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Issues resulting from the rupture of the secondary diaphragm in an expansion tunnel
may be mitigated by matching the test gas pressure and the accelerator gas pressure,
orienting the tunnel vertically, and initially separating the test gas from the accelerator
gas by density stratification. Two benefits are: 1) the removal of the diaphragm particulates
in the test gas after its rupture and 2) the elimination of the wave system that is a result
of a real secondary diaphragm having a finite thickness and mass. An inviscid perfect-gas
analysis is performed to find the reservoir conditions available in the vertical expansion
tunnel (VET) for comparison to a conventional expansion tunnel (ET) and a reflected
shock tunnel (RST). A numerical inviscid perfect-gas analysis is presented to estimate the
available test time in the VET. The effective reservoir enthalpy of the VET lies somewhere
between the RST and the ET.

Nomenclature

a Local speed of sound, m/s
A Jacobian matrix for a hyperbolic system of equations
α Wave strength
B Wave strength multiplied by the corresponding eigenvector
D Binary diffusion coefficient, m2/s
e Eigenvector of the jacobian matrix
e Total energy, J/m3

E Total energy multiplied by area, J/m
ET Expansion tunnel
EW Expansion wave
h Mass specific enthalpy, MJ/kg
γ Ratio of specific heats
L Length, m
mw Molecular weight
P Pressure, Pa
PP Particle path
ρ Mass density, kg/m3

R Mass density multiplied by cross-sectional area, kg/m
φ Passive scalar used to track gas interfaces
Φ Limiting function used for high-order corrctions
RST Reflected shock tunnel
S Cross-sectional area, m2

SW Shock wave
t Time, s
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τ Test Time, s
θ Argument to be passed to limiting function
U velocity in x direction, m/s
V ET Vertical Expansion Tunnel
1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional

Subscript
A Accelerator section
d Diffusion
D Driver section
i State number
I Intermediate section
N Nozzle section
R Reservoir conditions

I. Introduction

An expansion tunnel is an impulse hypersonic facility used to simulate high-speed flows in a lab setting.
As a result of the unsteady manner in which the test gas is processed, an expansion tunnel can reach

a wider range of test conditions than a reflected shock tunnel, particularly in regard to effective reservoir
enthalpy (hR) and reservoir pressure (PR). However, excessive amounts of noise in the test gas has proven to
be problematic in the successful operation of an expansion tube or tunnel; reduction of this noise is critical.
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Figure 1. Above is a schematic of an expansion tunnel. The states 4 , 1 and 11 are the initial (or fill) conditions

of the driver, the intermediate and the accelerator sections, respectively. Below is an x-t diagram sketch of expansion
tunnel operation. Each numbered box represents a state in the expansion tunnel. Shock waves are shown as thick solid
lines. Expansion characteristics are shown as thinner solid lines. The contact discontinuities are shown as dashed lines.
A particle path (PP), representative of the test gas, is shown as a dashed-dot line. LD, LI , LA and LN are the lengths
of the driver tube, the intermediate tube, the accelerator tube, and the nozzle, respectively.

The test gas in an expansion tunnel is processed in the following manner; first, the primary diaphragm
is ruptured. As a result, a shock wave propagates into the intermediate tube, processing the test gas. Upon
arrival of the shock wave at the secondary diaphragm station, the secondary diaphragm ruptures and a shock
wave propagates into the accelerator tube. Concurrently, an unsteady expansion (centered at the secondary
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diaphragm station) processes the test gas. The test gas is accelerated, first through this unsteady expansion,
then (in the case of an expansion tunnel) through the diverging nozzle at the end of the accelerator tube.
An expansion tunnel schematic and x-t diagram are presented in Figure 1.

Paul and Stalker1 provide a thorough discussion of the issue of expansion tunnel noise. After the expansion
tube and tunnel were proposed by Trimpi and Callis,2,3 several facilities were constructed with mixed
results.4,5, 6 Paul and Stalker1 go on to show that acoustic waves generated in the driver gas, can, at
certain conditions, be transmitted through the test gas/driver gas interface. This results in significant
perturbations in the test gas. More recently, a number of expansion tube and expansion tunnel facilities
have been constructed.7,8, 9, 10,11,12 These facilities have been used successfully for hypersonic aerodynamics
and supersonic combustion experiments. Still, many of the proceedings and articles show results from these
facilities with significant test gas perturbations (often conveyed through Pitot pressure testing). In particular,
many of these perturbations appear closest to the test gas/accelerator gas interface; this is evidence of the
secondary diaphragm rupture adversely affecting the test gas.

To mitigate the effects of secondary diaphragm rupture in an expansion tunnel, the secondary diaphragm
can be eliminated in the following manner: orient the facility vertically and separate the intermediate and
accelerator tubes (filled to the same initial pressure, with gases of different density, light over heavy) by a
fast acting sliding valve. The fast acting sliding valve will be removed prior to the bursting of the primary
diaphragm, leaving a hydrodynamically stable intermediate/accelerator gas interface; the benefits of which
are a lack of diaphragm particulate in the test gas and the elimination of the wave system that is a result of
a real secondary diaphragm having a finite thickness and mass.

In this paper a vertical expansion tunnel (VET) is proposed. The advantages and disadvantages of
this type of hypersonic ground-test facility are discussed. A detailed analysis of a VET with a cold driver
is performed, including a perfect-gas calculation of available parameter space accompanied by perfect-gas
quasi-1D gas dynamic computations to estimate the test time. A comparison of the VET to other types
of hypersonic facilities is made. It is found that the achievable effective reservoir enthalpy of the VET lies
somewhere between the reflected shock tunnel and the conventional expansion tunnel.

II. Initial Estimate of Available Conditions

In this section, an estimate of the available test conditions from a VET for perfect-gas conditions with
a cold driver is made. The effective reservoir conditions achievable in the VET are compared to those in a
conventional expansion tunnel (ET) and reflected shock tunnel (RST). The driver pressure (P4) is limited
so that it can be filled by conventional gas bottles. The pressure in the intermediate tube (P1) is chosen
so that the test gas reaches a maximum temperature of ≈2000 K, so the perfect-gas assumption holds.
Pressure-velocity diagrams are used (Figure 2) to compute the conditions of the test gas as it is processed by
the non-steady wave systems (for reference, follow the particle path, PP, in Figure 1). The static pressure

and velocity must be matched in states 2 and 3 and in states 12 and 13 . This is done by plotting

P3

P4
=

(
1− (γ4 − 1)(U3 − U4)

2a4

) 2γ4
γ4−1

, (1)

and
U2 − U1

a1
=

P2 − P1

γ1P1

√
1 + (γ1+1)(P2−P1)

2γ1P1

, (2)

in pressure - velocity space and finding the point of intersection.13 Here, γ is the ratio of specific heats, P is
the static pressure, U is the velocity, and a is the sound speed. Equations 1 and 2 are annotated for finding
the conditions after primary diaphragm rupture and are analogous to the equations that would be used to
evaluate the states 12 and 13 .

Two pressure-velocity diagrams are presented in Figure 2. On the left is an expansion tunnel in a
conventional arrangement, with a diaphragm located between the intermediate and accelerator chambers.
This setup allows for a mismatch of the pressures in the intermediate and accelerator chambers, and thus
a higher available flow speed at the nozzle exit due to a more efficient expansion of the test gas. If some
sacrifice of the reservoir conditions can be made, the secondary diaphragm may be eliminated by matching the
pressure in the intermediate and accelerator tubes, separating them by density stratification, and orienting
the facility vertically (Figure 2(b)).
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Figure 2. Pressure - velocity diagrams for the conventional (left (a)) and vertical expansion tunnel (right (b)) for the
same driver gas/test gas fill pressure ratio. In each plot are lines marking shock waves (SWA−B), expansion waves

(EWA−B), and the steady expansion. The primary differences are matched pressures in states 1 and 11 and a lower

velocity as the end of the steady expansion for a given driver gas/test gas fill pressure ratio in the vertical expansion
tunnel as opposed to the conventional expansion tunnel.

Table 1. Comparison of run conditions available for a conventional expansion tunnel (ET) and a vertical expansion
tunnel (VET) for set of given fill pressures. Also, listed are the conditions for a reflected shock tunnel (RST)
when operated at a taylored condition (RST-1). Taylored shock tunnel operation ensures the longest possible test
time. RST-2 is a condition where the reservoir temperature is permitted to reach 2000K, the maximum temperature
reached in the ET and VET cases. P4, P1 and P11 are the initial pressures of the driver, intermediate, and accelerator
sections, respectively. hR and PR are the effective reservoir enthalpy and pressure. TMax is the maximum temperature
the test gas is raised to in the facility. U∞, P∞, ρ∞, T∞, and M∞ are the free-stream velocity, pressure, density,
temperature, and Mach number, respectively. For comparison purposes, the flows are all expanded to Mach 6 at the
nozzle exit.

P4 [He] P1 [Air] P11[He] hR PR TMax U∞ P∞ ρ∞ T∞ M∞
(MPa) (kPa) (kPa) (MJ/kg) (MPa) (K) (km/s) (kPa) (kg/m3) (K) (–)

ET 8.16 7.75 0.35 6.0 12 2000 3.3 7.9 0.037 733 6.0

VET 8.16 7.75 7.75 3.8 2.4 2000 2.6 1.5 0.012 459 6.0

RST-1 8.16 106 NA 1.8 7.8 1780 1.8 4.9 0.079 217 6.0

RST-2 8.16 75.0 NA 2.0 6.7 2030 1.9 4.2 0.060 247 6.0

RST-3 8.16 7.10 NA 3.8 1.9 3200 2.6 0.6 0.004 490 6.0

The available conditions for a given set of fill pressures are tabulated (Table 1) for three types of impulse
hypersonic facilities, the VET, the ET, and the RST. Again, the driver pressure (P4) is limited to 1200 psi,
so that it can be filled by conventional gas bottles. The pressure in the intermediate tube of the ET and
VET is chosen such that the temperature in the gas does not exceed 2000 K. The pressure in the accelerator
tube in the ET is chosen by an estimate of the practical restraints (this will be explained in more detail in
the following section). The effective reservoir conditions for the ET and the VET are found by isentropic

compression to rest after the non-steady expansion from state 13 . The free-stream conditions for all facilities
are expanded to a Mach number of six for comparison. The pressure, P1, for the first shock tunnel case
(RST-1) is chosen such that it is operated in the taylored mode. The pressure, P1, for the second shock
tunnel case (RST-2) is chosen such that the temperature in the test gas does not exceed 2000 K. The 2000 K
limit is imposed to maintain the perfect-gas assumption and required a 10% increase in the Mach number
of the primary shock relative to the taylored condition (as in RST-1). The pressure, P1, for the third shock
tunnel case (RST-3) is chosen such that the reservoir enthalpy is matched to the VET case and required a
50% increase in the Mach number of the primary shock relative to the taylored condition (as in RST-1). In
this case, the test gas will be reacting, so Cantera14 with the Shock and Detonation Toolbox15 is used to
evaluate the conditions in the reservoir and through the nozzle. The thermodynamic data16,17 and reaction
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rates18 are found in the literature. The test gas is assumed to be in chemical equilibrium from the reservoir
to the throat of the nozzle, and is then in chemical non-equilibrium19 from the throat to the end of the 10◦

half angle nozzle.
If the quantity of interest in ground-test facilities is effective reservoir conditions, then the capability of

the VET lies between the ET and the RST. Herein lies one of the advantages of the expansion tunnel over the
shock tunnel: the maximum temperature of the test gas is lower for a given run condition. The detrimental
effects of the test gas being partially dissociated and partially vibrationally excited are less severe in a ET
than a RST; for example, in the RST-3 case there is 3.8% NO in the free-stream.

III. Practical Considerations for a VET

Significant perturbations in the mean flow of the test gas can result from acoustic waves being transmitted
through the contact discontinuity between states 2 and 3 .1 Previous experiments conducted in the
expansion tube at the University of Illinois at Urbana Champaign12 have suggested that the upper limit
for the speed of sound ratio between the contact discontinuity is around c3/c2 ≈ 0.5 to avoid an acoustic
“focusing” effect. This criterion will be followed when specifying the tube fill pressures.

The intermediate and accelerator chambers are to be separated by a fast acting sliding valve. This sliding
valve will separate the two tubes during filling, and then be pulled away right before the primary diaphragm
is burst. The helium in the accelerator tube will diffuse into the intermediate tube after the sliding valve is
pulled away. A characteristic diffusion length scale, Ld, associated with helium and air can be approximated
as Ld =

√
Dtd, where D is the binary diffusion coefficient for air and helium, and td is a characteristic

time. For practical tube fill pressures (p1, p11 ≈ 10 kPa), D ≈ 0.001 m2/s,20 which translates to a diffusion
distance of about Ld = 3 mm in td = 10 ms. This should prove to be an acceptable diffusion length and
opening time.

Maximizing the test time is of paramount importance in such an impulse hypersonic facility. Trimpi and
Callis2,3 make some assumptions about how the wave systems form in the expansion tunnel to intelligently
select the length of each section. Furthermore, the starting time of the nozzle3,21 and the wall boundary
layer22 must be considered when sizing a proposed facility. Procedures for finding estimates of the test
time in an expansion tube can be found in the literature;1,12 but, in order to include the nozzle geometry,
non-steady Euler simulations are necessary to find more accurate estimates of the test time.

IV. Expansion Tunnel Sizing

In this section the basic methodology is explained that was used to decide upon the dimensions used in
the numerical simulations for a VET. All of the following calculations assume that the inner diameter of
the driver section, intermediate section, and accelerator section is only 0.0254 m. This is a relatively small
diameter, which makes the entire facility under 4 m long, or under two-stories tall. Since the test time scales
linearly with diameter, it is very easy to see how this design could be applied to larger facilities.

Due to viscous effects, boundary layers will begin to form along the tube walls in the facility, which will
cause the shockwave produced to decelerate. In order to mitigate the viscous effects on the facility, care must
be taken when choosing the ratio L/d, where L is the sum of the lengths of the intermediate and accelerator
sections, and d is the diameter of the tube used for the intermediate and accelerator sections. The higher
this ratio is, the more significant the viscous effects will be. Based on previous studies, a very conservative
value of L/d = 50 is chosen for this study (L = 1.27 m), which will ensure that viscous effects are negligible
in this facility.23 As the test time scales linearly with L, the test times predicted from this analysis are
therefore very conservative in nature.

Once the diameter of the tube for the intermediate and accelerator sections is chosen, and the maximum
length of the intermediate and accelerator sections is prescribed, it is necessary to have an idea of what fill
pressures are desired in order to scale the lengths of the intermediate and accelerator tubes appropriately.
The maximum fill pressure for the driver section of 8.16 MPa (just under 1200 PSI) is chosen so that it
may be filled from conventional helium bottles. Helium will also be used in the driver section due to its
relatively high sound speed. Once this pressure is chosen, the parameters chosen for the intermediate tube
(air) and accelerator tube (helium) will determine the test conditions. However, these conditions must be
chosen in such a way that the ratio of c3/c2 is not much greater than 0.5, as previously discussed. Decreasing
the value of c3/c2 can be achieved simply by increasing the pressure ratio P4/P1. For these reasons, a fill
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pressure of 7.75 kPa is chosen for the intermediate and accelerator sections. This gives a pressure ratio of
approximately 1050, which corresponds to a c3/c2 ratio of approximately 0.57, which should be acceptable
for noise considerations. This also keeps the maximum static temperature reached in the facility below
2000 K, as previously discussed.

Once the ideal fill pressures have been chosen, the optimal lengths for the different sections must be
chosen, keeping in mind the previously prescribed constraint that L/d must not exceed 50. In order to
calculate both the theoretical test time in an expansion tube with no nozzle, and to pick the optimal lengths
for the different sections, an x-t diagram focused on the test time is useful. In Figure 3 the ideal test time
is labeled, and it corresponds to the time between the contact discontinuity created by the transmitted
shock, and intersection of the tail and the reflected head of the secondary expansion wave. The head of
the expansion wave reflects off of the initial contact discontinuity generated when the primary diaphragm
ruptures. Although the reflected head of the expansion wave is plotted as a straight line, it is in fact curved
in the non-simple wave region bounded by the tail of the expansion wave and the initial contact discontinuity.
In addition, the original contact discontinuity begins to curve downwards in x-t space after the first wave
from the expansion wave intersects with it. It is possible to calculate the analytical intersection between
the reflected head of the expansion wave and the tail of the expansion, and this gives the location of the
optimal test time.12,24 However, in the 1D case, if the test section is not located at the ideal location, the
test time will be limited either by the head of the expansion wave, or by the reflected tail of the expansion
wave. With L/d limited to 50, the ideal lengths for the intermediate and accelerator tubes are 0.86 m and
0.41 m respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

Test Time

x, m

t,
μ
s

Transmitted Shock
Contact Discontinuity

Expansion Tail

Expansion Head

Reflected Expansion Head

Contact Discontinuity

Figure 3. Schematic x-t diagram focusing on the accelerator tube, and the ideal test time for an expansion tube with
no nozzle. All times and lengths are physical and based on calculations performed using the method of characteristics
with previously stated fill pressures. Note that while the reflected head of the expansion wave is plotted as a straight
line, it is actually curved in the non-simple wave region bounded by the tail of the expansion wave and the original
contact discontinuity. In addition, the original contact discontinuity also begins to curve after the first wave from the
expansion head intersects with it. t = 0 μs corresponds to when the shock reaches the interface of the intermediate and
accelerator section, and x = 0 m corresponds to the start of the accelerator tube.

The addition of a nozzle at the end of the accelerator section makes the length selection process for the
intermediate and accelerator tubes more complicated. The test time is still limited by the arrival of the
reflected expansion head, but now the location of the nozzle has a large effect on the test time. In order
to allow the test gas to expand through the nozzle before the reflected expansion head wave arrives, it was
found that putting the nozzle upstream of the ideal accelerator tube length gave the best results. Numerical
simulations are used in order to help better understand the effect that expanding the flow will have on the
test time of the system, and this will be discussed in more detail in the next section.
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V. Numerical Methods

While it is possible to solve the 1D problem analytically as shown previously, as soon as a nozzle is
added, the problem becomes inherently 2D or 3D. The problem can still be cast in a 1D configuration, but
analytical solutions no longer exist to describe the test time after the nozzle has expanded the flow. In this
case, numerical simulations are very useful when trying to estimate the duration of the test time. The present
analysis is performed assuming that all the gases behave as ideal gases, and that no chemical reactions occur
throughout the experiment. Due to the relatively low static temperatures reached by the gases throughout
the different states, this is a valid assumption. In addition, it is assumed that there is no mixing between
any of the gases at the fluid interfaces as a result of the short run time.

V.A. The Compressible Euler Equations with an Area Change

In order to explore a large parameter space at a relatively low computational cost, quasi 1D simulations are
performed based on a method suggested by Glaister.25 A brief summary of this method is presented below.

In three dimensions, and in a general orthogonal coordinate system given by (x1, x2, x3), the Euler
equations are given by Eq. 3-5.

ρt +∇ · (ρu) = 0 (3)

(ρu)t +∇ · (ρuu) = −∇p (4)

et +∇ · [u(e+ p)] = 0 (5)

Combining these with Eq. 6, the equation of state for an ideal gas, allows the flow of an unsteady
compressible inviscid fluid to be solved for.

e =
p

γ − 1
+

1

2
ρu · u (6)

Here, ρ = ρ(x, t), p = p(x, t), e = e(x, t), and u = u(x, t) = [u1(x, t), u2(x, t), [u3(x, t)]
T represent the

density, pressure, total energy, and the three components of velocity, respectively, at a general position in
space given by x = (x1, x2, x3)

T and at time t. The divergence and gradient operators are left in a general
form, and to evaluate these equations, the appropriate operator must be used based on the chosen coordinate
system.

In a general 3D orthogonal coordinate system, a line element ds can be written as

ds = ξ1dx1x̂1 + ξ2dx2x̂2 + ξ3dx3x̂3. (7)

In Eq. 7, x̂1, x̂2, and x̂3 are the unit vectors parallel to their specific coordinate lines. Assuming an ideal
nozzle, all changes in the flow depend only on one coordinate direction. In this case, it is assumed that
all variables are a function of only x1 and t, where the x1 coordinate corresponds to the location along
the centerline of the nozzle. It is now possible to write u = [u(x1, t), 0, 0]

T = u, which is a parallel flow
assumption, and is only valid for nozzles where the nozzle area varies relatively slowly. With this simplifying
assumption, Eq. 3 - 5 can be rewritten as follows

(ξ1ξ2ξ3ρ)t + (ξ2ξ3ρu)x1 = 0 (8)

(ξ1ξ2ξ3ρu)t + (ξ2ξ3ρu
2)x1 = −ξ2ξ3

∂p

∂x1
(9)

(ξ1ξ2ξ3e)t + [ξ2ξ3u(e+ p)]x1 = 0 (10)

In order to describe compressible fluid flow through a duct of smoothly varying cross section, ξ1 can be
an arbitrary constant, and here it is assumed that ξ1 = 1. Using this assumption, it is now possible to once
again rewrite the Euler equations as

(ξ2ξ3ρ)t + (ξ2ξ3ρu)x1 = 0 (11)

(ξ2ξ3ρu)t + [ξ2ξ3(p+ ρu2)]x1 = p
∂

∂x1
(ξ2ξ3) (12)

(ξ2ξ3e)t + [ξ2ξ3u(e+ p)]x1
= 0 (13)
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In the above equations, the left hand side is similar to the 1D compressible Euler equations in conservative
form, while there is an additional source term added to the right hand side that is not present in the classic
1D Euler equations. In order to simplify these equations further, Glaister uses the notation S(r) = ξ1ξ2,
so that S(r) represents the cross-sectional area of the duct at a point r, where r is the distance in the x1

direction. This system of equations can then be written as

[S(r)w]t + [S(r)f(w)]r = g(w), (14)

where

w =

⎛
⎜⎝

ρ

ρu

e

⎞
⎟⎠ , f(w) =

⎛
⎜⎝

ρu

p+ ρu2

u(e+ p)

⎞
⎟⎠ and g(w) =

⎛
⎜⎝

0

pS′(r)
0

⎞
⎟⎠ . (15)

Note that it is also possible to attain Eq. 15 by integrating the Euler equations over a cross section at a
given point in space. It can be shown that S(r)f(w) = f [S(r)w] which will be called F(W), and that
S(r)wt = [S(r)w]t, assuming that the geometry of the domain does not change with time. This allows
Eq. 14 to be re-written as,

Wt + [F(W)]r = g(w), (16)

where W = S(r)w. Following the terminology used by Glaister, this gives rise to a new set of ‘conserved’
variables; R, E, and P. R = S(r)ρ, E = S(r)e and P = S(r)p. It is important to note that with
these new conserved variables, the gas velocity, speed of sound, and enthalpy remain the same: U = u,
a =

√
γp/ρ =

√
γP/R, and h = (e+p)/ρ = (E+P)/R = H. In addition, the Jacobian remains unchanged:

A =
∂F(W)

∂W
=

∂f(w)

∂w
. (17)

Finally, the Euler equations for duct flow are written as

⎛
⎜⎝

R
RU

E

⎞
⎟⎠

t

+

⎛
⎜⎝

RU

P +RU2

U(E + P)

⎞
⎟⎠ =

⎛
⎜⎝

0

P S′(r)
S(r)

0

⎞
⎟⎠ . (18)

with

E =
P

γ − 1
+

1

2
RU2. (19)

V.B. Roe Solver

A standard Roe Riemann Solver26 will be used to solve these equations. To denote Roe averaged values, the
notation Ỹ will be used, where

Ỹ =

√RLYL +
√RRYR√RR +
√RL

. (20)

L and R refer to the left and right cell values, as the averaged quanties are calculated at cell interfaces. The
eigenvalues of Ã can be calculated to be

λ̃(1) = Ũ − ã, λ̃(2) = Ũ , λ̃(3) = Ũ + ã (21)

with corresponding eigenvectors of

ẽ(1) =

⎛
⎜⎝

1

Ũ − ã

H̃ − Ũ ã

⎞
⎟⎠ , ẽ(2) =

⎛
⎜⎝

1

Ũ
1
2 Ũ

2

⎞
⎟⎠ and ẽ(3) =

⎛
⎜⎝

1

Ũ + ã

H̃ + Ũ ã

⎞
⎟⎠ , (22)

where ã = (γ − 1)(H̃ − 1
2 Ũ

2).
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A numerical approximation for g̃(w) must be used, and Glaister proposed that

g̃2(w
n) =

Sj − Sj−1

Δr

ρ̃ã2

γ
(23)

is a natural choice for this approximation. Here, Sj represents the average cross sectional area over cell j.
With this notation, it is easy to see that to go from this new set of conserved variables to the more traditional

set of conserved variables, the simple relation of wn
j =

Wn
j

Ŝj
must be used.

The fluxes are projected onto the eigenvectors of the system so that a standard explicit update step can
be employed. In addition to the standard wave strengths being obtained for the Euler equations, g̃(wn) is
also projected onto the eigenvectors which modifies the standard wave strengths that result from the Euler
equations. Cell values are updated using a flux difference splitting method which is outlined in Eq. 24.

Wn+1
j = Wn

j − Δt

Δr

⎛
⎜⎜⎝

∑
λ̃
(i)

j+1
2

≤0

λ̃
(i)

j+ 1
2

γ̃
(i)

j+ 1
2

ẽ
(i)

j+ 1
2

+
∑

λ̃
(i)

j− 1
2

≥0

λ̃
(i)

j− 1
2

γ̃
(i)

j− 1
2

ẽ
(i)

j− 1
2

⎞
⎟⎟⎠ (24)

Here, the summations are performed over i, where i = 1, 2, 3. The subscripts refer to the cell interface
(j ± 1/2) where each value is calculated, the regular superscripts (n) correspond to a time step, and the
superscripts in brackets (i) correspond to a component (i = 1, 2, 3).

Here, γ̃(i) refers to the modified wave strength, where

γ̃(i) = α̃(i) + β̃(i)/λ̃(i). (25)

The α̃(i) wave strengths are the standard Roe-averaged wave strengths, where

α̃(1) =
1

2ã2
(ΔrP − R̃ãΔrU), α̃(2) = ΔrR− ΔrP

ã2
and α̃(3) =

1

2ã2
(ΔrP + R̃ãΔrU). (26)

The Δr operator is the difference in value between different cells, so that ΔrUj+1/2 = Uj+1 − Uj . The β̃(i)

in Eq. 24 takes into account changes in cross sectional area and can be expressed as

β̃(1) =
R̃ΔrS

2γS̃
[(γ − 1)Ũ + ã], β̃(2) = − (γ − 1)R̃ŨΔrS

γS̃
, and β̃(3) =

R̃ΔrS

2γS̃
[(γ − 1)Ũ − ã], (27)

where S̃j+1/2 =
√

Sj+1Sj .

V.C. Treatment of Fluid Interfaces

The above numerical method assumes that γ is constant for every cell in the domain. This is not true for the
present investigation. It is very easy to create unphysical oscillations at the interface between two different
fluids if no special care is taken when calculating values at the fluid interfaces. A modification to the above
scheme is used that was originally suggested by Abgrall and Karni.27

Abgrall and Karni suggested that a simple way to avoid unphysical oscillations at fluid interfaces is to
calculate two separate fluxes between the different fluids. A schematic explaining this method is shown in
Figure 4, where the cell face at j + 1

2 is the interface between two different fluids with two different ratios
of specific heats, γ1 and γ2 respectively. When updating cell j, γ1 is used to calculate the properties needed
at j + 1

2 , and when updating cell j + 1, γ2 is used to calculate the values needed at j + 1
2 . In addition, the

timing as to when the γ values are updated in the domain based on a scalar transport equation has to be
performed carefully. A more detailed explanation can be found in Abgrall and Karni’s original paper.27

The drawback is that this scheme no longer conserves total energy since two different fluxes are calculated
at the same interface. In addition, the scheme uses “frozen” thermodynamics, or γ values from the previous
time step to calculate the new values. Abgrall and Karni show that across a material interface where pressure
and velocity are constant (a standard contact discontinuity), the errors induced due to the different fluxes
used and the lag in updating γ are actually opposite in sign, and very similar in magnitude. In addition,
there are only three material interfaces in the current simulations, and these interfaces are the only places
where total energy is not conserved. When the number of grid points in the domain is increased, the relative

9 of 18

American Institute of Aeronautics and Astronautics



loss of total energy reduces. It has been checked that the loss of total energy in the simulations run for this
investigation are negligible.

Figure 4. Schematic for the flux correction suggested by Abgrall and Karni when dealing with an interface between
two different fluids.

V.D. Level Set

In order to accurately describe the location of the different fluids, a method has to be implemented to track
the location of the fluid interfaces. A simple advection equation (Eq. 28) is solved where φ is a passive scalar.

∂φ

∂t
+ u

∂φ

∂x
= 0 (28)

The levelset function, φ, is used to determine the location of the different gases. For the case where the
driver and accelerator gases are the same and the test gas is different, it is simple to assign φ an initial
value of 1 in the driver and accelerator sections, and a value of -1 in the intermediate section. If a nozzle is
used, it is assumed that the nozzle will be filled with low pressure air, and therefore φ is this section is also
assigned a value of -1. After advecting φ, a hard switch is employed such that if φ ≥ 0, the properties of
driver/accelerator gas are used; and if φ < 0, the properties of the intermediate gas are used.

A modified semi-lagrangian scalar scheme28 is used to solve Eq. 28.

V.E. Higher-Order Corrections

The numerical scheme explained in Section V.B is first order at best and very diffusive, which means shocks
and contact discontinuities are unphysically spread over many grid cells. To help alleviate this problem, a
high-order flux correction is added using wave limiters.29 In order to implement this, an additional term is
added to Eq. 24, so that it now becomes

Wn+1
j = Wn

j − Δt

Δr

⎛
⎜⎜⎝

∑
λ̃
(i)

j+1
2

≤0

λ̃
(i)

j+ 1
2

γ̃
(i)

j+ 1
2

ẽ
(i)

j+ 1
2

+
∑

λ̃
(i)

j− 1
2

≥0

λ̃
(i)

j− 1
2

γ̃
(i)

j− 1
2

ẽ
(i)

j− 1
2

⎞
⎟⎟⎠− Δt

Δr
(F̂j+ 1

2
− F̂j− 1

2
) (29)

where

F̂j− 1
2
=

1

2

3∑
i=1

|λ̃(i)

j− 1
2

|
(
1− Δt

Δr
|λ̃(i)

j− 1
2

|
)
B̃(i)

j− 1
2

. (30)

B̃(i)

j− 1
2

= Φ(θ
(i)

j− 1
2

)B(i)

j− 1
2

, where Φ(θ) is a limiting function, and B(i)

j− 1
2

= α̃
(i)

j− 1
2

ẽ
(i)

j− 1
2

. A Van Leer limiting

function is used:30

Φ(θ) =
θ + |θ|
1 + θ

. (31)

A careful choice must be made for θ in order to deal with the relatively large change in properties at the
interfaces between the different sections of the Expansion Tunnel. The initial pressure ratio of≈ 1000 between
the driver gas and intermediate gas creates extremely steep gradients and rapidly changing eigenvectors. Lax
and Liu31 suggested a robust function for θ that is designed to work with systems of non-linear equations.
They define

θ
(i)

j− 1
2

=
B̂(i)

J− 1
2

· B(i)

j− 1
2

B(i)

j− 1
2

· B(i)

j− 1
2

(32)
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where

B̂(i)

J− 1
2

= (̃l
(i)

j− 1
2

ΔWJ− 1
2
)ẽ

(i)

j− 1
2

(33)

and l̃ is the appropriate left eigenvector using Roe-averaged quantities. In addition, J changes value based
on the sign of the eigenvector, so that the limiting is performed in an upwinded or downwinded manner as
necessary, so

J =

⎧⎨
⎩

j − 1 if λ̃
(i)

j− 1
2

> 0

j + 1 if λ̃
(i)

j− 1
2

< 0
(34)

These higher-order corrections do a good job at making both contact discontinuities and shocks much
sharper in the simulations. The flux limiters are not used in the vicinity of walls, or right at the interface
between two fluids with different values of γ.

V.F. Entropy Fix

Due to the large pressure ratios needed initially in order to achieve relevant test conditions, an entropy fix is
required to avoid entropy-violating (expansion) shocks in the solution. The entropy fix proposed by Sanders
et al.32 is implemented, and no entropy violating solutions are observed.

VI. Numerical Results

In this section, the numerical results obtained are presented. In order to validate the numerical methods
used, comparisons were made between analytic values calculated and 1D numerical simulations. After
good agreement was achieved in 1D, simulations were run in quasi-1D (non-uniform cross-sectional area) to
simulate adding a conical nozzle to the end of the accelerator section.

VI.A. 1D Results

A 1D numerical simulation with the same initial conditions as Figure 2(b) was performed in order to validate
the numerical method used. As the simulation did not include the nozzle, the “Steady Expansion” section is
not included, which corresponds to the flow passing through a diverging nozzle. In this simulation, LD = 2.0
m, LI = 0.86 m, and LA = 1.0 m. The subscripts correspond to the driver section, intermediate section,
and accelerator section respectively. The accelerator section is made longer in order to check that the wave
pattern predicted in Figure 3 matches the wave pattern produced in the simulations. The primary diaphragm
is located at x = 0 m, and the interface between the intermediate and accelerator sections is at x = 0.86 m.
The gas properties are: ρD = 13.1 kg/m3, PD = 8.16 MPa, ρI = 0.0901 kg/m3, PI = 7.75 kPa, ρA = 0.0124
kg/m3, and PA = 7.75 kPa. Helium is used both in the driver and accelerator section (γD = γA = 1.67),
and air is used in the intermediate section (γI = 1.4).

The steady states calculated from the P-U diagrams (previously described) are compared to the numerical
results (Table 2). We see a good agreement between the numerical results and the analytical solution.

Another way to visualize the results is to produce a numerical x-t diagram, using a numerical schlieren
type method. The density field is sampled at discrete times, and then the density gradient is calculated
using a standard centered second-order finite-difference method. In order to visualize the gradients better,
the function −log(| ∂ρ∂x |) is plotted. Figure 5 shows an example of a numerical x-t diagram. The same flow
phenomena described in Figure 1 are clearly seen in Figure 5.

It is now possible to compare both the numerical test time in the 1D expansion tube, and the location
of the longest possible test time with the analytical predictions. The location of the ideal test time can
be found by looking at the numerical x-t diagram and locating the point where the reflected head of the
expansion and the tail of the expansion meet, and then double checking this with the flow properties at this
location. This is found to occur at x = 1.26 ± 0.01 m which agrees well with the analytical prediction of
1.27 m.

On the other hand, defining a test time from the numerical simulations does introduce some arbitrari-
ness. Contact discontinuities, which are infinitely thin in the ideal case, are spread out over many cells in
simulations due to numerical diffusion. Therefore, it is not possible to estimate a precise numerical test time.
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Table 2. Comparison between numerical results and analytical calculations
for the various steady state regions. The numerical values have been av-

eraged over the respective specific section, at t = 450μs for states 2 and

3 and at t = 600μs for states 12 and 13 . P , U and ρ are the pressure,

velocity and density, respectively.

State Number Quantity Numerical Value Analytical Value

2 3 P (Pa) 2.65× 105 2.65× 105

2 3 U (m/s) 1.52× 103 1.52× 103

2 ρ (kg/m3) 0.461 0.462

3 ρ (kg/m3) 1.67 1.68

12 13 P (Pa) 9.24× 104 9.24× 104

12 13 U (m/s) 2.14× 103 2.14× 103

13 ρ (kg/m3) 0.217 0.218

The most conservative estimate requires that all the flow parameters are completely constant during the test
time. This gives a lower test time than the analytical case because of the finite width of the contact discon-
tinuities. In addition, the amount of data points saved in time while the simulation is running introduces a
resolution error. During this simulation, data files were saved every 8 μs, and this results in a conservative
estimate of the test time to be approximately 80 μs. If the contact discontinuity between helium and air is
said to be infinitely small, then the test time starts from the arrival of the test gas (numerically measured
when the levelset function switches sign). In this case, the test time is approximately 90 μs. As expected,
the numerical simulations under predict the analytical test time prediction of 106 μs. The last source of
discrepancy between the numerical and analytical test time is due to the primary contact discontinuity. The
spreading of this contact discontinuity due to numerical diffusion leads to an early reflection of the secondary
expansion. This ultimately leads to a lower test time as well. However, these are all extremely conservative
estimates, since, in experimental facilities, test times can be defined as regions of the flow where fluctuations
are less than 50% of the mean value, and we are cutting off the test time when values start to change on the
order of 5%.

Test Time

x, m
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μ
s

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

100
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300

400

500

600

700
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Figure 5. Numerical x-t diagram for a 1D expansion tube with no nozzle. The contours correspond to density gradients
in the flow. All of the physical phenomena expected are clearly seen in the flow. The test time is limited by the reflection
of the head of the secondary expansion wave reflecting off of the primary contact discontinuity intersection with the
tail of the expansion.

VI.B. Quasi-1D Results

The addition of a nozzle to the accelerator tube expands the design parameter space that one must investigate.
It is now possible to change the location of the nozzle, the geometry of the nozzle, the nozzle diaphragm
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burst pressure, and the pressure and type of gas in the nozzle at the beginning of a run. In the interest
of brevity, the only results that will be shown here correspond to an expansion tunnel with LI = 0.96 m,
LA = 0.31 m, and a 10◦ conical nozzle of length LN = 0.40 m. This corresponds to an expansion ratio of
10, and was found to generate useful test conditions. The dimensions of the intermediate and accelerator
tubes have been changed from the 1D optimal dimensions in order to try to maintain a long test time when
adding a nozzle at the end of the accelerator tube.

The nozzle is initially placed at low pressure (PN = 100 Pa), and a burst pressure is specified. A
relatively light diaphragm is being used that bursts when the pressure difference between the upstream cell
and downstream cell exceeds 30 kPa. Until the diaphragm breaks, it acts as a perfectly reflecting, infinitely
stiff wall.

VI.C. Ideal Fill Conditions

Figure 6 shows a numerical x-t diagram for the dimensions described above, and the same conditions specified
in Section VI.A. The interfaces between the driver and the intermediate sections, intermediate and accelerator
sections, and accelerator and nozzle sections are located at 0 m, 0.96 m, and 1.27 m respectively. Although
hard to visualize on the x-t diagram, the reflection of the expansion head off the original contact discontinuity
still limits the test time as the flow travels through the nozzle.
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s

Test Time
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(b)

Figure 6. Numerical x-t diagrams for an expansion tunnel with a 10◦ half angle diverging conical nozzle. The entire
facility (left (a)) and a close-up of the accelerator section and nozzle (right (b)) are shown.

Figure 7 shows plots of γ, ρ, p, u, and M during the chosen test time. The test time is defined to be
between 870 μs and 920 μs approximately, with this once again being a conservative test time estimate.
The average flow values are calculated during this test time. During the test time, ρ = 0.0182 kg/m3,
U = 2.54 km/s, P = 2.87 kPa, and M = 5.41. This corresponds to a reservoir enthalpy of 3.78 MJ/kg.
These values agree very well with the test time conditions predicted by an isentropic steady expansion,
which correspond to ρ = 0.0183 kg/m3, U = 2.54 km/s, P = 2.89 kPa, and M = 5.40. Uncertainties are not
included on these numerical predictions because even though the standard deviation of all these quantities
is below 0.7% of the mean quantity, non-ideal effects will cause fluctuations during the test time which are
not accounted for in the numerical simulations.

Assuming Sutherland’s Law for viscosity, these test conditions also correspond to a unit Reynold’s number
of approximately 1.3× 106/m.

In order to show that it is possible to have more than one run condition for a given experimental set-up,
simulations were also performed with fill pressures in the intermediate and accelerator tubes doubled and
halved from the previously proposed values. The data is still sampled at a downstream location corresponding
to an expansion ratio of 10. Figure 8 shows the relevant run time flow properties for the case where the fill
pressures in the intermediate and accelerator tubes are doubled; and Figure 9 shows the case where the fill
pressures are halved. A summary of these three possible run conditions are summarized in Table 3.
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Figure 7. Flow conditions at a point (x = 1.67 m) corresponding to an expansion ratio of 10. A conservative estimate
of the test time is defined to be between 870 μs and 920 μs.

Table 3. Comparison between test conditions predicted for varying fill pressures.
The double pressure and half pressure cases refer to doubling and halving the
fill pressure of both the intermediate and accelerator tubes in comparison to the
design conditions. ρ∞, P∞, U∞, and M∞ are the free-stream density, pressure,
velocity and Mach number, respectively. hR is the effective reservoir enthalpy.

Property Design Conditions Double Pressure Half Pressure

ρ∞ (kg/m3) 0.0182 0.0357 0.00925

P∞ (kPa) 2.87 4.76 1.70

U∞ (km/s) 2.54 2.30 2.78

M∞ 5.41 5.31 5.47

hR (MJ/kg) 3.78 3.11 4.51

Test Time (μs) 50 50 35
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Figure 8. Test time results when the fill pressures in the intermediate and accelerator tubes are doubled from the
design conditions. Flow conditions at a point corresponding to an expansion ratio of 10 are still used. A conservative
estimate of the test time is defined to be between 970μs and 1020μs.
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Figure 9. Test time results when the fill pressures in the intermediate and accelerator tubes are halved from the design
conditions. Flow conditions at a point corresponding to an expansion ratio of 10 are still used. A conservative estimate
of the test time is defined to be between 795μs and 830μs.
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VII. Conclusion

The vertical expansion tunnel (VET) has advantages over the reflected shock tunnel (RST). Three of
which are that: the VET does not suffer from driver gas contamination issues; it does not need to heat the
test gas to as high a temperature to achieve the same run condition; and it has a wider range of effective
reservoir conditions. A disadvantage of a VET relative to a RST is the shorter useful test time. The VET
has one primary advantage over a conventional expansion tube (ET), which is that the secondary diaphragm
is unnecessary. Without a secondary diaphragm in a VET, the test time is improved and the contamination
of the flow by the diaphragm particulates is eliminated. A disadvantage of a VET relative to an ET is
the more limited operating parameter space. Perfect-gas quasi-1D gas dynamic computations show the test
time of a VET (cold driver, a 0.0254 m diameter tube, and a 10◦ nozzle) is on the order of 50 μs, which is
comparable to existing ET facilities (given the facility sizing, namely tube diameter). The effective reservoir
enthalpy of the VET lies somewhere between the RST and the ET.
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