Air

Examples of temperature and velocity profiles for flows of air at Rex = 2.25× 106 are

given in Figure 3.3. Figure 3.3a is a fairly low enthalpy flow that is representative

of a slender body in free flight, with T ∗e = T ∗v,e = 300 K. At Rex = 2.25 × 106, the

vibrational temperature remains close to its initial value and the translational tem-

perature distribution is close to that of a self-similar frozen flow. Because of the slow

vibrational relaxation times of N2 and O2 at low temperatures, the vibrational tem-

perature does not approach the translational temperature until the Reynolds number

is very large.

Figure 3.3b is a much higher enthalpy case that is representative of a shock tunnel,

with T ∗e = T ∗v,e = 1500 K. In this case the rate of vibrational energy transfer is more

significant, so that by Rex = 2.25× 106 the vibrational temperature is fairly close to

the equilibrium temperature distribution. As Rex increases further, the vibrational

and translational temperature profiles both approach a single equilibrium temperature

profile.

In the figure, solid lines are taken from the present boundary layer calculations,

while symbols correspond to the shock capturing Navier-Stokes simulations. For both
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flow conditions shown, excellent agreement between the boundary layer solver and the

Navier-Stokes solver is seen, and similarly good agreement has been found for other

Reynolds numbers and flow conditions.

3.4.2 Carbon Dioxide

Figure 3.4 compares the boundary layer profiles from the present boundary layer

solver with Navier-Stokes simulations for carbon dioxide at M = 5 and with a fairly

low edge temperature of 300 K. In making this comparison, the vibrational relaxation

time in the present boundary layer simulations was adjusted to match the model used

by STABL. Specifically, the relaxation time was calculated using the correlation of

Millikan and White (1963) given in Equations 2.8 and 2.9 rather than using the

experimental data of Camac (1966). In using Equations 2.9 one must choose a value

for the vibrational activation temperature Θ∗v, and this choice is ambiguous for carbon

dioxide, which has three vibrational modes. To match the model used in STABL,

the value Θ∗v = 960 K corresponding to the bending mode was used. This change

to the relaxation time was used only for making comparisons with STABL; unless

stated otherwise, the experimentally measured rates of Camac (1966) are used in the

remainder of this work.

Figure 3.4 shows the boundary layer profiles for a progression of Reynolds numbers

from R =
√
Rex = 200 − 1500. The evolution of the temperature profiles from flow

that is nearly frozen to flow that is in vibrational equilibrium is evident. At all

Reynolds numbers, excellent agreement between the boundary-layer solver (lines)

and the Navier-Stokes simulations (symbols) is observed.

Figure 3.5 shows a similar progression of mean flow profiles, but for a higher

enthalpy flow that is relevant to reflected shock tunnels: here the Mach number

is 5 and the edge temperature is 1000 K. The qualitative behavior is the same as

that shown in the preceding cases, but because of the higher temperature the flow

relaxation is quite fast, and the temperature profiles already reach equilibrium at a

low Reynolds number of about R = 400. This Reynolds number is much smaller than
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Figure 3.4: Comparison of boundary layer profiles at four Reynolds numbers from
STABL Navier-Stokes solver (symbols) and boundary layer code (solid lines). Profiles
are velocity (5), translational/rotational temperature (�), and vibrational tempera-
ture (�). Flow is at M = 5, P ∗e = 5 kPa, T ∗e = T ∗v,e =300 K. The Reynolds numbers

R =
√
Rex are a) 200, b) 600, c) 1000, and d) 1500.
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Figure 3.5: Comparison of boundary layer profiles at four Reynolds numbers from
STABL Navier-Stokes solver (symbols) and boundary layer code (solid lines). Profiles
are velocity (5), translational/rotational temperature (�), and vibrational temper-
ature (�). Flow is at M = 5, P ∗e = 20 kPa, T ∗e = T ∗v,e =1000 K, T ∗w = 300 K. The

Reynolds numbers R =
√
Rex are a) 100, b) 200, c) 400, and d) 600.
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the typical transition Reynolds number. This suggests that in performing stability

analysis of high enthalpy flows of CO2, it is an excellent approximation to assume

that the mean boundary layer is in a state of vibrational equilibrium.

The preceding simulations have been carried out for particular choices of the edge

pressure, but when the boundary layer profiles are presented nondimensionally in

terms of the Reynolds number and the scaled vertical coordinate η = y∗/δ, they ap-

ply for any pressure. As shown in Equation 2.8, the vibrational relaxation time is

inversely proportional to the pressure, but the viscous timescale ν∗e/U
∗2
e is inversely

proportional to pressure as well. As the pressure is increased, vibrational relaxation

proceeds more rapidly in terms of physical distance downstream of the leading edge,

but the boundary layer also grows more rapidly. As a result, the boundary layer pro-

files are always the same at a given Reynolds number, regardless of the pressure. This

result can also be derived from the dimensionless equations of motion (2.14) in which

the edge pressure appears only through the Reynolds number. This behavior con-

trasts with flows involving chemical reactions, in which the three-body recombination

reactions often prevent the pressure from scaling out of the problem.

3.5 Mangler Transform

The methods described so far apply to a zero pressure gradient flat plate, which is

the geometry of interest for most of the work presented in this thesis. However, in

some cases it is of interest to make comparisons with experiments involving flow over

sharp cones. For flows that are vibrationally frozen or in vibrational equilibrium,

the similarity solutions described in Section 3.2 can be used in combination with the

Mangler transformation (White, 1974, Schlichting and Gersten, 2000) to model flow

past sharp cones. As will be shown below, the Mangler transformation reveals that

the boundary layer profiles on a cone are equivalent to those of a flat plate at a

larger Reynolds number where the boundary layer thickness is a factor of
√

3 larger.

Specifically, if the wavenumber α and frequency ω of disturbances in the boundary

layer are normalized using the local boundary layer thickness δ as the length scale



44

and δ/Ue as the time scale, then the results from stability calculations on cones and

flat plates are related by

Rc =
√

3Rfp (3.17a)

ωc =
√

3ωfp (3.17b)

αc =
√

3αfp (3.17c)

where subscript ‘c’ refers to a cone, ‘fp’ refers to a flat plate, and R =
√
Rex is the

Reynolds number based on boundary layer thickness.

The Mangler transformation described above is a good approximation only at high

Reynolds numbers where the transverse curvature of the boundary layer is small and

the effects of flow divergence are negligible, i.e., the boundary layer is approximately

planar. The influence of flow divergence and transverse curvature on the stability

properties has been assessed by Malik and Anderson (1991), who showed that non-

planar effects can be fairly significant, especially if the cone angle is small. For

instance, they found that, compared to a planar boundary layer, flow divergence and

curvature decreased the 2nd mode growth rate by about 10% for a 10◦ half-angle cone

and by about 33% for a 2◦ cone at a Reynolds number of R = 1000. In this work,

we focus mainly on flat plates so this is not a concern. However, in a few instances

comparisons are made with experimental data involving cones and the assumption of

a planar boundary layer is invoked. While this assumption is commonly used within

the boundary layer transition community, the shortcomings described above must be

appreciated.

Although the Mangler transform has been used quite successfully for modeling

calorically perfect gases, its applicability to nonequilibrium flows is unclear. It is

not immediately obvious whether a nonequilibrium axisymmetric boundary layer can

be related to an equivalent flow over a flat plate, or whether the simple relations

given in Equation 3.17 can be used for nonequilibrium flows. In this section, these

questions are answered by applying the Mangler transformation to the nonequilibrium

boundary layer equations (3.1).
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Suppose that the flow past an axisymmetric body is described by the flow variables

Ũ , Ṽ , T̃ , and T̃v, which are functions of the independent variables x̃ and ỹ. In this

section the tilde is used to designate variables relevant to an axisymmetric flow, and

all variables are nondimensionalized using the scheme in Equations 2.13. Suppose

also that the radius of the axisymmetric body is r̃(x̃). If one neglects the transverse

curvature (assuming δ � r̃), then the nonequilibrium equivalents of the axisymmetric

boundary layer equations (Schlichting and Gersten, 2000) are

∂

∂x̃

(
r̃(x̃)ρ̃Ũ

)
+ r̃(x̃)

∂

∂ỹ

(
ρ̃Ṽ
)

= 0 (3.18a)

ρ̃Ũ
∂Ũ

∂x̃
+ ρ̃Ṽ

∂Ũ

∂ỹ
=

1

ReL

∂

∂ỹ

(
µ̃
∂Ũ

∂ỹ

)
(3.18b)

ρ̃

(
Ũ
∂T̃

∂x̃
+ Ṽ

∂T̃

∂ỹ

)
=

1

ReLσe

∂

∂ỹ

(
k̃
∂T̃

∂ỹ

)

+
(γe − 1)M2

ReL
µ̃

(
∂Ũ

∂ỹ

)2

−ReLQ̃ (3.18c)

ρ̃c̃v,v

(
Ũ
∂T̃v
∂x̃

+ Ṽ
∂T̃v
∂ỹ

)
=

1

ReLσe

∂

∂ỹ

(
k̃v
∂T̃v
∂ỹ

)
+ReLQ̃ (3.18d)

Other than notational differences, the equations of x momentum, energy, and vibra-

tional energy are unchanged from those given for a plate in Equation 3.1.

Generalizing the approach of White (1974), the Mangler transform is applied by

introducing a new set of scaled variables:

x =

∫ x̃

0

r̃2(x̃)dx̃ y = r̃ỹ

Ū(x) = Ũ(x̃) V̄ (x) =
1

r̃

(
Ṽ +

ỹŨ

r̃

dr

dx̃

)
(3.19)

T̄ (x) = T̃ (x̃) T̄v(x) = T̃v(x̃)

ρ̄(x) = ρ̃(x̃)

As will be seen, the variables on the LHS correspond to an equivalent flow over a

flat plate. On the basis of this transformation, the derivatives map according to the
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relations:

∂

∂x̃
= r̃2 ∂

∂x
+
y

r̃

∂r̃

∂x̃

∂

∂y
(3.20a)

∂

∂ỹ
= r̃

∂

∂y
(3.20b)

When the change of variables (3.19) is applied to the axisymmetric boundary layer

equations (3.18), the result is:

∂

∂x

(
ρ̄Ū
)

+
∂

∂y

(
ρ̄V̄
)

= 0 (3.21a)

ρ̄

(
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y

)
=

1

ReL

∂

∂y

(
µ̄
∂Ū

∂y

)
(3.21b)

ρ̄

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y

)
=

1

σeReL

∂

∂y

(
k̄
∂T̄

∂y

)

+
(γe − 1)M2

ReL
µ̄

(
∂Ū

∂y

)2

− ReLQ̄

r̃2
(3.21c)

ρ̄c̄v,v

(
Ū
∂T̄v
∂x

+ V̄
∂T̄v
∂y

)
=

1

σeReL

∂

∂y

(
k̄v
∂T̄v
∂y

)
+
ReLQ̄

r̃2
(3.21d)

These equations are identical to those for a flat-plate boundary layer (3.1) with the

exception that the vibrational source terms are divided by a factor of r̃2. These

equations can be solved using exactly the same technique as in Section 3.3, provided

that at each marching step the vibrational source terms Q̄ are divided by the local

radius squared.

The above result applies to a general axisymmetric body. For the special case of

a cone with a half-angle of χ, the cone radius is given by:

r̃(x̃) = x̃ sin(χ) (Cone) (3.22)

One can then use the expressions in Equation 3.19 to find explicit relations between
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the cone coordinates (x̃, ỹ) and those of an equivalent flat plate (x, y):

x̃ =
[
3x/ sin2(χ)

]1/3
(3.23a)

ỹ =
y

x̃ sin(χ)
=

y

[3x sin(χ)]1/3
(3.23b)

After solving the equivalent flat plate problem in the (x, y) plane, these relations can

be used to return to the (x̃, ỹ) plane associated with a cone.

As described in Section 3.3, it is often convenient to compute the boundary layer

profiles in terms of the Blasius similarity variable η = y/
√
ν∗ex/Ue, even when the

flow is not self-similar. Using Equations 3.23, it can easily be shown that the Blasius

variables for the flat plate (η) and the cone (η̃) are related by:

η̃ =
ỹ√

ν∗e x̃/U
∗
e

=
y√

ν∗e (3x)/U∗e
=

η√
3

(3.24)

If the flow is self-similar, then the velocity and temperature profiles are only a function

of η. Hence the solutions for the flat plate and the cone are identical when their

vertical scales coincide: η̃ = η. This implies that x̃ = 3x, R̃ =
√

3R, and δ̃ =
√

3δ, as

explained in the introduction to this section. For a non-similar flow the relationship

between the cone and flat plate solutions is more complicated, as the velocity and

temperature profiles are functions of both η and x. However, there is still a one-to-

one mapping between the solutions on a flat plate and on a cone; for a general flow

variable f the relation is:

f̃(x̃, η̃) = f

(
[3x/ sin2(χ)]1/3,

η√
3

)
(3.25)

where f̃ is the solution on a cone and f is the solution on a flat plate.
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Chapter 4

Modal Stability Analysis

This chapter describes several methods that can be used to conduct modal stabil-

ity analysis of high enthalpy boundary layers. In modal analysis one calculates the

eigenmodes of a linearized flow field and searches for unstable, exponentially growing

solutions. This is in contrast to non-modal stability analysis (also known as transient

growth), which is the subject of Chapter 6. In this chapter, two different methods for

computing the eigenvalues of the linearized Navier-Stokes system are described, and

their various advantages and disadvantages are discussed. Both methods have been

widely used in the literature for analyzing flows of perfect gases, but here they are

extended for gases that are out of thermal equilibrium. Results obtained using these

methods are presented in Chapter 5.

The growth or decay of small disturbances in the laminar boundary layer is studied

by linearizing the compressible Navier-Stokes equations and computing the eigenval-

ues and eigenvectors of the resulting linear system. The linearization is accomplished

by decomposing the flow variables into mean and fluctuating parts of the form:

q = q̄(y) + <
{
q̂(y)× ei(αx+βz−ωt)} (4.1)

where < designates the real part of a complex variable and q is the vector of flow

variables:

q = (u, v, w, p, T, Tv)
T
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Here over-bars designate the base flow and hats designate the complex amplitude co-

efficients of the fluctuations. The streamwise and spanwise wavenumbers α and β are

nondimensionalized using the local Blasius boundary layer thickness δ =
√
ν∗ex

∗/U∗e ,

and the frequency ω is nondimensionalized using the timescale δ/U∗e . In this decom-

position, the flow is assumed to be locally parallel, meaning that three types of terms

are neglected:

1. Terms involving x derivatives of the mean flow variables

2. Terms involving the mean vertical velocity V̄

3. Terms involving x derivatives of the amplitude coefficients of the disturbances

(designated by hats)

The neglect of these terms can be justified using multiple-scales analysis (Nayfeh,

1980, Fedorov and Khokhlov, 2001), in which flow variables are taken as a perturba-

tion expansion in powers of the parameter ε = δL/L, where δL is the Blasius boundary

layer thickness at the end of the plate or cone and L is its length. Using the Bla-

sius boundary layer scaling arguments (Schlichting and Gersten, 2000), it can be

shown that the mean vertical velocity V̄ is a factor of ε smaller than the stream-wise

velocity Ū . Likewise, derivatives with respect to x are a factor of ε smaller than

derivatives with respect to y. Because the boundary layer equations scale in this way,

the locally-parallel flow assumed here corresponds to the lowest order of the multiple-

scales expansion (ε0), with non-parallel effects entering at order ε1. The accuracy

of the parallel flow assumption improves as the Reynolds number RL = δLU
∗
e /ν

∗
e

increases, since ε = δL/L = 1/RL.

The majority of the simulations performed in this work are spatial analyses in

which the frequency ω is assumed to be real and the streamwise wavenumber α is

determined as the eigenvalue. Eigenvalues having negative imaginary part αi are then

unstable. The alternative is temporal analysis, in which the wavenumber α is assumed

to be real and the frequency ω is the eigenvalue, with positive ωi indicating insta-

bility. The spatial framework is generally considered to better represent convectively

unstable flows like the boundary-layer than the temporal framework.
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Two different methods are available for computing the eigenvalues of the linearized

Navier-Stokes equations. The first method is called the “global” method in the liter-

ature. In this method the linearized equations are cast in the form of a large matrix

eigenvalue problem and all the eigenvalues of the matrix are determined using stan-

dard linear algebra algorithms. This method requires no a priori knowledge of the

eigenvalues and returns both the discrete modes and discrete approximations to the

continuous spectra. However, the global method is rather computationally expensive

since the computational effort scales with the cube of the matrix dimension.

The second method is called the “local” method in the literature: in this method

a single discrete eigenvalue is determined rapidly and with high accuracy, but a close

initial guess of the eigenvalue is needed. The local method has an additional ad-

vantage that the freestream boundary conditions (discussed in Section 4.3) can be

treated exactly, whereas the global method can employ only approximate boundary

conditions. In practice, a poorly-resolved eigenvalue search with the global method

is often used to provided initial guesses for the more accurate local method. Each of

these two methods is described in the sections that follow.

4.1 Global Method

The fluctuations given in Equation 4.1 are substituted into the Navier-Stokes equa-

tions (2.14) and linearized. As detailed in Appendix A, the resulting linearized equa-

tions can be rearranged in the form of six second order differential equations:

(
A
∂2

∂y2
+ B

∂

∂y
+ C

)
q̂ = 0 (4.2)

where A, B, and C are 6 × 6 matrices whose coefficients are given in Appendix A,

and q̂ is the column vector of disturbance amplitudes:

q̂ =
(
û, v̂, p̂, θ̂, ŵ, θ̂v

)T
(4.3)
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Here û, v̂, and ŵ are the fluctuations in streamwise, vertical, and spanwise velocities,

p̂ is the pressure fluctuation, and θ̂ and θ̂v are the fluctuations in translational and

vibrational temperatures. The boundary conditions imposed here are the Dirichlet

conditions:

û = v̂ = ŵ = θ̂ = θ̂v = 0 y = 0 (4.4a)

û = v̂ = ŵ = θ̂ = θ̂v = 0 y = ymax (4.4b)

At the wall, the velocity boundary conditions û = v̂ = ŵ = 0 follow from the

no-slip condition and the temperature boundary conditions θ̂ = θ̂v = 0 are based

on the assumption that the thermal inertial of the wall is large, which is true for

the high frequency (kHz-MHz) fluctuations experienced in high enthalpy boundary

layers. In the freestream, the Dirichlet boundary conditions (4.4b) are an overly-

restrictive approximation; the correct boundary condition is that the disturbances

must remain bounded as y →∞. This correct boundary condition is implemented for

the local analysis (Section 4.2), but cannot be easily employed for the global eigenvalue

calculation. The only recourse is to use a very large domain (ymax = 10 − 20δ99) for

which the Dirichlet approximation is nearly correct. Further analysis of the freestream

boundary conditions is given in Section 4.3.

In Equation 4.2, derivatives with respect to y are evaluated using differentia-

tion matrices that are based on the Chebyshev polynomials collocated at the Gauss-

Lobatto points (Canuto et al., 1988). After discretizing the system using N wall-

normal points, the elements of the matrices in Equation 4.2 can be factored according

to the terms which have α, α2, and ω as coefficients. The resulting discretized system

takes the form:

(
Ao + Aωω + Aαα + Aα2α

2
)
Q = 0 (4.5)

where Ao, Aω, Aα, and Aα2 are all 6N × 6N matrices and Q is a 6N column vector

that contains the discretized flow variables. For a temporal analysis in which α is



52

prescribed and ω is the desired eigenvalue, the matrices Ao, αAα, and α2Aα2 are

combined, leaving a 6N × 6N generalized eigenvalue problem for ω, which is solved

using the LAPACK implementation of the QZ algorithm.

For spatial analysis in which ω is prescribed and α is sought, one is confronted with

a quadratic eigenvalue problem in Equation 4.5. This can be dealt with in one of two

ways. First, one can simply linearize the eigenvalue problem and neglect the α2 term.

For boundary layers over flat plates and cones, this often works well, especially at high

Reynolds numbers, since the terms involving α2 are of viscous origin and hence are

inversely proportional to the Reynolds number R. The eigenvalues determined from

the linearized eigenvalue problem are generally close enough to the true eigenvalue

that they are acceptable initial guesses for the more accurate local analysis. It is also

demonstrated in Chapter 6 that linearization of the eigenvalue problem works quite

well for spatial transient growth calculations.

The second approach is to solve the full, quadratic eigenvalue problem for α in

Equation 4.5, which also enables the quantification of errors introduced by the lin-

earization described above. Extending the method described by Malik (1990), this

is accomplished by introducing the additional variables αû, αv̂, αθ̂, αŵ, and αθ̂v.

The addition of these five variables is supplemented by adding ten more boundary

conditions:

αû, αv̂, αŵ, αθ̂, αθ̂v = 0 y = 0 (4.6a)

αû, αv̂, αŵ, αθ̂, αθ̂v = 0 y = ymax (4.6b)

With the aid of these additional variables, one can rearrange Equation 4.5 to construct

an 11N × 11N eigenvalue problem that is linear in α, which can then be solved using

the QZ algorithm. Since the computational effort of the eigenvalue search increases

with the cube of the matrix dimension, the computational expense is about 6 times

greater for the full, quadratic (11N × 11N) eigenvalue problem compared to the

linearized version (6N × 6N).

Examples of spatial and temporal eigenvalue spectra from the global method are
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Figure 4.1: Global eigenvalue spectra for 2D waves (β = 0) in air at R = 2000,
P ∗e = 10 kPa, Me = 4.5, T ∗e = T ∗v,e = 1500 K, T ∗w = 300 K. a) Temporal analysis with
α = 0.45. b) Spatial analysis with ω = 0.41.

given in Figure 4.1. The flow is air at M = 5 in a high enthalpy boundary layer with a

cold wall. For both the spatial and temporal results, the spectrum shown corresponds

to the most unstable second mode disturbance, with α = 0.45 for the temporal

analysis and ω = 0.41 for the spatial analysis. For the spatial case, results from both

the quadratic and linear eigenvalue problems are given: these two methods produce

nearly identical eigenvalues except at large values of αr, where slight differences are

seen.

The eigenvalue spectra in Figure 4.1 consist of several discrete modes as well

as discrete approximations to the continuous spectra. For temporal analysis, there

are four branches of continuous spectrum which are indicated in Figure 4.1a. The

continuous spectra correspond to waves that are non-decaying in the freestream. By

examining the behavior in the freestream of the eigenfunctions corresponding to these

branches, one finds that they propagate as plane waves and hence can be identified

by their correspondence to the plane wave solutions of 1D compressible flow. The two

branches extending to the left and right in Figure 4.1a propagate as acoustic waves,

whereas two overlapping vertical branches propagate as vorticity and entropy waves.

The situation is similar for spatial analysis as shown in Figure 4.1b, but there

are three additional branches of continuous spectrum (Balakumar and Malik, 1992)

which are not visible in the figure; however, these additional branches correspond to
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highly-damped, upstream-propagating waves which are not important in the context

of boundary layer stability analysis (Tumin, 2007).

4.2 Local Method

The second method of computing the eigenvalues of the linearized Navier-Stokes equa-

tions is called the “local” method, meaning that only a single mode of the eigenvalue

spectrum is computed rather than an approximation to the entire spectrum, as in

the “global” method described previously. The local method is sometimes called the

“Mack method,” since Mack was the first to develop and implement this procedure

for compressible flows. The method described here closely follows his work (Mack,

1965), but is generalized to include the effects of vibrational nonequilibrium.

For the local analysis, it is convenient to cast the linearized Navier-Stokes equa-

tions in the form of 10 first-order differential equations:

dq̂

dy
= aq̂ (4.7)

where a is an 10× 10 matrix whose coefficients are derived in Appendix A, and q̂ is

the column vector of disturbance variables and their wall-normal gradients:

q̂ =

(
û,
∂û

∂y
, v̂, p̂, θ̂,

∂θ̂

∂y
, ŵ,

∂ŵ

∂y
, θ̂v,

∂θ̂v
∂y

)T

(4.8)

The boundary conditions are:

û = v̂ = ŵ = θ̂ = θ̂v = 0 y = 0 (4.9a)

û, v̂, ŵ, θ̂, θ̂v, p̂ <∞ y →∞ (4.9b)

Unlike the global method (Section 4.1), in which Dirichlet boundary conditions

were used in the freestream, here a less restrictive and more physically meaningful

boundary condition is applied in which the disturbances are required only to remain
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bounded as y →∞.

4.2.1 Fundamental Solutions

The general solution of Equation 4.7 consists of a linear combination of ten funda-

mental solutions φk(y), for k = 1..10. Each fundamental solution is a 10 element

column vector that is a function of y. The fundamental matrix Φ(y), which has the

solutions φk(y) as its columns, then satisfies the differential equation

dΦ

dy
= aΦ (4.10)

The asymptotic behavior of the fundamental solutions as y → ∞ can be readily

determined, since for a planar boundary layer the matrix a in Equation 4.7 becomes

a constant matrix a∞ in the freestream. At this condition, Equation 4.7 admits

solutions of the form exp(iλy), where λ is the wall-normal wavenumber, which satisfies

the eigenvalue relation

(a∞ − iλ)φ∞ = 0 (4.11)

The ten eigenvalues λk and eigenvectors φ∞,k that satisfy this equation then determine

the asymptotic behavior of the fundamental solutions φk as y →∞.

The ten fundamental solutions remain linearly independent only if the Wronskian

of the system (4.10) is nonzero. Using Abel’s identity (Bender and Orszag, 1987),

one finds that the Wronskian W obeys the differential equation

dW

dy
= tr(a)W (4.12)

where the operator tr() designates the trace of a matrix. This ordinary differential

equation has the solution:

W (y) = C exp

(∫ y

y1

tr(a)dy′
)

(4.13)
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where C is some constant. Unless one of the diagonal elements of a is singular,

the exponential remains nonzero and the Wronskian is either zero everywhere (i.e.,

C = 0) or it is nonzero everywhere. By inspection of the matrix coefficients listed in

Appendix A, it is found that only one coefficient can ever be singular. Specifically,

the coefficient a44 is singular if the parameter χ given in Equation A.20 is zero. The

condition χ = 0 is equivalent to the following:

α =
ω

Ū
+

iR

Ūµ̄γeM2(2 + r)
(4.14)

where r is the ratio of the second viscosity to the shear viscosity (assumed to be

constant). The criterion (4.14) can only be satisfied by highly damped modes which

are of little practical interest: for spatial analysis αi must be large (order of R) and

positive, while for temporal analysis ωi must be large and negative. Both of these

situations correspond to extremely highly-damped modes. It is difficult to conceive of

a meaningful scenario in which Equation 4.14 is true. This being the case, it can be

concluded that all diagonal elements of a are nonsingular, and hence the Wronskian

is either zero everywhere or nowhere. The value of the Wronskian can be easily

evaluated in the freestream:

W∞ = det |Φ∞| =
10∏

k=1

λk (4.15)

This second equality follows from the fact that the determinant of a matrix is equal to

the product of its eigenvalues. Unless one of the eigenvalues λ is zero, the Wronskian

is nonzero in the freestream and hence, on the basis of the arguments above, nonzero

everywhere. This establishes the linear independence of the fundamental solutions

φk(y) throughout the entirety of the boundary layer. Cases for which one of the

eigenvalues λ is zero are not a concern because modes having this property belong to

the continuous spectrum (and thus are damped), whereas in this analysis we are only

interested in the discrete modes.

Having determined the asymptotic behavior of the fundamental solutions (Equa-
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tion 4.11) and established their linear independence, each of the fundamental so-

lutions can now be numerically computed. This is done by numerically integrating

Equation 4.7 from the freestream to the wall, using the vectors φ∞,k as the initial con-

ditions in the freestream. The numerical integration is carried out using a fourth order

Runge-Kutta routine. For all simulations the number of grid points in the bound-

ary layer is at least 1000. This number has been found to produce grid independent

results for Reynolds numbers up to about R = 6000, where R = U∗e δ/ν
∗
e =

√
Rex

is the Reynolds number based on boundary layer thickness. The size of the domain

used depends on the Mach number, and is selected to be a factor of 1.5-5 larger than

δ99. The results obtained are unchanged if the domain is made larger than this, even

when the eigenfunctions are slowly decaying outside of the boundary layer.

After integrating the fundamental solutions from the freestream to the wall, the

total solution is determined from their linear combination:

q̂(y) =
10∑

k=1

Ckφk(y) (4.16)

Five of the coefficients Ck are immediately determined by requiring that the solutions

be bounded as y → ∞. Since the eigenvalues λk in Equation 4.11 appear in pairs

having opposite signs, half of the eigenvalues are decaying in the freestream and half

are growing. The coefficients Ck belonging to the growing solutions are set to zero.

The remaining linear combination coefficients Ck are determined by applying the

boundary conditions from Equation 4.9 at the wall. These boundary conditions are

homogeneous and can be satisfied only when an eigenvalue has been found. In order

to determine the eigenvalue, the boundary condition θ̂(0) = 0 is replaced by the

normalization condition p̂(0) = 1. The linear combination coefficients Ck are then
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determined by solving the linear system:




û1(0) û2(0) û3(0) û4(0) û5(0)

v̂1(0) v̂2(0) v̂3(0) v̂4(0) v̂5(0)

ŵ1(0) ŵ2(0) ŵ3(0) ŵ4(0) ŵ5(0)

θ̂v,1(0) θ̂v,2(0) θ̂v,3(0) θ̂v,4(0) θ̂v,5(0)

p̂1(0) p̂2(0) (0)p̂3(0) p̂4(0) p̂5(0)







C1

C2

C3

C4

C5




=




0

0

0

0

1




(4.17)

After solving this system, the temperature fluctuation at the wall is not in general

equal to zero, and only reaches zero when an eigenvalue has been found. Therefore

vanishing of the wall temperature |θ̂(0)| is the criterion used to determine when an

eigenvalue has been found. The eigenvalue search in the complex plane is accom-

plished using the secant method. For instance, during a spatial analysis the current

guess αn of the eigenvalue is updated using the formula

αn+1 = αn − θ̂n(0)
αn − αn−1

θ̂n(0)− θ̂n−1(0)
(4.18)

These iterations are repeated until |θ̂n(0)| falls below a tolerance of 10−7, which

indicates that an eigenvalue has been successfully found.

4.2.2 Orthonormalization

An additional difficulty in solving the Equation 4.7 is that the eigenvalues of the ma-

trix a are widely separated. As a consequence, during the Runge-Kutta integration

from the freestream to the wall, errors associated with truncation and finite precision

arithmetic cause the fundamental solutions φk to become linearly dependent in spite

of their mathematical independence discussed above. As a result, the matrix in Equa-

tion 4.17 becomes ill-conditioned, the linear combination coefficients Ck determined

from this equation become inaccurate, and the search for eigenvalues fails to converge

or converges to an incorrect value.

Numerous techniques for overcoming this difficulty have been proposed, and one of
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the simplest is to conduct orthonormalization at various intervals as the Runge-Kutta

integration proceeds (Conte, 1966, Garg, 1980, Davey, 1983). This orthonormalization

involves projecting the solutions φk onto a new, orthonormal basis, which can be easily

accomplished using the Gram-Schmidt process. However, in practice one occasionally

wishes to reconstruct the eigenfunctions corresponding to a particular eigenvalue. To

do so, one must be able to reverse the orthonormalization procedure and revert the

solutions back to their original basis.

The procedure used is as follows. As the integration of Equation 4.10 from the

freestream to the wall proceeds, the L2 norm ||Φ|| is monitored. When this norm

exceeds a chosen tolerance, usually 103− 106, Φ is projected onto a new orthonormal

basis Φ′:

Φ′ = ΦP (4.19)

where P is an upper triangular matrix whose coefficients are determined using the

Gram-Schmidt process. The matrix P is upper-triangular and invertible, with inverse

R = P−1, a matrix which can be used to return to the original basis. Every time

an orthonormalization is carried out, the matrix R is stored, as is the wall-normal

location at which the orthonormalization was performed. Upon completing the eigen-

value search, the eigenfunctions are reconstructed by marching from the wall to the

freestream and inverting the orthonormalization, Φ = Φ′R at each location at which

orthonormalization was carried out.

The success of this approach can be evaluated by comparing the eigenfunctions

computed using the local and global methods. Since these two methods are imple-

mented completely independently, this is a useful means of verifying the analysis.

Figure 4.2 compares the eigenfunctions determined by these two approaches, with

lines corresponding to the local analysis and symbols coming from the global anal-

ysis. The flow is a high enthalpy flow at Mach 4.5, with a freestream temperature

of T ∗e = 1500 K and a cold wall at T ∗w = 300 K. The eigenfunctions shown in the

figure correspond to the most unstable 2nd mode disturbance, which has a frequency
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Figure 4.2: Comparison of eigenfunctions calculated using local method (solid lines)
and global method (symbols). a) Eigenfunction amplitude; b) Eigenfunction phase
angle. Flow is air at M = 4.5, T ∗e = T ∗v,e = 1500 K, P ∗e = 10 kPa, R = 2000, and
T ∗w = 300 K.

of ω = 0.405. For both solution techniques, the disturbance eigenfunctions are nor-

malized such that the pressure at the wall is 1.0. For all disturbance components,

excellent agreement between the global and local methods is found. This confirms

that the technique described above successfully reverses the orthonormalization.

4.3 Freestream Boundary Conditions

The use of the asymptotic boundary condition (4.9) provides a significant advantage

over the Dirichlet approximation (4.4) that is used in the global method; if Dirichlet

boundary conditions are used then the domain must be much larger than the bound-

ary layer thickness in order to capture the asymptotic behavior of the eigenfunctions

in the freestream. Because of this large domain, a highly stretched grid is needed

to achieve sufficient resolution of the instability within the boundary layer and near

the wall. In contrast, if the asymptotic boundary condition is used then the domain

need only be slightly larger than the boundary layer thickness, and hence the grid

points are used more efficiently. This feature is especially useful when simulating

hypersonic boundary layers with very cold walls; at these conditions the unstable
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disturbances can travel supersonically relative to the exterior flow and their eigen-

functions are nearly non-decaying in the freestream (see Section 5.3 for more details).

This non-decaying behavior can be captured only by using the asymptotic boundary

conditions or a very large domain, and the eigenvalues can be affected if Dirichlet

boundary conditions are used with too small a domain.

To demonstrate this phenomenon, Figure 4.3 plots the spatial growth rate as a

function of frequency for a high enthalpy boundary layer at Mach 5. The solid line

indicates the spatial growth rate from the local stability solver with a domain height

of ymax/δ99 = 2.5 and asymptotic boundary conditions in the freestream. Lines with

symbols show the spatial growth rates obtained from the global method using several

different domain heights and Dirichlet boundary conditions in the freestream. In each

case, 120 wall-normal points are used in the global analysis and the grid points are

clustered such that half the points are concentrated below δ99. For this analysis, the

full nonlinear spatial eigenvalue problem is solved rather than using the linearized

version (Section 4.1).

For low frequencies, ω < 0.4, the global analysis agrees well with the local analysis.

However, for larger frequencies, ω > 0.4, the global analysis predicts unphysical

oscillations of the growth rate. These oscillations are larger for small domain sizes;

they are caused by the Dirichlet boundary conditions forcing the disturbance waves to

reach zero at the edge of the domain. As shown in Section 5.3, for ω > 0.4 the unstable

disturbances travel supersonically with respect to the freestream and radiate energy

outward into the freestream, a process which cannot be captured when Dirichlet

boundary conditions are imposed.

Figure 4.4 shows the eigenfunctions determined for two frequencies, ω = 0.35 and

0.45. Results are compared from the global analysis (symbols) and the local analysis

(lines). In both cases the domain is small (ymax/δ99 = 2.5). For the low frequency case,

ω = 0.35, the eigenfunctions decay quite rapidly in the freestream. As a consequence,

the errors caused by the Dirichlet boundary conditions in the global method are not

serious and the agreement between the two methods is reasonably good.

For the higher frequency case, ω = 0.45, the eigenfunctions decay very slowly in
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Figure 4.3: Spatial growth rates computed using various domain sizes. Flow is air
at M = 5, T ∗e = T ∗v,e = 1000 K, P ∗e = 10 kPa, R = 2000. Solid line: local method
with asymptotic boundary conditions, ymax/δ99 = 2.5. Symbols: global method with
Dirichlet boundary conditions.

the freestream. Although the local and global methods agree reasonably well within

the interior of the boundary layer, the freestream behavior from the global method

is completely incorrect. This is seen more clearly in Figure 4.5, which magnifies

the streamwise velocity eigenfunction. This figure shows that by forcing the distur-

bances to reach zero at the edge of the domain, spurious waves are introduced in the

freestream which influence the eigenvalues obtained. Note that the sharp change in

slope at about y
√
Ue/νex = 3 is located at the critical layer where streamwise veloc-

ity Ū and the real part of the phase speed cr are equal. Although the eigenfunction

changes slope abruptly near this point, these results are grid-converged, and the local

analysis includes a large number of points in this region so that the numerical solution

is smooth.

In many linear stability codes, Dirichlet boundary conditions are applied in both

the global analysis and the local eigenvalue refinement. The findings above indicate

that care must be taken in interpreting the results obtained, especially when the

modes involved travel supersonically with respect to the freestream, since unphysical

oscillations of the growth rate can be produced by the Dirichlet conditions.
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Figure 4.4: Comparison of eigenfunctions from local solver with asymptotic boundary
conditions (lines) and global solver with Dirichlet boundary conditions (symbols).
Left: ω = 0.35. Right: ω = 0.45. Flow conditions are the same as in Figure 4.3.

0 5 10 15
0

1

2

3

4

5

y
√

Ue/νex

E
ig
en
fu
n
ct
io
n

 

 

Global: |û|
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64

a) b)

Figure 4.6: Comparison of present stability results (symbols) with those of Fedorov
and Tumin (2011). Flow is calorically perfect air with M = 4.2, T ∗o = 300 K,
R = 2000, and T ∗w = T ∗ad. Figure is adapted with permission from Fedorov and
Tumin (2011).

4.4 Model Verification

4.4.1 Low enthalpy flow

The present linear stability analysis was verified through comparisons with established

results from the literature. The first verification case is flow of a calorically perfect

gas over an adiabatic flat plate, which was simulated by Fedorov and Tumin (2011).

The flow is at Mach 4.2 with a stagnation temperature of 300 K, Reynolds number of

R = 2000, Prandtl number of 0.72, and a Sutherland constant of 110.4 K. Figure 4.6

overlays the results from the present stability analysis (symbols) against the results of

Fedorov and Tumin (2011) (lines). Excellent agreement is found for both the growth

rates (left) and phase speeds (right).

4.4.2 High enthalpy flow

Model verification for higher enthalpy cases was accomplished through comparisons

with the predictions of the STABL stability software suite developed at the University

of Minnesota (Johnson et al., 1998, Wright et al., 1998, Johnson, 2000). This software

conducts linear stability analysis for chemically reacting, nonequilibrium flows, and

is also able to integrate the downstream development of unstable modes by solving
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the Parabolized Stability Equations (PSE). However, in the following comparisons

with the present LST analysis, the PSE integration step is not performed in order

to make as direct a comparison as possible. For the sake of comparison, non-parallel

terms (those involving derivatives of mean flow variables with respect to x) were

also eliminated from the STABL analysis, since these terms are not included in the

current LST model. However, all effects of vibrational and chemical nonequilibrium

were retained in the STABL calculations.

Examples of stability diagrams from STABL and from the present LST analysis

are given in Figure 4.7. The corresponding base flows were plotted previously in

Figure 3.3. Figure 4.7a is a fairly low enthalpy flow which is representative of free

flight of a slender body at M = 5. At the edge of the boundary layer, both the

translational and vibrational temperatures are equal to 300 K. Figure 4.7b is a higher

enthalpy flow with T ∗e = T ∗v,e = 1500 K, which is representative of flow in a shock

tunnel.

For both cases, close agreement between the LST analysis and the prediction

of STABL is observed, although the agreement is slightly poorer for low Reynolds

numbers where the present LST analysis predicts slightly larger growth rates. These

differences may be caused by the viscous-inviscid interaction at the leading edge of

the plate, in which the displacement caused by growth of the boundary layer induces

a weak oblique shock. The shock is included in the STABL analysis, but is excluded

from our analysis since our base flow is determined from the boundary layer equations

rather than the full Navier-Stokes equations. This explanation is consistent with the

findings of Chang et al. (1990), who showed that when a shock wave is close to the

edge of the boundary layer there is a slight stabilization of the second mode instability.

Differences in transport properties also likely contribute to the observed discrepancies:

the differences in transport properties are more important at low Reynolds numbers,

where viscous effects are greater.
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Figure 4.7: Comparisons of spatial growth rates from STABL PSE-Chem (-�-) and
present LST analysis (–). a) Low enthalpy air, P ∗e = 5 kPa, M = 5, T ∗e = 300 K,
T ∗e = T ∗v,e = 300 K; b) High enthalpy air, P ∗e = 20 kPa, M = 5, T ∗e = 400 K,
T ∗e = T ∗v,e = 1500 K.

4.4.3 Chemical Reactions

The present chemically frozen stability analysis might be expected to perform poorly

for high enthalpy flows where the temperature in the interior of the boundary layer

is large enough to significantly dissociate the gas. For example, it was shown in

Figure 2.1 that the enthalpy error of chemically frozen flow starts to become significant

at about 2400 K, and this temperature can be significantly exceeded in high enthalpy

shock tunnels. However, we have found that for slender bodies in air, the stability

characteristics at these conditions can still be predicted reasonably well under the

assumption of a chemically inert gas.

Figure 4.8 shows mean boundary layer profiles and stability calculations for a high

enthalpy boundary layer with an edge temperature of 2500 K and Mach number of

M = 5. This corresponds to a stagnation enthalpy of about 15 MJ/kg, which is close

to the maximum stagnation enthalpy achievable in reflected shock tunnel facilities like

the T5 facility at Caltech. For this case, the peak temperature within the boundary

layer exceeds 3500 K, which is well above the limit at which dissociation of O2 becomes

significant. The chemically reacting Navier-Stokes simulations reveal that at R =

1500 the mass fraction of atomic oxygen reaches a peak value of 0.72% in the interior of

the boundary layer. The mean boundary layer profiles (Figure 4.8a) are in reasonable
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Figure 4.8: High enthalpy comparison between current method and STABL software.
Air, P ∗e = 20 kPa, M = 5, T ∗w = 300 K, T ∗e = T ∗v,e = 2500 K. a) Comparison of
boundary layer profiles at R = 1500 from STABL Navier-Stokes solver (symbols) and
boundary layer code (solid lines). Profiles are velocity (5), translational/rotational
temperature (�), and vibrational temperature (�). b) Comparison of spatial growth
rates from STABL PSE-Chem (symbols) and present LST analysis (solid lines). Only
2D waves are included.

agreement with the Navier-Stokes simulations from STABL, although the boundary

layer code produces noticeably greater temperatures by neglecting chemistry. The

difference in peak temperature is large at the high Reynolds number shown, but

is much smaller at lower Reynolds numbers, where the chemical reactions have not

progressed as far towards equilibrium.

In Figure 4.8b, the chemically frozen stability predictions from the present method

are compared with the chemically reacting results from STABL. The agreement is rea-

sonably good, especially considering that we have neglected chemical reactions and are

using different transport property models. The discrepancy is largest near the leading

edge of the plate and may again be the result of the viscous-inviscid interaction and

transport properties. These results suggest that despite the high temperatures in the

interior of the boundary layer, the present chemically frozen analysis can be used to

study the stability of flows of air over slender bodies in high enthalpy shock tunnels

without incurring serious errors. This finding can be explained in part by the analysis

of Fujii and Hornung (2003), which showed that in air at 1000-3000 K, the absorp-

tion of sound waves caused by thermochemical nonequilibrium occurs at frequencies
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much lower than those of second mode disturbances in hypervelocity boundary layers.

That is, the instability waves are of such high frequency that thermochemical energy

transfer is negligible.

It must be emphasized that the conclusions stated above regarding the relative

unimportance of chemical reactions are only valid for flows of air over slender bodies.

For other gases having different dissociation energies and different reaction rates,

the situation may be different. Also for blunt bodies, the low flow velocities and

extremely high temperatures that exist behind the bow shock may lead to more

significant chemical effects and the frozen analysis may no longer be adequate.
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Chapter 5

Modal Stability Results 1

This chapter describes the results of modal stability calculations for high enthalpy

boundary layers. These results are based primarily on the “local” method of stability

analysis described in Chapter 4. In the first section of this chapter, the basic stability

characteristics of hypersonic boundary layers are reviewed. Then in Sections 5.2-5.4,

the stability properties of high enthalpy flows of air are reported. Finally, Sections 5.5-

5.6 investigate the influence of vibrational relaxation on the stability behavior for flows

of air and carbon dioxide.

5.1 Stability Characteristics

5.1.1 Dispersion curves

We begin by introducing and reviewing the basic stability characteristics of hypersonic

boundary layers. An example of a typical dispersion curve is given in Figure 5.1, which

shows the spatial growth rates −αi and phase speeds cr as a function of frequency

ω for flow over a flat plate at M = 5, R = 2000. Here R = U∗e δ/ν
∗
e =
√
Rex is the

Reynolds number based on boundary layer thickness. This example is a low enthalpy

flow with a cold freestream (65.15 K) and an adiabatic wall, which models the wind

tunnel experiments of Kendall (1975). The same flow conditions were considered by

Ma and Zhong (2003a) and the results shown here are identical to theirs to within

1Much of the material presented in this chapter is taken from Bitter and Shepherd (2015).
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Figure 5.1: Spatial growth rates (top) and phase speeds (bottom) for low enthalpy
flow of air with M = 4.5, R = 2000, T ∗e = 65.15 K, P ∗e = 727 Pa, adiabatic wall.
Flow conditions are modeled after Ma and Zhong (2003a).

plotting accuracy.

The phase speed diagram in Figure 5.1 features an infinite sequence of modes

labeled Fn which “cut in” as the frequency increases. By “cut in” it is meant that

these modes transition from the continuous spectrum to the discrete spectrum. For

instance, the mode F2 does not exist as a discrete mode until ω > 0.24. Each of these

modes cuts in with a dimensionless phase speed of cr = 1+1/M , which is the speed of

fast acoustic waves in the freestream, and hence these modes are termed “fast modes”

and designated F1, F2, etc. in order of increasing frequency. Each additional mode

that cuts in is characterized by an additional zero in the real part of the pressure

eigenfunction, with mode Fn having n− 1 zeros. There is an additional mode labeled

S1 which tends to a phase speed of 1− 1/M as ω → 0. This mode is termed the slow

mode.

As the frequency increases, the phase speed of the slow mode sequentially crosses

that of each of the fast modes. At these crossing points, the phase speeds and eigen-

functions of the slow and fast modes are nearly identical, which leads to a “syn-

chronism” between the modes, as is extensively discussed by Fedorov and Khokhlov
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(2001). Near the synchronism, one of the two modes experiences amplification and

the other attenuation; for example, when the phase speeds of modes F1 and S1 cross,

S1 becomes unstable and F1 becomes highly damped. This gives rise to instabilities

known as the “second” and “third” mode instabilities as indicated in the figure, as well

as higher modes at higher frequencies. As discussed by Fedorov and Tumin (2011),

this terminology can be misleading since the “first mode”, “second mode”, and higher

modes are not modes in the mathematical sense, i.e., they are not eigenmodes of the

linearized Navier-Stokes equations (modes Fn and S1 are true eigenmodes). However,

the terms “first mode” and “second mode” have become established in the literature

and will be used here as well.

The stability diagram shown in Figure 5.1 was constructed for a fixed Reynolds

number of R = 2000 and a variable frequency ω. However, it is often more useful to

consider the downstream propagation of a disturbance having a fixed frequency and

a varying Reynolds number. The frequency of such a disturbance is usually described

by the nondimensional frequency parameter F , which is defined as:

F =
ω

R
=

2πf ∗U∗2e
ν∗e

(5.1)

were f ∗ is the dimensional circular frequency in Hz. The difference between the fre-

quencies ω and F is that ω is nondimensionalized by the freestream velocity and

the local boundary layer thickness, whereas F is normalized by the freestream veloc-

ity and the viscous length ν∗e/U
∗
e . Examples of dispersion curves presented in this

manner are given in Figure 5.2. As this figure shows, each frequency is unstable at

a different location in the boundary layer, with lower frequencies being unstable at

higher Reynolds numbers. For these flow conditions the instability is predominantly

second mode, although for F = 1 × 10−4 there is a slight first mode instability for

about 500 < R < 1000.

The stability characteristics are more easily visualized on a contour plot in which

the spatial growth rate −αi is parameterized by the Reynolds number R and the

frequency F . Such a diagram is given in Figure 5.3, with only contour levels greater
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Figure 5.2: Spatial growth rates as a function of Reynolds number for several fre-
quencies F . The flow is air with M = 4.5, T ∗e = 65.15 K, P ∗e = 727 Pa, adiabatic
wall. Flow conditions are modeled after Ma and Zhong (2003a).

than zero shown. There are two regions of instability. The lower region of instabil-

ity is the first mode, which is only unstable at low frequencies and whose unstable

frequency band decreases in width as the Reynolds number increases. The upper

region of instability is the second mode, which is unstable only for a narrow band

of frequencies or Reynolds numbers. The most unstable second mode frequency is

strongly dependent on the Reynolds number and is proportional to 1/R.

5.1.2 The N Factor

For a particular frequency and Reynolds number, the locally-parallel stability anal-

ysis presented above yields only the local growth rate, −αi. However, in predicting

boundary layer transition one is less interested in the local growth rate and more

interested in the net amplification that a disturbance experiences as it travels down-

stream. An intuitive method of predicting this net growth is to simply integrate the

spatial growth rate as a function of downstream distance. The amplitude A of the

disturbance relative to its initial amplitude Ao at some point xo is then

A(x)

Ao
= exp

(∫ x

xo

−αi(x′)dx′
)

(5.2)
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Figure 5.3: Stability diagram for a flow of air with M = 4.5, T ∗e = 65.15 K, P ∗e =
727 Pa, adiabatic wall.

This procedure is also motivated by the method of multiple scales (Nayfeh, 1980)

in which the disturbances are described by a rapidly-varying length scale x and a

slowly-varying scale X = εx, where ε = δL/L is the ratio of the Blasius boundary

layer thickness to the length L of the plate or cone. According to the method of mul-

tiple scales, the disturbance vector q̂ is decomposed into a slowly-varying amplitude

coefficient C(X) multiplied by a shape function Q̂ and a rapidly-varying exponential

using an expansion in powers of ε:

q̂ = C(X)

[
Q̂o(X, y) + εQ̂1(X, y) + ...

]
exp

(∫
iα(x)dx+ iβz − iωt

)
(5.3)

At order ε0, the amplitude coefficient C(X) is arbitrary and the variation in amplitude

of the disturbance depends solely on the exponential, which leads to the relation (5.2).

Thus Equation 5.2, in addition to having intuitive appeal, derives from the lowest

order approximation of a non-parallel multiple-scales analysis. At higher orders of

approximation, the variation of the amplitude coefficient ∂C/∂X also contributes to

the disturbance growth and hence constitutes a nonparallel correction.

Given the large levels of amplification that can occur in a boundary layer, it is

often convenient to describe the amplification in terms of the “N factor”, which is
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just the natural logarithm of the amplification:

N(x) ≡ ln

(
A(x)

Ao

)
=

∫ x

xo

−αi(x′)dx′ (5.4)

Examples of N factors corresponding to Figure 5.2 are given in Figure 5.4. In this

figure the N factors for each frequency have been scaled such that N = 0 (or equiva-

lently, A = Ao) when the that frequency first becomes unstable. The envelope of all

the curves in Figure 5.4 is called the “maximum N factor” and indicates the maxi-

mum possible amplification of any discrete mode in the flow, according to the linear,

spatial, locally-parallel theory. The maximum N factor scales approximately linearly

with the Reynolds number except for a small deviation at low Reynolds numbers.

The maximum N factor (maximized over all frequencies) is often used to correlate

experimental measurements of the transition distance with stability calculations, an

approach which was pioneered by Smith and Gamberoni (1956). For example, bound-

ary layer transition in conventional wind tunnels is usually observed at the Reynolds

number for which N = 5-10, which corresponds to a disturbance amplification of

150-22,000. Therefore it is often assumed that transition will occur at some “critical
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N factor of transition” in the range of 5-10, where the precise value of the critical N

factor is calibrated using experimental data. This method of estimating transition is

known in the literature as the eN method.

Of course, the reality is that transition occurs when the disturbances reach a

large enough amplitude that nonlinear interactions become important, so the actual

amplitude A is more relevant to transition than the amplification ratio A/Ao or N . An

ideal transition prediction method would therefore couple the amplifications predicted

here with initial amplitudes obtained from receptivity calculations based on known

disturbance sources in the flow. Unfortunately, theories of receptivity have not yet

been developed to the point where this is feasible, and the idea of a “critical N factor”

for transition is used instead. But because this method does not account for the initial

disturbance amplitudes, the precise value of N at which transition occurs is different

for each flow geometry and wind tunnel facility. However, there is some evidence that

the eN method described above has predictive value once calibrated to a particular

flow configuration (Schneider, 2015).

5.2 High and low enthalpy flows

Many of the differences between high and low enthalpy flows can be illustrated by

comparing the low enthalpy dispersion curve of Figure 5.1 with that of a higher en-

thalpy flow in Figure 5.5. The flow conditions in these two figures are identical except

for the ratio of wall temperature to edge temperature: Figure 5.1 has an adiabatic

wall (T ∗w/T
∗
e = 4.4) and a cold freestream of T ∗e = 65 K, whereas Figure 5.5 has a cold

wall at T ∗w = 300 K relative to the edge temperature of T ∗e = 1500 K. Figures 5.1 and

5.5 are representative of flow conditions in a continuous-run hypersonic wind tunnel

and a reflected shock tunnel, respectively. By comparing Figures 5.1 and 5.5, several

differences are notable:

1. The frequency of the second mode instability is roughly a factor of two larger

for the high enthalpy flow. This illustrates that the second mode frequency is
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tuned to the boundary layer thickness, which is a factor of 2.5 thinner for the

high enthalpy case.

2. The maximum spatial growth rate is a factor of 2.9 larger for the high enthalpy

case. It is well known that the second mode instability is destabilized by cooling

of the wall. It will be seen in Section 5.4.2 that, like the frequency, the spatial

growth rate scales approximately inversely with the boundary layer thickness.

3. There is no first mode instability for the high enthalpy case. It is well known

that the first mode is stable when the wall temperature is significantly smaller

than the adiabatic wall temperature.

4. For the low enthalpy case, mode S1 is unstable while for the high enthalpy case,

mode F1 is unstable. This behavior has also been observed by Fedorov and

Tumin (2011), who determined that the second and higher mode instabilities

are associated with pairs of branch points in the complex ω plane. The locations

of these branch points are functions of Mach number, Reynolds number, wall

temperature, and other parameters. As the real frequency ω increases, either

mode F1 or S1 can be unstable depending on whether the dispersion curve passes

above or below these branch points. Although the identity of the unstable mode
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is different, the instability behavior does not depend on which of the two modes

is unstable.

5. In the high enthalpy case, there is an abrupt change in slope of the second

mode unstable region at about ω = 0.5 which leads to a wider range of unstable

frequencies compared to the low enthalpy case.

6. In Figure 5.5, the mode labeled F1 ceases to exist for frequencies greater than

about ω = 0.62 and a new, related mode (dashed line) appears at ω = 0.54.

These two modes have nearly the same phase speed over the frequency range

0.54 < ω < 0.62 for which they both exist.

The first four differences between Figures 5.1-5.5 are well-known, but the last

two differences have not been widely reported in the literature. Although a similar

kink in the dispersion curve (#5 above) is visible in the results of Klentzman and

Tumin (2013) for high enthalpy flows of oxygen, the causes or implications of this

phenomenon were not investigated. Analogous behavior has also been observed in

the context of boundary layers with injection (Fedorov et al., 2014) and with porous

walls (Fedorov et al., 2011, Bres et al., 2013). As will be seen in the sections that

follow, differences 5-6 between high and low enthalpy flow that were mentioned above

are caused by unstable disturbances propagating supersonically with respect to the

freestream fluid.

5.3 Supersonic Unstable Modes

5.3.1 Shape of Dispersion Curve

We first investigate the sharp change in slope of the dispersion curve observed in

Figure 5.5. Figure 5.6 shows the growth rates and phase speeds for flow at M = 5

and R = 2000. Three cases are shown with freestream temperatures of 300, 1000,

and 1500 K and with the wall temperature fixed at 300 K in all cases. As the ratio

T ∗w/T
∗
e decreases, a kink appears in the high-frequency end of the growth rate curve
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and the width of the unstable region increases. For each case, the frequency at which

the kink occurs is marked by a vertical dashed line. From the intersection between

these vertical lines and the phase speed diagram below, one can see that the change

in slope of the growth rate curve occurs precisely when the dimensionless phase speed

falls below 1 − 1/M . That is, the change in shape of the dispersion curve occurs

when the unstable modes travel supersonically relative to the freestream. Supersonic

modes can exist for all wall temperature conditions, but they only become unstable

when the wall is highly cooled, usually (but not necessarily) below the freestream

temperature. This behavior was also encountered by Chang et al. (1997) in their

study of chemically reacting, high enthalpy flow over a wedge, and the existence of

supersonic, unstable modes was also briefly mentioned by Mack (1969, 1987) for the

inviscid case.

The eigenfunctions corresponding to two values of ω from Figure 5.6 are shown in

Figure 5.7 with T ∗e = 1500 K. In each case, the locations of the critical layer (cr = Ū)

and the sonic lines cr = Ū ± ā are indicated by horizontal dashed lines. For ω = 0.35

(just before the kink in the dispersion curve), the phase speed is above cr > 1− 1/M
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Figure 5.7: Eigenfunction amplitude and phase at two points along the dispersion
curve in Figure 5.6. Air, R = 2000, T ∗e = 1500 K, T ∗w = 300 K, M = 5.0.

and only one sonic line exists, but for ω = 0.45 (just after the kink) there are two

sonic lines because cr < 1−1/M . Between these two lines the disturbance is traveling

subsonically relative to the fluid, but outside of these lines the disturbance travels

supersonically.

From Figure 5.7 one can see that for ω = 0.45 the eigenfunctions decay very slowly

in the freestream. This is highlighted by the contours of the temperature disturbance

given in Figure 5.8. In the interior of the boundary layer, the structure is similar for

ω = 0.35 and 0.45, and a large peak in temperature is visible at the critical layer.

For ω = 0.35, the waves decay rapidly in the freestream, but for ω = 0.45 the second
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sonic line acts as a turning point, leading to oscillatory waves that are radiated into

the freestream. The same behavior in the freestream is also observed in the pressure

and velocity (not shown).

This non-decaying behavior can be anticipated from the compressible Rayleigh

equation for the pressure (see Mack (1969), Lees and Lin (1946), or Lees and Reshotko

(1962)), which describes the wall-normal variation of pressure disturbances for an

inviscid flow:

d2p̂

dy2
−
(

2Ū ′

Ū − c −
T̄ ′

T̄

)
dp̂

dy
− α2

(
1− M2(Ū − c)2

T̄

)
p̂ = 0 (5.5)

Here Ū ′ and T̄ ′ are the wall-normal gradients of the mean velocity and temperature

and c = ω/α is the complex phase speed. In the freestream, where there are no

gradients and Ū = T̄ = 1, the Rayleigh equation reduces to

d2p̂

dy2
− α2

[
1−M2(1− c)2

]
p̂ = 0 (5.6)

which has the solution

p̂ = exp
(
α
√

1−M2(1− c)2y
)

(5.7)

In evaluating the solution, the branch of the square root must be chosen such that the
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real part of the exponential’s argument is negative so that the pressure is bounded.

In a typical boundary layer flow, |ci| � |cr| and |αi| � |αr|. Consequently, the

pressure is mainly exponentially decaying if cr > 1 − 1/M with slight oscillations

arising from the imaginary parts of α and c. Conversely, for supersonic modes (having

cr < 1 − 1/M) the solution is mainly oscillatory, with slight damping caused by the

imaginary parts of α and c. Therefore slowly-decaying eigenfunctions can always be

expected for supersonic modes at high Reynolds numbers.

Figure 5.6 showed that cases which develop a supersonic unstable mode also ex-

perience a discontinuity in the dispersion curve. As the frequency increases, the fast

mode (labeled F+
1 in the figure) disappears and a new mode (labeled F−1 ) appears.

To further investigate this effect, the real and imaginary parts of the complex phase

velocity are plotted for mode F1 in Figure 5.9. The data are exactly the same as

in Figure 5.6, except that now the real and imaginary parts of the phase speed are

plotted with ω as a parameter along the curves. Also shown in the figure are three

thick black lines which mark the branch cuts corresponding to the continuous spectra;

the two nearly horizontal branches are the acoustic branch cuts, while the vertical
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branch near cr = 1 (which is actually two overlapping branches) corresponds to vor-

ticity and entropy waves. Further discussion about the location of these branch cuts

and methods for their computation are available from Balakumar and Malik (1992).

It should be noted that the continuous spectrum is a (weak) function of ω, and the

spectra plotted in Figure 5.9 are evaluated at a single value of ω = 0.4.

At ω = 0, the mode F+
1 is a neutral wave with phase speed cr = 1 + 1/M which

originates at the branch point of the fast acoustic branch cut. As indicated by the

arrow in Figure 5.9, as the frequency increases the mode’s phase speed reduces and it

becomes damped. As the mode crosses the branch cut at cr ∼ 1, the growth rate suf-

fers a small jump while real part of α remains nearly continuous. This phenomenon is

discussed further by Fedorov and Khokhlov (2001), who showed that the synchronism

between the eigenvalue and the vorticity/entropy waves of the continuous spectrum

causes the mode F1 to be especially receptive to entropy spots and vortical freestream

disturbances at this condition.

As the frequency is increased further, the mode becomes unstable. For the case

with T ∗e = 300 K, the mode becomes stable again before the phase speed falls below

1 − 1/M , so the mode passes below the slow acoustic branch point in the complex

plane. This is typical of boundary layers that are adiabatic or have wall temperatures

greater than the freestream temperature. In contrast, for the cases with T ∗e = 1000

and 1500 K, the mode remains unstable for cr < 1− 1/M and therefore passes above

the branch point of the slow acoustic waves.

Because the mode with T ∗e = 1000 or 1500 K passes above the branch point, it

must eventually cross the slow acoustic branch cut. When this happens, the mode

coalesces with the branch cut and ceases to be a discrete mode; however, a new

mode emerges from the other side of the branch cut. This new mode emerges from

the branch cut at a slightly lower frequency than the one at which coalescing mode

disappears. The modes on the top and bottom of the branch cut are distinguished

by the labels F+
1 and F−1 , similar to the notation used by Fedorov and Tumin (2011)

to describe modes crossing the branch cut at cr ∼ 1.

This crossing of the branch cut results in a synchronism between the instability
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mode and acoustic disturbances in the freestream. This is similar to the synchronism

with vorticity/entropy waves that occurs when the branch cut at cr = 1 is crossed

(Fedorov et al., 2013, Fedorov and Khokhlov, 2001), which has been found to produce

increased receptivity to vorticity and entropy spottiness. The synchronism identified

here is expected to cause a similar effect, but with enhanced receptivity to acoustic

disturbances in the freestream rather than vorticity/entropy disturbances. However,

unlike the vorticity/entropy synchronism which occurs upstream of the lower neutral

branch, the synchronism with freestream acoustic waves takes place downstream of

the upper neutral branch. As a result, modes excited in this manner by freestream

acoustic waves are unlikely to experience amplification. Nevertheless, the synchro-

nism can still affect the downstream development of amplified waves, which may be

important during the nonlinear stages of transition.

5.3.2 Effect of Reynolds and Mach Numbers

In Figure 5.6, it was shown that the supersonic, unstable modes only appear when the

wall is sufficiently cold. In this section we investigate also how the Reynolds number

and Mach number influence these supersonic modes. Figure 5.10a compares the

spatial growth rates for a high enthalpy boundary layer at several different Reynolds

numbers. For low enough Reynolds numbers, the mode remains subsonic throughout

the entire unstable region, but for higher R the “tail” on the dispersion curve appears

and grows considerably larger as the Reynolds number is further increased.

As can be noted from Figure 5.10a, at higher Reynolds numbers the supersonic

modes contribute significantly to the area under the dispersion curve, which is related

to the N factor distribution. This brings into question whether the supersonic modes

significantly influence the N factors. Figure 5.10b shows the N factor envelope curves

for a cold wall case withM = 5, T ∗e = 1500 K. Two envelope curves are included in this

figure: the dashed red line excludes growth rates having frequencies above ω = 0.4,

while the solid black line is the full N factor curve. The difference between the two

curves then indicates the contribution of supersonic modes. Clearly the supersonic
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Figure 5.10: a) Effect of Reynolds number on the shape of the dispersion curve for
a cold-wall case in air: M = 5.0, T ∗e = 1500 K, T ∗w = 300 K, P ∗e = 20 kPa. b) N
factor curve corresponding to a). Heavy black line is the complete N factor curve.
Dot-dashed red line includes only values of ω < 0.4.

modes do not contribute much to the N factor until the Reynolds number exceeds

about 1500. However, at this point the N factor is already fairly high, reaching the

level of 5-10 at which transition is typically observed experimentally. This suggests

that the supersonic modes do not significantly increase the level of amplification,

despite their influence on the shape and behavior of the dispersion curve.

Lastly, the effect of the Mach number on the stability of highly-cooled flows is

considered. Figure 5.11 shows dispersion curves for several Mach numbers with T ∗e =

1500 K and T ∗w = 300 K. The left figure is for a lower Reynolds number of R = 1000,

while the right figure is R = 2000. These plots reveal that the supersonic unstable

modes are most prominent for M = 5. At R = 1000, the supersonic mode is only

slightly visible for M = 5, but at higher R it is present over a wide range of Mach

numbers and is most significant for M = 5.

5.4 Stability Trends in Air

This section summarizes the effects of wall temperature and Mach number on the

stability characteristics of slender bodies in air. Although the results of numerous

stability calculations for flat plates and cones in air have been reported in the liter-
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Figure 5.11: Dispersion curves for cold-wall flows of air (T ∗w/T
∗
e = 0.2) for various

Mach numbers. Left: R = 1000. Right: R = 2000.

ature, most of them focus on a few specific flow conditions and hence consider only

a small parameter space. A few researchers have performed more systematic investi-

gations involving a range of Mach numbers and wall temperature conditions (Mack,

1969, 1984, Masad et al., 1992, Malik, 1989), but these studies have targeted low

enthalpy conditions, whereas the present results are relevant to high enthalpy flows.

Past systematic studies have also, for the most part, excluded the very high levels of

wall cooling (Tw/Te � 1) that are relevant to hypervelocity impulse facilities.

5.4.1 Growth Rates

A sequence of simulations was conducted in which the wall temperature was fixed

at 300 K while the freestream temperature was incrementally raised from 70 K to

2000 K. Although wall temperature effects are often spoken of in terms of “wall cool-

ing”, we choose here to keep the wall temperature fixed and adjust the freestream

temperature so that comparisons with experiments in both high and low enthalpy

impulse facilities can be made more easily. However, it should be recognized that in

terms of the stability behavior, raising the freestream temperature is nearly equivalent

to cooling the wall, with differences being caused only by the temperature dependence

of transport properties and specific heats, as well as non-equilibrium effects. Accord-

ingly, we refer to cooling of the wall and heating of the freestream interchangeably.
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Figure 5.12: Effect of wall cooling on the maximum spatial growth rates of the first
and second modes for R = 1500, T ∗w = 300 K, T ∗e = 70 − 2000 K, P ∗e = 10 kPa.
a) Maximum growth rates for first and second modes. b) Maximum growth rate of
second mode normalized by δ99.

These results are also presented in terms of T ∗w/T
∗
e rather than the customary T ∗w/T

∗
ad

because the adiabatic wall temperature depends on one’s assumptions about specific

heats, chemistry, and transport models, and must in general be simulated. Thus it

can be difficult to reproduce results that are reported in terms of T ∗ad.

Figure 5.12a shows the maximum spatial growth rate as a function of Mach number

for several values of the ratio T ∗w/T
∗
e . Two sets of curves are shown: the dashed lines

correspond to the first mode instability and the solid lines to the second mode. For

each curve, the spatial growth rate has been maximized over all frequencies ω and

all spanwise wavenumbers β. These curves are very similar to those of Mack (1984)

and Masad et al. (1992), except that we consider a wider range of wall temperature

conditions and hold T ∗w/T
∗
e fixed along each curve rather than T ∗w/T

∗
ad. Note that

in this figure and the ones that follow, the neglect of chemistry may not be valid

for some of the high Mach number cases, but these results are included anyways for

completeness.

For the first mode, no instability was found for some of the cases having T ∗w/T
∗
e <

1, so the corresponding lines are not included on the figure. For the second mode, a

monotonic increase in growth rate is observed as the wall is cooled. Additionally, the

second mode becomes unstable at lower Mach numbers as the wall is cooled, with
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instability occurring at Mach numbers as low as 2.5. Although it is commonly stated

that the second mode becomes dominant above about M = 4, this statement is true

only when the wall is nearly adiabatic. The second mode instability also exhibits a

large degree of sensitivity to the Mach number and wall temperature for 3 < M <

5, which means that small changes in experimental conditions can potentially lead

to correspondingly larger changes in stability behavior. For example, streamwise

variation in the wall temperature (which occurs in real flight and in continuous-flow

test facilities) could cause significant changes to the stability properties if the Mach

number is between 3 and 5.

5.4.2 Scaling of instability parameters

The destabilizing influence of wall cooling appears to be caused mainly by thinning

of the boundary layer. This is illustrated in Figure 5.12b in which the spatial growth

rate of the second mode is normalized by the δ99 boundary layer thickness rather

than the Blasius thickness δ =
√
ν∗ex

∗/U∗e . The maximum second mode growth

rates normalized in this way experience much less variation with both Mach number

and wall temperature than in Figure 5.12a, indicating that the spatial growth rate

is nearly inversely proportional to δ99. Although it is well-known that the frequency

and wavenumber of the second mode scale inversely with the boundary layer thickness

(Stetson et al., 1983, Demetriades, 1977), the correlation of growth rate with boundary

layer thickness has been less widely recognized.

The relationship between the frequency of second mode disturbances and the

boundary layer thickness was first examined experimentally by Stetson et al. (1983)

and Demetriades (1977), who both made hot wire measurements of disturbance fluc-

tuations in the same Mach 8 wind tunnel. Their results showed that the nondimen-

sional frequency 2f ∗δ99/U
∗
e is nearly constant, decreasing only slightly with Reynolds

number and with increased wall cooling. Figure 5.13 shows the variation of dimen-

sionless frequency with Mach number and wall temperature ratio at R = 1000. For

Figure 5.13a, the plotted frequency is the most amplified one, i.e., the frequency for
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Figure 5.13: Variation of second mode frequencies with Mach number and wall tem-
perature at R = 1000. For T ∗w = T ∗ad, the edge temperature is T ∗e = 70 K; for all other
cases, T ∗w = 300 K. a) Most amplified frequency (max N factor). b) Most unstable
frequency (max −αi).

which the N factor is largest. This is the frequency that is measured most often in

experiments. Figure 5.13b shows the most unstable frequency, that is, the frequency

which has the largest spatial growth rate −αi. For flows with a cold wall, the most

unstable and most amplified frequencies follow similar trends, and the most unstable

frequency is slightly smaller. This is consistent with the results of Marineau et al.

(2014), who measured both the most unstable and the most amplified frequencies for

flow over a sharp cone. However, for an adiabatic wall the most unstable and most

amplified frequencies exhibit very different variations with Mach number.

For flows with highly-cooled walls, Figures 5.12b and 5.13 reveal that the effect

of the wall temperature can be nearly scaled out of the problem by normalizing both

the frequency and the growth rate by δ99. This length scale is preferable to the

Blasius boundary layer thickness δ =
√
ν∗ex

∗/U∗e , which only takes into account the

freestream conditions, whereas the δ99 length scale includes the physical structure of

the boundary layer and encapsulates the change in thickness that occurs when the

wall is cooled. These results suggest that by scaling the growth rate and frequency

with δ99 one can generate a single dispersion curve that, to a good approximation,

describes a range of wall temperature conditions. An example of such a dispersion

curve is given in Figure 5.14. In the left figure the growth rate and frequency are
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Figure 5.14: Spatial growth rates for several different wall temperature conditions.
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scaled by the usual Blasius boundary layer thickness δ, whereas in the right figure

they are scaled by δ99. The latter scaling nearly collapses the dispersion curves onto

one another, though for the case with large Tw/Te the collapse is not as good. For

the cases with smaller Tw/Te, however, the collapse is excellent, especially along the

lower neutral branch, which contributes most significantly to the N factor.

The collapse of the scaled dispersion curves in Figure 5.14b suggests that one might

be able to collapse the N factors in a similar fashion. To achieve this, it is assumed

that for a given Mach number the dispersion curves for all wall temperatures are

well-approximated by a two-parameter function F of the form

−α∗i δ99 = F
(
R,

ω∗δ99

U∗e

)
(5.8)

This functional dependence follows from the collapsed dispersion curves in Figure

5.14b and the fact that the dispersion curve is also a function of the Reynolds number.

One can show that the following definitions of the N factor are equivalent:

N(F ) =

∫ x∗

x∗o

−α∗i (F, x∗)dx∗ =

∫ R

Ro

−2αi(F,R)dR (5.9)
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whereRo =
√
U∗e x

∗
o/ν

∗
e is the Reynolds number at which the frequency F first becomes

unstable, α∗i is the dimensional spatial growth rate, and αi is the nondimensional

growth rate normalized by the Blasius thickness δ. In Equation 5.9, F is the frequency

parameter defined by

F =
2πf ∗ν∗e
U∗2e

(5.10)

where f ∗ = ω∗/2π is the dimensional circular frequency in Hz. Making use of these

definitions, one can re-write the dispersion relation (5.8) in the form:

αi
δ99

δ
= F

(
R,F

δ99

δ

)
(5.11)

By substituting this result into Equation 5.9, one arrives at the functional dependence:

Nδ99/δ = F (R,Fδ99/δ) (5.12)

The ratio δ99/δ is constant for a given Mach number and usually falls between about

3 and 20, increasing with both Mach number and wall temperature. The functional

form of Equation 5.12 suggests that if one makes measurements of maximum N factors

N1 and N2 for two different wall temperatures, then the maximum N factors and the

corresponding most amplified frequencies F1 and F2 are related by

N2 = N1
δ99,1/δ1

δ99,2/δ2

F2 = F1
δ99,1/δ1

δ99,2/δ2

(5.13)

The effectiveness of this scaling is demonstrated by several examples given in Fig-

ure 5.15. Figure 5.15a shows the maximum N factors for several different wall temper-

ature conditions, as well as individual N factor curves for the frequency F = 4×10−4.

The N factor at R = 1500 is about 2.6 times greater for the cold wall than for

Tw/Te = 3, and the frequency F = 4×10−4 is amplified at different locations for each

wall temperature condition.

Figure 5.15b shows the same N factor curves, but scaled by the ratio δ99/δ, which
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Figure 5.15: Maximum N factors for several different wall temperature conditions.
M = 4.5, T ∗w = 300 K, R = 1500, P ∗e = 10 kPa. Only 2D waves (β = 0) are
included. a) Maximum N factors and individual N factor curves for F = 4× 10−4; b)
Maximum N factors scaled by δ99/δ and individual N factor curves corresponding to
F (δ99/δ) = 3× 10−3.

significantly reduces the spread between the curves. Also shown in Figure 5.15b

are the N factors for the frequencies satisfying F (δ99/δ) = 2 × 10−3. All of the

frequencies scaled in this way are amplified at nearly the same Reynolds number.

For both the frequencies and the N factors, the collapse is poorer for large Tw/Te.

The poorer collapse for large Tw/Te may in part be associated with the much smaller

freestream temperature used in this case, since the viscosity varies more rapidly at

low temperatures.

This manner of collapsing the N factors has been applied over a wide range of wall

temperatures and Mach numbers. The result is shown in Figure 5.16. Figure 5.16a

reports the maximum N factors at R = 1500 without using the scaling of (5.12).

This plot includes results only for two dimensional waves (β = 0) since these are

most amplified for the second mode, but it should be noted that three dimensional

first mode waves can produce larger N factors for some of the cases with lower Mach

numbers and large values of Tw/Te. The maximum N factors shown in the figure

exhibit the same trends as the growth rates from Figure 5.12, namely, maximum

amplification at about M = 5, a systematic increase in growth as the wall is cooled,

and reduction in the most amplified Mach number as the wall is cooled. This indicates

that although the influence of Mach number and wall temperature have historically
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Figure 5.16: Effect of Mach number and wall cooling on the maximum N factors for
the second mode. Only 2D waves (β = 0) are considered. In all cases, R = 1500,
T ∗w = 300 K, and P ∗e = 10 kPa. a) Maximum N factors. b) Maximum N factors scaled
by δ99/δ.

been characterized mainly using the maximum spatial growth rates, the N factors

behave similarly.

Figure 5.16b attempts to collapse the maximum N factors for different wall tem-

peratures by scaling the N factor by δ99/δ. This scaling is quite successful for the

cases with 0.2 ≤ Tw/Te ≤ 1.5, but performs poorly for the cases with large Tw/Te.

In spite of the imperfect collapse of the data, the scaling arguments demonstrated

here may be useful for estimating how a change in the wall temperature or stagnation

temperature might affect the stability characteristics and transition location in an

experiment.

5.4.3 Comparison with experiments

Comparisons between measured and predicted second mode frequencies for several dif-

ferent Mach numbers and wall temperatures are given in Table 5.1. Measurements in

the AEDC Tunnel 9 (T9 in the table) were made by Marineau et al. (2014) using PCB

pressure transducer arrays. Measurements in Caltech’s T5 reflected shock tunnel were

made by Parziale (2013) using focused laser differential interferometry (FLDI). The

FLDI technique was also used by Heitmann et al. (2015) in the Hypersonic Ludwieg
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Table 5.1: Comparison of most amplified frequencies from computation and experi-
ment. M is the post-shock Mach number. R is the Reynolds number for flow over
a cone, equal to

√
3 times the value for a plate. s is the streamwise distance. For

AEDC Tunnel B, the wall temperature is nearly adiabatic. For all other cases, the
wall temperature is ambient.

Tunnel Shot M Tw/Te
s

R
δ99 fexpt fsim 2fsimδ99/U

∗
e(m) (mm) (kHz) (kHz)

T9 3745 7.76 3.86 0.40 1090 3.5 122.8 122.9 0.62
T9 3745 7.76 3.86 0.65 1390 4.5 97.8 96.9 0.63

HEG “A” 6.41 0.85 0.73 1660 2.1 300.9 345.2 0.61
HEG “B” 6.41 0.86 0.63 1900 1.6 397 456.6 0.61
HEG “D” 5.42 0.18 0.83 1350 2.1 615 688 0.67
T5 2789 4.55 0.14 0.63 1730 1.2 1200 1507 0.82

HLB 5.28 4.2 0.34 1270 2.2 158.7 165 0.81
HLB 5.28 4.2 0.34 1530 1.8 192.9 204 0.81
TB Run 32 6.8 9.0 0.54 1670 4.4 127.4 123.9 0.95
TB Run 30 6.8 9.0 0.59 1732 4.6 119.0 119.8 0.96

tube at Braunschweig (HLB). Measurements in the High Enthalpy shock tunnel at

Göttingen (HEG) were made by Laurence et al. (2014) using Schlieren deflectometry

and full-field pulsed-laser Schlieren photography. Measurements in AEDC Tunnel B

(TB in the table) were made using hot wires by Stetson et al. (1983); these data were

more recently re-plotted and analyzed by Schneider (2006). For both experiments

and computations, the frequency given is the most amplified one.

All of the measured frequencies agree well with the simulated ones, although the

agreement is slightly poorer for the reflected shock tunnels (T5 and HEG), where

the freestream conditions are known with less certainty. In all cases except HEG,

the cones are nominally sharp, and the reported nose radii are small enough that

the measurement stations are far downstream of the entropy swallowing length. For

the HEG data, the cone is slightly blunted with a nose radius of Rn = 2.5 mm.

According to the swallowing length correlations reported by Stetson (1980), the mea-

surement station is at about twice the swallowing length, but the local boundary layer

thickness may still be influenced by the nose bluntness (Stetson et al., 1984). This

may in part explain why the measured frequencies are slightly larger than the sharp

cone predictions. This may also be a factor in the T5 data, where the ratio of the
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streamwise distance s to the nose radius of Rn ≈ 0.5 mm is about s/Rn = 1260 and

the measured frequencies are again somewhat greater than the sharp-cone prediction.

The experiments tabulated here employ an array of different measurement techniques

and span a wide range of flow conditions, from low enthalpy adiabatic flow (AEDC

Tunnel B) to high enthalpy reflected shock tunnels (T5 and HEG condition “D”).

Although the Reynolds numbers of the measurements are slightly different from the

value R = 1000 used in Figure 5.13, the measured data confirm the major features of

the trends shown in the figure.

5.4.4 Stability map

A final illustration of the effects of Mach number and wall temperature on the stability

behavior is given in Figure 5.17. This plot contains the same data from Figure 5.12,

but is organized in contour form to better portray the stability boundaries. The con-

tour levels indicate the spatial growth rate, which is optimized over all values of the

frequency ω and spanwise wavenumber β. For reference, a line (symbols) correspond-

ing to the adiabatic wall condition is also included. Most practical conditions would

fall below this line, as the points above it correspond to a heated wall. There is a

clear region at low Mach numbers and small values of T ∗w/T
∗
e for which no modal in-

stabilities are found. Although this region shrinks slightly as the Reynolds number is

increased, it is still present even at rather high Reynolds numbers, R > 4000. Since no

modal instabilities are found at these conditions, one might conclude that large ampli-

tude (nonlinear) disturbances are needed to cause transition when the Mach number

is low and the wall is cold. However, the transient growth calculations described in

Chapter 6 report elevated levels of non-modal amplification at these conditions, which

offers an alternative transition mechanism for infinitesimal disturbances.

5.5 Effects of Vibrational Nonequilibrium

In this section, the influence of thermal nonequilibrium on the growth of disturbances

is examined. Although these effects were included in all the preceding results, we
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Figure 5.17: Map of unstable regions for first and second modes. R = 1500, T ∗w =
300 K, T ∗e = 70 − 2000 K, P ∗e = 10 kPa. Contour levels are spatial growth rates
maximized over all values of ω and β for the first mode (- -) and second mode (–).

now investigate their importance and discuss the mechanisms involved. The effects of

vibrational relaxation are investigated first for air, where they are rather small, and

then for CO2, where they are considerably more important.

Vibrational nonequilibrium primarily enters the stability analysis in two ways.

First, the mean profiles of temperature, density, and (to a smaller extent) velocity

are influenced by the exchange of energy between the translational and vibrational

modes. This indirectly affects the disturbances through changes to the mean flow

profile. The second effect of vibrational nonequilibrium is the attenuation of sound

waves caused by the phase lag between the kinetic energy of molecules and their

internal energy modes (Clarke and McChesney, 1964, Lighthill, 1956, Vincenti and

Kruger, 1967, Fujii and Hornung, 2003). Further discussion regarding these processes

and their timescales is given in Section 5.6.

5.5.1 Vibrational Relaxation in Air

The first effect of vibrational nonequilibrium involves changes to the mean flow pro-

files. These changes are illustrated in Figure 5.18, where the temperature profiles at
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Figure 5.18: Temperature profiles for air at M = 5, T ∗e = 1500 K, T ∗w = 300 K.

various Reynolds numbers are compared. The blue lines show the frozen translational

(-◦-) and vibrational (-5-) temperature profiles, whereas the red lines (-�-) show the

equilibrium temperature profile. The nonequilibrium profiles of translational temper-

ature (-�-) and vibrational temperature (-·-) are given in black for three Reynolds

numbers of R = 500, 1000, and 1500. As the Reynolds number increases, there is a

7% decrease in translational temperature and an increase in density. The correspond-

ing velocity profiles are not shown since they are nearly unaffected by the vibrational

energy transfer.

The effect of these changes to the mean temperature profiles can be assessed by

conducting stability analysis for three different base flows: a frozen flow with vibra-

tional energy neglected, a non-equilibrium flow with finite rates of vibrational energy

transfer, and an equilibrium flow in which vibrational energy is assumed to be ex-

changed at an infinite rate. In computing the stability of these three base flows, fully

nonequilibrium disturbances are modeled. The resulting stability diagram is shown

in Figure 5.19a. As could be expected, the nonequilibrium solution agrees best with

the frozen solution for small Reynolds numbers, and tends to the equilibrium solution

for large R. The nonequilibrium base flow is destabilized in comparison to the frozen

case. The corresponding N factors shown in Figure 5.19b reveal that the equilibrium
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Figure 5.19: a) Stability diagrams for air, M = 5, T ∗e = T ∗v,e = 1500 K, P ∗e = 20 kPa.
Three different models of the mean flow: frozen, nonequilibrium, and equilibrium.
Disturbances are nonequilibrium. b) N factor diagram corresponding to a).

model lies closest to the nonequilibrium one, but there is a noticeable discrepancy

between them. This suggests that for transition prediction in high enthalpy air one

should make use of a non-equilibrium mean flow solution, although the equilibrium

approximation performs reasonably well. The frozen base flow is a rather poor ap-

proximation, since if one assumes a transition N factor of about 8 the transition

Reynolds number from the frozen flow is in error by about 30%.

The influence of acoustic absorption on the disturbance growth rates can be in-

vestigated in a similar manner. In this case three different disturbance models are

applied to a single, fully nonequilibrium base flow. The three disturbance models are

frozen, thermal equilibrium, and full thermal nonequilibrium. The growth rates are

compared in Figure 5.20a and the N factors in Figure 5.20b. In this case, the frozen

disturbance model is nearly indistinguishable from the nonequilibrium one. This is

consistent with the findings of Fujii and Hornung (2003), who showed that for air

at temperatures below about 3000 K, the frequency of maximum acoustic absorp-

tion is several orders of magnitude lower than the frequency (∼MHz) of second mode

disturbances in hypervelocity boundary layers.

Similar calculations to Figures 5.19-5.20 have been carried out for a wide range

of Mach numbers and wall temperature conditions relevant to shock tunnel experi-
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Figure 5.20: a) Stability diagrams for air, M = 5, T ∗e = T ∗v,e = 1500 K, P ∗e = 20 kPa.
Three different models of the disturbances: frozen, nonequilibrium, and equilibrium.
Mean flow is nonequilibrium. b) N factor diagram corresponding to a).

ments. In all cases, it was found that the influence of vibrational relaxation is quite

small. This conclusion is demonstrated in Figure 5.21, which shows the maximum

spatial growth rate as a function of Mach number and wall temperature, similar to

Figure 5.12. In Figure 5.21, the symbols correspond to a fully nonequilibrium cal-

culation (identical to Figure 5.12), while the solid lines correspond to a simplified

model in which the base flow is in vibrational equilibrium and the disturbances are

vibrationally frozen. As can be seen, this is a reasonably good approximation. There

are slight differences for T ∗w/T
∗
e < 1, which are caused by the nonequilibrium base

flow profiles. The discrepancy is largest (about 8%) for T ∗w/T
∗
e = 0.3 (or T ∗e = 1000);

below this temperature the vibrational energy of the flow is too small to produce a

significant effect and above this temperature, the vibrational relaxation is fast enough

that the equilibrium model is quite good.

These findings are independent of the mean pressure of the flow, so the results

given above in terms of the Reynolds number, dimensionless wavenumber, and dimen-

sionless frequency apply for any pressure. This is because both the viscous timescale

and the timescale of vibrational relaxation are inversely proportional to the pressure,

meaning that the effects of vibrational nonequilibrium are always the same at a given

Reynolds number. The pressure-independence of the results can also be deduced from
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Figure 5.21: Effect of wall cooling on the maximum spatial growth rates of the first
and second modes for air, R = 1500, T ∗w = 300 K, T ∗e = 70− 2000 K, P ∗e = 10 kPa.
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the dimensionless governing equations (2.14), in which none of the parameters except

the Reynolds number depend on the mean pressure.

5.5.2 Vibrational Relaxation in CO2

In this section, the influence of vibrational relaxation on the stability properties of

carbon dioxide flows is investigated. Nonequilibrium flow effects in CO2 are consider-

ably more important than in air, because CO2 exhibits a faster vibrational relaxation

time and stores a larger fraction of its total internal energy within vibrational modes.

This enables both a tuning of the relaxation time to the disturbance frequency and

a large damping rate of acoustic waves.

Following the same procedure used for air in the preceding section, we first inves-

tigate the effect of the base flow calculation on the stability results. This is done by

performing a nonequilibrium stability analysis on three different base flows obtained

using frozen, equilibrium, and nonequilibrium models. The resulting growth rates are
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Figure 5.22: a) Stability diagrams for CO2, M = 5, T ∗e = T ∗v,e = 1000 K, P ∗e = 20 kPa.
Three different models of the mean flow: frozen, nonequilibrium, and equilibrium.
Disturbances are nonequilibrium. b) N factor diagram corresponding to a).

given in Figure 5.22a and the N factors in Figure 5.22b.

The results show that, as one might expect, the nonequilibrium base flow solution

with finite rates of energy transfer yields results that are very close to the equilibrium

solution, except near the leading edge. This indicates that the base flow is close

to equilibrium, which is confirmed by looking at the base flow profiles that were

shown already in Figure 3.5. That figure showed that the nonequilibrium profiles are

very close to the equilibrium one downstream of about R = 600. The N factors in

Figure 5.22b also show good agreement between the equilibrium and nonequilibrium

results.

Interestingly, stability analysis of the frozen base flow yields an enormous damping

of the disturbances and complete stabilization of the boundary layer as one moves

downstream. The same result was observed by Johnson et al. (1998), who applied

a chemically reacting stability analysis to a non-reacting base flow of CO2 and also

found complete stabilization. The reason for this behavior is that the vibrationally

frozen base flow profiles, which resemble Figure 3.5a at all R, feature a large, arti-

ficial separation between the mean vibrational and translational temperatures since

vibrational energy transfer was eliminated. Such a separation is non-physical, since

the high rate of vibrational energy exchange in reality would rapidly bring the mean
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Figure 5.23: a) Stability diagrams for CO2, M = 5, T ∗e = T ∗v,e = 1000 K, P ∗e = 20 kPa.
Three different models of the disturbances: frozen, nonequilibrium, and equilibrium.
Mean flow is nonequilibrium. b) N factor diagram corresponding to a).

temperature distributions together. By artificially freezing the base flow but allow-

ing vibrational energy exchange in the stability analysis, one produces an enormous

stabilizing source term in the linearized stability equations.

The influence of vibrational relaxation in the disturbance modeling can be assessed

by calculating a fully nonequilibrium base flow (See Figure 3.5 for the profiles) and

running three different stability analyses on the same base flow. The three stability

analyses employ nonequilibrium, equilibrium, and frozen disturbance models. The

resulting growth rates and N factor distributions are given in Figure 5.23.

In this figure, one observes that the disturbances are highly stabilized by vibra-

tional nonequilibrium. Stabilization is only achieved in the nonequilibrium situation;

if the vibrational relaxation time is too small (approaching the equilibrium result)

then the relaxation time and the inverse frequency of disturbances are no longer com-

parable, and damping does not occur. It is interesting to note that for high Reynolds

numbers, the “tail” on the RHS of the growth rate curve is much larger when the

disturbances are in equilibrium. As discussed in Section 5.3, this feature exists when

unstable modes travel supersonically with respect to the freestream. It is well known

that in a gas which has a single dominant vibrational relaxation timescale, the sound

speed decreases monotonically as one moves from frozen to equilibrium flow (See
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Vincenti and Kruger (1967), Chapter VIII). Because of this reduction in sound speed

at equilibrium conditions, the unstable disturbances are able to travel supersonically

and hence develop the features mentioned above.

The results above have shown that vibrational nonequilibrium affects the stability

characteristics in two ways. First, vibrational relaxation leads to a change in the mean

temperature profile, which generally has a destabilizing effect relative to the frozen

base flow. Second, acoustic absorption of the second mode waves reduces the growth

rate, an effect which is quite small for air but can be significant for carbon dioxide.

The net result of these two phenomena can be either stabilizing or destabilizing

compared to a completely frozen flow, depending on the flow conditions. The relative

importance of these two processes will be investigated further in the sections that

follow.

5.6 Vibrational Nonequilibrium Estimates

The preceding sections have shown that thermal nonequilibrium processes are rela-

tively unimportant for flows of air over slender bodies, but for carbon dioxide the

influence of vibrational nonequilibrium is quite significant. It is highly desirable to

be capable of estimating this behavior using simple methods prior to resorting to a

fully nonequilibrium stability calculation. Such estimates also lead to an enhanced

understanding of the underlying nonequilibrium flow phenomena.

Estimates regarding the influence and importance of vibrational relaxation can be

obtained by considering an inviscid gas consisting of a single species, and therefore

featuring a single relaxation timescale (assuming that all vibrational energy states

of the molecule are in equilibrium with one another). Although the inviscid results

do not necessarily agree quantitatively with viscous calculations, the second mode

instability is an inviscid one and its qualitative behavior is the same for both viscous

and inviscid flow (Mack, 1984). Moreover, the growth rates from inviscid flow and

viscous flow at Rex ∼ 107 typically differ by less than a factor of 2, so the inviscid

limit is reasonable for estimating orders of magnitude. With these approximations,
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the dimensionless governing equations (2.14) are reduced to the following:

∂ρ

∂t
+∇ · (ρu) = 0 (5.14a)

ρ
Du

Dt
+∇p = 0 (5.14b)

cv,v
DTv
Dt

= ReL
ev(T )− ev(Tv)

τ
(5.14c)

ρ
DT

Dt
+ ρcv,v

DTv
Dt
−M2(γe − 1)

Dp

Dt
= 0 (5.14d)

γeM
2p = ρT (5.14e)

In these equations the nondimensional scalings presented in Equation 2.13 have been

used. The nondimensional vibrational energy ev = e∗v/c
∗
p,trT

∗
e and the nondimensional

relaxation time τ = τ ∗U2∗
e /ν

∗
e are also introduced.

5.6.1 Vibrational energy fluctuations

Following the procedure described in Chapter 4, one can substitute disturbances in

the form of normal modes (Equation 4.1) into the inviscid flow equations (5.14) and

linearize the perturbations. For a locally parallel flow, the vibrational and total energy

equations (5.14c-5.14d) of the disturbances are reduced to:

c̄v,v

[
i(αŪ − ω)θ̂v + v̂

∂T̄v
∂y

]
= R

c̄v,v(T̄ )θ̂ − c̄v,v(T̄v)θ̂v
τ̄

(5.15a)

ρ̄i(αŪ − ω)
[
θ̂ + c̄v,vθ̂v

]
+ ρ̄v̂

[
∂T̄

∂y
+ c̄v,v

∂T̄v
∂y

]
= i(αŪ − ω)M2(γe − 1)p̂ (5.15b)

where over-bars designate base flow variables and hats signify the complex amplitude

coefficients of the normal modes. Here the local Blasius boundary layer thickness

δ =
√
ν∗ex

∗/U∗e has been chosen as the length scale, such that the Reynolds number

becomes R = U∗e δ/ν
∗
e . Equation 5.15a can be solved for the vibrational temperature
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fluctuation θ̂v:

c̄v,v(T̄v)θ̂v =
c̄v,v(T̄ )θ̂ − v̂c̄v,v(T̄v)∂T̄v∂y τ̄

R[
1 + i

(
Ū
c
− 1
)
F τ̄
] (5.16)

In obtaining this result the frequency parameter F = ω/R was introduced, where

F is related to the dimensional frequency by Equation 5.1. This result shows that

fluctuations in vibrational energy are produced by two sources. First, if there is

a positive fluctuation in translational temperature θ̂, a positive fluctuation in θ̂v

will follow, according to the Landau-Teller mechanism. Secondly, a positive vertical

velocity fluctuation v̂ acting against a positive mean gradient in vibrational energy

∂T̄v/∂y results in a decrease of θ̂v, since the vertical velocity fluctuation is pulling

fluid with lower vibrational energy upward.

Both of these mechanisms of energy transfer are modulated by the denominator

of Equation 5.16, which can be represented as an amplitude and a phase shift:

1

1 + i
(
Ū
c
− 1
)
F τ̄

=
exp

{
−i tan−1

[
F τ̄
(
Ū
c
− 1
)]}

√
1 +

(
Ū
c
− 1
)2

F 2τ̄ 2

(5.17)

When the product F τ̄ is large, then the denominator tends to∞ and the phase angle

is π/2. According to Equation 5.16, this means that the vibrational temperature θ̂v

does not respond to fluctuations in temperature θ̂ or vertical velocity v̂ and is out of

phase with these variables. In such cases the disturbances in θ̂ and v̂ oscillate too

rapidly for the vibrational energy to keep pace. At the other extreme, F τ̄ � 1, the

denominator tends to 1 and the phase angle to zero. This means that the vibrational

energy responds instantaneously to fluctuations in θ̂ and v̂.

Between these limits, where F τ̄ is O(1), the amplitude of θ̂v decreases mono-

tonically as F τ̄ increases, and the phase angle of θ̂v relative to v̂ or θ̂ increases.

Interestingly, near the critical layer where Ū = c, the phase lag is always zero and the

vibrational temperature responds instantaneously and completely to fluctuations in

θ̂ and v̂. This is because the particle velocity and the disturbance phase velocity are



105

equal, meaning that the fluid particle itself experiences no fluctuations and quickly

reaches vibrational equilibrium. The phase lag of the vibrational temperature always

changes sign at the critical layer, with the vibrational energy experiencing a phase

lead below the critical layer and a phase lag above it.

5.6.2 Effective vibrational specific heat

The expression (5.16) for θ̂v can be substituted into the energy equation (5.15b) and

re-arranged to yield:

ρ̄i(αŪ − ω)


1 +

c̄v,v(T̄ )[
1 + i

(
Ū
c
− 1
)
F τ̄
]


 θ̂

+ρ̄v̂


∂T̄
∂y

+
c̄v,v(T̄v)[

1 + i
(
Ū
c
− 1
)
F τ̄
] ∂T̄v
∂y


 = i(αŪ − ω)M2(γe − 1)p̂ (5.18)

For the special case in which the base flow is close to equilibrium, T̄ ≈ T̄v, this reduces

further to


1 +

c̄v,v(T̄ )[
1 + i

(
Ū
c
− 1
)
F τ̄
]



(
i(αŪ − ω)θ̂ + v̂

∂T̄

∂y

)
= i(αŪ − ω)M2(γe − 1)p̂/ρ̄

(5.19)

The only difference between Equation 5.19 and the energy equation for a vibrationally

frozen flow is the term in brackets, which is equal to 1.0 for the frozen case. Therefore

for inviscid flow the influence of vibrational energy transfer is entirely encapsulated

in the quantity

cv,eff ≡
c̄v,v

1 + i
(
Ū
c
− 1
)
F τ̄

(5.20)

which acts as an effective, frequency-dependent vibrational specific heat and varies

between 0 < cv,eff < c̄v,v. For the more general case in which T̄ 6= T̄v, the same
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expression appears twice in Equation 5.18, but the numerator must be evaluated at

either T̄ or T̄v, depending on which term in Equation 5.18 is being computed.

When cv,eff tends to zero, the entire system of inviscid stability equations reduces

exactly to that of a frozen flow with constant specific heats. Likewise, when cv,eff =

c̄v,v, then the entire system of inviscid equations reduces to the equilibrium flow result.

Therefore cv,eff provides a figure of merit through which the action of vibrational

nonequilibrium can be assessed. For low temperatures, c̄v,v approaches zero and

indeed frozen flow is recovered. For very high frequency disturbances the flow again

becomes vibrationally frozen, and for low frequency disturbances thermal equilibrium

is achieved.

However, Equation 5.20 reveals that the product Fτ itself is not the most impor-

tant parameter, rather, the relevant quantity is

(
Ū

c
− 1

)
F τ̄ ≡ Frelτ̄ (5.21)

where Frel is the frequency of disturbances when measured in the frame of reference

of a fluid particle. The factor Frelτ̄ is a function of wallnormal height in the boundary

layer, and at the critical layer where Ū = c, the relative frequency is zero because the

fluid particles are traveling at the same speed as the disturbance wave. Thus even for

very high frequency disturbances, vibrational energy transfer may still be significant

at the critical layer. Previous simplified estimates of vibrational relaxation have not

included the possibility of a non-uniform base flow (Fujii and Hornung, 2001, Vincenti

and Kruger, 1967, Clarke and McChesney, 1964), but as discussed above this feature

can be important in the context of boundary layers.

5.6.3 Second Mode Frequency Estimates

For a particular boundary layer flow, the size of the relative frequency Frel for second

mode waves can be estimated, since the most unstable frequency scales inversely

with the boundary layer thickness. As was demonstrated in Section 5.4.2, the most

unstable frequency of the second mode instability follows the scaling f ∗ = CU∗e /2δ99,
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where f ∗ is the dimensional frequency in Hz, δ99 is the boundary layer thickness,

and C is a constant that falls in the range 0.4 < C < 1. The δ99 boundary layer

thickness can be related to the Blasius boundary layer thickness δ =
√
ν∗ex

∗/U∗e by

a proportionality of the form δ99 = Kδ, where K is a constant that depends on the

Mach number and the ratio T ∗w/T
∗
ad. For hypersonic boundary layers K typically falls

in the range 2 < K < 20 and takes on larger values for higher Mach numbers and

lower levels of wall cooling. White (1974) provides the estimate:

K =

√
ρwµw
ρeµe

[
5 +

(
0.2 +

0.9Tw
Tad

)
(γe − 1)M2

]
(5.22)

where µw and ρw are the viscosity and density at the wall. For low Mach numbers

and adiabatic flow, the constant reduces to K = 5.0 from classic boundary layer

theory (Schlichting and Gersten, 2000). Making use of the above approximation for

the disturbance frequency, one finds the relative frequency

Frelτ̄ =

(
Ū

c
− 1

)
πC

K
√
Rex

τ ∗U∗2e
ν∗e

(5.23)

The most important observation is that the factor Frelτ̄ is inversely proportional to

the square root of the Reynolds number. At the leading edge of the plate, second

mode disturbances are of such high frequency that they are vibrationally frozen. As

one moves downstream, a nonequilibrium flow is encountered, and eventually the

disturbances reach equilibrium far downstream. In the next section, the relative fre-

quency derived here is used to estimate the importance of vibrational nonequilibrium

in various flows.

5.6.4 Damköhler numbers

In Section 3.1.4 it was found that the effects of vibrational nonequilibrium on the

mean flow can be assessed by comparing the quantity U∗e τ
∗/x∗ to 1.0. Then in

Section 5.6.3 it was found that for linear stability analysis the relative frequency Frelτ

is the controlling parameter. Using these two parameters, one can define Damköhler
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Table 5.2: Typical Damköhler numbers for mean flow and disturbances in air at
Rex = 2.25× 106, M = 5, and P ∗e = 10 kPa.

Gas T ∗e (K) U∗e (m/s) τ ∗ (ms) τ ∗U∗2e /ν
∗
e K Damean Dadist

Air 300 1738 891 1.7×1010 7.35 7.43×103 3.71×105

Air 1000 3098 3.56 2.8×107 6.0 12.3 751
Air 1500 3759 0.80 4.7×106 5.7 2.07 133

CO2 300 1351 0.048 1.0×106 7.50 0.45 22.2
CO2 1000 2362 7.9×10−3 5.7×104 5.5 0.025 1.68
CO2 1500 2875 5.0×10−3 2.6×104 5.22 0.019 0.83

numbers for the base flow and for the disturbances:

Damean =
U∗e τ

∗

x∗
=

1

Rex

U∗2e τ
∗

ν∗e
(Base Flow) (5.24a)

Dadist = Frelτ =

(
Ū

c
− 1

)
πC

K

1√
Rex

U∗2e τ
∗

ν∗e
(Disturbances) (5.24b)

Comparison of these Damköhler numbers to 1.0 indicates whether or not the

influence of vibrational nonequilibrium is important in either the base flow or the

stability calculations. Damköhler numbers have been calculated for several represen-

tative flow conditions and are tabulated in Table 5.2. The flow conditions are M = 5,

Rex = 2.25 × 106, and P ∗e = 10 kPa, although the pressure only affects the dimen-

sional relaxation time τ ∗ and not the Damköhler numbers. In this calculation the

phase speed was assumed to be c = 0.9U∗e , which is an excellent approximation for

unstable second mode waves. The constant C was assumed to be 0.7 on the basis of

Figure 5.13, and the factor K = δ99

√
U∗e /ν

∗
ex
∗ was taken from computed boundary

layer profiles rather than using the correlation of Equation 5.22.

The Damköhler numbers in Table 5.2 exactly confirm the trends observed in the

full stability calculations of Section 5.5. For air, the Damköhler number of the mean

flow is very large for T ∗e = 300 K and is O(1) at 1500 K, indicating a completely

frozen base flow at 300 K and a highly nonequilibrium base flow at 1500 K. This

is exactly the behavior observed in the base flow profiles of Figure 3.3. For distur-

bances in air, the Damköhler numbers Dadist are all much larger than 1.0, indicating
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that the disturbances are essentially vibrationally frozen, which was demonstrated in

Figure 5.20.

For CO2, the Damköhler number of the base flow is much less than 1.0, indi-

cating that the base flow reaches vibrational equilibrium almost immediately. This

was confirmed in the base flow profiles of Figure 3.5. The disturbance Damköhler

numbers for CO2 in Table 5.2 are O(1), which means that the inverse frequency of

disturbances and the vibrational relaxation time are comparable. Consequently, nei-

ther frozen nor equilibrium stability calculations will suffice and one must resort to

a fully nonequilibrium disturbance model. The same conclusion is drawn from the

numerical results of Figure 5.23. Therefore the detailed numerical simulations of the

base flow (Section 3.4) and stability behavior (Section 5.5) confirm that the simple

Damköhler number estimates given in Equation 5.24 can be used to estimate whether

or not vibrational relaxation will be important at a particular flow condition.

A final observation can be made regarding the x dependence of the Damköhler

numbers in Equation 5.24. In this equation, the only parameter that varies signif-

icantly in the x direction is the Reynolds number. The Damköhler number of the

base flow is inversely proportional to the Reynolds number, whereas the Damköhler

number of the disturbances is inversely proportional to its square root. This indi-

cates that near the leading edge of the plate, both Damköhler numbers will be very

large and both the mean flow and the second mode disturbances will be vibrationally

frozen. Likewise, if one travels far enough downstream both Damköhler numbers tend

to zero and both the mean flow and the disturbances will be in vibrational equilib-

rium. In between these two extremes, however, the Damköhler number of the mean

flow decreases much more rapidly than that of the disturbances. Specifically, Damean

decreases a factor of
√
Rex faster than Dadist.

This situation is shown schematically in Figure 5.24 in which the boundary layer

is divided up into frozen, nonequilibrium, and equilibrium zones for both the base

flow and the disturbances. The zones are not the same for the base flow and the

disturbances, and there can be a considerable amount of overlap between them. The

configuration shown in the figure applies to the flows of both high enthalpy air and
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1

Frozen: 𝑓𝜏 ≫ 1
𝑓𝜏~1

Eq: 𝑓𝜏 ≪ 1

Frozen: 
𝑈𝜏

𝑥
≫ 1

𝑈𝜏

𝑥
~1

Eq: 
𝑈𝜏

𝑥
≪ 1

Disturbances

Mean
Flow

𝑓

Figure 5.24: Schematic of relaxation times in a boundary layer.

CO2 discussed previously and tabulated in Table 5.2. For air, the base flow passes

through frozen, nonequilibrium, and equilibrium states before vibrational energy ex-

change starts to become important in the disturbances. For the CO2 cases, the

base flow is essentially in equilibrium while the disturbances experience vibrational

nonequilibrium.



111

Chapter 6

Transient Growth1

6.1 Introduction

Most of the early analyses of hypersonic boundary layer stability emphasized the

exponential growth of perturbations corresponding to unstable discrete eigenvalues

(Mack, 1965, 1969, 1984, Reshotko, 1976), as detailed in Chapters 4-5. More recently,

however, it has been recognized that disturbances can experience a large amount of

amplification even in the absence of unstable modes. This mechanism of disturbance

amplification is called non-modal growth, or transient growth. It has been hypothe-

sized that disturbances undergoing transient growth may reach sufficient amplitudes

to trigger nonlinear interactions which ultimately cause the breakdown into turbu-

lent motion (Andersson et al., 1999, Trefethen et al., 1993). This chapter develops a

compressible transient growth analysis, systematically explores the transient growth

behavior over a wide parameter space, and makes direct comparisons between tran-

sient growth and modal growth in hypersonic boundary layers.

6.2 Background

Non-modal growth first received a great deal of attention in the incompressible flow

regime (Hultgren and Gustavsson, 1981, Butler and Farrell, 1992, Andersson et al.,

1Much of the material presented in this chapter was reported in a paper by Bitter and Shepherd
(2014).
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1999, Luchini, 1996, 2000, Tempelmann et al., 2010) since it provides a plausible

explanation for the experimentally observed transition of flows like Couette and pipe

flow that have no unstable eigenvalues (Schmid and Henningson, 2001, Reddy and

Henningson, 1993). The first transient growth analysis of compressible boundary

layers was conducted by Hanifi et al. (1996) using the temporal framework. They

found that the optimal disturbances in compressible boundary layers share many

features with those in incompressible ones; for instance, optimal perturbations take

the form of streamwise vortices, energy growth scales with the Reynolds number based

on x, and the amplification is driven by Landahl’s “lift-up” effect (Landahl, 1977,

1980). Subsequent compressible transient-growth analyses have employed the spatial

framework (Tumin and Reshotko, 2001) and focused on the inclusion of nonparallel

flow effects (Tumin and Reshotko, 2003, Zuccher et al., 2006, Tempelmann et al.,

2012).

As discussed by Corbett and Bottaro (2000) for the incompressible case, flows

experience a competition between modal and non-modal growth mechanisms. At low

enough Reynolds numbers, the flow is generally modally stable and the only pos-

sible growth mechanism is transient growth, which may or may not produce large

amounts of amplification depending on the flow conditions. At higher Reynolds num-

bers, both modal and non-modal growth mechanisms may be active, and one must

determine whether the short-time dynamics of transient growth are able to surpass

the exponential amplification of unstable modes. In the literature, very few direct

comparisons between modal growth and transient growth have been made, especially

for compressible boundary layers. Moreover, the few comparisons that are available

do not account for the fact that second mode waves of a given frequency are only

unstable over a short range of Reynolds numbers (c.f. Figure 5.3) rather than experi-

encing continued exponential growth for all time. Therefore one goal of this chapter

is to make a meaningful comparison between modal and non-modal growth that takes

these factors into account.

In comparing the amplification caused by modal and non-modal mechanisms,

the wall temperature condition and Mach number are of great importance. As was
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demonstrated in Chapter 5, the growth rates of both the first and second mode

instabilities are quite sensitive to these parameters, the first mode being stabilized

by wall cooling and the second and higher modes being destabilized. Although the

influence of wall cooling is well-known for modal instabilities, with regard to transient

growth the effects of wall cooling are not so simple and have not been studied in

such great detail. Tumin and Reshotko (2001, 2003) did investigate the effects of

wall cooling for relatively low Mach numbers of 0.5 and 3.0 as well as modest wall

temperature ratios (Tw/Tad = 0.25-1.0), and they observed a reduction in transient

growth with wall cooling for M = 3 and an increase for M = 0.5. Tempelmann et al.

(2012) also investigated the effect of wall cooling for a swept flat-plate boundary

layer at M = 0.75 and found wall cooling to increase the level of transient growth,

which is consistent Tumin’s subsonic result. Reshotko and Tumin (2004) reported

a wider range of wall temperatures and Mach numbers and demonstrated that the

wall temperature effect is strongly dependent on the Mach number. In this chapter,

a systematic study of the effects of Mach number and wall temperature is undertaken

to further clarify the roles of these parameters in transient growth and provide results

for flow conditions that are relevant to high enthalpy impulse experiments.

As was pointed out in Chapter 5 there are no modal instabilities for flows with

a cold wall and M < 2.5. At these conditions, the first mode is stable because of

the high level of wall cooling and the second mode is stable because of the low Mach

number. For high levels of wall cooling, the absence of modal instabilities at M < 2.5

raises the question of whether or not such boundary layers are completely stable

to infinitesimal perturbations, with transition to turbulence being caused only by

nonlinear interactions between finite amplitude disturbances. In this chapter we also

investigate whether transient growth produces sufficient amplification to plausibly

lead to transition in such flows.

The transient growth calculations reported in this chapter are conducted mainly in

the temporal framework, but we also report several cases using the spatial framework

as well. Although previous research has been done in both the temporal (Hanifi et al.,

1996, Hanifi and Henningson, 1998) and spatial (Tumin and Reshotko, 2001, 2003,
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Tempelmann et al., 2012) cases, the connection between the two frameworks remains

unclear and few direct comparisons between the two methods are available. Several

authors (Criminale et al., 1997, Lasseigne et al., 1999) have reported promising results

in which spatial results are nearly reproduced from the temporal ones by a simple

re-scaling of variables; however, an analogue to Gaster’s transform (Gaster, 1962)

that might facilitate the comparison between spatial and temporal results has not yet

been proposed. Nevertheless, by comparing the results of the references above it is

clear that the spatial and temporal calculations have the same qualitative behavior,

including the form of the optimal perturbations, the magnitude of energy growth

achieved, the scaling of results with Reynolds and Mach numbers, and the effects

of wall-cooling. In this study, we make both spatial and temporal transient growth

calculations for selected cases that are otherwise identical in order to clarify the

similarities and differences between the two methods.

6.3 Simple Transient Growth Example

Before describing the details of the transient growth analysis, it is useful to introduce

the differences between modal and non-modal amplification by means of a simple ex-

ample. First we consider a simple linear system of two ordinary differential equations

which exhibits only the traditional modal growth:

d

dt


 X

Y


 =


 0.1 0

0 −1




 X

Y


 (6.1)

In this example, the behavior is very simple since the system matrix is diagonal, and

therefore the equations are uncoupled. It is then easily seen that the two eigenvalues

are λ1 = 0.1, λ2 = −1 and the right eigenvectors (scaled arbitrarily) are:

ξ1 =


 0.1

0


 ξ2 =


 0

1


 (6.2)
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Figure 6.1: Left: Eigenvectors ξ1 (red), ξ2 (blue), and linear combination ξ1 + ξ2

(black) corresponding to system in Equation 6.1. Right: Length of the three vectors
as a function of time, relative to initial length. E is the Euclidean norm of the vector.

which are clearly orthogonal. One can then construct the solution for any initial con-

dition using a linear combination of these eigenvectors and their known exponential

variation with time.

The results of such a calculation are shown in Figure 6.1. The left portion of

this plot shows the two eigenvectors ξ1 and ξ2 in red and blue, as well as their linear

combination ξ1 + ξ2 in black, at the initial instant t = 0. The right portion of the

figure shows the length of these three vectors as functions of time, relative to their

initial length. The behavior is very simple: the vector ξ1 grows exponentially because

of its positive eigenvalue, ξ2 decays exponentially, and the linear combination initially

decays but then grows exponentially as t→∞, following the dominant mode ξ1. Any

initial condition will eventually experience this exponential growth unless it is exactly

orthogonal to ξ1.

A second example illustrates non-modal or transient growth of disturbances. The

system matrix of Equation 6.1 is now modified slightly by adding a large off-diagonal

term and changing the sign of one of the diagonal elements:
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Figure 6.2: Left: Eigenvectors ξ1 (red), ξ2 (blue), and linear combination ξ1 + ξ2

(black) corresponding to system in Equation 6.3. Right: Length of the three vectors
as a function of time, relative to initial length. E is the Euclidean norm of the vector.

d

dt


 X

Y


 =


 −0.1 0

9 −1




 X

Y


 (6.3)

In this case the eigenvalues are λ1 = −0.1 and λ2 = −1, and the eigenvectors are

ξ1 =


 0.1

1


 ξ2 =


 0

−1


 (6.4)

Both eigenvalues are now negative, so any initial condition applied to this system

will eventually decay away. However, in this case the eigenvectors are no longer

orthogonal; in fact, they are nearly parallel.

Figure 6.2 plots the eigenvectors of Equation 6.3 as well as their change in length

as a function of time. As expected, both eigenvectors and their linear combination

decay as t→∞. However, the linear combination shown in black experiences a large

amount of growth before finally decaying away. This behavior is easily explained by

observing that at time t = 0 the two vectors ξ1 and ξ2 almost cancel one another

out, but as time progresses ξ2 decays much more rapidly than ξ1, thus destroying the
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near cancellation of these two vectors. The amount of transient growth can be made

arbitrarily large by increasing the size of the off-diagonal term in Equation 6.3, which

causes the eigenvectors to become closer to parallel.

The transient growth behavior observed in this simple example occurs for any

linear system that has widely-separated eigenvalues and non-orthogonal eigenvectors.

Such a linear system is called non-normal. The linearized Navier-Stokes equations are

in fact non-normal (Trefethen et al., 1993) and hence do support transient growth.

The method for calculating transient growth is conceptually similar to the simple

examples described above. The discretized, linearized Navier-Stokes equations are

represented as a matrix eigenvalue problem and the eigenvalues and eigenvectors

are computed. If the eigenvalues are unstable, then modal growth ensues. If all

of the eigenmodes are damped, then transient growth is computed by seeking the

linear combination of the eigenvectors that leads to the largest possible growth of

disturbance energy.

6.4 Methodology

The first step in the transient growth analysis is to calculate the global eigenvalue

spectrum. This is done using exactly the same procedures that were described in

Section 4.1. As described in Chapter 4, the flow is assumed to be locally parallel,

meaning that the x derivatives of mean flow variables are neglected, as is the mean

vertical velocity. While these approximations are quite good for the unstable modes

described in Chapter 5, they are somewhat poorer for transient growth. As will be

seen, the optimal disturbances associated with transient growth are elongated in the

streamwise direction and evolve over large streamwise distances. In contrast, unstable

modes such as the second mode instability have short streamwise wavelengths over

which the variation in boundary layer thickness is usually negligible. The validity

of the parallel flow assumption for transient growth analysis has been evaluated by

Tumin and Reshotko (2003), who demonstrated that the inclusion of non-parallel

effects leads to some quantitative differences in the maximum transient growth but
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little qualitative change in the behavior; they concluded that “nonparallel effects

probably are not significant for estimates of transient growth.” Since in this chapter

we are interested mainly in qualitative trends and orders of magnitude associated

with transient growth, the slight numerical errors introduced by the locally parallel

flow assumption are deemed acceptable.

6.4.1 Energy Norm

After calculating the global eigenvalue spectrum, the next step in the transient growth

analysis is to determine the linear combination of eigenvectors that leads to the largest

amount of disturbance growth in the downstream direction. However, this step re-

quires a meaningful measure of the size of the disturbance. Unlike modal analysis in

which the disturbance velocity, pressure, and temperature amplify in proportion to

one another, for transient growth one must make use of a metric that includes all of

these variables. A common approach is to use the disturbance energy as a measure

of the size of the disturbance. Although the disturbance energy has been derived for

perfect gases in various ways by others (Chu, 1965, Mack, 1969, Hanifi et al., 1996),

in this section we add vibrational energy to the energy norm.

The energy of a disturbance can be characterized by considering an inviscid plane

wave of small amplitude traveling in a uniform medium. Even though the boundary

layer itself is not a uniform flow, the energy contained in a uniform medium pro-

vides a useful measure of the disturbance energy. Since the wave is traveling in a

uniform flow, one can always translate the frame of reference such that the medium

becomes stationary. In that case, the equations of continuity, momentum, energy,
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and vibrational energy can be linearized and written:

∂ρ̃

∂t
+ ρ̄∇ · ũ = 0 (6.5a)

ρ̄
∂ũ

∂t
+∇p̃ = 0 (6.5b)

ρ̄c̄v
∂θ̃

∂t
+ ρ̄c̄v,v

∂θ̃v
∂t

+ p̄∇ · ũ = 0 (6.5c)

c̄v,v
∂θ̂v
∂t

= Q̃ (6.5d)

where the tilde indicates fluctuations and overbars signify mean flow quantities. The

translational specific heat is c̄v, the vibrational specific heat is c̄v,v, and Q̃ is the

rate of energy transfer between fluctuations in vibrational and translational energy.

Although this term is usually modeled using the method of Landau and Teller (c.f.

Equation 2.6), there is no need to specify a model for Q̃ in the present analysis.

Following the method of Chu (1965) and extending it for vibrational energy, one can

multiply Equation 6.5a by (ā2/γρ̄)ρ̃, (6.5b) by ũ, (6.5c) by θ̃/T̄ , and (6.5d) by ρ̄θ̃v/T̄ .

After doing so, the equations are summed to obtain the result:

1

2

∂

∂t

(
ρ̄|ũ|2 +

ā2

γρ̄
ρ̃2 +

ρ̄c̄v
T̄
θ̃2 +

ρ̄c̄v,v
T̄

θ̃2
v

)
= −∇ · (p̃ũ)− ρ̄c̄v,v

T̄
θ̃
∂θ̃v
∂t

+
ρ̄Q̃θ̃v
T̄

(6.6)

The second term on the RHS can be replaced using the vibrational energy equation

(6.5d), which leads to:

1

2

∂

∂t

(
ρ̄|ũ|2 +

ā2

γρ̄
ρ̃2 +

ρ̄c̄v
T̄
θ̃2 +

ρ̄c̄v,v
T̄

θ̃2
v

)
= −∇ · (p̃ũ) +

ρ̄

T̄
Q̃(θ̃v − θ̃) (6.7)

One can now integrate this equation over some region of space Ω. By virtue of the

divergence theorem, the first term on the RHS integrates to zero if the disturbances

satisfy one of the following properties:

1. The disturbances are periodic in space

2. The domain boundary is at ∞ and the disturbances decay to zero there
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3. The velocity normal to the boundary is zero

For boundary layers, the disturbances are generally considered to be periodic in x and

decaying as y →∞, and they exhibit zero normal velocity at the wall. Therefore, in

integrating over the domain the pressure work term on the RHS is zero. As a result,

the integral becomes

∂E

∂t
≡ 1

2

∂

∂t

∫

Ω

(
ρ̄|ũ|2 +

ā2

γρ̄
ρ̃2 +

ρ̄c̄v
T̄
θ̃2 +

ρ̄c̄v,v
T̄

θ̃2
v

)
dΩ =

∫

Ω

ρ̄

T̄
Q̃
(
θ̃v − θ̃

)
dΩ (6.8)

The terms on the LHS represent the time rate of change of the disturbance energy,

and its variation with time is (in the absence of viscous effects) caused solely by

the vibration-translation energy exchange. In the absence of vibrational energy, the

energy integral on the LHS reduces to an energy norm that is widely used in the

literature (Chu, 1965, Mack, 1969, Hanifi et al., 1996).

For application to the specific context of boundary layers, the integral above is

rewritten in terms of the dimensionless variables defined in Equation 2.13, and the

energy is scaled by ρ∗eU
∗2
e . The result is then

2E ≡
∫ ymax

0

(
ρ̄
(
|û|2 + |v̂|2 + |ŵ|2

)
+

T̄

M2γρ̄
ρ̂2

+
ρ̄

γ(γ − 1)M2T̄
θ̂2 +

ρ̄c̄v,v
(γ − 1)T̄M2

θ̂2
v

)
dy (6.9)

Vibrational energy has been included in this norm for completeness, but in Sec-

tion 6.5.7 its effect is shown to be rather small. Therefore in the results that follow,

the vibrational energy of the disturbances is neglected unless indicated otherwise.

Although the energy norm used here follows intuitively from the equations of mo-

tion, it is not the only choice. For example, the observation that optimal disturbances

take the form of stream-wise streaks has motivated some researchers to use |û2| alone

as the energy norm. Zuccher and Tumin (2005) compared results using the full energy

norm from Equation 6.9 (but without θ̂v) with a partial norm involving only |û|2 and

|θ̂|2. They found that the differences in energy growth between these two cases could

be as high as 62% at M = 3. This indicates that the choice of energy norm can have
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a significant effect on the results obtained. Further discussion regarding the choice of

energy norm is given in Section 6.5.6.

6.4.2 Transient growth calculation

The transient growth calculation used in this work closely follows the method of Hanifi

et al. (1996) and Tumin and Reshotko (2001). Both spatial and temporal calculations

are carried out. First, the eigenvalues and eigenvectors of Equation 4.2 are calculated

using the methods of Section 4.1. The disturbance vector q̂ = (û, v̂, p̂, θ̂, ŵ, θ̂v)
T is

then projected onto the truncated eigenvector basis as follows:

q̂(x, y) =
N∑

k=1

κkq̃k(y)eiαkx (6.10)

In this equation, the vectors q̃k are the spatial eigenvectors and κk are expansion

coefficients which are as yet unknown. For temporal analysis, the exponential is

replaced by exp(−iωt) and the temporal eigenfunctions are used. This eigenvector

decomposition may be represented compactly in vector notation by the relation

q̂ = QΛκ (6.11)

where Q is a matrix containing the eigenvectors q̃k as its columns, Λ is the diagonal

matrix having diagonal elements exp(−iωkt) or exp(iαkx), and κ is the column vector

of expansion coefficients.

The disturbance energy norm from Equation 6.9 can be written in terms of the

eigenvector expansion (6.11) as follows:

2E = (Λκ)H
[∫ ymax

0

QHMQdy

]
Λκ (6.12)

where superscript H designates the Hermitian transpose and M is a 6 × 6 matrix

containing the coefficients of the disturbance quantities in (6.9). The integral in

brackets is a positive-definite matrix, and thus it may be factored as the product of
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a matrix F and its Hermitian transpose (Schmid and Henningson, 1994):

FHF ≡
∫ ymax

0

QHMQdy (6.13)

The matrix F can be calculated using the Cholesky decomposition; this matrix does

not depend on x or t or on the eigenvector expansion coefficients κ, so it can be im-

mediately computed once the eigenvector basis is known. By combining the definition

in (6.13) with (6.12), the energy norm can be written as a weighted 2-norm of the

expansion coefficients κ:

2E = (FΛκ)H(FΛκ) = ||FΛκ||22 (6.14)

Using this expression for the disturbance energy, one can calculate the ratio of the

energy at some downstream location x to the energy at the initial location and seek to

maximize this ratio over all possible initial conditions. The maximized energy ratio

is denoted G:

G(x) ≡ max
E(x)

E(0)
= max

||FΛκ||22
||Fκ||22

= max
||FΛF−1Fκ||22
||Fκ||22

= ||FΛF−1||22 (6.15)

The 2-norm of this matrix is calculated using the singular value decomposition, and

the eigenvector expansion coefficients κ of the optimal perturbation are extracted

from right singular vector corresponding to the largest singular value (Schmid and

Henningson, 1994).

For spatial analysis, G(ω, β, x) is the maximum possible amplification that can

occur a distance x downstream from the initial station. Analogously, for temporal

analysis G(α, β, t) is the maximum amplification that can occur at time t. Following

the notation of Hanifi et al. (1996), the maximum value of G over all t (temporal case)

or x (spatial case) will be denoted Gmax, and the value of Gmax that is optimized over

all β and ω (or α for temporal analysis) will be referred to as Gopt. This quantity

can be regarded as a property of the boundary layer. The time or distance at which

the optimal amplification is achieved is denoted topt or xopt, and the optimal spanwise
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wavenumber is denoted βopt.

The numerical implementation of the transient growth calculation is as follows.

For a chosen pair of wavenumbers (α, β) or (ω, β), the global eigenvalue spectrum is

computed as described in Section 4.1. In all calculations, the number of grid points is

150, the height of the domain is ymax = 100, and half of the grid points are clustered

below y = 10 using the algebraic grid stretching suggested by Malik (1990). Point-

wise checks have been performed at a large number of different conditions using 100 or

200 grid points as well as domain heights of 100, 200, or 300; these checks have shown

that values of Gmax are affected less than 0.5% by these changes, which confirms that

the transient growth calculation is converged.

If any unstable modes are found in the global eigenvalue calculation, they are

refined using a local stability solver described in Section 4.2. If unstable modes

are present, the calculation is terminated since the maximum energy growth is then

infinite. If no unstable modes are found by the global eigenvalue calculation, then the

matrix F defined in (6.13) is constructed from the eigenvector basis. The numerical

integration involved in (6.13) is carried out using the spectrally accurate method

reported by Hanifi et al. (1996). Having constructed the matrix F and its inverse, the

product FΛF−1 is formed for different values of time x (or t for temporal analysis)

and for each value of x the singular value decomposition is employed to obtain G.

This procedure is repeated until the downstream distance x is found that maximizes

G.

The transient growth calculation described here has been validated by reproducing

both the temporal results of Hanifi et al. (1996) and the spatial results of Tumin and

Reshotko (2001). An example of the comparison with Tumin’s work is shown in

Figure 6.3, where good agreement is seen over a wide range of Mach numbers.
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Figure 6.3: Comparison of present results (thick solid lines) with those of Tumin and
Reshotko (2001) (markers). Adiabatic wall, spatial analysis, To = 333 K, ω = 0,
R =

√
Uex/νe = 300.

6.5 Results

6.5.1 Optimal Perturbations

Figure 6.4 shows contour plots of the maximum temporal energy amplification, Gmax,

as a function of streamwise and spanwise wavenumber. Each plot is constructed on a

grid of 150 values each of α and β. The Mach numbers are 2.5 (left) and 5.0 (right),

the wall is adiabatic, and the Reynolds number based on boundary layer thickness

is R ≡
√
Uex/νe =

√
Rex = 300. The colored contours represent Gmax(α, β), but

the white regions contain unstable modes and hence the maximum possible energy

amplification in these zones is infinite. Contour lines in these regions instead indicate

the temporal growth rate, ωi, with contour lines equally spaced between zero and the

maximum value, which is reported in Table 6.1. The unstable regions that are visible

in Figure 6.4 correspond to the first mode instability and have their maximum growth

rate for β > 0, indicating that oblique disturbances are most unstable. The second

mode is also unstable at this Reynolds number for M = 5, but the instability region

is located at α > 0.1 and is not visible on the plot.

For both Mach numbers, the energy amplification Gmax features a local maxi-
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Figure 6.4: Contours of maximum (temporal) energy amplification Gmax vs. stream-
wise and spanwise wavenumbers. Mach number is 2.5 (left) and 5.0 (right), and
Tw = Tad, R = 300, Te = 70 K. Colored contours indicate maximum energy amplifi-
cation, while black contours indicate the growth rate ωi in regions that are modally
unstable. Maximum growth rates in the unstable region are ωi = 9.2 × 10−4 for
M = 2.5 and ωi = 5.1× 10−4 for M = 5.0.

mum for an oblique wave having α = 0. This condition corresponds to a streamwise

vortex, as is verified by the shape of the optimal disturbance shown in Figure 6.5.

The disturbance is comprised mainly of vertical and spanwise velocities, with the the

temperature fluctuation being substantially smaller and the pressure and streamwise

velocity negligible. This form of optimal disturbance has been widely demonstrated

for incompressible (Butler and Farrell, 1992, Andersson et al., 1999) and compressible

(Tumin and Reshotko, 2001, 2003) flows alike. By comparison of the two cases in Fig-

ure 6.5, it is apparent that the shape of the optimal velocity distribution is insensitive

to the Mach number. Although the optimal disturbance does contain a noticeable

temperature perturbation for the M = 5 case, the energy of the disturbance is mostly

kinetic: 99.4% of the initial energy is contained in the first three terms of (6.9).

Figure 6.6 shows the shape of the optimal perturbation after it has grown to

its maximum amplification (t = topt). The amplified disturbance consists mainly of

temperature and streamwise velocity, which is consistent with the findings of Hanifi

et al. (1996). These amplified disturbances take the form of streamwise streaks of

alternating high and low velocity and temperature. The physical interpretation of

this amplification is the well-known lift-up effect (Landahl, 1977, 1980) in which the
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Figure 6.5: Optimal disturbances corresponding to Figure 6.4, R = 300, Te = 70 K,
Tw = Tad. Left: M = 2.5, α = 0, β = 0.22. Right: M = 5.0, α = 0, β = 0.12.
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Figure 6.6: Optimal disturbances after amplification, t = topt, corresponding to Fig-
ure 6.4. R = 300, Te = 70 K, Tw = Tad. Left: M = 2.5, α = 0, β = 0.22. Right:
M = 5.0, α = 0, β = 0.12.
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Figure 6.7: Velocity vectors of optimal input disturbance at t = 0 and contours
amplified streamwise velocity at t = topt. a) M = 2.5, α = 0, β = 0.22; b) M = 5.0,
α = 0, β = 0.12.

streamwise vortices transport low velocity and high temperature (for an adiabatic

wall) fluid from the wall towards the outer edge of the boundary layer and vice

versa. Although the input disturbances were composed mainly of kinetic energy,

after amplification the kinetic energy makes up only 55% (for M = 2.5) and 20%

(for M = 5.0) of the total energy. This demonstrates that the inclusion of the terms

involving θ̂ and ρ̂ has a significant impact on the computed energy growth. A similar

distribution of energy amongst its various components was observed by Tempelmann

et al. (2012).

The lift-up effect described above is illustrated more clearly in Figure 6.7, where

contours of the amplified streamwise velocity distribution u at t = topt (colored con-

tours) are superimposed over the velocity vectors of the optimal disturbance at t = 0.

In this figure, the downstream direction points into the page. The velocity vectors

Table 6.1: Summary of temporal transient growth characteristics for R = 300.

Me Tw/Te Gopt Topt βopt ωi,max(1st mode)
2.5 2.1 (adiabatic) 437 1030 0.22 9.2× 10−4

5.0 5.3 (adiabatic) 483 1150 0.10 5.1× 10−4

2.5 1.0 337 750 0.33 0
5.0 1.0 251 897 0.25 0
2.5 0.3 390 602 0.44 0
5.0 0.3 239 770 0.31 0
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consist of a row of counter-rotating vortices, and the resulting high velocity streak is

located at the point where the vortices are pulling high momentum fluid downward

from the top of the boundary layer, and vice versa for the low velocity streak. Temper-

ature streaks can be produced by the same mechanism when the streamwise vortices

are acting against gradients in the mean temperature profile. The same behavior is

observed at both Mach numbers shown in the figure.

The preceding discussion has focused on disturbances having α = 0, but at

M = 5.0, Figure 6.4 features a second local maximum that borders the first mode

instability region, and the energy amplification at this local maximum is slightly

larger than at α = 0. The optimal disturbance at this condition is composed of the

(slightly) damped Tollmien-Schlichting (TS) wave combined with several other more

highly damped discrete modes as well as modes from the continuous spectra. This is

demonstrated in Figure 6.8 where the global eigenvalue spectrum is plotted and the

10 modes that contribute most significantly to the optimal disturbance are marked

with red boxes. Because of the non-normality of the Navier-Stokes operator, the TS

mode and the modes from the vorticity branch interfere destructively such that the

initial energy is 1.0 despite the large amplitudes of the modes involved. As time

progresses, the modes belonging to the vorticity branch rapidly decay leaving a large-

amplitude, slowly-decaying Tollmien-Schlichting mode behind. This process results in

a large transient increase in energy. A similar process is always involved in transient

growth (Schmid, 2007), but this instance is somewhat unique because discrete modes

contribute significantly to the transient amplification, rather than modes from the

continuous spectrum alone. Interactions of this sort have not been reported in most

prior compressible transient growth studies because the perturbations are usually as-

sumed to have α = 0 for temporal analyses and ω = 0 for spatial ones. However,

there is some similarity between the present result and the “optimally-perturbed TS

mode” considered by Farrell (1988) and Corbett and Bottaro (2000), who sought the

initial conditions that produce the largest possible amplitude of Tollmien-Schlichting

wave at a later time.
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Figure 6.8: Discrete modes and the discrete approximation to the continuous spectra.
M = 5.0, Tw = Tad, R = 300, α = 0.02, β = 0.10. Red squares designate the 10
modes that make the largest contribution to the optimal disturbance.

6.5.2 Wall Cooling

Figure 6.9 provides contour plots of maximum amplification for a cooled wall with

temperature ratio Tw/Te = 1.0; this condition was achieved by setting both the

freestream temperature and wall temperature to 300 K. Again, the Mach numbers

are 2.5 and 5 and the Reynolds number is R = 300. Owing to the reduction in Tw/Te

relative to the adiabatic case, the first mode instability region is no longer present.

There is still a second mode unstable region for M = 5, but it is again located at

α > 0.1 and is not visible in the contour plots. The optimal amplification Gopt is

somewhat reduced compared to the adiabatic case shown in Figure 6.4. Also the

optimal spanwise wavenumber βopt is increased for Tw/Te = 1, which is a consequence

of the thinner boundary layer. By comparison of Figs. 6.4 and 6.9, it appears that as

the Mach number or level of wall cooling is increased, the transient growth drops off

more rapidly away from the optimal condition. That is, near-optimal disturbances

cause less amplification for high Mach numbers and cooled walls.

Figure 6.10 shows amplification contours for a further reduction in wall tempera-

ture relative to the freestream value, Tw/Te = 0.3. In this case the wall temperature

is held at 300 K and the freestream temperature is 1000 K, which is representative of

a low or moderate enthalpy conditions in a reflected shock facility (Ho = 2.3 MJ/kg
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Figure 6.9: Contours of maximum energy amplification Gmax vs. streamwise and
spanwise wavenumbers. Mach number is 2.5 (left) and 5.0 (right), and Tw/Te = 1.0,
R = 300, Te = 300 K.
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Figure 6.10: Contours of maximum energy amplification Gmax vs. streamwise and
spanwise wavenumbers. Mach number is 2.5 (left) and 5.0 (right), and Tw/Te = 0.3,
R = 300, Te = 1000 K.

for M = 2.5, 6 MJ/kg for M = 5). We have chosen to investigate the effects of wall

cooling by raising the freestream temperature rather than by cooling the wall in order

to match the conditions found in blow-down facilities and shock tunnels, where the

wall temperature is usually ambient. Comparison of Figure 6.10 to Figure 6.9 reveals

a further increase in βopt because of the decreased boundary layer thickness caused

by wall cooling, but for M = 5 there is a slight increase in Gopt relative to the case

Tw/Te = 1. This suggests that transient growth is minimized for a particular wall

temperature condition, as will be verified in the next section.
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6.5.3 Effects of Mach Number and Wall Temperature

The effects of Mach number and wall temperature ratio on the optimal growth were

assessed by assembling values of Gopt for a large number of different conditions. Differ-

ent wall temperature ratios were achieved by fixing the wall temperature at 300 K and

varying the freestream temperature; as discussed in Section 6.5.1, this method was

selected in order to match the experimental conditions in impulse facilities. Because

of the considerable computational expense of the transient growth calculation, the

search for Gopt was performed only for α = 0, which, as discussed above, is normally

where the optimal growth is found. Figure 6.11 reports values of Gopt/R
2 that are

optimized over all time, α, and β. This scaling between energy growth and Reynolds

number is chosen on the basis of the work by Hanifi and Henningson (1998), who

showed that Gopt/R
2 approaches a constant as the Reynolds number increases. The

red line with markers indicates the adiabatic wall temperature. Most experimental

and flight conditions would fall below this line, but it is possible to conceive of situ-

ations in which the wall temperature would be hotter than adiabatic; for instance, a

re-entry vehicle that is decelerating from high to low Mach number could experience

elevated wall temperatures of this sort.

Figure 6.11 reveals that the adiabatic line is nearly tangent to an isoline of energy

amplification, so if only adiabatic conditions are considered one finds only a slight

increase in transient growth as the Mach number is increased, as was seen in Fig-

ure 6.3. If the wall is cooled below the adiabatic temperature, however, reductions

in amplification can be achieved at high Mach numbers. In particular, as the Mach

number is increased there is locus of wall temperature ratios slightly less than 1.0

along which the transient growth is minimized. This minimum in Gopt/R
2 is also

visible in the results of Tumin and Reshotko (2003) and Reshotko and Tumin (2004),

and the results of the present study are in good agreement with theirs. The agree-

ment is excellent for low Mach numbers, but small numerical differences are found at

higher Mach numbers and high levels of wall cooling because of our high stagnation

temperature and the variable specific heats, which are included in our mean flow
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Figure 6.11: Contours of the maximum possible transient growth vs Mach number
and wall temperature ratio. Contour levels represent Gopt/R

2 and are optimized over
all values of time, α, and β. Red line with markers designates the adiabatic wall
temperature. Results were calculated at R = 300.

calculation.

For low Mach numbers, the influence of wall cooling on the transient growth is

substantial. Cooling or heating the wall by a factor of 2.0 results in more than an order

of magnitude increase in energy amplification. As noted Chapter 5, when the wall

is highly cooled there are no modal instabilities for low supersonic Mach numbers,

and even for M < 1 the instabilities can be delayed to arbitrarily high Reynolds

numbers, which brings into question the route to turbulence at such conditions. The

results of Figure 6.11 suggests that transition to turbulence may still be initiated

by infinitesimal perturbations since the large density gradients introduced by wall

cooling result in high levels of non-modal amplification.

6.5.4 Temporal vs. Spatial

For convective flows like the boundary layer, the spatial framework is often preferred

over the temporal one since it is easier to interpret experimentally. Figure 6.12 reports

transient growth contours for the same conditions as Figure 6.4 except that here the

spatial framework is used. Both plots in this figure have been generated using the full
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Figure 6.12: Contours of maximum (spatial) energy amplification Gmax vs. stream-
wise and spanwise wavenumbers. Mach number is 2.5 (left) and 5.0 (right). Tw = Tad,
R = 300, Te = 70 K. Conditions are the same as in Figure 6.4 except that the spatial
analysis is used here. The distance xopt at which optimal growth is reached is 790 for
M = 2.5 and 1150 for M = 5.0. For M = 2.5, the maximum modal growth rate is
−αi = 1.3× 10−3 (first mode). For M = 5, the maximum growth rates are 5.9× 10−4

(first mode) and 1.2× 10−3 (second mode).

quadratic eigenvalue problem described in Section 4.1. The same contour plots were

also generated using the linearized eigenvalue problem, but these results are not shown

because they are visually indistinguishable from those given in Figure 6.12. Because

of the close agreement between the quadratic and linearized eigenvalue problems, all

subsequent results are computed using the linearized version.

Despite the fact that the independent variable is the frequency rather than the

wavenumber, the qualitative behavior in the spatial case (Figure 6.12) is quite similar

to that of the temporal case (Fig 6.4). Specifically, the energy amplification features

a local maximum for an oblique disturbance at α = 0 or ω = 0, and the values of

Gopt and βopt at these conditions are nearly the same. This similarity between the

spatial and temporal cases arises from the fact that most of the modes involved in the

optimal disturbance belong to the vorticity and entropy branches of the continuous

spectrum (c.f. Figure 6.8), for which the phase speed is very nearly 1.0, meaning that

the values of α and ω are nearly identical along these branch cuts.

For M = 2.5 there is one noticeable difference between the spatial and temporal

results, namely, the appearance of a second local maximum in the energy amplification
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for ω > 0 that is not present in the temporal case. This second peak at ω = 0.022

has a slightly lower amplification than the one at ω = 0 but develops more rapidly,

reaching maximum energy growth at x = 400. The optimal disturbance at ω = 0, on

the other hand, is maximized at x = 790. This demonstrates the fact that slightly

sub-optimal disturbances can grow more rapidly than the optimal ones, as will be

discussed in the next section.

6.5.5 Optimization for prescribed downstream distance

As was pointed out by Butler and Farrell (1992) and Corbett and Bottaro (2000) for

incompressible flows, the optimal disturbances take a rather long time to develop. For

instance, in Figure 6.12 the distance xopt at which the energy is maximized is 790 and

1150 for the respective Mach numbers of 2.5 and 5.0. Recalling that x is normalized

by the boundary layer thickness δ, this suggests that the optimal disturbance requires

O(1000δ) to develop. From a modeling standpoint, this fact makes the locally parallel

assumption questionable; however, it may be noted that large values of xopt relative

to the boundary layer thickness are found in non-parallel simulations as well (Tumin

and Reshotko, 2003, Andersson et al., 1999). From a practical standpoint, if xopt is

O(1000δ) it may be unlikely that this distance is reached in a typical laboratory ex-

periment: disturbances initiated near the nose of the body where δ is small will reach

Gopt, but disturbances initiated farther downstream may not achieve their maximum

amplification before the end of the test article is reached. This suggests that it may

be preferable to maximize the amplification G at a particular distance or time that

is relevant to the streamwise length scale of interest rather than optimizing over all

possible distances.

Figure 6.13 provides contours of spatial energy growth G at six fixed distances

downstream of the initial disturbance. For each pair of values (ω,β), the energy

growth G from (6.15) is calculated at a single, fixed value of x rather than optimizing

over all values of x as was done in Figure 6.12. Although the basic features of the

plots in Figure 6.13 are similar to those at xopt (Figure 6.12), the level of amplification
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Figure 6.13: Contours of maximum (spatial) energy amplification G vs. streamwise
and spanwise wavenumbers at six different streamwise distances. Mach number is 2.5,
adiabatic wall, R = 300, Te = 70 K. Optimal growth is found at xopt = 790, ω = 0,
β = 0.22.

is somewhat lower and the optimal disturbance is no longer found at ω = 0. This is

consistent with the (temporal) observation of Butler and Farrell (1992) that distur-

bances having smaller streamwise wavelengths reach their maximum amplitude more

rapidly. Although the level of amplification has been reduced relative to the optimal

value, the reduction is not always so great as to render the non-modal amplification

negligible. For example, at M = 2.5 the energy amplification reaches about 2/3 of its

optimal value at x/xopt = 0.25, which demonstrates that near-optimal amplification

can be achieved at distances much less than xopt.

The topology of Figure 6.13 is the same as that observed by Corbett and Bottaro

(2000) for incompressible flow. An isolated peak in G is seen which increases in

strength as x is increased. For small x the peak is located at a larger value of ω

and approaches ω = 0 as x increases. When x reaches xopt (about 790 for these

conditions), the peak value of G is located at ω = 0 and the disturbance takes the

form of the optimal streamwise vortex noted in Figure 6.5.
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Figure 6.14: Optimal disturbance for a prescribed downstream distance of x = 400.
M = 2.5, R = 300, ω = 0.025, β = 0.186. Left: Optimal disturbance at x = 0. Right:
Amplified disturbance at x = 400.

For x < xopt, the optimal disturbance is no longer a streamwise vortex. This is

shown in Figure 6.14 (left) which plots the optimal disturbance that produces the peak

amplification at x = 400 in Figure 6.13. These results show that all three velocity

components u, v, and w participate in the optimal disturbance, in contrast to the

streamwise vortices observed previously. This initial perturbation evolves into the

amplified disturbance shown in Figure 6.14 (right) at x = 400, and velocity vectors of

the optimal disturbance at x = 0 superimposed on streamwise velocity contours of the

amplified disturbance are given in Figure 6.15. These results show that the amplified

disturbance still consists of streaks of velocity and temperature, which suggests that

the lift-up effect is again responsible for the transient growth.

6.5.6 Effect of Energy Norm

A source of uncertainty in the transient growth analysis is the choice of energy norm

(Section 6.4.1), which is not unique. However, there are some constraints that must

be met in choosing a norm. One of these is that all disturbance variables must take

part in the norm.

To see why this is so, consider an energy norm that consists only of the kinetic

energy. One might be tempted to use such a norm since both the optimal and
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Figure 6.15: Velocity vectors of optimal input disturbance at x = 0 and contours of
amplified streamwise velocity at x = 400. M = 2.5, R = 300, ω = 0.025, β = 0.186.

amplified disturbances shown previously consist mainly of kinetic energy. However,

this is not a meaningful choice of norm since one can easily achieve infinite transient

growth by using kinetic energy alone to describe the disturbance. This would happen

if the initial condition consists only of temperature and pressure fluctuations, and

hence has zero initial kinetic energy. Some of the acoustic and thermal energy of the

initial disturbance would then be converted into kinetic energy by the flow, resulting

in a finite kinetic energy at some location downstream. Consequently, such an initial

condition would produce infinite energy growth according to the kinetic energy norm.

Clearly, one must include all disturbance variables in the energy norm in order to

avoid this situation.

To investigate the sensitivity of results to the choice of energy norm, we arbitrarily

penalized some of the terms in Equation 6.9 in comparison with others. An example

of the result is given in Figure 6.16, where the temporal energy growth G for a

high enthalpy Mach 5 flow is given as a function of spanwise wavenumber β for

several different energy norms. In all cases vibrational energy of the disturbances

is neglected. Blue diamonds represent the full energy norm involving all terms in

Equation 6.9 except θ̂v. For the case shown with green circles, the thermal energy

(TE) is penalized by multiplying the terms involving ρ̂ and θ̂ by a factor of 0.1 in

Equation 6.9. Note that although these terms are here called the “thermal energy,”
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Figure 6.16: Energy growth G vs spanwise wavenumber for several different energy
norms. TE is thermal energy and KE is kinetic energy. M = 5, Te = 1500 K,
Pe = 10 kPa, R = 300, α = 0.

they actually contain the acoustic potential energy as well. For the case shown with

red triangles, the kinetic energy (KE) is similarly penalized by a factor of 0.1.

When the thermal energy is penalized, the results do not differ appreciably from

the full energy norm, though there is a slight reduction in G. The effect is small

because the thermal energy already plays only a small role in the full energy norm

for these conditions. Figure 6.17 shows the optimal disturbances at t = 0 and the

amplified disturbances at t = topt. The optimal and amplified disturbances are almost

identical for the full norm and the norm with penalized thermal energy. The slight

reduction inG observed in Figure 6.16 occurs because the contribution of the amplified

temperature disturbance to the energy is reduced.

For the case in which the kinetic energy is penalized, the behavior is quite different.

As seen in Figure 6.17a, the penalization of kinetic energy enables a much larger initial

streamwise vortex while maintaining unit energy of the initial condition. The stronger

initial vortex then produces a larger amplified disturbance at t = topt. Although the

streamwise velocity u of the amplified disturbance is penalized, the thermal energy is

not, and this leads to the large increase in G observed for this case in Figure 6.16. It is

interesting to note that these changes to the energy norm merely re-scale the optimal

and amplified disturbances in Figure 6.17 without significantly changing their shape.

These results demonstrate that although the qualitative behavior appears to be
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Figure 6.17: a) Optimal disturbances at t = 0. b) Amplified disturbances at t = topt.
Each case corresponds to the most amplified spanwise wavenumber β in Figure 6.16.
Disturbance variables not shown are an order of magnitude smaller than the ones
plotted.

insensitive to the choice or norm, the level of amplification observed can be affected

significantly. One can think of many different ways the norm could be altered, and

each choice will affect the energy growth computed. Ultimately, the “best” choice for

predicting boundary layer transition might take into account the manner in which

disturbances interact nonlinearly, and could be tailored to the types of disturbances

that most effectively generate harmonics and mean flow distortion. For example, since

the Navier-Stokes equations are quadratic in velocity, one might expect large velocity

disturbances to be more effective in triggering transition than large temperature dis-

turbances, so one might choose a norm that is biased towards velocity disturbances.

Lacking detailed studies of this nature, the energy norm used in Equation 6.9 appears

to be a good choice since it derives naturally from the equations of motion for plane

waves.

6.5.7 Effect of Vibrational Nonequilibrium

The preceding sections have assumed that the base flow is in a state of thermal

equilibrium and the disturbances are vibrationally frozen, which are reasonable ap-
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Figure 6.18: Base flow profiles for flow of CO2 over a flat plate. Gas is CO2, M = 5,
T ∗e = 1000 K, T ∗w = 300 K, R = 300.

proximations for flows of air. In this section, we briefly consider the influence of

vibrational nonequilibrium on the non-modal disturbance amplification. To investi-

gate these effects, this section analyses a highly nonequilibrium flow of carbon dioxide

at M = 5 with an edge temperature of 1000 K and a wall temperature of 300 K. A

fairly low Reynolds number of R = 300 is considered, where the base flow is out of

equilibrium. The base flow at this Reynolds number is shown in Figure 6.18.

Using the mean profiles shown in Figure 6.18, transient growth calculations were

conducted both with and without vibrational energy transfer included in the fluctu-

ations. The resulting temporal profiles of G as a function of spanwise wavenumber

are shown in Figure 6.19 for α = 0. A slight increase in transient growth is observed

when vibrational energy is included in the analysis. The transient growth mechanism

observed here is the lift-up effect described previously, in which the initial streamwise

vortices act against the gradients in mean velocity and temperature, thereby generat-

ing streamwise streaks of temperature and velocity. In the nonequilibrium case, there

is a mean gradient in vibrational energy as well, and the action of the streamwise

vortices generates vibrational temperature streaks in addition to the velocity and

temperature streaks discussed previously. The increased energy growth observed in

the non-equilibrium flow is the result of the vibrational energy streaks that develop.

These observations are demonstrated in Figure 6.20, which plots the optimal dis-
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transfer. Gas is CO2, M = 5, T ∗e = 1000 K, T ∗w = 300 K, R = 300.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

y
√

Ue/νex

A
m
p
li
tu
d
e

Inlet disturbance

 

 

|u|
|v|
|p|
|θ|
|w|
|θv|

0 5 10 15 20
0

2

4

6

8

10

y
√

Ue/νex

A
m
p
li
tu
d
e

Outlet disturbance

 

 

|u|
|v|
|p|
|θ|
|w|
|θv|

a) b)

Figure 6.20: a) Optimal disturbances at t = 0. b) Amplified disturbances at t = topt.
Flow is CO2, M = 5, T ∗e = 1000 K, T ∗w = 300 K, R = 300, α = 0, β = 0.36

turbances (left) at t = 0 and the amplified disturbances (right) at t = topt. As has

been observed in previous sections, the optimal disturbance consists mainly of vertical

and spanwise velocities, v̂ and ŵ, in the form of a streamwise vortex. The amplified

disturbance at t = topt consists of streaks of streamwise velocity û, temperature θ̂,

and vibrational temperature θ̂v.

Although the amplified disturbance contains a single velocity streak, the amplified

temperatures θ̂ and θ̂v both consist of a pair of two streaks. The reason is that the

mean temperature profiles of T and Tv contain a maximum (Figure 6.18), and the

upward vertical velocity induced by a streamwise vortex produces a positive temper-
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Figure 6.21: Velocity vectors of optimal input disturbance at t = 0 and contours
amplified vibrational temperature at t = topt. M = 5.0, α = 0, β = 0.36, R = 300.

ature streak above the maximum and a negative temperature streak below. This is in

contrast to the mean velocity profile, which is monotonic, and hence a single velocity

streak is produced. This explanation is confirmed by Figure 6.21, where contours of

amplified vibrational temperature θ̂v are overlaid against the optimal velocity vectors.

Although the energy growth appears to be larger for nonequilibrium situations,

this does not necessarily imply that transition onset will occur sooner. Compared with

velocity or density streaks, the vibrational temperature streaks that develop may be

less likely to participate in secondary instabilities and nonlinear interactions that

ultimately lead to turbulence. In some circumstances (for example, if the vibrational

energy exchange rate is slow), the vibrational energy may behave as a passive scalar,

in which case its amplification would be largely irrelevant for transition prediction. In

such a scenario it might be preferable to exclude the vibrational temperature from the

energy norm in Equation 6.9. In general, the decision to include or exclude vibrational

energy will ultimately depend on the rate of energy transfer between θ̂ and θ̂v and

the manner in which this energy exchange participates in the nonlinear breakdown

process.
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6.5.8 Modal vs. Non-modal

Our final consideration is a direct comparison between modal and non-modal en-

ergy amplification. The transient growth calculations are conducted in the spatial

framework with disturbances having ω = 0, since such conditions usually produce

the largest energy amplification according to the preceding results. Spatial tran-

sient growth calculations are carried out for several initial Reynolds numbers, and

the downstream evolution of energy for each Reynolds number is compared with the

energy growth arising from modal instabilities.

Recall from Section 5.1.2 that for a particular frequency F the N factor for modal

instabilities is defined by:

Nmodal(F, β) =

∫ x

xo

−αi(x, F, β)dx (6.16)

where xo is the location at which disturbances of frequency F first become unstable.

This N factor describes the logarithm of the downstream growth of a fixed-frequency

disturbance. An analogous N factor for non-modal growth can be defined by the

relation

Nopt(x) ≡ 1

2
ln(G(x)) (6.17)

The factor of 1/2 arises from the fact that the energy amplification G scales quadrat-

ically with the disturbance amplitude, so to make a meaningful comparison with the

amplitude growth of a single discrete mode one must take the square root. The defi-

nition (6.17) is chosen such that Nopt and Nmodal are identical when the disturbance

consists of a single discrete mode.

A comparison between the modal and non-modal N factors is shown in Figure 6.22.

Here the Mach number is 2.5 and the wall temperature is adiabatic. The N factors

involving transient growth are labeled Nopt, and the ten curves correspond to ten

different initial Reynolds numbers Rex between 104 and 106. Separate curves for

each initial Reynolds number are required since each value of Rex yields a slightly
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Figure 6.22: Comparison of N factors from modal and non-modal stability calculations
for M = 2.5, Tw = Tad, Te = 70 K. Nopt is the N factor corresponding to non-modal
disturbances, and Nmodal is the modal N factor envelope over all values of ω and β.

different optimal disturbance that evolves differently as it travels downstream. For

each initial Reynolds number, the optimal disturbance corresponding to the maximum

of Figure 6.12 (ω = 0, β = 0.22) is selected and its downstream amplification is

calculated. The envelope of these curves marks the maximum level of transient growth

that is plausible at each location. The dashed red line represents the envelope of all

possible N factor curves corresponding to modal instabilities; this envelope curve is

optimized over all frequencies and contains both 2D and 3D disturbances for both

the first and second mode instabilities.

It must be emphasized that this downstream development of optimal disturbances

is based on the locally parallel calculation and neglects boundary layer growth. How-

ever, by comparing the nonparallel results of Tumin and Reshotko (2003) with the

parallel results of Tumin and Reshotko (2001), it is observed that both the optimiza-

tion distance xopt and the energy growth G are in reasonable agreement. The energy

growth G can differ by a factor of 2-3, but for the purposes of making comparisons

with modal analysis this difference is acceptable since the corresponding error in Nopt

is only about 0.4-0.5.

For the adiabatic condition shown in Figure 6.22, modal growth surpasses non-

modal growth at a Reynolds number of about Rex = 2.9× 106. The N factor at this

location is 4.2, which corresponds to an increase in modal amplitude of about 67 and
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an energy amplification of 4400. This level of amplification is not large, suggesting

that under these conditions transition via transient growth might be expected only in

a noisy environment where disturbance amplitudes are high, or in situations involving

discrete surface roughness elements where strong streamwise, vortical disturbances

are likely (Reshotko and Tumin, 2004). However, the level of N at which nonlinear

breakdown begins is open to question and may be different for modal and non-modal

instabilities, given the differences in the disturbance shapes. The value of N at which

transition occurs is also expected to depend on the strength of disturbance sources

and the boundary layer’s receptivity to them.

Two additional examples of N factor distributions are shown in Figure 6.23 which

demonstrate the effects of wall cooling. The first example (left) is flow at Mach 5

with a cold wall, Tw/Te = 0.3. This condition might be encountered in a shock tunnel

operating at a moderate enthalpy of Ho = 6 MJ/kg. In comparison to the low Mach

number, adiabatic case shown in Figure 6.22, the modal instability overtakes the

non-modal one much more rapidly. This is caused by both lower levels of non-modal

energy amplification and the larger growth rate of the second mode instability. The

modal instability overtakes the transient growth at Rex = 1.2 × 106 where the N

factor is 3.7 and the energy amplification is only 1600. Experiments conducted at

similar conditions (Adam and Hornung, 1997) have reported transition at Reynolds

numbers of 2− 3 million; at this point modal instabilities have undergone more than

an order of magnitude larger amplification than non-modal ones, which suggests that

transition to turbulence is caused by modal mechanisms at these conditions.

The last example, Figure 6.23 (right), is flow at Mach 0.5 with a cold wall,

Tw/Te = 0.3. As discussed in the introduction, there are no modal instabilities for

these conditions, so the modal N factor is zero. At a Reynolds number of 2.0×106, Nopt

is about 5.3 which corresponds to G = 40000. Moreover, given the well-known (Hanifi

and Henningson, 1998) scaling Gopt ∝ Rex, much larger amplification is possible as

the Reynolds number is increased. On the basis of this result, it seems reasonable to

conclude that flows at low Mach numbers with wall cooling may transition to turbu-

lence from infinitesimal perturbations despite the absence of modal instabilities. In
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Figure 6.23: Comparison of N factors from modal and non-modal stability calcula-
tions. Left: M = 5.0, Tw/Te = 0.3, Te = 1000 K. Right: M = 0.5, Tw/Te = 0.3,
Te = 1000 K.

contrast, high Mach number flows with cold wall conditions seem likely to transition

by modal mechanisms alone.
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Chapter 7

Linearized DNS Calculations

7.1 Introduction

The linear stability calculations presented in the preceding chapters made use of

either the spatial or the temporal approximations, in which either the frequency ω or

the wavenumber α is assumed to be a constant. At a particular location along the

boundary layer, these two methods are roughly equivalent and can locally be related

to one another using Gaster’s transform (Gaster, 1962). The advantage of the spatial

method, which has become the state of the art for boundary layer stability analysis,

is that the downstream propagation of a disturbance in a non-parallel boundary layer

can be described by a succession of locally-parallel analyses. The change in amplitude

A of a disturbance as it propagates downstream is then obtained by integrating the

local growth rate

A(x)

A(xo)
= eN(x) = exp

(∫ x

xo

−αi(x′)dx′
)

(7.1)

where N is the N factor discussed in Section 5.1.2 and αi is the spatial growth rate. In

using this method, the frequency of the disturbance is assumed to remain fixed as it

propagates downstream. Such an assumption is motivated by the so-called signaling

problem (Ashpis and Reshotko, 1990), in which a fixed-frequency disturbance source

such as a vibrating ribbon or a pulsating jet is placed in the boundary layer at a

particular location. The disturbances then propagate downstream with a well-defined,
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fixed frequency and a periodic steady-state is reached. Such an arrangement was used

in the famous experiments of Schubauer and Skramstad (1947) and provides a means

of examining the frequency response of a boundary layer.

In most experiments and in actual flight, the disturbances are not generated in

such a well-controlled and precise manner. For instance, in most hypersonic wind

tunnels the boundary layer is irradiated with acoustic waves generated by turbu-

lent boundary layers on the nozzle and tunnel wall, and these waves contain a wide

range of length and time scales (Laufer, 1964). Since acoustic waves are generated by

vortical structures within the turbulent boundary layer on the tunnel wall through

eddy-Mach wave radiation (Laufer et al., 1964), the length and time scales of the

acoustic radiation into the test section are strongly correlated with the properties

of the boundary layer from which they originate. Direct numerical simulations by

Duan and Choudhari (2013, 2014) revealed that for conventional wind tunnels, the

de-correlation length of acoustic waves in the freestream is only several times the thick-

ness of the boundary layer from which they emerge. This means that the freestream

disturbances take the form of packets that are localized in space and time. When such

localized, intermittent wave packets impinge on the boundary layer, they may excite

packets of instability waves that are also localized in space and time. This is demon-

strated by experimental measurements of second mode waves within the boundary

layer, which usually appear as wave packets consisting of 5-20 waves. Two examples

of such experimental measurements from the literature are reproduced in Figure 7.1.

When a packet of second mode waves is excited in this manner, the boundary

layer serves as a filter that selectively damps some frequencies or wavenumbers and

amplifies others. The scales that are damped or amplified depend on the streamwise

location, with small length and time scales being amplified at low Reynolds numbers

where the boundary layer thickness is small and large length and time scales being

amplified at large Reynolds numbers. As was shown in Chapter 5, the frequency

selectivity of the boundary layer is especially strong for second mode waves, which

are amplified only over a very narrow band of frequencies, and the unstable frequency

band is a strong function of downstream distance (c.f. Figure 5.3).
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a) b)

Figure 7.1: a) Wall pressure traces recorded by Heitmann et al. (2011) in a Mach 6
Ludwieg tube (reproduced with permission). b) Focused Laser Differential Interfer-
ometer time traces in a high enthalpy boundary layer in T5 recored by Parziale (2013)
(reproduced with permission). Ordinate is relative density fluctuation ρ̃/ρ̄ with grid
spacing of 2.5× 10−3.

Packets of instability waves that are localized in space and time, such as those

observed in Figure 7.1, contain a spectrum of frequencies and wavenumbers. As the

packet travels down the boundary layer, the frequency and wavenumber content of the

packet evolve in response to the local amplification or damping properties. A precise

description of how such a wavepacket evolves has not previously been given, yet it is

highly relevant for predictions of boundary layer transition. In this chapter, linearized

DNS is used to investigate the downstream evolution of such instability wavepackets.

Three different types of simulations are conducted, which are illustrated in Figure 7.2.

The three types of simulations proceed from the most idealized configuration to the

most physically realistic one.

1. Spatial DNS: In this type of simulation, a second mode wave of a fixed fre-

quency is imposed at the inlet of the computational domain and the simulation

is run until a periodic steady-state is reached. An example of the periodic

steady-state pressure distribution that is obtained is given in Figure 7.2a. Note

that the waves imposed at the inlet are not visible because their amplitude is

much smaller than those of the more highly amplified waves downstream. The
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periodic flow profiles obtained from this type of simulation describe the am-

plification of a single frequency or Fourier mode of second mode waves. This

calculation is analogous to the spatial linear stability theory of Chapter 5, but

fully takes into account all non-parallel effects. This type of analysis, and its

computationally efficient alternative based on the Parabolized Stability Equa-

tions (PSE), are presently the state of the art for boundary layer transition

prediction.

2. Second Mode Wavepackets: In this type of simulation, a second mode in-

stability wave packet of finite width is directly placed into the boundary layer

slightly upstream of the upper neutral branch. The initial properties of this

wave packet are determined from the linear stability analysis of Chapter 5. An

example of the initial pressure field for this type of simulation is given in Fig-

ure 7.2b. The initial condition consists of periodic, second-mode eigenfunctions

modulated by a Gaussian envelope in the streamwise direction. This initial wave

packet then travels downstream and its amplitude and frequency spectrum are

monitored. This type of analysis relaxes the assumption of a fixed frequency

wave, but intentionally ignores the question of how the instability wave origi-

nates; that is, receptivity is bypassed by placing the disturbance directly into

the boundary layer as an initial condition. The advantage is that the compli-

cations of receptivity are eliminated from the problem so that the downstream

evolution of the wavepacket as it passes through the instability region can be

isolated and studied.

3. Incoming Acoustic Wavepackets: In this type of simulation, a Gaussian-

shaped packet of planar acoustic waves is generated in the freestream above the

boundary layer. An example of the initial condition for this type of simulation

is shown in Figure 7.2c. This packet of waves then impinges at an angle on the

boundary layer and excites second mode waves, and the downstream develop-

ment of these waves is monitored. This method of exciting disturbances in the

boundary layer is motivated by the wind tunnel experiments discussed above,



151

in which packets of acoustic radiation in the freestream impinge on the bound-

ary layer. In this configuration both the receptivity and downstream growth of

second mode waves are included in the analysis, hence it constitutes the most

realistic model of boundary layer transition considered in this chapter.

In all of the cases shown in Figure 7.2, the wavelength of the disturbances is much

smaller than the local boundary layer thickness, which is marked by the thick black

lines on the figures. This feature motivates the locally parallel analysis reported in

Chapter 5, in which boundary layer growth is ignored over the small length scale

associated with the wavelength of the disturbances. It also causes the DNS to be

expensive, since one must resolve the small scales of the disturbances while at the

same time using a large domain that captures the full extent of the boundary layer.

7.2 Previous Work

Several experimental and computational studies of wavepacket evolution have been

carried out in the past, mostly involving incompressible flows and Tollmien-Schlichting

type disturbances. Gaster and Grant (1975) were among the first to study this prob-

lem experimentally; they developed an experiment in which wavepackets were gener-

ated by a loudspeaker projecting through a hole in a flat plate, and the downstream

development of these waves was measured using hot wire probes. They noted that

the frequency content of the disturbances shifted to lower frequencies as the packet

traveled downstream, and also that the increase in wavepacket amplitude was sub-

stantially less than the prediction of linear stability theory. They concluded that the

wavepacket amplitude consists of a sum of many modes having different frequencies,

each evolving in a different manner as the wavepacket travels downstream.

In coordination with this experimental study, Gaster (1975) developed a theoret-

ical model in which the wavepacket was represented as a summation over the normal

modes corresponding to 128 different frequencies. Using this method he was able to

reproduce the measured downstream evolution of the wavepacket, although ad hoc

phase shifting of the individual Fourier modes was needed to match the experimental
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Figure 7.2: Examples of pressure fields from three types of simulations. Thick, black
line indicates δ99. a) Final, periodic steady-state pressure field from spatial DNS. b)
Initial pressure field for a packet of second mode waves placed within the boundary
layer. c) Initial pressure field for an incoming wave packet impinging on the boundary
layer from the freestream.
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data. Gaster also assumed that all Fourier modes were excited to the same amplitude

by the disturbance source. In later work, Gaster (1982a,b) employed the method

of steepest descents and several other simple approximations to evaluate the wave

packet shape at distances far downstream from its source. However, in these analyses

simplified models of the dispersion relation were used and certain terms involving the

eigenfunction shape of the disturbance were neglected, meaning that only qualitative

results could be obtained.

Cohen et al. (1991) used a pulsed air jet to generate instability wave packets in

an incompressible boundary layer and recorded their downstream evolution using hot

wire probes. Although the disturbance velocity profiles agreed well with the eigenfunc-

tions of Tollmien-Schlichting waves, the downstream progression of the wavepacket

amplitude and frequency content were not reported or compared with linear stability

theory. Instead the study focused on nonlinear interactions between various instabil-

ity wave modes. Similarly, later studies by Cohen (1994) and Medeiros and Gaster

(1999) focused on secondary instabilities and nonlinearity rather than on the linear

wave packet amplitude development.

Only a few authors have investigated the evolution of wave packets in compress-

ible boundary layers. Notable examples are the DNSs of Mayer et al. (2011) and

Sivasubramanian and Fasel (2014), in which boundary layers at Mach 3.5 and 6 were

perturbed by a velocity pulse through a hole in the surface of a sharp cone. These

studies used Fourier transforms to extract specific frequencies from the simulations

and analyze the downstream propagation and nonlinear interaction of the various

Fourier modes; however, they did not report on the downstream amplification of the

wavepacket itself.

Forgoston and Tumin (2006) conducted a theoretical study in which the down-

stream evolution of a wave packet in a perfectly parallel boundary layer was computed.

This is the first and only compressible stability analysis in which the Fourier and

Laplace transforms with respect to space and time (duals to α and ω) were inverted

to compute the propagation of a wave in physical space. Their analysis captured the

growth and spreading of a second mode wave packet and showed that the method of
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steepest descents can successfully determine the wave packet shape at distances far

downstream from its source. Nevertheless, since this analysis was restricted to a per-

fectly parallel boundary layer, the influence of the increasing boundary layer thickness

and the accompanying changes in dispersive behavior were not taken into account.

These properties must be included in order to assess the wavepacket behavior over

distances that are more than a few boundary layer thicknesses long.

A few experimental studies have also been carried out in which wave packets were

excited using impulsive disturbances in a hypersonic boundary layer. Heitmann et al.

(2011) focused a pulsed laser to a point outside of the boundary layer and generated

a spherical blast wave that then impinged on the boundary layer and excited second

mode waves. Surface pressure measurements were then used to study the response

of the boundary layer. Although instability waves were successfully excited, these

waves were measured only over a short distance (about 40 mm) and hence the growth

and dispersion of these waves could not be examined. Casper et al. (2012a,b, 2014)

generated disturbances on the nozzle wall of Purdue’s Mach 6 quiet tunnel using

electrical discharges and then measured the pressure fluctuations downstream of this

point; however, the properties of the laminar boundary layer on the nozzle wall were

not reported, so it is difficult to relate the measured disturbances to the boundary

layer modes. Recently Casper et al. (2013a,b) have recorded simultaneous pressure

measurements and schlieren images of second mode wave packets at Mach 5, 8, and

14 and their results appear promising, but most of the measurements were made over

a short distance (about 40 mm) over which little dispersion occurs.

In spite of these few computational and experimental studies of wave packet prop-

agation in compressible boundary layers, the amplification of such wave packets and

its relation to linear stability theory remain completely unknown. However, numer-

ous experiments such as those shown in Figure 7.1 have shown that the second mode

instability usually consists of intermittent bursts of finite-width wave packets, rather

than long wave trains of a single frequency (as is assumed in conventional stability

analysis). Therefore it is important to analyze the influence of a finite wave packet

width on its amplification and take this into account in predicting boundary layer
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transition.

7.3 Governing Equations

For the sake of simplicity, the simulations carried out in this chapter are restricted

to 2D flows of calorically perfect ideal gases. We are interested mainly in the second

mode instability, since this instability is most important for high Mach number flows

(Section 5.4). Because 2D second mode waves are more unstable than 3D waves, it

suffices to perform 2D simulations as a first approximation, although three dimension-

ality may be important for disturbances that are localized in the spanwise direction

(Sivasubramanian and Fasel, 2014). In this chapter, the flow conditions are repre-

sentative of a low enthalpy wind tunnel, so simulations involving a calorically perfect

ideal gas are quite reasonable.

The DNSs are carried out using the linearized Navier-Stokes equations, rather

than the full nonlinear equations. There are several reasons for this:

1. We are interested in the growth of small disturbances and in making compar-

isons with the linearized theory, so we plan to investigate only situations in

which nonlinear interactions are negligible. In that case it makes sense to use a

linearized method.

2. To perform nonlinear simulations one must use either shock capturing or shock

fitting to model the weak shock wave that is produced by viscous-inviscid inter-

action at the leading edge. By using a linearized method, the flow is decomposed

into a mean part and a fluctuating part, and the mean part can be assumed

to be a self-similar, shock-free laminar boundary layer, thus avoiding the com-

plexity of capturing the shock. Of course, the simulations will then exclude

interactions between the shock wave and the disturbances, but these are only

important near the very leading edge of the plate and far outside the boundary

layer.

The shock-disturbance interactions in the nose region are likely to be important,
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since many authors have shown that receptivity to acoustic waves is strongest

near the leading edge of a plate or cone (Fedorov and Khokhlov, 1993, Fedorov,

2003, Balakumar, 2009, Malik and Balakumar, 2007, Balakumar, 2007, Ma and

Zhong, 2003b). However, in this work we are interested in the excitation of

waves downstream of this point as well as their downstream evolution, and the

presence of the shock wave has little influence on either of these processes. Away

from the leading edge, the interaction of freestream waves with the shock can be

treated separately from the DNS using the methods of McKenzie and Westphal

(1968), which have been shown to agree well with DNS results (Ma and Zhong,

2003b).

3. Solving the linearized Navier-Stokes equations enables the use of complex-value

disturbances. While this increases the computational cost, it also increases the

amount of information available in the solutions and facilitates the extraction

of quantities like frequency, phase, growth rate, and eigenfunction from the

solutions and enables close comparisons with linear stability results.

After applying the assumption of a calorically perfect ideal gas, the nondimen-

sional Navier-Stokes equations from Equation 2.14 are simplified and re-arranged in

the following form:

Dρ

Dt
+ ρ∇ · u = 0 (7.2a)

ρ
Du

Dt
+∇p =

1

ReL
∇ · τ (7.2b)

ρ
DT

Dt
+M2γ(γ − 1)p∇ · u =

γ(γ − 1)M2

ReL
∇u : τ − γ

σReL
∇ · q (7.2c)

γM2p = ρT (7.2d)

where σ is the Prandtl number, γ is the ratio of specific heats, and ReL is the

Reynolds number based on the plate length L. The elements of the heat flux vector



157

q and the viscous stress tensor τ are

qi = −k ∂T
∂xi

(7.3a)

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
(7.3b)

In the viscous stress tensor, Stokes’ assumption of zero bulk viscosity has been applied.

Linearization of Equations 7.2 for 2D waves leads to the following system of equations:

Continuity:

∂ρ̃

∂t
+ Ū

∂ρ̃

∂x
+ V̄

∂ρ̃

∂y
+

1

T̄

(
∂ũ

∂x
+
∂ṽ

∂y

)
+ ρ̃∇ · Ū− 1

T̄ 2

[
ũ
∂T̄

∂x
+ ṽ

∂T̄

∂y

]
= 0 (7.4a)

X Momentum:

∂ũ

∂t
+ Ū

∂ũ

∂x
+ V̄

∂ũ

∂y
+ ũ

∂Ū

∂x
+ ṽ

∂Ū

∂y
+ T̄ ρ̃

(
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y

)

+
1

γM2

[
∂θ̃

∂x
+ T̄ 2 ∂ρ̃

∂x
+

(
ρ̃T̄ − θ̃

T̄

)
∂T̄

∂x

]
=

T̄

ReL

(
∂τ̃xx
∂x

+
∂τ̃xy
∂y

)
(7.4b)

Y Momentum:

∂ṽ

∂t
+ Ū

∂ṽ

∂x
+ V̄

∂ṽ

∂y
+ ũ

∂V̄

∂x
+ ṽ

∂V̄

∂y
+ T̄ ρ̃

(
Ū
∂V̄

∂x
+ V̄

∂V̄

∂y

)

+
1

γM2

[
∂θ̃

∂y
+ T̄ 2∂ρ̃

∂y
+

(
ρ̃T̄ − θ̃

T̄

)
∂T̄

∂y

]
=

T̄

ReL

(
∂τ̃yx
∂x

+
∂τ̃yy
∂y

)
(7.4c)
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Energy:

∂θ̃

∂t
+ Ū

∂θ̃

∂x
+ V̄

∂θ̃

∂y
+ ũ

∂T̄

∂x
+ ṽ

∂T̄

∂y
+ ρ̃T̄

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y

)

+(γ − 1)T̄

(
∂ũ

∂x
+
∂ṽ

∂y

)
+ (γ − 1)

(
ρ̃T̄ 2 + θ̃

)(∂Ū
∂x

+
∂V̄

∂y

)
=

γ(γ − 1)M2T̄

Rel

(
τ̃ij
∂Ūi
∂xj

+ τ̄ij
∂ũi
∂xj

)
− T̄ γ

σReL

∂q̃i
∂xi

(7.4d)

where bars represent components of the mean laminar boundary layer, and tildes

signify linear fluctuations. The disturbance variables are the streamwise and wall

normal velocities ũ and ṽ, the density ρ̃, and the temperature θ̃. The components of

the mean and fluctuating viscous stress tensors are

τ̄ij = µ̄

(
∂Ūi
∂xj

+
∂Ūj
∂xi
− 2

3
δij
∂Ūk
∂xk

)

τ̃ij = µ̄

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
+ µ̃

(
∂Ūi
∂xj

+
∂Ūj
∂xi
− 2

3
δij
∂Ūk
∂xk

)

and the components of the fluctuating heat flux vector are

q̃i = k̄
∂θ̃

∂xi
+ k̃

∂T̄

∂xi
(7.5)

In deriving Equations 7.4, the mean density ρ̄ was eliminated using the mean equation

of state (T̄ = 1/ρ̄) and the fluctuating equation of state was used to eliminate the

pressure flucutations:

γM2p̃ = ρ̄θ̃ + T̄ ρ̃ (7.6)

The fluctuations in thermal conductivity k̃ and viscosity µ̃ are related to fluctuations

in temperature by the formulas:

k̃ =
∂k̄

∂T̄
θ̃ µ̃ =

∂µ̄

∂T̄
θ̃ (7.7)
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Figure 7.3: Example of flow domain. Contour lines are equally spaced between Ū = 0
and Ū = 0.99. M = 4.5, Te = 65 K, adiabatic wall. Unit Reynolds number is
Reu = 6.5 million/m.

7.4 Numerical Methods

Equations 7.4 are discretized using fourth order, non-compact, central finite differ-

ences in space and then integrated using a fourth order Runge-Kutta scheme in time.

In calculating derivatives of the viscous stress tensor τ̃ij and the heat flux vector q̃i,

the derivatives are expressed analytically in terms of the primitive variables ρ̃, ũ, ṽ,

and θ̃ and their derivatives, rather than computing the fields of τ̃ij and q̃i and sub-

sequently differentiating these fields. At boundaries of the domain, the derivatives

are reduced to second order accuracy since high order, biased derivatives are usu-

ally unstable (Zhong, 1998). Although the reduction to second order accuracy at the

boundaries reduces the formal accuracy of the method to third order, our convergence

studies indicate that near fourth-order convergence is still achieved (Section 7.4.3).

Further information regarding the implementation of the boundary conditions is given

in Section 7.4.2.

The flow domain begins slightly downstream of the leading edge of the flat plate.

An example of a typical flow domain is given in Figure 7.3, where the contour lines

indicate the mean horizontal velocity Ū with contour levels equally spaced between 0

and 0.99. The domain is discretized using 4500-6000 equally-spaced points in x and

300-600 points in y. The large number of points in x is needed because the domain is

much larger than the streamwise wavelength of the disturbances under consideration.

In some simulations the grid points are stretched in y using the algebraic grid stretch-

ing described by Malik (1990) which maps a set of equally-spaced points ξ ∈ [−1, 1]
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onto the interval y ∈ [0, ymax]:

y =
a(1 + ξ)

b− ξ (7.8)

where

a =
ymaxyi

ymax − 2yi
b = 1 +

2a

ymax

With this grid stretching function, half of the grid points are clustered below the

height yi in the boundary layer. For a typical simulation, the domain height ymax is

selected to be a factor of 4-10 larger than the boundary layer thickness at the outlet of

the domain, and yi is chosen such that about half the points lie within the boundary

layer.

When grid stretching is used, the finite differences are applied on the un-stretched

domain ξ ∈ [−1, 1] and the derivatives are then scaled to the physical domain using

the relations

∂

∂y
=
∂ξ

∂y

∂

∂ξ

∂2

∂y2
=
∂2ξ

∂y2

∂

∂ξ
+

(
∂ξ

∂y

)2
∂2

∂ξ2
(7.9)

Using the mapping given in Equation 7.8, the metric coefficients needed in Equa-

tion 7.9 are determined to be:

ξ =
yb− a
a+ y

(7.10a)

∂ξ

∂y
=
a(1 + b)

(a+ y)2
(7.10b)

∂2ξ

∂y2
= −2a(1 + b)

(a+ y)3
(7.10c)

7.4.1 Base Flow Solution

Since the equations to be solved are linearized, a base flow must be chosen so that

the interaction of disturbances with this base flow can be simulated. The base flow

selected is a self-similar laminar boundary layer for a calorically perfect ideal gas,
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which is computed using the similarity solutions described in Section 3.2. The method

described in that section directly provides only the profiles of Ū , V̄ , T̄ , dŪ/dη, and

dT̄ /dη, where η = y
√
Ue/νex is the similarity variable. However, to evaluate certain

terms in Equations 7.4, the first and second derivatives of Ū , V̄ , and T̄ with respect

to both x and y are also needed.

Second derivatives of Ū and T̄ with respect to η can be immediately computed

using the similarity equations (3.12) re-written in the form:

∂2Ū

∂η2
= −

(
g

µ̄

∂Ū

∂η
+

1

µ̄

∂µ̄

∂η

∂Ū

∂η

)
(7.11a)

∂2T̄

∂η2
= −

[
σeg

k̄

∂T̄

∂η
+

1

k̄

∂k̄

∂η
+
σe(γ − 1)M2µ̄

k̄

(
∂Ū

∂η

)2
]

(7.11b)

where g is known from Equation 3.10 and derivatives of the transport properties are

known from the relations:

∂k̄

∂η
=
∂k̄

∂T̄

∂T̄

∂η

∂µ̄

∂η
=
∂µ̄

∂T̄

∂T̄

∂η
(7.12a)

The mean vertical velocity V̄ was given in Equation 3.9 and is reproduced here in the

form:

V̄ = Re−1/2
x

[
Ūη

2
− 1

2ρ̄

∫ η

0

ρ̄Ūdη′
]

(7.13)

This equation can easily be differentiated twice to yield:

∂V̄

∂η
= Re−1/2

x

1

2

[
η
∂Ū

∂η
− ∂T̄

∂η

∫ η

0

ρ̄Ūdη′
]

(7.14a)

∂2V̄

∂η2
= Re−1/2

x

1

2

[
η
∂2Ū

∂η2
+
∂Ū

∂η
− ρ̄Ū ∂T̄

∂η
− ∂2T̄

∂η2

∫ η

0

ρ̄Ūdη′
]

(7.14b)

Making use of the chain rule, one can show that derivatives with respect to x and y
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are related to derivatives with respect to η by the formulas:

∂

∂x
= − η

2x

∂

∂η
(7.15a)

∂2

∂x2
=

η

4x2

(
η
∂2

∂η2
+ 3

∂

∂η

)
(7.15b)

∂

∂y
=

√
Ue
νex

∂

∂η
(7.15c)

∂2

∂y2
=
U2
e

νex

∂2

∂η2
(7.15d)

Since Ū and T̄ are functions only of η, Equations 7.15 are sufficient to calculate the

desired first and second derivatives with respect to x and y. However, the vertical

velocity V̄ (Equation 7.13) is a function of both x and η, so its derivatives are slightly

more complicated. After some manipulation one can show that the x derivatives of

the vertical velocity are

∂V̄

∂x
= − 1

2x

(
V̄ + η

∂V̄

∂η

)
(7.16a)

∂2V̄

∂x2
=

1

4x2

(
3V̄ + 5η

∂V̄

∂η
+ η2∂

2V̄

∂η2

)
(7.16b)

where the derivatives of V̄ with respect to η were given in Equations 7.14. The collec-

tion of equations presented above determines all necessary derivatives of the mean flow

variables. These relations have also been checked by computing self-similar boundary

layer profiles as functions of η, converting the profiles and all derivatives into physical

space using the formulas in this section, and then evaluating the boundary layer equa-

tions in physical space (3.1). After doing so, the RMS residuals of Equations 3.1 are

found to be O(10−7), which is the same order of magnitude as the tolerance used in

the iterative solution of the self-similar profiles. This indicates that the flow variables

and their derivatives have been determined correctly.
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7.4.2 Boundary conditions

At the wall, Dirichlet boundary conditions are applied to the disturbances of velocity

(ũ and ṽ) and temperature (θ̃). At the other three boundaries of the domain, however,

either inlet or non-reflecting boundary conditions must be used (c.f. Figure 7.3). As

discussed in Section 7.1, three types of simulations are conducted in this work. For

spatial DNS, a fixed-frequency disturbance is imposed at the left side of the domain

and the simulation is run until a periodic steady-state is reached (Figure 7.2a). In

this case, Dirichlet boundary conditions are imposed at the inlet (left side of domain)

and nonreflecting conditions are applied at the top and right surfaces. For simula-

tions involving packets of second mode waves placed within the boundary layer or

acoustic waves impinging on the boundary layer from the freestream (Figure 7.2b,c),

nonreflecting boundary conditions are applied at the left, right, and top surfaces of

the domain.

The nonreflecting boundary conditions are applied using the viscous extension of

the Locally One-Dimensional Inviscid (LODI) relations described Poinsot and Lele

(1992), which are based on the inviscid method of Thompson (1987). These boundary

conditions are only truly nonreflecting for inviscid waves traveling in a uniform flow

and impinging exactly normally on the boundaries. Some spurious reflections will

therefore occur if the wave impinges on the domain boundary at an angle or in a

region of high shear. However, in the simulations considered in this work, the viscous

extension of the LODI relations performs sufficiently well that there is no need for

more advanced treatment (such as sponge layers) of the boundaries.

The 2D linearized Navier-Stokes equations (7.4) simulated in this work can be

written in the form:

∂q̃

∂t
+ Ax

∂q̃

∂x
+ Ay

∂q̃

∂y
+ Aoq̃ = Fvisc (7.17)

where q̃ = (ρ̃, ũ, ṽ, θ̃)T is the vector of disturbance variables, the matrices At, Ax, and

Ay contain the coefficients of the 2D Euler equations, Ao contains terms involving

the gradients of the base flow, and Fvisc is the vector of viscous terms. Application of
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the nonreflecting boundary conditions principally involves the matrices Ax and Ay,

whose elements are

Ax =




Ū 1
T̄

0 0

T̄ 2

γM2 Ū 0 1
γM2

0 0 Ū 0

0 T̄ (γ − 1) 0 Ū




Ay =




V̄ 0 1
T̄

0

0 V̄ 0 0

T̄ 2

γM2 0 V̄ 1
γM2

0 0 T̄ (γ − 1) V̄




(7.18)

The matrices Ax and Ay can be diagonalized using the relations:

Ax = RxΛxLx Ay = RyΛyLy (7.19)

where R is the matrix of right eigenvectors, L = R−1 is the matrix of left eigenvectors,

and Λ is the diagonal matrix of eigenvalues. The elements of these matrices are:

Rx =




1
T̄

0 1
T̄ 2

1
T̄ 2

0 0 1

M
√
T̄

−1

M
√
T̄

0 1 0 0

−T̄ 0 (γ − 1) (γ − 1)




Ry =




1
T̄

0 1
T̄ 2

1
T̄ 2

0 1 0 0

0 0 1

M
√
T̄

−1

M
√
T̄

−T̄ 0 (γ − 1) (γ − 1)




(7.20a)

Lx =




T̄ γ−1
γ

0 0 −1
T̄ γ

0 0 1 0

T̄ 2

2γ
+M

√
T̄

2
0 1/2γ

T̄ 2

2γ
−M

√
T̄

2
0 1/2γ




Ly =




T̄ γ−1
γ

0 0 −1
T̄ γ

0 1 0 0

T̄ 2

2γ
0 +M

√
T̄

2
1/2γ

T̄ 2

2γ
0 −M

√
T̄

2
1/2γ




(7.20b)

Λx =




Ū 0 0 0

0 Ū 0 0

0 0 Ū +
√
T̄
M

0

0 0 0 Ū −
√
T̄
M




Λy =




V̄ 0 0 0

0 V̄ 0 0

0 0 V̄ +
√
T̄
M

0

0 0 0 V̄ −
√
T̄
M




(7.20c)

In these results it can be noted that the quantity
√
T̄ /M is the nondimensional

mean sound speed, ā, which is made dimensionless using the freestream velocity Ue.
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Following the notation of Thompson (1987), we define the wave amplitudes

Lx = ΛxLx
∂q̃

∂x
Ly = ΛyLy

∂q̃

∂y
(7.21)

which evaluate to:

Lx =




Ū
(
T̄ γ−1

γ
∂ρ̃
∂x
− 1

T̄ γ
∂θ̃
∂x

)

Ū
(
∂ṽ
∂x

)
(
Ū +

√
T̄
M

)(
T̄ 2

2γ
∂ρ̃
∂x

+ M
√
T̄

2
∂ũ
∂x

+ 1
2γ

∂θ̃
∂x

)
(
Ū −

√
T̄
M

)(
T̄ 2

2γ
∂ρ̃
∂x
− M

√
T̄

2
∂ũ
∂x

+ 1
2γ

∂θ̃
∂x

)




(7.22a)

Ly =




V̄
(
T̄ γ−1

γ
∂ρ̃
∂y
− 1

T̄ γ
∂θ̃
∂y

)

V̄
(
∂ũ
∂y

)
(
V̄ +

√
T̄
M

)(
T̄ 2

2γ
∂ρ̃
∂y

+ M
√
T̄

2
∂ṽ
∂y

+ 1
2γ

∂θ̃
∂y

)
(
V̄ −

√
T̄
M

)(
T̄ 2

2γ
∂ρ̃
∂y
− M

√
T̄

2
∂ṽ
∂y

+ 1
2γ

∂θ̃
∂y

)




(7.22b)

These wave amplitudes (to be discussed further below) are the one dimensional

Riemann invariants propagating along the four characteristic lines corresponding to

entropy, vorticity, fast acoustic waves, and slow acoustic waves. Using these defini-

tions, the linearized Navier-Stokes equations (7.17) can be written in the form:

∂q̃

∂t
+ RxLx + RyLy + Aoq̃ = Fvisc (7.23)

The first three terms in this equation are hyperbolic terms describing the inviscid

wave motion of the disturbances. The terms involving Ao and Fvisc account for the

non-uniformity of the base flow and viscous forces, respectively. The hyperbolic terms

are seen to consist of linear combinations of the one dimensional Riemann invariants

contained in Lx and Ly, where the linear combination coefficients are the elements

of the matrices Rx and Ry. The physical meaning of this equation can be clarified

by considering the special case of one dimensional, uniform, inviscid flow in the x

direction, in which case Ly, Ao, and Fvisc are all equal to zero. One can then left-
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multiply Equation 7.23 by the left eigenvector matrix Lx to obtain:

∂

∂t
(Lxq̃) + Lx = 0 (7.24)

which, after some manipulation, evaluates to

(
∂

∂t
+ Ū

∂

∂x

)
s̃ = 0 (7.25a)

(
∂

∂t
+ Ū

∂

∂x

)
ṽ = 0 (7.25b)

(
∂

∂t
+ (Ū + ā)

∂

∂x

)
(p̃+ ρ̄āũ) = 0 (7.25c)

(
∂

∂t
+ (Ū − ā)

∂

∂x

)
(p̃− ρ̄āũ) = 0 (7.25d)

In obtaining this result, the equation of state has been used to replace fluctuations

in density and temperature by fluctuations in pressure and entropy, where the fluc-

tuating entropy s̃ (made nondimensional using the gas constant) is

s̃ =
1

γ − 1

θ̃

T̄
− T̄ ρ̃ (7.26)

By comparing Equation 7.24 with Equations 7.25, one sees that the components of the

wave amplitude vector Lx are simply the one dimensional Riemann invariants along

the entropy, vorticity, and acoustic characteristic rays. The elements of Ly have a

similar interpretation in the y direction. The direction of wave propagation along each

characteristic is given by the corresponding eigenvalue in Λx and Λy. Therefore the

nonreflecting boundary conditions are applied by setting equal to zero the Riemann

invariants (elements of Lx or Ly) which correspond to incoming waves.

In practice, the nonreflecting boundary conditions are applied using the following

procedure, in which the left and right domain boundaries are used as an example:

1. At each point along the boundary, use Equations 7.20 to calculate the matrix

Rx of right eigenvectors and the matrix Λx of eigenvalues.

2. Calculate the wave amplitudes Lx from Equations 7.22.
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3. Find the elements of Λx that correspond to incoming waves (Λx > 0 for left

boundary, Λx < 0 for right boundary) and set the corresponding elements of

the wave amplitude vector Lx equal to zero.

4. After setting the incoming wave amplitudes to zero, left-multiply the wave am-

plitude vector Lx by the right eigenvectors Rx.

5. Replace the term Ax(∂q̃/∂x) in Equation 7.17 with the product RxLx just

computed.

6. Use Equation 7.17 to integrate forward in time.

For a boundary at the top or bottom of the domain, the procedure is exactly the

same, with ‘x’ replaced by ‘y’. In essence, the method outlined above eliminates

incoming waves from the hyperbolic part of the linearized Navier-Stokes equations,

but leaves the viscous terms intact. Thus the boundary conditions are not merely

the inviscid nonreflecting conditions corresponding to the Euler equations, but have

been corrected by the inclusion of viscous terms and the terms involving gradients of

the base flow (matrix Ao). Although these boundary conditions are not necessarily

expected to produce good results in regions of high mean shear (i.e., within the

boundary layer) or for waves impinging obliquely on the domain boundary, we have

found the performance to be quite good for the wavepacket simulations presented here.

For example, when instability waves in the boundary layer were allowed to propagate

out the downstream end of the domain, we were either unable to detect any evidence

of spurious reflections or saw slight reflected waves with reflection amplitudes of only

a few percent that quickly died out. However, we do see spurious reflections off of the

top boundary of the domain when waves impinge with high obliqueness. Therefore

the height of the domain is made large enough to avoid such interactions.

7.4.3 Convergence Study

In order to establish that the numerical simulations are sufficiently resolved, a conver-

gence study spanning a factor of 4 in grid resolution was conducted. The simulated
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Figure 7.4: a) RMS error of pressure field as a function of grid resolution. RMS error
is compared relative to the finest simulation with 8001 points in X. b) Example of
wall pressure data at three different grid refinement levels (Y ×X).

flow field is described later in Section 7.8 and plotted in Figure 7.14. For all grid

resolutions the time step was held fixed, using a Courant number of 0.9 based on the

grid spacing of the finest mesh. The same initial condition was used in all cases, and

was down-sampled from the finest mesh onto coarser ones. The simulation result at

the finest grid level is used as the “true solution” against which the coarser solutions

are compared.

To evaluate the convergence rate of the simulations, the pressure field from each

simulation was down-sampled onto the coarsest grid. For each simulation, the down-

sampled pressure field was compared with that of the finest grid, and the RMS error

between these two fields was computed and normalized by the maximum pressure

recorded on the finest grid. The resulting normalized RMS errors are reported in

Figure 7.4a. This figure shows that close to fourth order convergence is achieved in

spite of the second order boundary conditions.

As an alternative to the full-field RMS error plotted in Figure 7.4a, we also com-

pute the infinity norm, or supremum norm, of the difference in pressure fields between

each grid and the finest grid. That is, for each level of grid refinement we find the

maximum point-wise error between the current grid and the finest grid, again normal-

izing the error by the maximum pressure simulated on the finest grid. The supremum
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Table 7.1: Flow conditions for linearized direct numerical simulations, modeled after
the experiments of Kendall (1975).

Condition Units Value
M - 4.5
Te K 65
Pe Pa 728
Ue m/s 729
Reu 1/m 6.5× 106

norm exhibits the same near fourth order convergence seen in Figure 7.4a. In all of

the simulations reported in this chapter, the grid resolution used corresponds to the

second last point on Figure 7.4a, which employs 6001 grid points in the streamwise

direction. For this grid resolution, the maximum point-wise error in the pressure field

is about 1% compared to the finest grid. Figure 7.4b shows an example of the wall

pressure from three different mesh refinement levels, demonstrating that the solution

is unchanged by additional grid refinement. This pressure snapshot was taken about

half way through the total duration of the simulation, at which point enough time

had elapsed for any discretization errors to accumulate.

7.5 Flow Conditions and Linear Stability Analysis

The flow conditions considered in this chapter are taken from the work of Ma and

Zhong (2003a) and are modeled after the experiments of Kendall (1975), which were

conducted in a conventional, continuous-flow hypersonic wind tunnel. The relevant

flow parameters are listed in Table 7.1, and the wall is assumed to be adiabatic. The

mean velocity and temperature profiles in terms of the similarity variable η are given

in Figure 7.5.

The linear stability characteristics of the selected flow condition are summarized in

Figure 7.6, where spatial growth rates (left) and N factors (right) are given for several

frequencies F , where F is related to the dimensional frequency by Equation 5.1. In

this work we focus on waves having the frequency parameter F = 10−4, which is

the most unstable frequency at a Reynolds number of R = 2000, and this is the
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Figure 7.5: Base flow profiles for linearized DNS. Flow conditions are given in Ta-
ble 7.1

frequency that we will attempt to excite in most of the the simulations. At this

frequency, the flow is unstable between x = 0.49 and 0.8 m, with maximum growth

rate at 0.62 m. According to the N factors in Figure 7.6b, an unstable disturbance

of this frequency should decay back to its original amplitude by x=1.2m, hence the

length of the simulation domain is usually taken to be somewhat larger, about 2 m.

The linear stability results are presented on a stability diagram in Figure 7.7,

where the point R = 2000 corresponds to the distance x = 0.62 m at which the

frequency of interest F = 10−4 is most unstable. The stability diagram shows a

broad region of first mode instability at low frequencies, but these modes will not be

excited in the numerical simulations. For each Reynolds number, the second mode is

unstable only over a very narrow band of frequencies and this band varies strongly

with the Reynolds number. Clearly the frequency-selectivity of the boundary layer is

much stronger for second mode waves than for the first mode.

7.6 Validation

The first verification test is to ensure that the linearized DNS exactly reproduces

the results of locally-parallel linear stability theory when the boundary layer is truly
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Figure 7.8: a) Comparison of amplification from linear stability theory (symbols)
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stability theory (symbols) and linearized DNS at 3000 locations between x = 0.62
and x = 0.9 m (lines). At each location, the pressure is normalized by the value at
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parallel. This was verified by computing boundary layer profiles at x = 0.62 m

(R = 2000) and generating an exactly parallel boundary layer downstream from that

point. This parallel boundary layer was then used as the base flow in the linearized

DNS, the eigenfunctions from linear stability theory were imposed at the inlet of the

domain, and the simulations were run until a periodic steady-state was reached.

Figure 7.8a shows the resulting pressure at the wall as a function of downstream

distance. The simulations produce exponential growth that agrees exactly with the

prediction of linear stability theory. This confirms that the numerical dissipation of

the DNS is low enough to correctly capture the growth of disturbances with negli-

gible artificial damping. Figure 7.8b shows the pressure eigenfunction from linear

stability theory overlaid by pressure profiles from the DNS at 3000 different points

along the parallel boundary layer. In each case the pressure profile from the DNS is

normalized by the local pressure at the wall. The normalized pressure profiles from

DNS collapse onto a single curve that matches the eigenfunction from linear stability

theory, thus demonstrating that the disturbances keep exactly the same shape as they

travel downstream and grow exponentially. The close agreement between the DNS

and the linear stability eigenfunction verifies the implementation of the DNS, with
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Figure 7.9: Comparison of wall pressure from Ma and Zhong (2003a) (lines) with
present linearized DNS (markers). Frequency is 2.2 × 10−4. Figure is adapted with
permission from Ma and Zhong (2003a).

the exception of terms involving nonparallelism of the boundary layer.

As a second test, we compare the present spatial DNS with the results from Ma

and Zhong (2003a). The flow conditions are the same as those described in Section 7.5.

For comparison with the simulations of Ma and Zhong (2003a), the inlet of the domain

is set to x = 0.025 m and a slow mode eigenfunction from locally parallel stability

analysis is imposed at the inlet. The simulation is then run until a periodic steady-

state is reached. The frequency of the imposed disturbance is F = 2.2 × 10−4, and

the Reynolds number at the inlet is R = 424. The amplitude of the pressure at the

wall resulting from this simulation is compared with the results of Ma and Zhong

(2003a) in Figure 7.9. Note that in the figure, Ma and Zhong (2003a) considered

both adiabatic and isothermal boundary conditions on the temperature fluctuations,

but we only make comparisons for the isothermal case.1

1There is an error in the legend from Ma and Zhong (2003a), which is reproduced in Figure 7.9:
the legend label for the dashed lines should read T ′|y=0 = 0. In their notation, T ′ is the temperature
fluctuation.
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The agreement between the wall pressure amplitudes shown in this figure is quite

good. The slight discrepancies can be attributed to two factors. First, the simulations

of Ma and Zhong (2003a) use a shock-fitting method to include the viscous-inviscid

interaction at the leading edge of the plate, and they show that this produces a signif-

icant pressure gradient near the leading edge. This is likely to influence the stability

properties near the leading edge. Also, the eigenfunctions at the leading edge extend

far outside the boundary layer and may interact with the shock wave, which is present

in the simulations of Ma and Zhong (2003a) but not in our results. Secondly, Ma

and Zhong (2003a) do not specify the parameters used in their Sutherland viscosity

model; we have chosen parameters such that the present simulations have the same

unit Reynolds number (7.2 million/m) as their work, but it is possible that the vis-

cosity models are slightly different. Altogether, however, the agreement between the

two simulations is quite good.

The results from the linearized DNS can also be compared with the predictions of

linear stability theory. The frequency ω and wavenumber α are computed using the

relations

ω =
i

p

dp

dt
α = − i

p

dp

dx
(7.27)

which are evaluated along the wall at y = 0. These formulas assume that the insta-

bility waves locally take the form p(x, t) = po exp(iαx− iωt), where po is a constant.

The phase speed is then calculated as c = ω/α.

Since the simulation shown Figure 7.11 has reached a periodic steady-state, the

frequency is constant. The spatial growth rate −αi and the real part of the phase

speed cr from the DNS are compared with those of the slow and fast modes (S and

F) from linear stability theory in Figure 7.10. The phase speeds from DNS and sta-

bility theory agree quite favorably, but poorer agreement is seen for the growth rates.

Downstream of the point of maximum growth rate, there is reasonable agreement

between the LST and the DNS, but upstream of the neutral point (where LST pre-

dicts αi = 0) the DNS predicts growth whereas the LST predicts that the flow is
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Figure 7.10: Growth rates (top) and phase speeds (bottom) from linear stability
theory (LST) and linearized DNS (LDNS). Frequency is F = 2.2× 10−4.

stable. The same discrepancy was observed for this case by Ma and Zhong (2003a)

and is caused by non-parallel effects. Ma and Zhong also observed the same oscilla-

tions in the growth rate that are seen here downstream of the upper neutral branch

(x > 0.15 m); these oscillations are physical and not artifacts of the differentiation

involved in computing growth rates.

7.7 Results: Spatial DNS

As discussed in Section 7.1, we make use of three different simulation configurations

in this work. The first type will be called “spatial DNS,” in which a second mode

eigenfunction having a fixed frequency is imposed at the inlet of the domain and

the simulation is run until a periodic steady-state is reached. This enables the re-

sponse of the boundary layer to a particular frequency to be established. This is

the conventional type of stability analysis that is currently the state of the art for

predicting boundary layer transition, and hence serves as the baseline for comparison

with subsequent simulations involving instability wave packets.

As mentioned previously, in this work we focus mainly on the frequency F = 10−4,
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so this is the frequency imposed at the inlet. The inlet is located at x = 0.3 m, which

corresponds to a Reynolds number of R = 1395. The disturbance amplitude as a

function of distance along the flat plate is shown in Figure 7.11. For nonparallel

boundary layers, there is not a unique measure of the disturbance’s downstream

growth, since both the shape and amplitude of the disturbance change as it travels

downstream. The distribution of energy amongst the mode’s various components

(velocity, temperature, etc.) also changes as it travels downstream. Three possible

measures of amplification are compared in Figure 7.11: the absolute value of the wall

pressure, the square root of the disturbance kinetic energy, and the square root of

the total disturbance energy (c.f. Section 6.4.1). The kinetic and total energies are

computed as

KE(x) =
1

2

∫ ymax

0

ρ̄
(
|û|2 + |v̂|2

)
dy (7.28a)

Etot(x) =
1

2

∫ ymax

0

(
ρ̄
(
|û|2 + |v̂|2

)
+

T̄

M2γρ̄
|ρ̂|2 +

ρ̄

γ(γ − 1)M2T̄
|θ̂|2
)
dy (7.28b)

In Figure 7.11 all quantities are plotted relative to their initial amplitudes at x =

0.3 m, and square roots of the energies are taken because the energy depends quadrat-

ically on the disturbance amplitude. The actual value of the total energy is always

larger than the kinetic energy, but the amplification of the total energy relative to its

initial value is in fact smaller than the amplification of kinetic energy. Substantial

differences between these different energy measures are visible, which is similar to

the observation made by Fasel and Konzelmann (1990) for incompressible flow. In

the results that follow, we focus on the wall pressure as a disturbance measure since

this quantity is most easily measured in experiments and most commonly reported

in simulations. Also shown in Figure 7.11 is the predicted amplification from locally-

parallel linear stability analysis, which is substantially smaller than the DNS result

because of nonparallel effects.

Spatial growth rates −αi and phase speeds are calculated from the DNS data using

Equation 7.27 and are compared with linear stability analysis in Figure 7.12. The

phase speeds from DNS and LST agree quite well, which suggests that the phase speed
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Figure 7.11: Amplification of disturbance pressure amplitude |pw|, kinetic energy KE,
and total energy Etot relative to values at x = 0.3 m. Frequency is F = 10−4.

is not strongly influenced by nonparallelism of the boundary layer. Even though the

amplifications from LST and DNS agree poorly (Figure 7.11), the growth rates agree

reasonably well, except upstream of the neutral branch, where LST predicts stability

and the DNS predicts some growth. This disagreement is caused by the nonparallel

boundary layer and is the source of much of the discrepancy in amplification.

7.8 Results: Second mode wave packets

The preceding section discussed the downstream propagation of disturbances that

are continuously forced at a particular frequency at the inlet of the domain, which

is the conventional type of stability analysis. We now relax the assumption of fixed-

frequency disturbances and consider the downstream evolution of packets of second

mode waves that are localized in both space and time. These wavepackets are directly

placed into the boundary layer (e.g., Figure 7.2b) by specifying initial conditions of

the following form:

q̃(x, y, t = 0) = Q(y) exp

(
iαox− 3.0

(x− xo)2

R2
x

)
(7.29)
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Figure 7.12: Growth rates (top) and phase speeds (bottom) from linear stability
theory (LST) and linearized DNS (LDNS). Frequency is F = 10−4.

In this equation Q(y) is a shape function that is determined from a spatial stability

analysis at frequency F and streamwise location xo; it is a vector function that con-

tains the velocity, density, and temperature eigenfunctions as its components. For a

given frequency F and streamwise location xo, the linear stability analysis also yields

the central wavenumber αo, which is the wavenumber at the center of the packet

where x = xo. This instability wave from linear stability analysis is modulated by

a Gaussian envelope centered at xo and having a radius of Rx, where Rx is the dis-

tance from xo at which the Gaussian envelope decays to a value of 0.05. The initial

condition (7.29) is therefore characterized by three free parameters: the frequency F ,

the initial location of the packet xo, and the width of the packet Rx. The remaining

parameters, Q(y) and αo, are determined from linear stability analysis.

The first case we consider is a second mode wave packet with frequency F = 10−4

initialized at xo = 0.3 m. Recall that for F = 10−4 the disturbance is unstable

between x = 0.49 and 0.8 m, so this initial location xo is slightly upstream of the

lower neutral branch. At this location the second mode wavenumber is αo = 724 m-1,

which corresponds to a wavelength of 8.7 mm. The radius of the Gaussian is chosen

to be Rx = 30 mm, meaning that the wave packet contains about 7 periods of

the instability wave. Figure 7.13 shows contours of the initial pressure distribution
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corresponding to Equation 7.29.

Figure 7.14 shows contours of the disturbance pressure at several instants in time.

Because of the many individual waves contained within the wave packet, individual

contour levels are not visible, but the figure demonstrates the downstream evolution

of the wave packet’s structure. At t = 0 the maximum pressure amplitude is 1.0 and

the wave is hardly visible in the contours, which have a maximum contour level of 10.

As the wave packet propagates downstream, it amplifies by about a factor of 10 and

then decays. As the wave packet travels downstream it spreads out considerably.

The propagation of the wave is more easily visualized using an x-t diagram, as

shown in Figure 7.15. This enables the individual waves within the wave packet to be

visualized. In the x-t diagram the vertical offset of each pressure trace is proportional

to the time. Qualitatively, the amplitude of the wave packet follows the predictions

from linear stability theory (Figure 7.12): growth between x = 0.5− 0.8 m and decay

downstream of 0.8 m. However, one can make a more quantitative comparison by

tracking the maximum wall pressure of the wave packet at each x location along the

boundary layer and then comparing this amplification with the predictions of LST

as well as the spatial DNS that was carried out in Section 7.7. In what follows we

will refer to the point of maximum wall pressure as the “center” of the packet, and

the frequency and wavenumber at this point will be called the central frequency and
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central wavenumber.

Figure 7.16a compares the maximum wall pressure of the wave packet with the

predictions of LST and spatial DNS for F = 10−4. For all three curves, the initial

amplitudes at x = 0.3 m are set to the same value. The pressure at the center of the

wave packet initially exceeds that of the LST and the spatial DNS, but the maximum

pressure reached by the packet is substantially less than the prediction of the spatial

DNS. The reason for this discrepancy is that the central frequency and wavenum-

ber of the wave packet change as the packet propagates downstream, as shown in

Figure 7.16b. Although the phase speed of the packet (the ratio of the frequency F

to the nondimensional wavenumber αrνe/Ue) is nearly constant, the frequency and

wavenumber initially rise and then fall as the packet travels downstream. This is in

contrast to the spatial DNS, in which the flow has reached a periodic steady state

and hence contains only a single frequency of F = 10−4, indicated by the dashed line

on Figure 7.16b.

The change in central frequency and wavenumber of the wave packet can be ap-

preciated by plotting the frequency on a stability diagram, as shown in Figure 7.17.

The wave packet is initialized at xo = 0.3 m and F = 10−4. Since the wave packet is
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Figure 7.16: a) Comparison of wall pressure amplitudes from linear stability theory
(LST), spatial DNS (LDNS), and center of wave packet. b) Frequency and wave-
number at center of wave packet. F = 10−4, xo = 0.3 m, Rx = 30 mm.

localized in space and time, it contains a spectrum of frequencies and wavenumbers;

therefore when the packet approaches the instability region from below, higher fre-

quencies are more unstable than lower frequencies, and hence the central frequency

of the packet rises. Once the wave packet crosses the line of maximum growth rate on

the stability diagram (the maximum contour level), lower frequencies become more

unstable than higher frequencies. As a result, the central frequency of the wave

packet drops. As the packet travels far downstream, its central frequency continues

to fall since high frequency content is always more highly damped than low frequency

content. As a result, the central frequency follows the upper neutral branch of the

stability diagram. In contrast to the path taken by the wave packet on this diagram, a

conventional linear stability analysis would assume that the frequency remains fixed

and the disturbance propagates horizontally across the stability diagram (dashed

line). This accounts for the difference in amplification observed in Figure 7.16a.

So far, we have discussed only the central frequency and wavenumber of the packet,

that is, the frequency and wavenumber at the point where the wall pressure is a

maximum. However, the wave packet actually contains a spectrum of frequencies and

wavenumbers, and the evolution of these spectra play an important role in the wave

packet’s development. These spectra can be evaluated in the following way: for each
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Figure 7.17: Central wave number of wave packet obtained from LDNS calculations
and superimposed on a stability diagram.

time instant in the DNS, the wavenumber spectrum of the packet can be determined

by taking Fourier transforms of the pressure data along the wall. Likewise, at each

spatial location along the boundary layer the frequency spectrum can be determined

using a temporal Fourier transform of the time series of the wall pressure at that

location. Using this procedure, the frequency spectrum as a function of x and the

wavenumber spectrum as a function of time are determined. The results of such a

calculation are given in Figure 7.18.

Figure 7.18a shows the frequency spectrum of the wave packet as a function of x.

The packet is initialized at xo = 0.3 m and has a central frequency of F = 10−4, but

the Fourier amplitudes at the initial location are hardly visible in the contour plot

because the disturbance initially has a small amplitude. As the wave packet travels

downstream, its frequency spectrum follows the behavior of the central frequency, but

also contains a narrow band of frequencies around the central value. Similar behavior

is observed for the wavenumbers in Figure 7.18b as a function of time. It should

be noted that the Fourier amplitudes increase as a result of both amplification and

spreading of the wave packet, since a wide wave packet contains more spectral power

than a narrow one, even if their amplitudes are the same.

The evolving frequency content of the wave packet is interpreted in terms of the
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Figure 7.18: a) Temporal, and b) Spatial Fourier transforms of pressure data at the
wall. Amplitudes are scaled arbitrarily.

stability diagram in Figure 7.19. Here the stability diagram is again taken from

locally-parallel linear stability analysis. The red lines superimposed on the stability

diagram indicate the boundaries between which the Fourier amplitude is greater than

10% of its local maximum value. That is, at each station x a temporal Fourier

transform is computed, and the two frequencies at which the Fourier amplitude is 10%

of the maximum are taken as points along the red boundary lines. Therefore, at each

location x the red lines indicate the range of frequencies for which the wave packet has

significant frequency content. The wave packet (which begins at xo = 0.3 m) initially

has a fairly wide band of frequency content, but this rapidly narrows as the wave

packet travels downstream and many of the scales are damped. Further downstream,

the frequency spectrum follows the stability diagram, with the lower bound of the

frequency spectrum following the most unstable frequency and the upper bound of

the frequency spectrum lying slightly above the upper neutral branch.

Having computed the Fourier amplitudes for each frequency F , we can compare

the downstream propagation of each Fourier mode with the spatial DNS (Section 7.7).

This differs from the wave packet amplitude discussed previously, which consists of a

superposition over all the Fourier modes; here we filter out an individual Fourier mode

and compare its amplification with predictions from spatial DNS. This comparison is

made in Figure 7.20 for three different frequencies. In this figure the FFT amplitudes
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in red are horizontal slices across Figure 7.18a, while the black dashed line is the

spatial DNS from Figure 7.12 and similar results for the other frequencies. For the

sake of comparison, the initial amplitudes from DNS and Fourier analysis are set to the

same value. Excellent agreement is seen. This means that instead of performing an

individual spatial DNS for each frequency of interest, one can run a single wave packet

DNS containing a broad spectrum of frequencies. By performing FFT analysis of the

data, one can then extract the downstream growth of each Fourier mode and produce

the fully nonparallel growth rate curve for many different frequencies using a single

simulation. This is a very computationally cheap way of executing spatial DNS for

many different frequencies. This idea appears to have been conceived first by Herman

Fasel’s group at the University of Arizona (Mayer et al., 2011, Sivasubramanian and

Fasel, 2014). They have conducted DNS of three dimensional wave packets, and

using Fourier analysis in both the streamwise and spanwise directions they have been

able to generate spatial growth rate curves for every combination of frequency and

spanwise wavenumber using a single simulation.

The frequency spectrum of the second mode wave packet can be controlled by

adjusting the width Rx of the initial condition (Equation 7.29), since waves that are

wider in physical space are narrower in frequency space. One would then expect

packets that are wider in physical space to more closely match the predictions of
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spatial linear stability analysis because of their narrow band of frequency content.

To test this theory, simulations are carried out with three other wave packet widths

of Rx = 15, 60, and 120 mm, compared to the 30 mm packet shown previously.

When Rx = 15 mm, the wave packet contains only about 3.5 complete waves; when

Rx = 120 mm, it contains about 28 waves. Examples of pressure distributions for two

other initial wave packet widths are shown in Figures 7.21 and 7.22. The wide wave

packet (Rx = 60 mm) in Figure 7.21 grows rapidly and then decays rapidly, whereas

the narrower wave packet (Rx = 15 mm) in Figure 7.22 continues to amplify as it

travels across the entire domain.

To make these results quantitative, the maximum pressures at the center of the

wave packet are compared in Figure 7.23. When the initial wave packet is very thin

(small Rx), the maximum pressure is not very large but the wave persists for a very

long distance downstream. This is because the initial condition contains a wide band

of frequencies, and each of these frequencies amplifies at a different location along

the boundary layer. Conversely, when the wave packet is wide, consisting of many

cycles of instability waves, then the spatial DNS result (Section 7.7) is approached
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and the disturbance reaches a large level of amplification but decays rapidly in the

downstream direction.

These results demonstrate that in predicting the downstream growth of second

mode instability waves it is essential that the width of the wave packet be taken into

account. The amplification predicted by spatial stability analysis is only achieved

when the wave packet contains many wavelengths. For a boundary layer that is

artificially forced with harmonic disturbances, such as in the experiments of Schubauer

and Skramstad (1947) or Gaster and Grant (1975) this is the case, but for a boundary

layer undergoing “natural” transition in a wind tunnel the measured disturbances

waves consist only of a few wavelengths (Figure 7.1) and hence the conventional

spatial analysis is likely to over-predict the level of amplification.

7.9 Incoming Acoustic Wavepackets

Having explored the propagation of isolated second mode wave packets in a boundary

layer, we now consider how these waves can be excited by incoming acoustic waves

from the freestream. This is done by choosing a Gaussian-shaped packet of planar

acoustic waves in the freestream as the initial condition and causing these waves to
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impinge on the boundary layer and potentially excite the second mode instability. An

example of such an initial condition was shown in Figure 7.2c.

7.9.1 Freestream waves

In order to specify incoming planar acoustic waves in the DNS, a model for plane wave

propagation in the freestream must be derived. In the freestream, where the flow

velocity is uniform, one can assume that the disturbances take the form of harmonic

waves

(
ρ̃, ũ, ṽ, θ̃

)T
=
(
ρ̂, û, v̂, θ̂

)T
× exp (iαx+ iλy − iωt) (7.30)

where tildes signify the complex disturbances and hats signify the constant amplitudes

of the harmonic waves. For solutions of this form, the equations of motion (7.4) reduce

to

i(α− ω)ρ̂+ iαû+ iλv̂ = 0 (7.31a)

i(α− ω)û+
iα

γM2
(ρ̂+ θ̂) +

1

R

[(
λ2 + α2(2 + r)

)
û+ αλ(1 + r)v̂

]
= 0 (7.31b)

i(α− ω)v̂ +
iλ

γM2
(ρ̂+ θ̂) +

1

R

[(
α2 + (2 + r)λ2

)
v̂ + αλ(1 + r)û

]
= 0 (7.31c)

i(α− ω)θ̂ + (γ − 1)(iαû+ iλv̂) +
α2 + λ2

Rσ
θ̂ = 0 (7.31d)

For disturbances having sufficiently long wavelengths that α/R � 1 and λ/R� 1

(which is the case for the simulations conducted here), Equations 7.31 are well ap-

proximated by their inviscid counterparts:

i(α− ω)ρ̂+ iαû+ iλv̂ = 0 (7.32a)

i(α− ω)û+
iα

γM2
(ρ̂+ θ̂) = 0 (7.32b)

i(α− ω)v̂ +
iλ

γM2
(ρ̂+ θ̂) = 0 (7.32c)

i(α− ω)θ̂ + (γ − 1)(iαû+ iλv̂) = 0 (7.32d)
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which can be represented in matrix notation:




α− ω α λ 0

α
γM2 α− ω 0 α

γM2

λ
γM2 0 α− ω λ

γM2

0 α(γ − 1) λ(γ − 1) α− ω







ρ̂

û

v̂

θ̂




= 0 (7.33)

The eigenvalues ω and right eigenvectors ξ of this matrix are:

ω1 = α ξ1 =




1

0

0

−1




(7.34a)

ω2 = α ξ2 =




0

λ

−α
0




(7.34b)

ω3,4 = α±
√
α2 + λ2

M
ξ3,4 =




M
√
α2 + λ2

±α
±λ

(γ − 1)M
√
α2 + λ2




(7.34c)

The first two waves are called entropy and vorticity waves, as identified by the

non-zero components of the right eigenvectors ξ1 and ξ2. The last two waves ξ3 and

ξ4 are fast and slow acoustic waves. Any initial condition in the freestream can be

represented as a linear combination of these four types of waves, but in this work we

are principally interested in the acoustic waves. Therefore, the initial conditions used

in this work are of the following form:

qo(x, y) = ξ3,4 exp

[
iαox+ iλoy − 3.0

(
y − yo
Ry

)2

− 3.0

(
x− xo
Rx

)2
]

(7.35)
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This initial condition consists of an acoustic plane wave of streamwise wavenumber

αo and vertical wavenumber λo that is modulated by a Gaussian envelope in x and y.

The angle of incidence of the wave is given by tan−1(λo/αo). The size of the Gaussian

envelope is specified by the radii Rx and Ry which are the distances from the center

at which the Gaussian envelope reaches a value 5% (this is the reason for the factor

of 3.0).

An initial disturbance of the form (7.35) contains central wavenumbers given by

αo and λo, and hence a central frequency ωo determined by the dispersion relation of

Equation 7.34c. However, because the Gaussian envelope limits the extent of the wave

to a small region of space, the packet contains a continuum of different wavenumbers

α and λ, and hence a continuum of frequencies. The spectrum of wavenumbers

contained in the wave packet can be determined by computing Fourier transforms of

Equation 7.35. After working out the two dimensional Fourier transform with respect

to x and y (duals to α and λ), the initial wave packet from Equation 7.35 takes the

following form in frequency space:

qαλ(α, λ) =
π

3
RxRyξ3,4 exp

(
−R

2
x(α− αo)2

12
− R2

y(λ− λo)2

12

)
(7.36)

where qαλ(α, λ) is the two dimensional Fourier transform of qo(x, y). At each point

in the (α, λ) wavenumber plane, one can compute a corresponding frequency through

the dispersion relation (7.34c). An example of an initial pressure field in physical

space is give in Figure 7.24a, and its corresponding wavenumber spectrum is shown

in Figure 7.24b. The wavenumber spectrum (colored contour lines) is calculated using

Equation 7.36 and normalized to have a maximum of one. The black contours show

isolines of constant frequency F with values indicated on the plot; these are calculated

by applying the dispersion relation (7.34) to the coordinates (α, λ) on the plot.

The key observation is that the incoming wave packet is sufficiently localized in

space and time that it contains a fairly broad spectrum of wavenumbers and fre-

quencies. Upon interacting with the boundary layer, all of these frequencies can

participate in the excitation of modes within the boundary layer. This is in contrast
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Figure 7.24: a) Wave packet initial condition in physical space. αo = 717/m, λo =
476/m, Rx = 30 mm, Ry = 15 mm; Fast mode. b) Wave packet in frequency space.
Colored contours show two dimensional Fourier amplitudes. Black contours show
iso-lines of frequency.

to conventional spatial receptivity calculations, which involve only a single frequency.

One can of course perform individual spatial receptivity calculations for a wide vari-

ety of frequencies, but this does not capture the superposition of multiple frequencies

that is experienced by wave packets in an actual boundary layer.

7.9.2 Receptivity considerations

The model for the incoming wave packet described by Equation 7.35 contains six

free parameters: the streamwise and vertical wavenumbers αo and λo, the initial

coordinates of the center of the wavepacket (xo, yo), and the width and height of

the packet, Rx and Ry. The acoustic wave can also be either a fast wave or a slow

wave. We seek to choose these parameters in such a way that the incoming wave

packet excites unstable second mode waves as strongly as possible. However, since

receptivity analysis of fixed-frequency disturbances is mainly limited to asymptotic

theories near the leading edge (Fedorov and Khokhlov, 1993, Fedorov, 2003) and DNS

(Ma and Zhong, 2003a,b, 2005, Balakumar, 2007, 2009), and no receptivity theory

exists for wave packets consisting of more than one frequency, we attempt to choose

initial conditions on the basis of the phase speeds from linear stability theory.
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Figure 7.25 shows the growth rates and phase speeds for boundary layer modes

with frequency F = 10−4. As discussed in Section 5.1, there are several different

boundary layer modes which are called the “fast modes” F1 and F2 (and higher

modes), and the “slow mode” S1. For these flow conditions, the mode S1 is the one

that becomes unstable. In order for an incident acoustic wave striking the boundary

layer to excite these waves, one would intuitively expect that the incoming wave should

have the same phase speed and wavenumber as the second mode waves. When this

happens, the freestream waves are said to be “synchronized” with the boundary layer

modes. However, on the basis of the dispersion relation for acoustic waves given in

Equation 7.34c, it is impossible for acoustic waves in the freestream to have a phase

speed that falls within the shaded area in Figure 7.25, which is where the boundary

layer modes exist. The only location at which the acoustic waves impinging on the

boundary layer can have the same phase speed as the boundary layer modes is at

x = 0, where both the boundary layer modes and the waves in the freestream can

have the same phase speed of 1±1/M (the boundaries of the shaded region). Because

of this, one expects receptivity to freestream acoustic waves to be largest at x = 0, and

indeed this has been observed in DNS (Balakumar, 2007, 2009, Malik and Balakumar,

2007).

From Equation 7.34c, one also finds that the waves in the freestream have a phase

speed of c = ω/α = 1 ± 1/M only when the vertical wavenumber λ is equal to

zero. This means that waves in the freestream whose phase speed lies on the edge

of the shaded region in Figure 7.25 are traveling parallel to the flat plate and have

wavefronts that are perpendicular to the plate. Plane waves in the freestream that

are propagating toward the plate at an angle have phase speeds that fall outside

of the shaded region, with larger angles of incidence producing larger phase speeds.

Therefore, waves that run parallel to the plate or impinge at a shallow angle are

expected to be most effective in exciting modes within the boundary layer, while the

boundary layer will be less receptive to waves impinging at a larger angle.

Guided by these observations, in the simulations that follow we choose an im-

pinging wave packet represented by either of the black squares on Figure 7.25. These
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Figure 7.25: Spatial growth rates and phase speeds for F = 10−4. Black squares show
the streamwise location and phase speed of the simulation initial conditions. Shaded
region is inaccessible to planar acoustic waves.

two conditions are chosen to excite either the fast mode or the slow mode. Since the

slow mode is the one that becomes unstable, one would expect that the initial con-

dition having a lower phase speed will be more effective in exciting unstable second

mode waves, and indeed this will be demonstrated. For both of the initial conditions

marked on the diagram, the wave in the freestream is a slightly incoming wave with a

phase speed just outside of the limiting value of cr = 1± 1/M . This initial condition

is an attempt to achieve realistic wave angles for the incoming waves while at the

same time effectively exciting second mode waves.

7.9.3 Results

We consider first a fast acoustic wave impinging on the boundary layer. Figure 7.26

shows snapshots of the pressure contours at several instants in time. Because of the

large number of individual waves inside the wave packet it is not possible to make

out the actual contour levels, but the figure gives an indication of the progression of

the wave structures. The initial condition consists of a Gaussian shaped packet of

acoustic waves initialized slightly above the boundary layer. The wavenumbers of the
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Figure 7.26: Pressure contours from an incident acoustic wave impinging on a bound-
ary layer. Initial wave packet has αo = 717 m-1, λo = −476 m-1, Rx = 30 mm,
Ry = 15 mm. Thick black line is δ99.

individual waves inside the initial wave packet are αo = 717 m-1 in the streamwise

direction and λo = −476 m-1 in the vertical direction, hence the wave is impinging

at an angle of tan−1(λo/αo) = −34 degrees with respect to the horizontal axis. The

chosen value of the streamwise wavenumber αo has been selected to match that of

unstable second mode waves at x = 0.62 m and F = 10−4.

As shown in Figure 7.26, the packet of incident waves reflects off of the boundary

layer and then propagates back into the freestream. Note that the simulation domain

is much taller than that shown in the figure, so the reflected wave is not interact-

ing with a computational boundary. As the waves from the freestream reflect off of

the boundary layer, they excite two packets of boundary layer modes. Using Equa-
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tion 7.27 to determine the frequency ω, wavenumber α, and phase speed c = ω/α, it

has been found that the two packets of modes are the fast mode F2, which is stable,

and the slow mode S1, which is unstable (Figure 7.25). Mode F2 is excited to a high

amplitude but decays downstream, whereas mode S1 is excited to a low amplitude

but grows somewhat as it travels downstream. In spite of the fact that the incom-

ing acoustic wave was a fast wave with phase speed c = 1 + 1.2/M , it nevertheless

successfully excited the unstable slow mode within the boundary layer. However, the

amplitude of the second mode wave is quite small: the maximum amplitude of the

wall pressure reached by the second mode wave packet is only about 6% of the peak

pressure caused by the reflecting acoustic waves from the freestream.

Next we consider a packet of slow acoustic waves impinging on the boundary

layer. Contours of the pressure at various instants of time are given in Figure 7.27.

The wavenumbers in this simulation are αo = 717 m-1, −λo = 230 m-1, which imply

an angle of incidence of 18 degrees. The radii of the Gaussian envelope describing

the shape of the packet are Rx = Ry = 30 mm. This time only the slow mode S1

is excited; however, the second mode instability achieves a much larger amplitude

compared to the excitation by fast acoustic waves above. In this case the maximum

wall pressure of the second mode wave is about 4 times greater than that reached by

the reflecting waves from the freestream.

Following the same procedure as in Section 7.8, the maximum wall pressure of the

second mode waves excited by the reflecting acoustic radiation can be extracted as a

function of distance along the plate. The corresponding frequencies and wavenumbers

can be extracted using Equation 7.27. The results are shown in Figure 7.28 where

they are compared with the predictions of a spatial stability analysis. The behav-

ior is qualitatively similar to that of the isolated second mode waves in Figure 7.16:

the wave packet experiences less amplification than predicted by spatial analysis and

the central frequency and wavenumber of the packet decrease as it travels far down-

stream. The similarity with the results given previously for isolated second mode

waves indicates that the approximation made in Section 7.8 of neglecting receptivity

and directly placing the second mode waves within the boundary layer is a reasonable
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Figure 7.27: Pressure contours from an incident slow acoustic wave packet impinging
on a boundary layer. Initial wave packet has αo = 717 m-1, λo = 230 m-1, Rx =
30 mm, Ry = 30 mm. Thick black line is δ99.
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Figure 7.28: a) Comparison of wall pressure amplitudes from linear stability the-
ory (LST), spatial DNS (LDNS), and center of wave a packet. b) Frequency and
wavenumber at center of wave packet. Wave packet was generated by incoming slow
acoustic waves with αo = 717 m-1, Rx = 30 mm, Ry = 15 mm, angle of incidence of
17 degrees.

one. However, the advantage of the receptivity calculation is that the absolute ampli-

tude of the second mode wave can be determined if the amplitude of the freestream

forcing is known.

Similar to the analysis used in Section 7.8, we can again investigate the influence of

the wave packet width on the downstream development of second mode waves. This is

done by adjusting the width Rx of the wave packet in the freestream (Equation 7.35),

choosing the value Rx = 60 for comparison with the Rx = 30 mm case reported

above. Examples of pressure contours from the simulation with Rx = 60 mm are

given in Figure 7.29. Similar to the result of Section 7.8, this wave packet that is

wide in physical space experiences more amplification than the narrower packet in

Figure 7.27, but decays more rapidly as it moves downstream.

A quantitative comparison of the wave packet amplitudes is given in Figure 7.30,

where all pressure amplitudes are normalized to 1.0 at about 0.61 m. The results are

quite similar to those given previously in Figure 7.23 for second mode waves placed di-

rectly in the boundary layer (no receptivity). The wider wave packet in physical space

experiences more amplification but decays more rapidly as it progress downstream.

The narrower wave packet in physical space (Rx = 30 mm) experiences less amplifi-
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Figure 7.29: Pressure contours from an incident slow acoustic wave packet impinging
on a boundary layer. Initial wave packet has αo = 717 m-1, λo = 230 m-1, Rx =
60 mm, and Ry = 30 mm. Thick black line is δ99.
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Figure 7.30: Comparison of maximum wave packet amplitude vs streamwise distance
for wave packets of two different widths, as well as spatial DNS. F = 10−4, xo = 0.3 m.

cation but persists farther downstream. This result shows that regardless of whether

second mode waves are placed directly in the boundary layer (Section 7.8) or forced

naturally by planar acoustic waves, the qualitative result is the same: finite-width

wave packets experience less amplification than the prediction of spatial stability

analysis but decay more slowly as they move downstream.

7.10 Simple Wave Packet Model

The simulations reported in the preceding sections greatly clarify the downstream

propagation of packets of second mode waves. However, the high computational ex-

pense of the simulations makes it difficult to cover a wide parameter space. The

DNS results have thus considered only a few particular initial wave packet configu-

rations which are parameterized by their initial streamwise location and their width

in physical space (which implies a bandwidth in frequency space). However, to make

predictions about transition one must consider all possible initial configurations that

are likely to be excited in a particular experiment. In this section a simple wave packet

model is developed using locally-parallel linear stability theory in order to capture

the wave packet dynamics with modest computational expense. Using this model, a
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method for predicting boundary layer transition is developed which successfully takes

into account the finite width of the instability waves encountered in experiments.

7.10.1 Equations of motion

The problem of wave packet propagation in a boundary layer can be regarded as an

initial boundary-value problem in which the shape of the wave packet is imposed as

an initial condition. Similar to the DNS presented previously, this problem can be

solved either by specifying an initial distribution of waves in the freestream that in-

teracts with the boundary layer (the receptivity problem), or by specifying an initial

packet of second mode waves that is already within the boundary layer (thus neglect-

ing receptivity). The solutions that follow are sufficiently general to consider both

methods, but numerical results will be computed only for the latter case of an initial

second mode wave packet placed within the boundary layer, since this leads to some

simplification.

For two-dimensional, viscous compressible flow, the linearized Navier-Stokes equa-

tions from Equation 7.4 can be written in the general form:

At
∂q̃

∂t
+ Ax

∂q̃

∂x
+ Ay

∂q̃

∂y
+ Aoq̃ = 0 (7.37)

where the As are 9× 9 matrices given in Appendix C and q̃ is the column vector of

disturbance variables:

q̃ =
(
ρ̃, ũ, ṽ, θ̃, τ̃xx, τ̃xy, τ̃yy, q̃x, q̃y

)T
(7.38)

Here ρ̃, ũ, and ṽ are the fluctuations in density and velocity, θ̃ is the temperature

fluctuation, τ̃xx, τ̃xy, and τ̃yy are the fluctuations in viscous stresses, and q̃x and q̃y

are the fluctuations in heat fluxes. Expressions for the fluctuating stresses and heat

fluxes can be found in Appendix C.

The linearized equations (7.37) are to be solved on the two dimensional, semi-

infinite domain x ∈ [0,∞), y ∈ [0,∞) along with the initial and boundary conditions:
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q̃ = qo(x, y) t = 0 (7.39a)

ũ = ṽ = θ̃ = 0 y = 0 (7.39b)

|q̃| <∞ y →∞ (7.39c)

These statements specify no-slip conditions on the velocities, zero temperature fluc-

tuation of the wall’s surface, boundedness of the disturbances in the freestream, and

an initial disturbance field q̃o.

7.10.2 Laplace Transform

Since the initial value problem specified above has constant coefficients in time, solu-

tions can be determined by making use of the Laplace transform pair:

qω(x, y, ω) =

∫ ∞

0

q̃(x, y, t)eiωtdt (7.40a)

q̃(x, y, t) =
1

2π

∫ iΓ+∞

iΓ−∞
qω(x, y, ω)e−iωtdω (7.40b)

The frequency −iω is chosen as the Laplace transform parameter to highlight the

connection with linear stability theory. The real parameter Γ specifies an inversion

contour which lies above all singularities in the complex plane. Applying this trans-

form to Equation 7.37, one arrives at the inhomogeneous problem:

Lqω ≡ Ax
∂qω
∂x

+ Ay
∂qω
∂y

+ (Ao − iωAt) qω = Atq̃o(x, y) (7.41)

In principle this equation can be solved for any frequency ω that is not an eigenvalue,

and the total solution can be obtained by integrating over frequency space using the

inverse Laplace transform (7.40b). This procedure formalizes the conjecture made in

the preceding sections that the propagating wave packet consists of a superposition of

many waves of different frequencies. Even though the initial disturbance field q̃o(x, y)

contains only spatial information, one can think of q̃o as consisting of many different
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frequencies since, at time t = 0, Equation 7.40b reduces to:

q̃o(x, y) =
1

2π

∫ iΓ+∞

iΓ−∞
qw(x, y, ω)dω (7.42)

Therefore any initial condition contains a spectrum of frequencies, which may be

broad-band or narrow-band depending on the characteristics of the initial disturbance

field.

In order to solve Equation 7.41, a simplifying assumption is made that the initial

condition q̃o is compact in x, such that the change in boundary layer thickness is

negligible across the region over which q̃o is nonzero. The region of nonzero q̃o will

be assumed to be centered at a streamwise location xo. Assuming q̃o is sufficiently

compact, Equation 7.41 can be solved near the initial location xo using parallel linear

stability theory, in which the change of the boundary layer thickness is ignored. The

detailed solution of such a parallel initial-value problem has been worked out by a

number of researchers (Fedorov and Tumin, 2003, Forgoston and Tumin, 2005, 2006),

but is valid only in the vicinity of the initial point xo.

Far from the initial point xo, Equation 7.41 becomes a homogeneous problem

which can be solved using the method of multiple-scales. Multiple-scales analyses of

this sort have been used in the past to incorporate non-parallelism into boundary

layer stability analysis (Nayfeh, 1980, El-Hady, 1991, Fedorov and Khokhlov, 2001).

Solutions obtained using the method of multiple scales involve an undetermined con-

stant that accounts for the initial amplitude of the disturbance. This constant can

be determined by connecting the multiple-scales solution to the parallel solution at

the point xo, thereby coupling these two solutions together. This procedure has been

employed previously by Fedorov in the context of receptivity analysis (Fedorov and

Khokhlov, 2001, 2002, Fedorov, 2003, Fedorov et al., 2013), but has never been used

to solve an initial-value problem, such as that of a wave packet.

In the sections that follow, formal solutions are derived both near and far from the

initial point xo, and these two solutions are coupled together. Simplifying assumptions

are then made in order to reduce the computational expense, and the simple model
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obtained in this way is used to investigate wave packet propagation over a wider

parameter space than is accessible through the DNS.

7.10.3 Solutions near the initial point

In the vicinity of the initial point xo where the initial condition q̃o is non-zero, the

inhomogeneous problem (7.41) can be solved by neglecting the dependence of the

matrices A on x. Also terms involving the mean vertical velocity V̄ and streamwise

derivatives of the base flow variables are neglected in the matrices A, which makes the

analysis locally-parallel. One can then apply the Fourier transform and its inverse:

qωα =

∫ ∞

−∞
qωe

−iα(x−xo)dx (7.43a)

qω =
1

2π

∫ ∞

−∞
qωαe

iα(x−xo)dα (7.43b)

Application of this transform to Equation 7.41 produces the parallel problem:

Loqωα ≡ Ay
∂qωα
∂y

+ (Ao + iαAx − iωAt) qωα = Atqo,α (7.44)

where qo,α is the Fourier transform of the initial condition qo. The homogeneous

eigenfunctions of this equation can be computed using the methods of Chapter 4

and have been studied extensively in Chapter 5. The inhomogeneous problem can

be solved by expansion onto the homogeneous eigenfunctions; however, such an ex-

pansion requires first that the adjoint functions and an orthogonality condition be

derived.

Adjoint functions

In this work, the scalar product between two arbitrary vector functions u(y) and v(y)

is defined by the integral

〈u,v〉 ≡
∫ ∞

0

vHudy (7.45)



206

where superscript H designates the conjugate transpose. Making use of this definition

and the definition of the direct operator Lo from Equation 7.44, one can derive an

adjoint operator L+
o by requiring that the direct and adjoint operators satisfy Green’s

formula:

〈Loq,q+〉 − 〈q,L+
o q+〉 = q+HAyq

∣∣∣∣
∞

y=0

(7.46)

The adjoint operator that satisfies this property is given by:

L+
o q+ ≡ − ∂

∂y

(
AH
y q+

)
+ (AH

o − iα∗AH
x + iω∗AH

t )q+ (7.47)

where the asterisk denotes complex conjugation and q+ is the solution of the adjoint

problem. The boundary conditions on the adjoint function q+ are selected such that

the boundary term of Equation 7.46 evaluates to zero. The required adjoint boundary

conditions are derived in Appendix C, where they are shown to be the same as the

boundary conditions of the direct problem:

ũ+ = ṽ+ = θ̃+ = 0 y = 0 (7.48a)

|q+| <∞ y →∞ (7.48b)

Bi-orthogonality

Eigenfunctions of the direct operator Lo and the adjoint operator L+
o satisfy the

homogeneous equations:

Loq = 0 L+
o q+ = 0 (7.49)

Suppose that for some complex frequency ωk the direct problem has an eigenvalue

αk and an eigenfunction qk. Likewise, suppose that the frequency ωm corresponds

to an eigenvalue αm of the adjoint problem and its adjoint eigenfunction q+
m. Then,
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observing that Loqk = 0 identically, one can write the scalar product

〈Loqk,q+
m〉 = 0 =

∫ ∞

0

q+H
m

[
Ay

∂qk
∂y

+ (Ao + iαkAx − iωkAt)qk

]
dy

Performing integration by parts and making use of the fact that the boundary terms

in (7.46) are zero, one can then write:

0 =

∫ ∞

0

[
− ∂

∂y

(
q+H
m Ay

)
+ q+H

m (Ao + iαmAx − iωmAt)

]
qkdy

+

∫ ∞

0

i(αk − αm)q+H
m Axqk − i(ωk − ωm)q+H

m Atqkdy (7.50)

In obtaining this result, the quantity q+
m(iαmAx−iωmAt)qk has been both added and

subtracted. The term in brackets is the conjugate transpose of the adjoint operator

L+
o q+ from Equation 7.47, hence Equation 7.50 can be written

0 = 〈qk,L+
o q+

m〉+ i(αk − αm)〈Axqk,q
+
m〉 − i(ωk − ωm)〈Atqk,q

+
m〉 (7.51)

The first term is identically zero since q+
m is an eigenfunction of the adjoint operator

L+
o . This leaves the bi-orthogonality relation:

(αk − αm)
〈
Axqk,q

+
m

〉
= (ωk − ωm)

〈
Atqk,q

+
m

〉
(7.52)

This relation shows that for spatial analysis with ωk = ωm, two spatial modes qk and

q+
m either have the same eigenvalue α or are orthogonal under the weight function

Ax. Similarly, for temporal analysis with αk = αm, two temporal modes qk and q+
m

either have the same eigenvalue ω or are orthogonal under the weight At.

Eigenfunction expansion

Having derived the adjoint problem and the bi-orthogonality relation, one can now

return to the inhomogeneous, locally-parallel problem specified in Equation 7.44. This
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equation can be solved by projecting the solution qωα onto the spatial modes:

qωα =
∑

k

Ckqk (7.53)

where Ck is the expansion coefficient. For simplicity the symbol
∑

k is used as a short-

hand notation to represent both summation over the discrete modes and integration

over the continuous spectra, since writing separate expressions for the discrete modes

and the continuous spectra leads to equations that are unwieldy. Fedorov and Tumin

(2003) have shown that the eigenfunctions of the discrete and continuous spectra to-

gether form a complete set by solving the inhomogeneous problem (7.44) using the

method of variation of parameters.

One can substitute the expansion (7.53) into Equation 7.44 and then take the

inner product against an arbitrary adjoint mode qm to obtain:

∑

k

Ck
〈
Loqk,q+

m

〉
=
〈
Atqo,α,q

+
m

〉
(7.54)

After expanding out the left hand side, one finds

∑

k

Ck

∫ ∞

0

q+H
m

[
Ay

∂qk
∂y

+ (Ao + iαAx − iωAt) qk

]
dy =

〈
Atqo,α,q

+
m

〉
(7.55)

This equation can be rearranged in the form:

∑

k

Ck

∫ ∞

0

q+H
m

[
Ay

∂qk
∂y

+ (Ao + iαkAx − iωAt) qk

+i(α− αk)Axqk

]
dy =

〈
Atqo,α,q

+
m

〉
(7.56)

The first two terms in square brackets are zero because qk is an eigenvector of Lo.
The terms that remain are

∑

k

Cki(α− αk)
〈
Axqk,q

+
m

〉
=
〈
Atqo,α,q

+
m

〉
(7.57)
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Making use of the bi-orthogonality relation (7.52), one can solve for the coefficient

Cm:

Cm =
1

i(α− αm)

〈Atqo,α,q
+
m〉

〈Axqm,q+
m〉

(7.58)

This result describes the projection of the initial condition q̃o onto the mth mode

of discrete or continuous spectrum. The total solution is then summed from the

expansion (7.53):

qωα =
∑

k

1

i(α− αk)

〈
Atqo,α,q

+
k

〉
〈
Axqk,q

+
k

〉 qk (7.59)

Again, it must be emphasized that this solution consists of both a summation over

the discrete eigenvalues and integration over the continuous spectra.

Inverse Fourier Transform

The inverse Fourier transform of Equation 7.59 is given by

qω(x, y) =
1

2π

∫ ∞

−∞

∑

k

1

i(α− αk)

〈
Atqo,α,q

+
k

〉
〈
Axqk,q

+
k

〉 qke
iα(x−xo)dα (7.60)

Making use of the residue theorem, one finds that the Fourier integral reduces to a

summation over the discrete spectrum and an integration over the continuous spec-

trum. The result is

qω =
∑

k

〈
Atqo,αk ,q

+
k

〉
〈
Axqk,q

+
k

〉 qke
iαk(x−xo) (7.61)

This result is the formal solution of Equation 7.41 in the vicinity of the initial point xo,

which describes the projection of the Fourier-transformed initial condition qo,α(x, y)

onto the spatial modes qk(y, ω), each of which is evaluated at the point xo. This result

is only valid near xo since the matrices A are evaluated at xo and their streamwise

variation has been ignored. Again, the symbol
∑

k should be interpreted as a summa-

tion over the discrete modes and an integration over the continuous spectra. Similar
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results have been obtained by Fedorov and Tumin (2003) and Forgoston and Tumin

(2005), with the exception that they inverted the Laplace transform (temporal) first

rather than the Fourier transform (spatial). For the present wave packet analysis, the

spatial Fourier transform must be inverted first in order to compute the non-parallel

solution qω for each frequency.

7.10.4 Solutions away from the initial point

Having established the solution of the Laplace-transformed initial-value problem in

the vicinity of the initial condition, the solution at distances farther downstream can

now be determined using the method of multiple scales. The multiple-scales technique

employed here is adapted from Nayfeh (1980), and a general exposition on the method

is available from Nayfeh (1993).

Far from the initial point xo, the inhomogeneity of Equation 7.41 disappears leav-

ing the homogeneous problem:

Lq = Ax
∂qω
∂x

+ Ay
∂qω
∂y

+ (Aoq− iωAt)qω = 0 (7.62)

To solve this problem, it is assumed that the matrices A change slowly with the

downstream distance x. Also, terms in the matrices A involving the mean vertical

velocity V̄ and streamwise derivatives of the base flow are neglected. In keeping

with the assumption of a slowly changing base flow, slowly-varying length scale X is

introduced:

X = εx
∂

∂x
→ ∂

∂x
+ ε

∂

∂X
(7.63)

In this equation, ε = δL/L is a small parameter which is equal to the ratio of the

boundary layer thickness to the streamwise distance at some characteristic distance

L along the boundary layer. Equivalently, ε = 1/RL is the inverse of the Reynolds

number based on boundary layer thickness at the location L, and hence the ap-

proximations made in the multiple-scales analysis improve as the Reynolds number
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increases.

The matrices A are assumed to depend only on the slow scale X, and following

Nayfeh (1980) each eigenmode qk is assumed to vary in the following way:

qk = Ck(X) [Qo,k(X, y) + εQ1,k(X, y) + ...] exp

(∫ x

xo

iαk(x)dx

)
(7.64)

Here Ck(X) describes the slow disturbance amplitude variation, Q describes the wall-

normal shape of the disturbance, and the exponential models the fast dynamics of

the wave. The total solution qω then consists of a summation over all modes k,

with contributions from both the discrete modes and from the continuous spectra.

Substitution of the expansion (7.64) into Equation 7.62 gives the following problems

at the first two powers of ε:

ε0 :
∑

k

CkLoQo,k exp

(∫ x

xo

iαkdx

)
= 0 (7.65a)

ε1 :
∑

k

[
CkLoQ1,k + CkAx

∂Qo,k

∂X
+
∂Ck
∂X

AxQo,k

]
exp

(∫ x

xo

iαkdx

)
= 0 (7.65b)

As discussed previously, the summation
∑

k is a shorthand notation which should

be regarded as summation over the discrete modes and also integration over the

continuous modes. The ε0 equation is automatically satisfied by taking Qo,k to be

an eigenvector of Lo. As described by (Nayfeh, 1993), the ε1 equation must satisfy

a solvability condition in which the second and third terms of Equation 7.65b are

orthogonal to each adjoint mode of L+
o . For an arbitrary adjoint mode Q+

m, this

solvability condition takes the form:

∑

k

[
Ck

〈
Ax

∂Qo,k

∂X
,Q+

o,m

〉
+
∂Ck
∂X

〈
AxQo,k,Q

+
o,m

〉]
exp

(∫ x

xo

iαkdx

)
= 0 (7.66)
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By virtue of the bi-orthogonality relation (7.52), this reduces to

∑

k

Ck

〈
Ax

∂Qo,k

∂X
,Q+

o,m

〉
exp

(∫ x

xo

iαkdx

)
= −∂Cm

∂X

〈
AxQo,m,Q

+
o,m

〉
exp

(∫ x

xo

iαmdx

)

(7.67)

which can be solved for ∂Cm/∂X:

∂Cm
∂X

= −
∑

k

Ck

〈
Ax

∂Qo,k

∂X
,Q+

o,m

〉

〈
AxQo,m,Q+

o,m

〉 exp

(∫ x

xo

i(αk − αm)dx

)
(7.68)

The same expression was derived by Fedorov and Khokhlov (2001) except that they

also included the mean vertical velocity V̄ and streamwise derivatives of the base flow

variables, which produces an additional term in the numerator. This equation repre-

sents a coupled system of first order ordinary differential equations for the expansion

coefficients Ck, and integration of the system enables each of the constants Ck(X) to

be calculated, up to an undetermined constant. The undetermined constant is found

by evaluating Ck(xo), at which point the value of Ck is known from the solution to

the locally-parallel initial-value problem, Equation 7.61, which indicates that

Ck(xo) =

〈
Atqo,α,Q

+
k

〉
〈
AxQk,Q

+
k

〉 (7.69)

In general, Equation 7.68 must be integrated numerically, for example, by marching

the coefficients Ck downstream starting from the initial location xo where the initial

values of Ck(xo) are known. Since this solution includes all possible modes from both

the discrete and continuous spectra, one must truncate the solution space and use a

finite number of modes as well as discrete approximations to the integrals over the

continuous spectra. It is often possible to consider only a small subset of modes that

are relevant to a particular problem of interest, and this approach will be used in the

sections that follow.
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7.10.5 Single mode solution

In general, the solution (7.68) together with the expansion (7.64) describes the cou-

pled downstream propagation of all possible modes from the discrete and continuous

spectra. However, in many cases one is interested in only one or two modes and

the result is greatly simplified. For example, if only a single mode is excited then

Equation 7.68 reduces to

1

C

∂C

∂X
=

〈
Ax

∂Qo

∂X
,Q+

o

〉

〈AxQo,Q+
o 〉

(7.70)

which has the solution

C(X) = C(xo) exp

[∫ x

xo

〈
Ax

∂Qo

∂X
,Q+

o

〉

〈AxQo,Q+
o 〉

dX

]
(7.71)

For second mode waves this is a good approximation except near synchronism points,

where the use of a two-mode expansion may be needed. As discussed by Fedorov and

Khokhlov (2001), at such points the slow and fast modes (c.f. Section 5.1) become

strongly coupled and can exchange their identities, which necessitates a two-mode

solution that involves both the slow and fast modes. Further details regarding the

treatment of the synchronism point are available from Fedorov and Khokhlov (2001),

but for the results that follow the synchronism is not present and a single-mode

solution is acceptable.

After combining Equations 7.64 and 7.71, the Laplace-transformed solution for a

single second mode wave is

qω =
〈Atqo,α,Q

+
o 〉

〈AxQo,Q+
o 〉

Qo exp

[∫ x

xo

(
iα(x)−

〈
Ax

∂Qo

∂X
,Q+

o

〉

〈AxQo,Q+
o 〉

)
dx

]
(7.72)

The factor preceding the exponential describes the receptivity problem, that is, the

excitation of the second mode wave by the initial disturbance qo. The second term in

the exponential describes the non-parallel correction. Performing the inverse Laplace
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transform, one obtains

q(x, y, t) =
1

2π

∫ +∞

−∞

〈Atqo,α,Q
+
o 〉

〈AxQo,Q+
o 〉

Qo

× exp

[∫ x

xo

(
iα(ω, x)−

〈
Ax

∂Qo

∂X
,Q+

o

〉

〈AxQo,Q+
o 〉

)
dx− iωt

]
dω (7.73)

In the Laplace inversion integral (7.40b), the parameter Γ specifies a line in the

complex plane which passes above all singularities of the integrand. For boundary

layer flows, one expects the singularities to fall in the lower half plane since poles

located in the upper half plane would cause absolute instability, i.e., exponential

growth in time of disturbances at a fixed location in the boundary layer. Experiments,

linear stability analyses, and DNS all indicate that boundary layers do not experience

this type of instability, being instead convectively unstable. Consequently, it suffices

to take the limit Γ → 0+ and perform the Laplace inversion along the real ω axis,

and this assumption has been invoked in writing Equation 7.73. Equation 7.73 is

the formal solution of a second mode wave packet generated by a compact initial

disturbance qo. The wavenumber α(ω, x) and the direct and adjoint eigenfunctions Qo

and Q+
o needed to evaluate this solution can be found using locally-parallel stability

analysis.

7.10.6 Simplification

In the analysis that follows, the solution is further simplified by neglecting the non-

parallel correction involving ∂Qo/∂X. It should be recalled also that we have ne-

glected terms involving the mean vertical velocity V̄ and streamwise derivatives of

the base flow in the matrices A. The results are then analogous to conventional

locally-parallel stability analysis, in which growth rates are computed independently

at each x location and the results are pieced together to determine the amplification of

disturbances in a non-parallel boundary layer. Similarly, in this analysis the evolution

of a wave packet in a non-parallel boundary layer is constructed from locally-parallel

stability calculations performed independently at each value of x and ω. Therefore the
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results obtained here are based on precisely the same approximations that are used in

locally-parallel spatial stability analysis. As was shown in Section 7.7, locally-parallel

spatial analysis produces the correct qualitative behavior and yields amplification

that is within a factor of about 2-3 of fully non-parallel results. For transition pre-

diction, in which waves amplify by several orders of magnitude, this error is usually

acceptable for making estimates.

After neglecting the non-parallel correction, the wall pressure pwall(x, t) can be

extracted from Equation 7.73 to obtain:

pwall(x, t) =
1

2π

∫ ∞

−∞

〈Atqo,α,Q
+
o 〉

〈AxQo,Q+
o 〉

exp

[∫ x

xo

iα(x)dx− iωt
]
dω (7.74)

In writing this result, it has been assumed that the component of Qo corresponding

to the wall pressure is equal to 1.0, as is the case in the present locally-parallel

stability analysis. The term preceding the exponential is a scalar that depends on the

frequency, which will be denoted C(ω). Therefore the wall pressure is of the form:

pwall(x, t) =
1

2π

∫ ∞

−∞
C(ω) exp

[∫ x

xo

iα(x)dx− iωt
]
dω (7.75)

Suppose that the initial condition is selected to be of the form:

qo(x, y) = Qo(y) exp

(
iαo(x− xo)− 3

(x− xo)2

R2
x

)
(7.76)

where Qo is the second mode eigenfunction corresponding to some frequency ωo, αo is

the corresponding second mode wavenumber, and Rx is the half-width of a Gaussian

envelope. This is the same form of initial condition that was employed in the DNS of

Section 7.8. The Fourier transform of this initial condition is

qo,α = Rx

√
π

3
Qo(y) exp

(
−R

2
x

12
(α− αo)2

)
(7.77)
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Therefore the function C(ω) is given by:

C(ω) = Rx

√
π

3

〈AtQo,Q
+
o 〉

〈AxQo,Q+
o 〉

exp

[
−R

2
x

12

(
α(ω)− α(ωo)

)2
]

(7.78)

where α(ω, xo) is given by the second mode dispersion relation. The term preceding

the exponential is merely a scalar constant and hence its only effect is to set the initial

amplitude of the wave packet. In this work we set the initial wave amplitude to 1.0

in physical space rather than evaluating the scalar products in the pre-exponential

factor of (7.78).

Having determined C(ω), the Laplace inversion integral (7.75) can now be evalu-

ated to determine the evolution of the wave packet as a function of time. Since C(ω)

is compact in frequency space because of its Gaussian shape, one can truncate the

integration limits to finite values and perform the integration numerically. The steps

involved in calculating the wave packet trajectory are then as follows:

1. Compute and tabulate the dispersion curve α(ω, x) using the locally-parallel

stability analysis from Chapter 5.

2. Choose an initial location xo, a frequency ωo, and an initial wave packet width

Rx.

3. Evaluate C(ω) using Equation 7.78 and the tabulated dispersion curve α(ω, x).

4. For any desired point (x, t), evaluate the wall pressure by numerically integrating

Equation 7.75.

7.10.7 Results

The base flow profiles used in this section are the same as those presented previously in

Section 7.5 and used in the preceding DNS. Examples of initial wall pressure profiles

for several wave packet widths are given in Figure 7.31a, and the corresponding

frequency amplitudes C(ω) are given in Figure 7.31b. The frequency amplitudes C

are presented as functions of the dimensionless frequency parameter F = ωνe/U
2
e and
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Figure 7.31: a) Initial wall pressure profiles at t = 0 for several different wave packet
widths. Profiles have been offset vertically for clarity. b) Frequency spectrum |C(F )|
for several wave packet widths, normalized by max(|C(F )|) in each case.

were computed using Equation 7.78. The profiles in physical space, Figure 7.31a,

were then calculated by evaluating Equation 7.75 at t = 0. It should be noted that

C(ω) is in general complex-valued, but the imaginary part is quite small and does

not contribute significantly to the shape of the initial wave packet. As shown in the

figure, wider wave packets in physical space lead to narrower packets in frequency

space, and vice versa.

When Equation 7.75 is evaluated at different time instants, one obtains the pres-

sure profiles given on an x-t diagram in Figure 7.32. The flow conditions are the same

as those pertaining to Figure 7.15, in which an x-t diagram was constructed using

DNS. Comparison between the DNS (Figure 7.15) and the simple model (Figure 7.32)

shows that the qualitative results from the simple model agree quite favorably with

those of the DNS. However, as will be shown in the sections that follow, the ampli-

fication predicted by the simple model is somewhat less because of the exclusion of

non-parallel effects.

Aside from the mean flow conditions, this simplified wave packet analysis involves

only three free parameters: the initial location of the wave xo, the initial wave packet

width Rx, and the frequency Fo (or equivalently, ωo) used to generate the wave packet

(Equation 7.76). We have performed a number of calculations that show that the



218

0.5 1 1.5

0

5

10

15

20

25

30

35

40

15 µs

220 µs

426 µs

631 µs

837 µs

1042 µs

1247 µs

1453 µs

1658 µs

1864 µs

X (m)

p
w

Figure 7.32: x-t diagram of a wave packet with Fo = 10−4, xo=0.3 m, Rx = 30 mm.
Vertical offset of the traces is proportional to time.

results are quite insensitive to the initial location xo as long as the wave is upstream

of the lower neutral branch (0 < xo < 0.5 m in this case). Consequently, the value

xo = 0.3 m is used in the remainder of the results.

The second free parameter is the wave packet width, Rx, which is used in gen-

erating the initial condition. To investigate the effect of this parameter, similar cal-

culations to Figure 7.32 were carried out for several values of Rx while keeping the

frequency Fo fixed. Figure 7.33 reports the maximum amplitude of the wave packet

as a function of downstream distance for several different wave packet widths. The

cases shown in this figure are the same as those shown previously in Figure 7.23 using

DNS, and the results are qualitatively the same. As the physical width of the initial

wave packet grows wider, the disturbance grows narrower in frequency space and the

spatial LST result is approached. The only difference is that the amplification pre-

dicted by the simple model (Figure 7.33) is less than the amplification achieved in

the DNS (Figure 7.23) by a factor of about 1.2-3, depending on the reference loca-

tion in x from which the amplification is computed. This difference exists because

the simple model is based on locally-parallel stability analysis, which was shown in

Section 7.7 to under-predict the amplification of each Fourier mode. The difference

in amplification between the DNS and the simple model would therefore be remedied
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Figure 7.33: Maximum amplitude of wave packet as a function of X for several wave
packet widths.

if non-parallel effects were included in the LST analysis, that is, if the second term

in the exponential of Equation 7.73 were retained. This would slightly increase the

complexity and computational cost of the simple model, but it would remain orders

of magnitude cheaper than the DNS.

The third factor that affects the wave packet evolution is the frequency Fo used

to generate the initial condition. Figure 7.34 uses the simple wave packet model

to study the amplification of wave packets for several values of Fo for fixed Rx =

30 mm, and the results are compared with spatial stability theory (LST). Lines with

markers describe the amplification of wave packets, whereas dot-dashed lines are the

corresponding results from LST. The curves are parameterized by the frequency Fo;

for LST this is the frequency used in the stability analysis and for wave packet analysis

this frequency defines ωo and Qo in Equation 7.78.

For high frequency disturbances, which are amplified near the leading edge, the

agreement between the LST and the wave packet analysis is fairly good. This is

because high frequency disturbances have short wavelengths, so for a fixed initial

wave packet width Rx the packet contains more waves when the frequency is higher,

and thus is more closely approximated by spatial analysis. For lower frequencies,

which are more highly amplified, the growth of the wave packet initially follows the
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Figure 7.34: Comparison of N factors for wave packets (symbols) and spatial analysis
(lines) for several different frequencies Fo. ‘LST’ refers to conventional spatial stability
analysis. For wave packet cases, the initial packet width is Rx = 30 mm.

LST, but farther downstream there is a significant discrepancy in both the qualitative

behavior and the maximum amplification that is achieved.

As an alternative to holding the initial wave packet width Rx fixed as Fo is varied,

one can also hold the number of waves in the initial condition fixed. This amounts

to holding αoRx constant. Figure 7.35 shows the resulting N factors when 2πRxαo is

held fixed at 2.5, which means that the initial wave packet contains 5 wavelengths.

Similar behavior to Figure 7.34 is observed, except that the amplification of the wave

packet is less than that of LST for all frequencies, rather than for low frequencies

only. For all frequencies, the N factor of the wave packet is about 1.5-2 less than the

N factor from spatial analysis.

The envelopes of the curves for all different frequencies in Figures 7.34-7.35 are

the “maximum N factor” curves, which describe the largest possible amplification

that can be experienced within the boundary layer. Two different maximum N factor

curves can be constructed: one for the spatial LST analysis (lines) and one for the

wave packets (symbols). In a similar manner, maximum N factor curves can be

generated for any choice of initial wave packet width Rx. This technique provides

a way of taking the finite width of instability waves into account during transition

prediction. As can be seen, the assumption of a finite width wave packet can lead
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analysis. For wave packet cases, the initial packet contains 5 waves, 2πRxαo = 2.5.

to a significant difference in the predicted transition location. For example, if one

assumes that transition will occur at N=8, the transition locations from LST and

from a wave packet initially consisting of 5 waves differ by about 1.5 m, or 30%.

7.11 Conclusion

Experimental evidence suggests that disturbances in a boundary layer take the form

of wave packets of finite width, often containing 5-20 individual waves within the

packet. The analysis given in this chapter demonstrates that packets of waves initiated

near the leading edge of a flat plate experience less amplification than predicted by

traditional spatial stability analysis. In the limiting case of a wave packet containing

an infinite number of waves, the predictions of spatial linear stability theory and wave

packet analysis coincide. But for wave packets of finite width, the amplification is

over-predicted by spatial analysis. Since the amplitude of waves in physical space,

not frequency space, triggers the nonlinearities that lead to breakdown to turbulence,

the finite width of wave packets ought to be taken into account in making predictions

of boundary layer transition.

This conclusion may be supported by experimental measurements made on a
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compression cone in the Mach 6 quiet tunnel at Purdue. This tunnel is designed

to maintain laminar flow along the nozzle wall, which eliminates the acoustic noise

radiated from the turbulent boundary layer that is experienced in conventional wind

tunnels. As a result, the pitot pressure fluctuations measured in the freestream of

this “quiet tunnel” are about 0.04% of the mean pressure (Juliano et al., 2008),

as compared to 0.5-1% in conventional wind tunnels. Experiments in this tunnel

have reported transition at N factors of 16-20 (Ward et al., 2010, Schneider, 2015)

according to spatial stability analysis, which implies amplification on the order of

eN = 107 − 108. Such high levels of amplification seem implausibly large. In the

experiments the measured pressure fluctuations at the point of transition were in

about 30% of the mean value. Working backward from this final amplitude, one finds

that the initial amplitude of the pressure disturbance is on the order of 10 billionths

of the mean pressure. This value is not consistent with the 0.04% freestream noise

measured in the facility.

This result suggests that disturbances are not actually growing by the amount

predicted by spatial stability analysis, and the finite width of the wave packets offers

one possible explanation for this. This discrepancy would not be noticed in conven-

tional wind tunnels because of the high noise level; if wave packets in such facilities

amplify by less than the prediction of linear stability theory, this will merely cause

the computed “N factor at transition” to be larger than the actual amplification of

disturbances. There are, of course, other explanations for the high N factors de-

scribed above. For example, uncertainties regarding the flow conditions could cause

the stability analysis to predict unphysically large N factors at the transition point,

and there is usually some nonlinear saturation of the disturbances prior to transition.

Nevertheless, this may also be an indicator that intermittent “natural” disturbances

do not quite amplify in accordance with spatial stability theory.
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Chapter 8

Conclusions

Three different mechanisms of linear disturbance amplification in hypersonic bound-

ary layers are investigated in the context of predicting the early stages of laminar-

turbulent boundary layer transition. The first mechanism, modal instability, involves

unstable discrete eigenmodes of the linearized Navier-Stokes equations that maintain

an approximately fixed mode shape as they amplify and travel downstream. The

second mechanism, transient growth, involves an optimal initial disturbance that

achieves large amounts of short-term amplification despite its eventual exponential

decay. The third mechanism is the amplification of finite-width wave packets, which

can be thought of as a frequency superposition of modal instabilities.

8.1 Modal Stability Analysis

Although modal stability analysis of compressible boundary layers has a long and rich

history, the enormous parameter space, the high sensitivity of the transition point to

these parameters, and the complexity and subtleties of the analysis leave much that

is not understood about transition of these flows. This is particularly true of high

enthalpy flows, where the chemical and thermal nonequilibrium becomes possible.

The work presented in this thesis advances the understanding of such flows in several

ways.

First, a systematic study of the effects of wall temperature and Mach number

on the amplification of instability waves was carried out. Although a few other
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Figure 8.1: Effect of wall cooling on the maximum spatial growth rates of the first
and second modes for R = 1500, T ∗w = 300 K, T ∗e = 70 − 2000 K, P ∗e = 10 kPa.
a) Maximum growth rates for first and second modes. b) Maximum growth rate of
second mode normalized by δ99.

researchers have conducted similar systematic studies (Mack, 1969, 1984, Masad et al.,

1992), the results given here span a much wider range of parameters that encompasses

most conditions that can be reached in impulse-type test facilities. The compilation

of stability results over such a wide range of conditions enables several new trends

to be identified, including the scaling of second mode frequencies, growth rates, and

amplification levels with the δ99 boundary layer thickness. This enables the effect of

wall temperature to be nearly scaled out of the problem. These results are summarized

in Figure 8.1, in which the spatial growth rates are reported for a wide range of

conditions and their near collapse upon scaling with the δ99 boundary layer thickness

is demonstrated.

Second, the effects of vibrational nonequilibrium processes on the second mode

instability are explored. It is shown that vibrational nonequilibrium enters the anal-

ysis in two ways: by affecting the base flow and by affecting the disturbances. This

distinction is important because the influence of nonequilibrium on the base flow and

the disturbances can have opposite and competing effects. This has been a source of

some confusion in the literature, where conflicting results can be found. This work

clarifies this behavior, showing that a vibrational nonequilibrium base flow tends

to destabilize the boundary layer relative to the frozen case, while nonequilibrium
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Figure 8.2: Schematic of relaxation times in a boundary layer.

disturbances stabilize it. The net result of these competing effects depends on the

Reynolds number, disturbance frequency, and relaxation time scales involved. The

importance of these two mechanisms can be be assessed on the basis of the schematic

of Figure 8.2 along with the Damköhler numbers associated with convection of the

freestream (Uτ/x) and second mode disturbance fluctuations (fτ).

For slender bodies in air, the stabilizing effect of nonequilibrium disturbances

is extremely small since the frequency of the second mode instability is too high

for vibrational relaxation to take place. However, vibrational nonequilibrium does

slightly alter the base flow profiles, and thereby slightly influences the stability results,

though the effect is rather small. For flows of carbon dioxide, on the other hand, the

vibrational nonequilibrium produces a net stabilization compared with vibrationally

frozen flow at Reynolds numbers relevant to transition.

Third, this work investigates the stability of boundary layers having an extreme

level of wall cooling, Tw/Te ∼ 0.15, that has not been widely analyzed in the lit-

erature, but is highly applicable to flows in high enthalpy shock tunnels because of

their high freestream temperature. Such high levels of wall cooling gives rise to su-

personic, unstable modes which are unstable over a much wider band of frequencies

than the usual subsonic unstable modes. As shown in Figure 8.3 for Te = 1000 and

1500 K, these supersonic modes produce a kink in the dispersion curve that signifi-

cantly changes its qualitative behavior. Nevertheless, these supersonic modes do not
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significantly affect the level of amplification until the Reynolds number is quite high.

A new synchronism between freestream acoustic waves and the supersonic modes was

also identified, which leads to greater receptivity to the acoustic waves. However,

since this synchronism is located downstream of the upper neutral branch it is un-

likely to affect the amplification of waves, but it may still influence the nonlinear

stages of their downstream development.

8.2 Transient Growth Analysis

Transient growth calculations are reported for a wide range of conditions relevant

to impulse-type experimental facilities. These calculations cover a much wider range

of conditions than is available in the literature, and hence enables the trends to be

clarified. Figure 8.4 summarizes the maximum energy amplification as a function of

Mach number and wall temperature ratio Tw/Te. In general the level of transient

growth decreases at higher Mach numbers when the ratio of the wall temperature to

the freestream temperature Tw/Te is held fixed. Transient growth is also minimized

with slight wall cooling below Tw/Te = 1, and further wall cooling is needed to
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minimize transient growth at higher Mach numbers. At low Mach numbers, transient

growth is very sensitive to the wall temperature, and high levels of wall cooling (such

as are needed to suppress modal instability) result in increased transient growth.

A means of directly comparing the net amplification of modal and non-modal

instabilities is developed. This enables the relative importance of these two mech-

anisms to be explored in different flow regimes. For low enthalpy boundary layers,

comparable amplification is observed from transient growth and modal growth, so

the transition mechanism is likely to depend on the initial disturbance sources in the

flow that initiate the transition process. For high enthalpy boundary layers, on the

other hand, modal growth leads to several orders of magnitude larger amplification

at Reynolds numbers where transition usually occurs experimentally, indicating that

modal instability is dominant at these conditions. An example of this is shown in

Figure 8.5, in which the N factors for transient growth (Nopt) and modal growth

(Nmodal) are compared. The N factor for modal growth rapidly surpasses that of

transient growth and is several orders of magnitude larger at the Reynolds number

Rex = 2 − 3 million where transition is observed experimentally. The dominance

of modal instability is caused in part by the enormous growth rate of second mode
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waves and in part by the reduction of transient growth at higher Mach numbers.

8.3 Wave Packet Analysis

In both the modal analysis and transient growth analysis, either the frequency or the

wavenumber of the disturbance is assumed to remain fixed as it travels downstream.

Similarly, current state of the art methods for predicting boundary layer transition

are based on the spatial growth of fixed-frequency disturbances in the downstream di-

rection. However, experiments (Parziale, 2013, Heitmann et al., 2011, Laurence et al.,

2012, 2014) and simulations (Duan and Choudhari, 2013, 2014) indicate that in con-

ventional wind tunnel facilities, both the acoustic waves in the freestream and second

mode instability waves in the boundary layer consist of localized packets of waves

containing about 5-20 wavelengths. This differs from conventional spatial stability

analysis, in which an infinitely long wave train of fixed-frequency waves is assumed.

The downstream propagation and amplification of localized wave packets is therefore

different from the amplification predicted by spatial stability analysis, yet is highly

relevant for predicting boundary layer transition, since the amplitude of the distur-

bance wave in physical space, not frequency space, triggers the nonlinearities that

lead to the breakdown into turbulence.
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In this work, linearized direct numerical simulation is used to explore the propa-

gation of such localized instability wave packets. Three sets of simulations are con-

ducted. First, the conventional spatial stability analysis involving fixed-frequency

disturbances is conducted as a baseline against which subsequent simulations can

be compared. Second, Gaussian-shaped packets of second mode waves are placed

into the boundary layer as an initial condition and their downstream development

is analyzed. This intentionally neglects the question of receptivity and simplifies the

investigation of wave packet propagation. In the final set of simulations, receptivity is

reintroduced into the problem and packets of planar acoustic waves in the freestream

are caused to impinge on the boundary layer and excite second mode waves, and the

downstream growth of these waves is analyzed.

All of the simulations show that finite-width wave packets experience less am-

plification than the prediction of spatial stability analysis. An example of this is

given in Figure 8.6, in which the amplification of wave packets of several different

characteristic widths Rx are compared with the prediction of spatial analysis. For

wave packets that are wide in physical space (and hence narrow in frequency space),

the predictions of spatial analysis are approached, but for narrow packets in physical

space (small Rx), the amplification is less and the wave packet persists for a longer
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distance downstream. This demonstrates that in order to predict the amplification of

instability waves in physical space, it is essential that the finite width of the packet

be taken into account. Wave packets appearing in experiments often consist of 5-20

individual waves, which corresponds to Rx = 20− 90 mm for the conditions given in

the figure. The amplification of such narrow waves is clearly over-predicted by spatial

analysis, and this difference ought to be taken into account in predicting boundary

layer transition.

A simple model of wave packet propagation was also proposed that makes use of

locally-parallel linear stability analysis and enables wave packet dynamics to be pre-

dicted with considerably less expense than for DNS. In this simple model, the wave

packet evolution is determined by summing linear stability modes over a broad range

of frequencies, which is the first time that wave packet propagation has been investi-

gated in this manner in compressible boundary layers. This simple model is found to

produce comparable results to the DNS, although the simple model predicts slightly

lower amplification because it excludes non-parallel terms involving the change in

wave shape as it propagates downstream. Using this simple model, N factor curves

have been constructed for finite-width wave packets, and it has been found that the

N factors are smaller for wave packets than for conventional spatial stability analysis.

The maximum N factor curves computed in this manner can be used to take finite

wave packet width into account in making boundary layer transition predictions.

8.4 Future Work

The investigations of modal stability analysis and transient growth reported in this

thesis provide a fairly complete picture of the linear disturbance amplification for flows

over simple geometries like flat plates and sharp cones. In contrast, the wave packet

analysis provided here considered only a single low enthalpy flow condition, and there

is much room for exploration of higher enthalpy flows for which the second mode is

further destabilized and the first mode eliminated. The simulations presented here

also involve fairly small amounts of amplification of the wave packets, and higher
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Reynolds number conditions where greater amplification is experienced should be

simulated as well. Additionally, further characterization of nonparallel effects and

inclusion of these factors in the simple wave packet model are needed.

The weak point of the eN method employed in this thesis is the absence of recep-

tivity analysis. Although receptivity was included in a few of the DNS cases, a general

framework that ties together receptivity analysis and linear stability calculations re-

mains undeveloped. The multiple-scales analysis described in Section 7.10 establishes

the theoretical foundation needed for such receptivity studies. Although a few inves-

tigations following a similar procedure are available in the literature (Fedorov and

Khokhlov, 2002, Fedorov, 2003, Fedorov et al., 2013), transition prediction models

based on this type of analysis remain in their infancy. Future investigations will use

this framework to study receptivity of the boundary layer to both wave packets and

periodic forcing.
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Appendix A

Stability Equations

In this appendix the linear stability equations with vibrational energy exchange are

derived. The objective is to reduce the linearized Navier-Stokes equations to one

of several forms. For the “global” stability analysis, in which all the eigenvalues

are found simultaneously, the desired form is a set of six second-order differential

equations:

(
A
∂2

∂y2
+ B

∂

∂y
+ C

)
q = 0 (A.1)

where A, B, and C are 6×6 matrices and q =
(
û, v̂, p̂, θ̂, ŵ, θ̂v

)T
. For “local” stability

analysis, in which a single eigenvalue is found with high accuracy, the preferred form

of the equations is a set of ten first order differential equations:

∂q

∂y
= aq (A.2)

where a is a 10× 10 matrix and here q is the vector

q =

(
û,
∂û

∂y
, v̂, p̂, θ̂,

∂θ̂

∂y
, ŵ,

∂ŵ

∂y
, θ̂v,

∂θ̂v
∂y

)T

(A.3)
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A.1 General Linearized Stability Equations

Starting with the compressible Navier-Stokes equations (2.14), one can assume fluc-

tuations of the following form:

u = Ū + ũ v = V̄ + ṽ w = W̄ + w̃

p = P̄ + p̃ ρ = ρ̄+ ρ̃ T = T̄ + θ̃

Tv = T̄v + θ̃v µ = µ̄+ µ̃ k = k̄ + k̃

kv = k̄v + k̃v Q = Q̄+ Q̃

where overbars signify mean flow variables and a tilde designates fluctuations. The

fluctuations in viscosity, thermal conductivity, and vibrational source term are related

to the fluctuations in temperature and pressure:

µ̃ =
∂µ

∂T
θ̃ (A.4a)

k̃ =
∂k

∂T
θ̃ (A.4b)

k̃v =
∂kv
∂T

θ̃ +
∂kv
∂Tv

θ̃v (A.4c)

Q̃ =
∂Q

∂T
θ̃ +

∂Q

∂Tv
θ̃v +

∂Q

∂p
p̃ (A.4d)

where all partial derivatives are evaluated at the conditions of the mean flow. We

also define the mean and fluctuating viscous stresses:

τ̄ij = µ̄

(
∂Ūi
∂xj

+
∂Ūj
∂xi

+ rδij
∂Ūk
∂xk

)

τ̃ij = µ̄

(
∂ũi
∂xj

+
∂ũj
∂xi

+ rδij
∂ũk
∂xk

)
+ µ̃

(
∂Ūi
∂xj

+
∂Ūj
∂xi

+ rδij
∂Ūk
∂xk

)

where δij is the Kronecker delta and r is the ratio of the second viscosity coefficient

to the shear viscosity; in this work r = −2/3 is assumed in accordance of Stokes’

hypothesis of zero bulk viscosity; however, it should be noted that some of the effects

of nonzero bulk viscosity are retained through the explicit modeling of vibrational
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nonequilibrium. After replacing the variables in Equation 2.14 by the perturbations

above and linearizing, the result is:

Continuity:

∂ρ̃

∂t
+ Ū

∂ρ̃

∂x
+ V̄

∂ρ̃

∂y
+ W̄

∂ρ̃

∂z
+ ũ

∂ρ̄

∂x
+ ṽ

∂ρ̄

∂y
+ w̃

∂ρ̄

∂z

+ρ̃

(
∂Ū

∂x
+
∂V̄

∂y
+
∂W̄

∂z

)
+ ρ̄

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
= 0 (A.5a)

X Momentum:

ρ̄

(
∂ũ

∂t
+ Ū

∂ũ

∂x
+ V̄

∂ũ

∂y
+ W̄

∂ũ

∂z

)
+ ρ̄

(
ũ
∂Ū

∂x
+ ṽ

∂Ū

∂y
+ w̃

∂Ū

∂z

)

+ρ̃

(
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y
+ W̄

∂Ū

∂z

)
+
∂p̃

∂x
=

1

R

[
∂τ̃xx
∂x

+
∂τ̃xy
∂y

+
∂τ̃xz
∂z

]
(A.5b)

Y Momentum:

ρ̄

(
∂ṽ

∂t
+ Ū

∂ṽ

∂x
+ V̄

∂ṽ

∂y
+ W̄

∂ṽ

∂z

)
+ ρ̄

(
ũ
∂V̄

∂x
+ ṽ

∂V̄

∂y
+ w̃

∂V̄

∂z

)

+ρ̃

(
Ū
∂V̄

∂x
+ V̄

∂V̄

∂y
+ W̄

∂V̄

∂z

)
+
∂p̃

∂y
=

1

R

[
∂τ̃yx
∂x

+
∂τ̃yy
∂y

+
∂τ̃yz
∂z

]
(A.5c)

Z Momentum:

ρ̄

(
∂w̃

∂t
+ Ū

∂w̃

∂x
+ V̄

∂w̃

∂y
+ W̄

∂w̃

∂z

)
+ ρ̄

(
ũ
∂W̄

∂x
+ ṽ

∂W̄

∂y
+ w̃

∂W̄

∂z

)

+ρ̃

(
Ū
∂W̄

∂x
+ V̄

∂W̄

∂y
+ W̄

∂W̄

∂z

)
+
∂p̃

∂z
=

1

R

[
∂τ̃zx
∂x

+
∂τ̃zy
∂y

+
∂τ̃zz
∂z

]
(A.5d)
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Energy:

ρ̄c̄p

(
∂θ̃

∂t
+ Ū

∂θ̃

∂x
+ V̄

∂θ̃

∂y
+ W̄

∂θ̃

∂z

)
+ ρ̄c̄p

(
ũ
∂T̄

∂x
+ ṽ

∂T̄

∂y
+ w̃

∂T̄

∂z

)

+ (ρ̃c̄p + ρ̄c̃p)

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y
+ W̄

∂T̄

∂z

)

−M2(γe − 1)

(
∂p̃

∂t
+ Ū

∂p̃

∂x
+ V̄

∂p̃

∂y
+ W̄

∂p̃

∂z
+ ũ

∂P̄

∂x
+ ṽ

∂P̄

∂y
+ w̃

∂P̄

∂z

)
=

1

σeR

{
∂

∂x

[
k̄
∂θ̃

∂x
+ k̃

∂T̄

∂x

]
+

∂

∂y

[
k̄
∂θ̃

∂y
+ k̃

∂T̄

∂y

]
+

∂

∂z

[
k̄
∂θ̃

∂z
+ k̃

∂T̄

∂z

]}

+
M2(γe − 1)

R

[
τ̃ij
∂Ūi
∂xj

+ τ̄ij
∂ũi
∂xj

]
−R

(
∂Q

∂T
θ̃ +

∂Q

∂Tv
θ̃v +

∂Q

∂p
p̃

)
(A.5e)

Vibrational Energy:

ρ̄c̄v,v

(
∂θ̃v
∂t

+ Ū
∂θ̃v
∂x

+ V̄
∂θ̃v
∂y

+ W̄
∂θ̃v
∂z

)
+ ρ̄c̄v,v

(
ũ
∂T̄v
∂x

+ ṽ
∂T̄v
∂y

+ w̃
∂T̄v
∂z

)

+ (ρ̃c̄v,v + ρ̄c̃v,v)

(
Ū
∂T̄v
∂x

+ V̄
∂T̄v
∂y

+ W̄
∂T̄v
∂z

)
=

1

σeR

{
∂

∂x

[
k̄v
∂θ̃v
∂x

+ k̃v
∂T̄v
∂x

]
+

∂

∂y

[
k̄v
∂θ̃v
∂y

+ k̃v
∂T̄v
∂y

]
+

∂

∂z

[
k̄v
∂θ̃v
∂z

+ k̃v
∂T̄v
∂z

]}

+R

(
∂Q

∂T
θ̃ +

∂Q

∂Tv
θ̃v +

∂Q

∂p
p̃

)
(A.5f)

A.2 Locally Parallel Flow

For stability analysis, the flow is assumed to be locally parallel, which involves three

assumptions: x derivatives of the mean flow variables are neglected, the mean ver-

tical velocity V̄ is neglected, and x derivatives of the amplitude coefficients of the

disturbances (designated by tildes) are ignored. The locally parallel assumption can

be derived as the first term in a multiple-scales analysis (Nayfeh, 1980), in which

successive terms in the perturbation expansion are proportional to inverse powers of
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R. Therefore the accuracy of the locally-parallel approximation improves at higher

Reynolds numbers. After eliminating nonparallel terms, there is a substantial reduc-

tion to the following equations:

Continuity:

∂ρ̃

∂t
+ Ū

∂ρ̃

∂x
+ W̄

∂ρ̃

∂z
+ ṽ

∂ρ̄

∂y
+ ρ̄

(
∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)
= 0 (A.6a)

Momentum:

ρ̄

(
∂ũ

∂t
+ Ū

∂ũ

∂x
+ W̄

∂ũ

∂z

)
+ ρ̄ṽ

∂Ū

∂y
+
∂p̃

∂x
=

1

R

[
∂τ̃xx
∂x

+
∂τ̃xy
∂y

+
∂τ̃xz
∂z

]

(A.6b)

ρ̄

(
∂ṽ

∂t
+ Ū

∂ṽ

∂x
+ W̄

∂ṽ

∂z

)
+
∂p̃

∂y
=

1

R

[
∂τ̃yx
∂x

+
∂τ̃yy
∂y

+
∂τ̃yz
∂z

]

(A.6c)

ρ̄

(
∂w̃

∂t
+ Ū

∂w̃

∂x
+ W̄

∂w̃

∂z

)
+ ρ̄ṽ

∂W̄

∂y
+
∂p̃

∂z
=

1

R

[
∂τ̃zx
∂x

+
∂τ̃zy
∂y

+
∂τ̃zz
∂z

]

(A.6d)

Energy:

ρ̄c̄p

(
∂θ̃

∂t
+ Ū

∂θ̃

∂x
+ W̄

∂θ̃

∂z

)
+ ρ̄c̄pṽ

∂T̄

∂y

−M2(γe − 1)

(
∂p̃

∂t
+ Ū

∂p̃

∂x
+ W̄

∂p̃

∂z

)
=

1

σeR

{
k̄
∂2θ̃

∂x2
+

∂

∂y

[
k̄
∂θ̃

∂y
+ k̃

∂T̄

∂y

]
+ k̄

∂2θ̃

∂z2

}

+
M2(γe − 1)

R

[
τ̃ij
∂Ūi
∂xj

+ τ̄ij
∂ũi
∂xj

]
−R

(
∂Q

∂T
θ̃ +

∂Q

∂Tv
θ̃v +

∂Q

∂p
p̃

)

(A.6e)
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Vibrational Energy:

ρ̄c̄v,v

(
∂θ̃v
∂t

+ Ū
∂θ̃v
∂x

+ W̄
∂θ̃

∂z

)
+ ρ̄c̄v,vṽ

∂T̄v
∂y

=

1

σeR

{
k̄v
∂2θ̃v
∂x2

+
∂

∂y

[
k̄v
∂θ̃v
∂y

+ k̃v
∂T̄v
∂y

]
+ k̄v

∂2θ̃v
∂z2

}
+R

(
∂Q

∂T
θ̃ +

∂Q

∂Tv
θ̃v +

∂Q

∂p
p̃

)

(A.6f)

For locally-parallel flow, the components of the viscous stress tensor are also greatly

simplified. The non-zero components of the mean and fluctuating viscous stress ten-

sors are:

τ̄xy = µ̄
∂Ū

∂y
τ̄zy = µ̄

∂W̄

∂z

τ̃xx = µ̄

(
(2 + r)

∂ũ

∂x
+ r

∂ṽ

∂y
+ r

∂w̃

∂z

)
τ̃xy = µ̄

(
∂ũ

∂y
+
∂ṽ

∂x

)
+ µ̃

∂Ū

∂y

τ̃yy = µ̄

(
(2 + r)

∂ṽ

∂y
+ r

∂ũ

∂x
+ r

∂w̃

∂z

)
τ̃yz = µ̄

(
∂w̃

∂y
+
∂ṽ

∂z

)
+ µ̃

∂W̄

∂z

τ̃zz = µ̄

(
(2 + r)

∂w̃

∂z
+ r

∂ũ

∂x
+ r

∂ṽ

∂y

)
τ̃xz = µ̄

(
∂ũ

∂z
+
∂w̃

∂x

)

As a result, the viscous dissipation term in the energy equation becomes:

τ̃ij
∂Ūi
∂xj

+ τ̄ij
∂ũi
∂xj

= 2µ̄
∂Ū

∂y

(
∂ũ

∂y
+
∂ṽ

∂x

)
+ 2µ̄

∂W̄

∂y

(
∂w̃

∂y
+
∂ṽ

∂z

)

+ µ̃

(
∂Ū

∂y

)2

+ µ̄

(
∂W̄

∂y

)2

(A.7)

A.3 Normal Modes

Using the above results, one can now write Equations A.6 in terms of normal modes,

in which fluctuations are proportional to exponentials in space and time:

q̃ = q̂ exp(iαx+ iβz − iωt) (A.8)



256

where q is the vector containing the disturbance components of velocity, pressure,

temperature, and vibrational temperature. After writing Equations A.6 in terms of

normal modes, the result is:

Continuity:

(
iαŪ + iβW̄ − iω

)
ρ̂+ v̂

∂ρ̄

∂y
+ ρ̄

(
iαû+

∂v̂

∂y
+ iβŵ

)
= 0 (A.9a)

X Momentum:

ρ̄
(
iαŪ + iβW̄ − iω

)
û+ ρ̄v̂

∂Ū

∂y
+ iαp̂ =

µ̄

R

[
− α2(2 + r)û+ iαr

∂v̂

∂y
− αβrŵ

]

+
1

R

[
∂µ̄

∂y

(
∂û

∂y
+ iαv̂

)
+ µ̄

(
∂2û

∂y2
+ iα

∂v̂

∂y

)
+
∂µ̂

∂y

∂Ū

∂y
+ µ̂

∂2Ū

∂y2

]

− µ̄

R

[
β2û+ αβŵ

]
(A.9b)

Y Momentum:

ρ̄
(
iαŪ + iβW̄ − iω

)
v̂ +

∂p̂

∂y
=

1

R

[
µ̄

(
iα
∂û

∂y
− α2v̂

)
+ iαµ̂

∂Ū

∂y

]

+
1

R

[
∂µ̄

∂y

(
(2 + r)

∂v̂

∂y
+ riαû+ riβŵ

)
+ µ̄

(
(2 + r)

∂2v̂

∂y2
+ riα

∂û

∂y
+ riβ

∂ŵ

∂y

)]

+
1

R

[
µ̄

(
iβ
∂ŵ

∂y
− β2v̂

)
+ iβµ̂

∂W̄

∂y

]
(A.9c)
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Z Momentum:

ρ̄
(
iαŪ + iβW̄ − iω

)
ŵ + ρ̄v̂

∂W̄

∂y
+ iβp̂ = − µ̄

R

[
αβû+ α2ŵ

]

+
1

R

[
∂µ̄

∂y

(
iβv̂ +

∂ŵ

∂y

)
+ µ̄

(
iβ
∂v̂

∂y
+
∂2ŵ

∂y2

)
+
∂µ̂

∂y

∂W̄

∂y
+ µ̂

∂2W̄

∂y2

]

+
µ̄

R

[
− β2(2 + r)ŵ − rαβû+ iβr

∂v̂

∂y

]

(A.9d)

Energy:

ρ̄c̄p
(
iαŪ + iβW̄ − iω

)
θ̂ + ρ̄c̄pv̂

∂T̄

∂y
−M2(γe − 1)

(
iαŪ + iβW̄ − iω

)
p̂ =

1

σeR

[
−(α2 + β2)k̄θ̂ +

∂k̄

∂y

∂θ̂

∂y
+ k̄

∂2θ̂

∂y2
+
∂k̂

∂y

∂T̄

∂y
+ k̂

∂2T̄

∂y2

]

+
M2(γe − 1)

R

[
2µ̄
∂Ū

∂y

(
∂û

∂y
+ iαv̂

)
+ 2µ̄

∂W̄

∂y

(
∂ŵ

∂y
+ iβv̂

)
(A.9e)

+µ̂

(
∂Ū

∂y

)2

+ µ̂

(
∂W̄

∂y

)2
]

−R
(
∂Q

∂T
θ̂ +

∂Q

∂Tv
θ̂v +

∂Q

∂p
p̂

)
(A.9f)

Vibrational Energy:

ρ̄c̄v,v
(
iαŪ + iβW̄ − iω

)
θ̂v + ρ̄c̄v,vv̂

∂T̄v
∂y

=

1

σeR

[
−(α2 + β2)k̄vθ̂v +

∂k̄v
∂y

∂θ̂v
∂y

+ k̄v
∂2θ̂v
∂y2

+
∂k̂v
∂y

∂T̄v
∂y

+ k̂v
∂2T̄v
∂y2

]

+R

(
∂Q

∂T
θ̂ +

∂Q

∂Tv
θ̂v +

∂Q

∂p
p̂

)
(A.9g)



258

We can now replace ρ̄ by 1/T̄ using the mean equation of state and then solve each of

the equations A.9 for the highest derivative. Following the notation of Malik (1990),

we also introduce the definition:

ξ ≡ αŪ + βW̄ − ω (A.10)

We also write the fluctuations in viscosity and thermal conductivity, µ̂, k̂, and k̂v in

terms of the temperature fluctuations using Equation A.4. Making these substitu-

tions, the result is:

X Momentum:

û′′ =

(
α2(2 + r) + β2

)
û− (1 + r) (iαv̂′ − αβŵ)− µ̄′

µ̄
(û′ + iαv̂)

− 1

µ̄

∂µ̄

∂T̄
Ū ′′θ̂ − 1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′Ū ′θ̂ − 1

µ̄

∂µ̄

∂T̄
Ū ′θ̂′ +

R

µ̄

(
i
ξû

T̄
+
v̂Ū ′

T̄
+ iαp̂

)
= 0 (A.11)

Y Momentum:

v̂′′ =
α2 + β2

2 + r
v̂ − 1 + r

2 + r

(
iαû′ + iβŵ′

)
− 1

µ̄(2 + r)

∂µ̄

∂T̄

(
iαŪ ′ + iβW̄ ′) θ̂

− µ̄′

µ̄(2 + r)

(
(2 + r)v̂′ + r(iαû+ iβŵ)

)
+

R

µ̄(2 + r)

(
i
ξ

T̄
v̂ + p̂′

)
(A.12)

Continuity

v̂′ = −
[
iξ

(
γM2p̂− θ̂

T̄

)
− v̂ 1

T̄

∂T̄

∂y
+ iαû+ iβŵ

]
(A.13)

Energy:

θ̂′′ = (α2 + β2)θ̂ −
(
k̄′

k̄
θ̂′ +

(
∂k̄

∂T̄

)′
T̄ ′θ̂ +

∂k̄

∂T̄
T̄ ′θ̂′ +

∂k̄

∂T̄
T̄ ′′θ̂

)
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− M2(γe − 1)µ̄σe
k̄

[
2Ū ′ (û′ + iαv̂) + 2W̄ ′ (ŵ′ + iβv̂) +

1

µ̄

∂µ̄

∂T̄

(
Ū ′2 + W̄ ′2) θ̂

]

+
Rσe
k̄

(
iξc̄p
T̄
θ̂ +

c̄pT̄
′

T̄
v̂ − iξM2(γe − 1)p̂

)

+
R2σe
k̄

(
∂Q

∂T
θ̂ +

∂Q

∂Tv
θ̂v +

∂Q

∂p
p̂

)
(A.14)

Z Momentum:

ŵ′′ =

(
α2 + (2 + r)β2

)
ŵ − (1 + r)

(
iβv̂′ − αβû

)
− µ̄′

µ̄
(ŵ′ + iβv̂)

− 1

µ̄

∂µ̄

∂T̄
W̄ ′′θ̂ − 1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′W̄ ′θ̂ − 1

µ̄

∂µ̄

∂T̄
W̄ ′θ̂′ +

R

µ̄

(
i
ξŵ

T̄
+
v̂W̄ ′

T̄
+ iβp̂

)
(A.15)

Vibrational Energy:

θ̂′′v = (α2 + β2)θ̂v +
Rσe
k̄v

(
iξc̄v,v
T̄

θ̂v +
c̄v,vT̄

′
v

T̄
v̂

)
− R2σe

k̄v

(
∂Q

∂T
θ̂ +

∂Q

∂Tv
θ̂v +

∂Q

∂p
p̂

)

− k̄′v
k̄v
θ̂′v −

T̄ ′′v
k̄v

(
∂k̄v
∂T̄

θ̂ +
∂k̄v
∂T̄v

θ̂v

)
− T̄ ′v
k̄v

[(
∂k̄v
∂T̄

)′
θ̂ +

(
∂k̄v
∂T̄v

)′
θ̂v

]

− T̄ ′v
k̄v

(
∂k̄v
∂T̄

θ̂′ +
∂k̄v
∂T̄v

θ̂′v

)
(A.16)

In these equations, primes refer to differentiation in the wallnormal direction.

A.4 Second order equations

The equations are now in the form of Equation A.1, and the nonzero coefficients of

the matrices A, B, and C can be tabulated:

A11 = A22 = A44 = A55 = A66 = 1

B11 =
µ̄′

µ̄

B12 = iα(1 + r)

B14 =
1

µ̄

∂µ̄

∂T̄
Ū ′
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B21 = iα
1 + r

2 + r

B22 =
µ̄′

µ̄

B23 = − R

(2 + r)µ̄

B25 = iβ
1 + r

2 + r

B32 = 1

B41 =
M2(γe − 1)µ̄σe

k̄
2Ū ′

B44 = 2
k̄′

k̄

B45 =
M2(γe − 1)µ̄σe

k̄
2W̄ ′

B52 = iβ(1 + r)

B54 =
1

µ̄

∂µ̄

∂T̄
W̄ ′

B55 =
µ̄′

µ̄

B64 =
T̄ ′v
k̄v

∂k̄v
∂T̄

B66 =
T̄ ′v
k̄v

∂k̄v
∂T̄v

+
k̄′v
k̄v

C11 = −(2 + r)α2 − β2 − iξ R
µ̄T̄

C12 = iα
µ̄′

µ̄
− R

µ̄T̄
Ū ′

C13 = −iαR
µ̄

C14 =
1

µ̄

∂µ̄

∂T̄
Ū ′′ +

1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′Ū ′

C15 = −αβ(1 + r)

C21 =
iαrµ̄′

(2 + r)µ̄

C22 = − iξR

µ̄T̄ (2 + r)
− α2 + β2

2 + r

C24 =
1

µ̄(2 + r)

∂µ̄

∂T̄

(
iαŪ ′ + iβW̄ ′)
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C25 =
iβµ̄′r

µ̄(2 + r)

C31 = iα

C32 = − T̄
′

T̄

C33 = iξγeM
2
e

C34 = −iξ/T

C35 = iβ

C42 =
M2(γe − 1)µ̄σe

k̄

(
2iαŪ ′ + 2iβW̄ ′)− c̄pT̄

′σeR

T̄ k̄

C43 = iξ
Rσe
k̄
M2(γe − 1)− R2σe

k̄

∂Q̄

∂p̄

C44 =

(
∂k̄

∂T̄

)′
+
∂k̄

∂T̄
T̄ ′ +

M2(γe − 1)σe
k̄

∂µ̄

∂T̄

(
Ū ′2 + W̄ ′2)

− iξ c̄pRσe
T̄ k̄

− (α2 + β2)− R2σe
k̄

∂Q̄

∂T̄

C46 = −R
2σe
k̄

∂Q̄

∂T̄v

C51 = −(1 + r)αβ

C52 = iβ
µ̄′

µ̄
− R

T̄ µ̄
W̄ ′

C53 = −iβR
µ̄

C54 =
1

µ̄

∂µ̄

∂T̄
W̄ ′′ +

1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′W̄ ′

C55 = −iξR
T̄ µ̄
− α2 − (2 + r)β2

C62 = −Rσe
k̄vT̄

c̄v,vT̄
′
v

C63 =
R2σe
k̄v

∂Q̄

∂p̄
6

C64 =
T̄ ′′v
k̄v

∂k̄v
∂T̄

+
T̄ ′v
k̄v

(
∂k̄v
∂T̄

)′
+
R2σe
k̄v

∂Q̄

∂T̄

C66 =
T̄ ′′v
k̄v

∂k̄v
∂T̄v

+
T̄ ′v
k̄v

(
∂k̄v
∂T̄v

)′
+
R2σe
k̄v

∂Q̄

∂T̄v
− (α2 + β2)− iξRσe

k̄vT̄
c̄v,v
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Underlined terms involve vibrational energy transfer and are the only differences

between the present method and the vibrationally frozen analysis described by Malik

(1990).

A.5 First order equations

For the local stability solver described in Section 4.2, it is more convenient to express

these equations as a first-order system of the form

dq

dy
= aq q =

[
û, û′, v̂, p̂, θ̂, θ̂′, ŵ, ŵ′θ̂v, θ̂

′
v

]T
(A.17)

To obtain a system of this form, the continuity equation (A.13) is differentiated to

get:

v̂′′ = −iξ
(
γeM

2
e p̂
′ − θ̂′

T̄
+
θ̂T ′

T 2

)
− i(αŪ ′ + βW̄ ′)

(
γeM

2p̂− θ̂

T

)

− iαû′ − iβŵ′ + T̄ ′

T̄
v̂′ +

(
T̄ ′

T̄

)′
v̂ (A.18)

After substituting this expression for v̂′′ into the Y momentum equation (A.12) and

solving for p̂′, one finds

p̂′

χ
= −(α2 + β2)v̂ + (1 + r)

(
iαû′ + iβŵ′

)
+

1

µ̄

∂µ̄

∂T̄

(
iαŪ ′ + iβW̄ ′) θ̂

+
µ̄′

µ̄

(
(2 + r)v̂′ + r(iαû+ iβŵ)

)
− R

µ̄

iξ

T̄
v̂ − iξ(2 + r)

(
− θ̂
′

T̄
+
θ̂T ′

T 2

)

+ (2 + r)

[
−i(αŪ ′ + βW̄ ′)

(
γeM

2p̂− θ̂

T

)
− iαû′ − iβŵ′ + T̄ ′

T̄
v̂′ +

(
T̄ ′

T̄

)′
v̂

]

(A.19)

where, following the notation of Malik (1990), we define the quantity χ by

χ =

[
R

µ̄
+ iξγeM

2(2 + r)

]−1

(A.20)
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After factoring each of the disturbance components, one finds

p̂′

χ
=

[
iαr

µ̄′

µ̄

]
û− iαû′ −

[
α2 + β2 + iξ

R

µ̄T̄
− (2 + r)

(
T̄ ′

T̄

)′]
v̂

−
[
(2 + r)i(αŪ ′ + βW̄ ′)γeM

2
]
p̂

+

[
1

µ̄

∂µ̄

∂T̄
(iαŪ ′ + iβW̄ ′)− iξ(2 + r)

T ′

T 2
+ (2 + r)i(αŪ ′ + βW̄ ′)

1

T̄

]
θ̂

+

[
iξ(2 + r)

T̄

]
θ̂′ +

[
iβr

µ̄′

µ̄

]
ŵ − iβŵ′ + (2 + r)

[
µ̄′

µ̄
+
T̄ ′

T̄

]
v̂′ (A.21)

The final step is to eliminate the term v̂′ using the continuity equation (A.13). After

substituting this quantity and collecting terms, the Y momentum equation reads:

p̂′

χ
= −iα

[
(2 + r)

T̄ ′

T̄
+ 2

µ̄′

µ̄

]
û− iαû′

−
[
α2 + β2 + iξ

R

µ̄T̄
− (2 + r)

(
T̄ ′′

T̄
+
µ̄′T̄ ′

µ̄T̄

)]
v̂

− i(2 + r)γeM
2

[
(αŪ ′ + βW̄ ′) + ξ

(
T̄ ′

T̄
+
µ̄′

µ̄

)]
p̂

+

[
i(αŪ ′ + βW̄ ′)

(
1

µ̄

∂µ̄

∂T̄
+

2 + r

T̄

)
+
iξ

T̄
(2 + r)

µ̄′

µ̄

]
θ̂

+

[
iξ(2 + r)

T̄

]
θ̂′

− iβ
[
(2 + r)

T̄ ′

T̄
+ 2

µ̄′

µ̄

]
ŵ − iβŵ′ (A.22)

In the same way, the continuity equation can be used to eliminate the quantity v̂′

from the X and Z momentum equations:

û′′ =

(
α2(2 + r) + β2

)
û− (1 + r)

(
αξ

[
γeM

2p̂− θ̂

T̄

]
+ α2û+ iαv̂

T̄ ′

T̄

)

− µ̄′

µ̄
(û′ + iαv̂)

−
(

1

µ̄

∂µ̄

∂T̄
Ū ′′ +

1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′U ′

)
θ̂ − 1

µ̄

∂µ̄

∂T̄
Ū ′θ̂′ +

R

µ̄

(
iξ

T̄
û+

Ū ′

T̄
v̂ + iαp̂

)
= 0 (A.23)
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ŵ′′ =

(
α2 + (2 + r)β2

)
ŵ − (1 + r)

(
βξ

[
γeM

2p̂− θ̂

T̄

]
+ β2ŵ + iβv̂

T̄ ′

T̄

)

− µ̄′

µ̄
(ŵ′ + iβv̂)

−
(

1

µ̄

∂µ̄

∂T̄
W̄ ′′ +

1

µ̄

∂2µ̄

∂T̄ 2
T̄ ′W̄ ′

)
θ̂ − 1

µ̄

∂µ̄

∂T̄
W̄ ′θ̂′ +

R

µ̄

(
iξ

T̄
ŵ +

W̄ ′

T̄
v̂ + iβp̂

)
(A.24)

The coefficients of the matrix a are then:

a12 = 1

a21 = iξ
R

µ̄T̄
+ α2 + β2

a22 = − µ̄
′

µ̄

a23 = −iαµ̄
′

µ̄
+

R

µ̄T̄
Ū ′ − iα(1 + r)

T̄ ′

T̄

a24 = iα
R

µ̄
− αξ(1 + r)γeM

2

a25 = − 1

µ̄

(
∂µ̄

∂T̄
Ū ′′ +

∂2µ̄

∂T̄ 2
T̄ ′Ū ′

)
+ (1 + r)

αξ

T̄

a26 = − 1

µ̄

∂µ̄

∂T̄
Ū ′

a31 = −iα

a33 =
T̄ ′

T̄

a34 = −iξγeM2

a35 =
iξ

T̄

a37 = −iβ

a41 = −iαχ
[
(2 + r)

T̄ ′

T̄
+ 2

µ̄′

µ̄

]

a42 = −iαχ

a43 = −χ
[
α2 + β2 + iξ

R

µ̄T̄
− (2 + r)

(
T̄ ′′

T̄
+
T̄ ′µ̄′

µ̄T̄

)]
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a44 = −iχ(2 + r)γeM
2

[
(αŪ ′ + βW̄ ′) + ξ

(
T̄ ′

T̄
+
µ̄′

µ̄

)]

a45 = χ

[
i(αŪ ′ + βW̄ ′)

(
1

µ̄

∂µ̄

∂T̄
+

2 + r

T̄

)
+
iξ

T̄
(2 + r)

µ̄′

µ̄

]

a46 =
iξχ(2 + r)

T̄

a47 = −iβχ
[
(2 + r)

T̄ ′

T̄
+ 2

µ̄′

µ̄

]

a48 = −iβχ

a56 = 1

a62 = −M
2(γe − 1)µ̄σe

k̄
2Ū ′

a63 = −M
2(γe − 1)µ̄σe

k̄

(
2iαŪ ′ + 2iβW̄ ′)+

Rσe
T̄ k̄

c̄pT̄
′

a64 = −iξ(γe − 1)M2Rσe
k̄

+
R2σe
k̄

∂Q̄

∂p̄

a65 = α2 + β2 −
(
∂k̄

∂T̄

)′
T̄ ′ − ∂k̄

∂T̄
T̄ ′′ − M2(γe − 1)σe

k̄

∂µ̄

∂T̄

(
Ū ′2 + W̄ ′2)

+ iξ
Rσe
k̄T̄

c̄p +
R2σe
k̄

∂Q̄

∂T̄

a66 = −2
k̄′

k̄

a68 = −M
2(γe − 1)µ̄σe

k̄
2W̄ ′

a69 =
R2σe
k̄

∂Q̄

∂T̄v

a78 = 1

a83 =
RW̄ ′

µ̄T̄
− iβ µ̄

′

µ̄
− iβ(1 + r)

T̄ ′

T̄

a84 = iβ
R

µ̄
− (1 + r)βξγeM

2

a85 =
βξ(1 + r)

T̄
− 1

µ̄

(
∂µ̄

∂T̄
W̄ ′′ +

∂2µ̄

∂T̄ 2
T̄ ′W̄ ′

)

a86 = − 1

µ̄

∂µ̄

∂T̄
W̄ ′

a87 = iξ
R

µ̄T̄
+ α2 + β2

a88 = − µ̄
′

µ̄
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a9,10 = 1

a10,3 =
Rσe
k̄vT̄

c̄v,vT̄
′
v

a10,4 = −R
2σe
k̄v

∂Q̄

∂p̄

a10,5 = −R
2σe
k̄v

∂Q̄

∂T̄
− T̄ ′′v
k̄v

∂k̄v
∂T̄
− T̄ ′v
k̄v

(
∂k̄v
∂T̄

)′

a10,6 = − T̄
′
v

k̄v

∂k̄v
∂T̄

a10,9 = α2 + β2 + iξ
Rσe
k̄vT̄

c̄v,v −
R2σe
k̄v

∂Q̄

∂T̄v
− T̄ ′′v
k̄v

∂k̄v
∂T̄v
− T̄ ′v
k̄v

(
∂k̄v
∂T̄v

)′

a10,10 = − T̄
′
v

k̄v

∂k̄v
∂T̄v
− k̄′v
k̄v
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Appendix B

Mean Flow Jacobian

In this section, the elements of the Jacobian matrix used in the non-self-similar bound-

ary layer solver of Section 3.3 are derived. For numerical calculations, it is convenient

to re-write the boundary layer equations from Equation 3.15 in the following form:

E = 0 =
x

∆x

(
Ū − Ū (k−1) T̄

T̄ (k−1)

)
− η

2

∂Ū

∂η
+
∂ ¯̄V

∂η

−
(

¯̄V − ηŪ

2

)
1

T̄

∂T̄

∂η
(B.1a)

F = 0 =
Ūx

∆x

(
Ū − Ū (k−1)

)
+

(
¯̄V − ηŪ

2

)
∂Ū

∂η

− T̄
(
µ̄
∂2Ū

∂η2
+
∂µ̄

∂T̄

∂T̄

∂η

∂Ū

∂η

)
(B.1b)

G = 0 =
Ūx

∆x

(
T̄ − T̄ (k−1)

)
+

(
¯̄V − ηŪ

2

)
∂T̄

∂η

− T̄

σe

(
k̄
∂2T̄

∂η2
+
∂k̄

∂T̄

(
∂T̄

∂η

)2
)

− T̄ (γe − 1)M2
e µ̄

(
∂Ū

∂η

)2

+ T̄RexQ̄ (B.1c)

H = 0 =
Ū c̄v,vx

∆x

(
T̄v − T̄ (k−1)

v

)
+ c̄v,v

(
¯̄V − ηŪ

2

)
∂T̄v
∂η

− T̄

σe

(
k̄v
∂2T̄v
∂η2

+
∂k̄v
∂T̄

∂T̄

∂η

∂T̄v
∂η

+
∂k̄v
∂T̄v

(
∂T̄v
∂η

)2
)
− T̄RexQ̄ (B.1d)

In this equation ¯̄V is the mean vertical velocity, re-scaled using the Reynolds num-

ber according to the definition: ¯̄V ≡ √RexV̄ . Terms with superscript (k − 1) are
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evaluated at the previous location along the boundary layer, whereas all other terms

are evaluated at the current location k for which the solution is not yet known. Each

of these residuals E, F , G, and H must be driven to zero using Newton iteration in

order to determine the solution at streamwise location k.

Suppose that we define a column vector R that contains the residuals E, F , G, and

H defined above as its elements. We also define a vector X which contains discrete

values of the flow variables V̄ , Ū , T̄ , T̄v as its elements at the position k along the

boundary layer where the solution is sought. One can then drive the residual R to

zero using Newton iteration:

J
(
Xn+1 −Xn

)
= −R (B.2)

where n is the current iteration step. In performing these iterations, the elements of

the Jacoabian matrix J are required, where

Jij =
∂Ri

∂Xj

(B.3)

The elements of the Jacobian matrix are provided in the following equations:

Continuity:

∂E

∂ ¯̄V
= D − DT̄

T̄
(B.4a)

∂E

∂Ū
=

x

∆x
− η

2
D +

η

2

DT̄
T̄

(B.4b)

∂E

∂T̄
= − x

∆x

Ū (k−1)

T̄ (k−1)
−
(

¯̄V − ηŪ

2

)(D
T̄
− DT̄

T̄ 2

)
(B.4c)

∂E

∂T̄v
= 0 (B.4d)
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X Momentum:

∂F

∂ ¯̄V
= DŪ (B.5a)

∂F

∂Ū
=

x

∆x

(
2Ū − Ū (k−1)

)
+

(
¯̄V − ηŪ

2

)
D − η

2
DŪ

− T̄
(
µ̄D2 +

∂µ̄

∂T
DT̄D

)
(B.5b)

∂F

∂T̄
= −

(
µ̄D2Ū +

∂µ̄

∂T̄

∂T̄

∂η

∂Ū

∂η

)

− T̄
(
∂µ

∂T
D2Ū +

∂µ̄

∂T

∂Ū

∂η
D +

∂2µ̄

∂T 2
DT̄DŪ

)
(B.5c)

∂F

∂T̄v
= 0 (B.5d)

Energy:

∂G

∂ ¯̄V
= DT̄ (B.6a)

∂G

∂Ū
=

x

∆x

(
T̄ − T̄ (k−1)

)
− η

2
DT̄ − 2T̄ (γe − 1)M2

e µ̄DŪD (B.6b)

∂G

∂T̄
=
xŪ

∆x
+

(
¯̄V − ηŪ

2

)
D − 1

σe

(
k̄D2T̄ +

∂k̄

∂T
(DT̄ )2

)

− T̄

σe

(
k̄D2 +

∂k̄

∂T
D2T̄ +

∂2k̄

∂T 2
(DT̄ )2 + 2

∂k̄

∂T
DT̄D

)

− (γe − 1)M2
e (DŪ)2

(
µ̄+ T̄

∂µ̄

∂T

)
+RexQ̄+RexT̄

∂Q̄

∂T
(B.6c)

∂G

∂T̄v
= T̄Rex

∂Q

∂Tv
(B.6d)
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Vibrational Energy:

∂H

∂ ¯̄V
= c̄v,vDT̄v (B.7a)

∂H

∂Ū
=
c̄v,vx

∆x

(
T̄v − T̄ (k−1)

v

)
− c̄v,v

η

2
DT̄v (B.7b)

∂H

∂T̄
= − 1

σe

(
k̄vD2T̄v +

∂k̄v
∂T
DT̄DT̄v +

∂k̄v
∂Tv

(DT̄v)2

)

− T̄

σe

(
∂k̄v
∂T
D2T̄v +

∂2k̄v
∂T 2
DT̄DT̄v +

∂k̄v
∂T
DT̄vD +

∂2k̄v
∂T∂Tv

(DT̄v)2

)

−RexQ̄− T̄Rex
∂Q̄

∂T
(B.7c)

∂H

∂T̄v
=
Ū c̄v,vx

∆x
+
Ūx

∆x

∂c̄v,v
∂Tv

(
T̄v − T̄ (k−1)

v

)

+

(
¯̄V − ηŪ

2

)(
∂c̄v,v
∂Tv
DT̄v + c̄v,vD

)

− T̄

σe

(
k̄vD2 +

∂k̄v
∂T
DT̄D + 2

∂k̄v
∂Tv
DT̄vD +

∂k̄v
∂Tv
D2T̄v

+
∂2k̄v
∂T∂Tv

DT̄DT̄v +
∂2k̄v
∂T 2

v

(DT̄v)2

)

− T̄Rex
∂Q

∂Tv
(B.7d)

In these equations, D designates the wallnormal differentiation operator, which is

carried out using fourth order finite differences. In performing the updates described

by Equation B.2, the solution vector X must also respect the boundary conditions.

This is enforced by replacing the rows of J and R with the appropriate boundary

conditions:

No Slip Velocity:

V̄ (0) = 0 (B.8)

Ū(0) = 0 (B.9)
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Freestream Conditions:

Ū(ymax) = 1 (B.10)

T̄ (ymax) = 1 (B.11)

T̄v(ymax) = T ∗v,e/T
∗
e (B.12)

Isothermal Wall:

T̄ (0) = Tw (B.13)

T̄v(0) = Tw (B.14)

Adiabatic Wall:

k̄
∂T̄

∂y

∣∣∣∣
y=0

+ k̄v
∂T̄v
∂y

∣∣∣∣
y=0

= 0 (B.15)

T̄ (0)− T̄v(0) = 0 (B.16)
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Appendix C

Multiple-Scales Model

In this section, the equations of motion and adjoint boundary conditions are derived

for the analysis described in Section 7.10.

C.1 Governing equations

The flow is modeled as a calorically perfect ideal gas, for which the compressible

Navier-Stokes equations can be written in the form:

Dρ

Dt
+ ρ∇ · u = 0 (C.1a)

ρ
Du

Dt
+

1

γM2
∇(ρT ) =

1

ReL
∇ · τ (C.1b)

ρ
DT

Dt
+ (γ − 1)(ρT )∇ · u =

γ(γ − 1)M2

ReL
∇u : τ − γ

σReL
∇ · q (C.1c)

These equations are nondimensionalized using the scheme from Equation 2.13, and

the pressure has been eliminated using the equation of state γM2p = ρT . After

linearization about a time-averaged base flow, one reaches

∂ρ̃

∂t
+ Ū

∂ρ̃

∂x
+ V̄

∂ρ̃

∂y
+ ũ

∂ρ̄

∂x
+ ṽ

∂ρ̄

∂y
+ ρ̄

(
∂ũ

∂x
+
∂ṽ

∂y

)
+ ρ̃

(
∂Ū

∂x
+
∂V̄

∂y

)
= 0 (C.2a)

(
∂ũ

∂t
+ Ū

∂ũ

∂x
+ V̄

∂ũ

∂y
+ ũ

∂Ū

∂x
+ ṽ

∂Ū

∂y

)
+ ρ̃T̄

(
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y

)

+
1

γM2

(
ρ̃T̄ − θ̃

T̄

)
∂T̄

∂x
+

1

γM2

(
T̄ 2 ∂ρ̃

∂x
+
∂θ̃

∂x

)
− T̄

ReL

(
∂τ̃xx
∂x

+
∂τ̃xy
∂y

)
= 0 (C.2b)
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(
∂ṽ

∂t
+ Ū

∂ṽ

∂x
+ V̄

∂ṽ

∂y
+ ũ

∂V̄

∂x
+ ṽ

∂V̄

∂y

)
+ ρ̃T̄

(
Ū
∂V̄

∂x
+ V̄

∂V̄

∂y

)

+
1

γM2

(
ρ̃T̄ − θ̃

T̄

)
∂T̄

∂y
+

1

γM2

(
T̄ 2∂ρ̃

∂y
+
∂θ̃

∂y

)
− T̄

ReL

(
∂τ̃yx
∂x

+
∂τ̃yy
∂y

)
= 0 (C.2c)

(
∂θ̃

∂t
+ Ū

∂θ̃

∂x
+ V̄

∂θ̃

∂y
+ ũ

∂T̄

∂x
+ ṽ

∂T̄

∂y

)
+ ρ̃T̄

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y

)

+(γ − 1)T̄

(
∂ũ

∂x
+
∂ṽ

∂y

)
+ (γ − 1)(ρ̃T̄ 2 + θ̃)

(
∂Ū

∂x
+
∂V̄

∂y

)

−γ(γ − 1)M2T̄

ReL

(
τ̄ij
∂ũi
∂xj

+ τ̃ij
∂Ūi
∂xj

)
+

γT̄

σReL

(
∂q̃x
∂x

+
∂q̃y
∂y

)
= 0 (C.2d)

In these equations bars are used to denote the time-averaged base flow and tildes

designate small amplitude fluctuations. These equations of motion are supplemented

by the definitions of the fluctuating shear stresses and heat fluxes:

τ̃xx = µ̄

[
(2 + r)

∂ũ

∂x
+ r

∂ṽ

∂y

]
+

[
(2 + r)

∂Ū

∂x
+ r

∂V̄

∂y

]
∂µ̄

∂T̄
θ̃ (C.3a)

τxy = µ̄

[
∂ũ

∂y
+
∂ṽ

∂x

]
+

[
∂Ū

∂y
+
∂V̄

∂x

]
∂µ̄

∂T̄
θ̃ (C.3b)

τ̃yy = µ̄

[
(2 + r)

∂ṽ

∂y
+ r

∂ũ

∂x

]
+

[
(2 + r)

∂V̄

∂y
+ r

∂Ū

∂x

]
∂µ̄

∂T̄
θ̃ (C.3c)

q̃x = −k̄ ∂θ̃
∂x
− ∂k̄

∂T̄

∂T̄

∂x
θ̃ (C.3d)

q̃y = −k̄ ∂θ̃
∂y
− ∂k̄

∂T̄

∂T̄

∂y
θ̃ (C.3e)

where r is the ratio of the bulk viscosity to the shear viscosity, which is assumed to

be constant. This system of equations can be written compactly in the form:

At
∂q̃

∂t
+ Ax

∂q̃

∂x
+ Ay

∂q̃

∂y
+ Aoq̃ = 0 (C.4)

where q̃ is the vector of disturbance variables given by

q̃ =
(
ρ̃, ũ, ṽ, θ̃, τ̃xx, τ̃xy, τ̃yy, q̃x, q̃y

)T
(C.5)



274

As written, this system of equations remains fully non-parallel. The non-zero elements

of these matrices are:

Matrix At:

At,11 = 1

At,22 = 1

At,33 = 1

At,44 = 1

Matrix Ax:

Ax,11 = Ū

Ax,12 = ρ̄

Ax,21 =
T̄ 2

γM2

Ax,22 = Ū

Ax,24 =
1

γM2

Ax,25 = − T̄

ReL

Ax,33 = Ū

Ax,36 = − T̄

ReL

Ax,42 = (γ − 1)T̄ −Kτ̄xx
Ax,43 = −Kτ̄xy
Ax,44 = Ū



275

Ax,48 =
γT̄

σReL

Ax,52 = (2 + r)µ̄

Ax,63 = µ̄

Ax,72 = rµ̄

Ax,84 = −k̄

Matrix Ay:

Ay,11 = V̄

Ay,13 = ρ̄

Ay,22 = V̄

Ay,26 = − T̄

ReL

Ay,31 =
T̄ 2

γM2

Ay,33 = V̄

Ay,34 =
1

γM2

Ay,37 = − T̄

ReL

Ay,42 = −K̄τ̄xy
Ay,43 = (γ − 1)T̄ −Kτ̄yy
Ay,44 = V̄

Ay,49 =
γT̄

σReL

Ay,53 = rµ̄

Ay,62 = µ̄

Ay,73 = (2 + r)µ̄
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Ay,94 = −k̄

Matrix Ao:

Ao,11 =
∂Ū

∂x
+
∂V̄

∂y

Ao,12 =
∂ρ̄

∂x

Ao,13 =
∂ρ̄

∂y

Ao,21 = T̄

(
Ū
∂Ū

∂x
+ V̄

∂Ū

∂y

)
+

T̄

γM2

∂T̄

∂x

Ao,22 =
∂Ū

∂x

Ao,23 =
∂Ū

∂y

Ao,24 = − 1

γM2T̄

∂T̄

∂x

Ao,31 = T̄

(
Ū
∂V̄

∂x
+ V̄

∂V̄

∂y

)
+

T̄

γM2

∂T̄

∂y

Ao,32 =
∂V̄

∂x

Ao,33 =
∂V̄

∂y

Ao,34 = − 1

γM2T̄

∂T̄

∂y

Ao,41 = T̄

(
Ū
∂T̄

∂x
+ V̄

∂T̄

∂y

)
+ T̄ 2(γ − 1)(∇ · ~U)

Ao,42 =
∂T̄

∂x

Ao,43 =
∂T̄

∂y

Ao,44 = (γ − 1)(∇ · ~U)

Ao,45 = −K∂Ū

∂x
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Ao,46 = −K
(
∂V̄

∂x
+
∂Ū

∂y

)

Ao,47 = −K∂V̄

∂y

Ao,54 =
∂µ̄

∂T

(
(2 + r)

∂Ū

∂x
+ r

∂V̄

∂y

)

Ao,55 = −1

Ao,64 =
∂µ̄

∂T

(
∂Ū

∂y
+
∂V̄

∂x

)

Ao,66 = −1

Ao,74 =
∂µ̄

∂T

(
(2 + r)

∂V̄

∂y
+ r

∂Ū

∂x

)

Ao,77 = −1

Ao,84 = − ∂k̄
∂T

∂T̄

∂x

Ao,88 = −1

Ao,94 = − ∂k̄
∂T

∂T̄

∂y

Ao,99 = −1

where

K =
γ(γ − 1)M2T̄

ReL
(C.6)

τ̄xx = µ̄

(
(2 + r)

∂Ū

∂x
+ r

∂V̄

∂y

)
(C.7)

τ̄yy = µ̄

(
(2 + r)

∂V̄

∂y
+ r

∂Ū

∂x

)
(C.8)

τ̄xy = µ̄

(
∂Ū

∂y
+
∂V̄

∂x

)
(C.9)
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C.2 Adjoint Boundary Conditions

The boundary conditions of the adjoint problem (Eq. 7.47) must be selected such

that the boundary terms of Equation 7.46 are zero:

q+HAyq

∣∣∣∣
∞

y=0

= 0 (C.10)

In matrix form, the matrix Ay is:

Ay =




V̄ 0 ρ̄ 0 0 0 0 0 0

0 V̄ 0 0 0 − T̄
ReL

0 0 0

T̄ 2

γM2 0 V̄ 1
γM2 0 0 − T̄

ReL
0 0

0 −Kτ̄xy (γ − 1)T̄ −Kτ̄yy V̄ 0 0 0 0 γT̄
σReL

0 0 rµ̄ 0 0 0 0 0 0

0 µ̄ 0 0 0 0 0 0 0

0 0 (2 + r)µ̄ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −k̄ 0 0 0 0 0




(C.11)

After multiplying out the boundary product (C.10), assuming decaying disturbances

as y → ∞, and assuming no-slip conditions ũ(0) = ṽ(0) = 0 for the direct problem,
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one finds

(
ρ̃+∗, ũ+∗, ṽ+∗, θ̃+∗, τ̃+∗

xx , τ̃
+∗
xy , τ̃

+∗
yy , q̃

+∗
x , q̃+∗

y

)




0

− T̄
ReL

τ̃xy

T̄ 2

γM2 ρ̃+ θ̃
γ
M2 − T̄

ReL
τ̃yy

γT̄
σReL

q̃y

0

0

0

0

−k̄θ̃



y=0

= 0

(C.12)

which evaluates to

− T̄

ReL
τ̃xyũ

+∗ +

[
T̄ 2

γM2
ρ̃+

θ̃

γ
M2 − T̄

ReL
τ̃yy

]
ṽ+∗ +

γT̄

σReL
q̃yθ̃

+∗ − k̄θ̃q̃+∗
y = 0 (C.13)

The adjoint boundary conditions are selected such that each of these terms is zero.

The result is:

Isothermal disturbances, θ̃(0) = 0:

ũ+ = ṽ+ = θ̃+ = 0 y = 0 (C.14)

Adiabatic disturbances, q̃y(0) = 0:

ũ+ = ṽ+ = q̃+
y = 0 y = 0 (C.15)

Thus the adjoint boundary conditions are exactly the same as those of the direct

problem.
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