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A key issue in conceptual design and analysis of proposed propulsion systems is the
role of the combustion mode in determining the overall efficiency of the system. Of par-
ticular recent interest are detonations and the efficiency of detonation-based propulsion
systems as compared to more conventional systems based on low-speed flames. Our goal is
to understand, based on thermodynamics, the merits of detonative combustion relative to
deflagrative combustion characteristic of conventional ramjet and turbojet engines. After
reviewing detonation thermodynamics, we analyze the merits of detonations for steady
flow systems and highlight the importance of the irreversible portion of the entropy rise
in steady flow analysis. The conventional analysis of steady combustion waves is reformu-
lated to obtain solutions at a fixed stagnation enthalpy. The implications of this analysis
are that detonations are less desirable than deflagrations for a steady air-breathing com-
bustion system since they entail a greater entropy rise at a given flight condition. This
leads us to consider the situation for unsteady, i.e., intermittent or pulsed, combustion
systems which use various modes of operation. For unsteady detonation waves, we con-
sider a notional cyclic process for a closed system (the Fickett-Jacobs cycle) in order to
circumvent the difficulties associated with analyzing a system with time-dependent and
spatially inhomogeneous states. We use the thermodynamic principles for closed systems
to compute the maximum amount of mechanical work produced by a cycle using an un-
steady detonation process. This ideal mechanical work is used to compute a thermal
efficiency for detonations. Although this efficiency cannot be precisely translated into
propulsive efficiency, the results are useful in comparing detonations with other combus-
tion modes. We find that the efficiency of cycles based on detonation and constant-volume
combustion are very similar and superior to a constant-pressure combustion (Brayton)
cycle when compared on the basis of pressure at the start of the combustion process.

Nomenclature
A piston area
Cp specific heat capacity at constant pressure
E total energy
e internal energy per unit mass
F thrust
h enthalpy per unit mass
M Mach number
MCJ Chapman-Jouguet detonation Mach num-

ber
M mass of explosive in closed system
ṁ mass flow rate
P pressure
Pt total pressure
Q heat exchange
qc mixture specific heat of combustion
qin cycle heat addition per unit mass
qout cycle heat removal per unit mass

Copyright c© 2004 by California Institute of Technology. Pub-
lished by the American Institute of Aeronautics and Astronautics,
Inc. with permission.

R perfect gas constant
s entropy per unit mass
T temperature
Tt total temperature
t time
UCJ Chapman-Jouguet detonation velocity
u flow velocity in fixed reference frame
u′ flow velocity in wave reference frame
up piston velocity
v specific volume
W work
w work per unit mass
wnet net work done per unit mass during cycle
γ specific heat ratio
∆smin minimum part of entropy rise
∆sirr irreversible part of entropy rise
φ equivalence ratio
πc compression ratio = P1′/P1

π′
c combustion pressure ratio = P2/P1

ρ density
ηFJ FJ cycle thermal efficiency
ηth thermal efficiency1 of 18
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Introduction
The thermodynamic processes encountered in air-

breathing propulsion involve sequential compression,
combustion, and expansion. This sequence is turned
into a closed cycle through a constant pressure process
during which the fluid exhausted into the atmosphere
at the end of the expansion process is converted into
the inlet fluid by exchanging heat and work with the
surroundings. The thermal efficiency of an arbitrary
cycle involving adiabatic combustion can be defined as
the ratio of the work done by the system to the specific
heat of combustion of the mixture.

ηth =
w

qc
(1)

P

v

1 4

qout

5

qin

Fig. 1 Arbitrary thermodynamic cycle ending
with constant-pressure process.

The work done and mixture heat of combustion can
be clarified by considering a thermodynamic cycle con-
sisting of an arbitrary adiabatic process taking the
system from its initial state 1 to state 4, and ending
with a constant pressure process taking the system
back to state 1. As shown in Fig. 1, there is an
intermediate state 5 between 4 and 1. The heat in-
teraction between steps 4 and 5 is required to remove
an amount of thermal energy qout > 0 from the prod-
ucts of combustion and cool the flow down from the
exhaust temperature to the ambient conditions. Since
this process occurs at constant pressure, the heat in-
teraction can be determined from the enthalpy change

qout = h4 − h5 . (2)

The heat interaction between steps 5 and 1 is required
to add an amount of thermal energy qin > 0 in order
to convert the combustion products back to reactants.
This interaction also takes place at constant pressure
so that

qin = h1 − h5 . (3)

Note that this defines the quantity qc = qin in a fash-
ion consistent with standard thermochemical practice

if the ambient conditions correspond to the thermo-
dynamic standard state. Applying the First Law of
Thermodynamics around the cycle, the work done by
the system can be computed as

w = qin − qout = h1 − h4 . (4)

The thermal efficiency can, therefore, be written as

ηth =
h1 − h4

h1 − h5
=

h1 − h4

qc
(5)

which agrees with the definition given in Eq. 1 in terms
of the mixture specific heat of combustion.

For steady flow engines, the cycle analysis based on
a closed system (fixed mass of material) is completely
equivalent to the flow path analysis based on an open
system, as long as the mass and momentum contribu-
tions of the fuel are negligible and the exhaust flow
is fully expanded at the exit plane.1 Within these
assumptions, we can make a correspondence between
states in the cyclic process of Fig. 1 and an open ther-
modynamic cycle. If the states in the open and closed
cycles are equivalent, then the thermal efficiencies are
the same for the two processes. The equivalence is
based on the control volume analysis of the energy bal-
ance in an open system whose inlet plane is at state 1
and exit plane is at state 4.

h1 + u2
1/2 = h4 + u2

4/2 (6)

Using the cycle thermal efficiency as defined in Eq. 1,
we find that

ηth =
u2

4 − u2
1

2qc
. (7)

Based on this equivalence, the thrust of a steady
pressure-matched propulsion system can be directly
calculated from the thermal efficiency.1

F = ṁ1 (u4 − u1) = ṁ1

(√
u2

1 + 2ηthqc − u1

)
(8)

This method can be extended to unsteady propulsion
systems when the average exit plane pressure equals
the ambient pressure.1 However, for unsteady flow,
the thrust calculation with the cycle approach requires
the explicit computation of efficiency for the unsteady
cycle and the knowledge of another parameter, called
the efficiency of non-uniformity by Foa.1 These cal-
culations require detailed experimental measurements,
unsteady analytical models, or numerical simulations.

For an ideal (reversible) process, the heat removed
during the constant-pressure process 4–5 can be ex-
pressed as

qout =
∫ s4

s5

Tds (9)

and the thermal efficiency is

ηth = 1 −
∫ s4

s5
Tds

qc
. (10)
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For a given initial state 1 and a given mixture, state 5
is fixed and the value of the entropy is determined by
the specific heat of combustion and the product and
reactant composition. Thus, the heat removed qout

increases and the thermal efficiency decreases with in-
creasing values of s4. In general, the thermal efficiency
is maximized when the entropy rise during process 1–4
is minimized.

This general result can be computed explicitly if we
consider a perfect gas and take s5 = s1, which is ap-
proximately satisfied for real mixtures and exactly so
for the simple model discussed later in this paper. The
integral of Eq. 9 is calculated explicitly as a function
of the entropy rise between states 1 and 4, and the
thermal efficiency becomes

ηth = 1 − CpT1

qc

[
exp

(
s4 − s1

Cp

)
− 1

]
. (11)

The overall entropy rise is the sum of the entropy
rise generated by combustion and of the entropy in-
crements generated by irreversible processes such as
shocks, friction, heat transfer, Rayleigh losses (com-
bustion or equivalent heat addition at finite Mach
number), or fuel-air mixing.1 The entropy increment
associated with the combustion process is often the
largest of all increments in the cycle. A portion of
this entropy increment is associated with the fact that
the temperature increases significantly in combustion,
analogous to the entropy increase that is produced
by a reversible addition of heat to a non-flowing sys-
tem. However, there is also an irreversible component,
which depends on the combustion mode. Because of
the dependence of the thermal efficiency on the total
entropy rise, the selection of the combustion mode is
critical to engine performance.

Entropy variation along the Hugoniot
In this section, we supply the well-known and basic

facts regarding the elementary gas dynamics and ther-
modynamics of detonation waves considered as discon-
tinuities. The different steady combustion modes that
can be obtained are usually analyzed using a control
volume surrounding the combustion wave, such as that
of Fig. 2. The mass, momentum, and energy conser-
vation equations are applied for steady, constant-area,
and inviscid flow.

ρ1u
′
1 = ρ2u

′
2 (12)

P1 + ρ1u
′
1
2 = P2 + ρ2u

′
2
2 (13)

h1 + u′
1
2
/2 = h2 + u′

2
2
/2 (14)

States 1 and 2 correspond respectively to the reactants
upstream of the wave and the products downstream
of the wave. The usual analysis considers fixed ther-
modynamic conditions upstream (P1, ρ1, h1) and a
variable inflow velocity u′

1. Although this is the con-
ventional approach, as we will see later, it is not

the appropriate approach for optimizing steady, air-
breathing propulsion systems. From Eqs. 12–14, the
Hugoniot relationship can be obtained

h2 − h1 =
1
2
(P2 − P1)(1/ρ1 + 1/ρ2) . (15)

Fig. 2 Control volume used to analyze steady com-
bustion waves.

The Hugoniot curve determines the locus of the pos-
sible solutions for state 2 from a given state 1 and a
given energy release qc. In particular, it is instructive
to plot the Hugoniot on a pressure-specific volume di-
agram (Fig. 3). The solution for state 2 must also fall
on the Rayleigh line, which is given by

P2 − P1 = −(ρ1u
′
1)

2(1/ρ2 − 1/ρ1) . (16)

For a given state 1 and velocity u′
1, the solution to

state 2 is found by simultaneously solving Eqs. 15 and
16, i.e., the solution is given by the intersection of
the Hugoniot and the Rayleigh line. From Eq. 16,
we can show that the dashed portion of the curve la-
beled “forbidden” in Fig. 3 is physically impossible
since the values of ρu′ are imaginary there. The so-
lutions located in the upper branch of the Hugoniot
represent supersonic waves (detonations), whereas the
solutions located in the lower branch correspond to
subsonic waves (deflagrations).

The points where the Rayleigh line is tangent to
the Hugoniot curve are called the Chapman-Jouguet
(CJ) points. There are two CJ points, the upper CJ
point (CJU ) located on the detonation branch and
the lower CJ point (CJL) located on the deflagration
branch. The CJ points are characterized by sonic flow
downstream of the combustion wave and correspond
to entropy extrema of the burned gases. It is possi-
ble to show, based on the curvature of the Hugoniot
curve, that the entropy is minimum at the upper CJ
point and maximum at the lower CJ point.2

The solution to Eqs. 12–14 is uniquely determined
only with some additional considerations. For defla-
grations, the structure of the combustion wave and
turbulent and diffusive transport processes determine
the actual propagation speed. For detonations, gas
dynamic considerations are apparently sufficient to de-
termine the propagation speed (corresponding to the
CJU solution), independent of the actual structure of
the wave.2 The CJ points divide the possible locus
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Fig. 3 Hugoniot curve for a perfect gas with γ=1.4
and qc/CpT1=4.

of solutions into four regions, corresponding to strong
detonations (supersonic flow to subsonic), weak deto-
nations (supersonic to supersonic), weak deflagrations
(subsonic to subsonic), and strong deflagrations (sub-
sonic to supersonic). Strong deflagrations and weak
detonations can be ruled out except in extraordinary
situations by considering the reaction zone structure.
The physically acceptable and observed solutions for
steady waves are weak deflagrations and strong deto-
nations. For deflagrations, there is no unique solution
from a gas dynamic view point and other processes,
such as turbulence and molecular diffusion, have to be
considered. For detonations, there is one special solu-
tion, CJU, that is singled out from a thermodynamic
point of view. Strong detonations are observed only in
the transient state or if there is an “effective” piston
created by the flow following the wave.

We now consider the case of the perfect gas P =
ρRT in order to numerically illustrate the previous
points. We will assume equal specific heat capacities
for reactants and products

Cp =
γ

γ − 1
R (17)

and the enthalpy in the reactants and products can be
expressed as

h1 = CpT1 h2 = CpT2 − qc . (18)

The set of Eqs. 12–14 can be rewritten for a perfect
gas as a function of the Mach numbers upstream and

M1

M
2
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weak deflagration

Fig. 4 Solutions of the conservation equations for
the Hugoniot for M2 as a function of M1, γ=1.4,
qc/CpT1=4.

downstream of the wave.

ρ2

ρ1
=

M2
1 (1 + γM2

2 )
M2

2 (1 + γM2
1 )

(19)

P2

P1
=

1 + γM2
1

1 + γM2
2

(20)

qc

CpT1
+ 1 +

γ − 1
2

M2
1 =

M2
2 (1 + γM2

1 )2

M2
1 (1 + γM2

2 )2

(
1 +

γ − 1
2

M2
2

)
(21)

This set of equations can be solved analytically for a
given qc and initial state. The Mach number down-
stream of the wave M2 is plotted as a function of the
Mach number upstream of the wave M1 in Fig. 4. The
lower CJ point yields the highest deflagration Mach
number, while the upper CJ point corresponds to the
lowest detonation Mach number.

The entropy rise associated with the combustion
process can be computed from Eqs. 19 and 20.

s2 − s1

R
=

γ

γ − 1
ln

(
T2

T1

)
− ln

(
P2

P1

)
(22)

The entropy rise is plotted in Fig. 5 as a function of
the specific volume. The different solution regions are
shown and the entropy rise is minimum at the CJ det-
onation point and maximum at the CJ deflagration
point. Thus, from Eq. 11, it appears as if a cycle using
detonation combustion will yield the highest thermal
efficiency since it has the lowest entropy rise.

The role of irreversibility
The fact that the entropy rise is minimum at the

CJ detonation point, in conjunction with the result
of Eq. 10, has motivated several efforts to explore
detonation applications to steady flow propulsion.3–5
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Fig. 5 Variation of the total entropy rise along the
Hugoniot, γ=1.4, qc/CpT1=4.

However, in spite of the apparent lower entropy rise
generated by detonations as compared with deflagra-
tions, these studies concluded that the performance of
steady detonation-based engines is systematically and
substantially lower than that of the ramjet.

The explanation of this apparent contradiction lies
in considering the role of entropy generation and irre-
versible processes in the combustor. It is a general con-
clusion of thermodynamics and can be explicitly shown
using availability arguments6 that the work obtained
is maximized when the irreversibility is minimized.
When portions of the propulsion system involve losses
and irreversible generation of entropy, the efficiency
is reduced and the reduction in performance (specific
thrust) can be directly related to the irreversible en-
tropy increase.7

The entropy rise occurring during premixed combus-
tion in a flowing gas has a minimum component due
to the energy release and the chemical reactions, and
an additional, irreversible, component due to the finite
velocity and, in the case of a detonation, the leading
shock wave.

s2 − s1 = ∆smin + ∆sirr (23)

For a combustion wave such as Fig. 2, we propose that
the minimum entropy rise (for a fixed upstream state
and velocity) can be computed by considering the ideal
stagnation or total state.∗ The total properties at a
point in the flow are defined as the values obtained by
isentropically bringing the flow to rest. For example,

∗This conjecture is easy to demonstrate for a perfect gas with
an effective heat addition model of combustion, for example, see
Oates,8 p. 44. We also demonstrate the correctness of this idea
explicitly in subsequent computations for the one-γ detonation
model and numerical solutions with realistic thermochemistry.

the total enthalpy is

ht = h +
u2

2
(24)

and the total pressure and temperature are defined by

h(Pt, s) = ht h(Tt, s) = ht (25)

where by definition st = s. The process of comput-
ing the stagnation state is illustrated graphically in
the (h,s) or Mollier diagram of Fig. 6. At fixed total
enthalpy, the total pressure decreases with increasing
entropy

dPt = −ρtTtds (26)

so that the minimum entropy rise is associated with
the highest total pressure, which is the upstream value
Pt1. This is illustrated graphically in Fig. 6, show-
ing the additional entropy increment ∆sirr associated
with a total pressure decrement Pt1 − Pt2.

Fig. 6 Mollier diagram for constant-pressure com-
bustion. Solid lines are isobars for reactants and
dotted lines are isobars for products.

For a given stagnation state, the minimum entropy
rise can be determined for gas mixtures with realis-
tic thermochemistry by considering an ideal constant-
pressure (zero velocity) combustion process. The first
step is to determine the total temperature in the prod-
ucts from the energy balance equation

h2(Tt2) = h1(Tt1) (27)

where the species in state 2 are determined by car-
rying out a chemical equilibrium computation. The
second step is to determine the entropy rise across the
combustion wave by using the stagnation pressures,
temperatures, and compositions to evaluate the en-
tropy for reactants and products

∆smin = s2(Tt2, Pt1) − s1(Tt1, Pt1) . (28)
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The total entropy jump across the wave is

s2 − s1 = s2(T2, P2) − s1(T1, P1) (29)

where state 2 in the products is determined by solving
the jump conditions. The irreversible component can
then be computed by using Eq. 23.

For a perfect gas model, the entropy change can be
explicitly computed as

s2 − s1 = Cp ln
(

Tt2

Tt1

)
− R ln

(
Pt2

Pt1

)
. (30)

From Eq. 28, the minimum entropy rise is

∆smin = Cp ln
(

Tt2

Tt1

)
(31)

and the irreversible component is

∆sirr = −R ln
(

Pt2

Pt1

)
. (32)

The minimum component can be identified as the
amount of entropy increase that would occur with an
equivalent reversible addition of heat

ds =
dq

T
(33)

at constant pressure, for which

dq = dh = CpdT . (34)

Substituting and integrating from stagnation state 1
to 2, we find that

∆srev = Cp ln
(

Tt2

Tt1

)
(35)

which is identical to the expression for the minimum
entropy rise found from evaluating the entropy change
using the prescription given above. In what follows, we
will also refer to the minimum entropy rise as the re-
versible entropy rise. Using these definitions, we show
in Fig. 7 the partition of the entropy into these two
portions for the one-γ model of detonation considered
earlier.

Although the total entropy rise is lower for the det-
onation branch than the deflagration branch, a much
larger portion (greater than 50%) of the entropy rise
is irreversible for detonations than for deflagrations
(less than 5%). Separate computations show that
the majority of the irreversible portion of the en-
tropy rise for detonations is due to the entropy jump
across the shock front, which can be obtained directly
from the total pressure decrease across the shock wave
and Eq. 30. This loss in total pressure is orders of
magnitude larger for detonation than for deflagration
solutions and was shown5 to be responsible for the
lower performance of detonation-based engines relative

v2/v1
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Fig. 7 Reversible and irreversible components
of the entropy rise along the Hugoniot, γ=1.4,
qc/CpT1=4.

to the ramjet. Hence, the paradox mentioned earlier
can be resolved by considering not just the total en-
tropy rise, but by determining what part of this is
irreversible. An alternative way to look at this issue
is given in the next section, where we reformulate the
jump conditions so that the role of irreversible entropy
rise in the calculation of the thermal efficiency can be
demonstrated explicitly.

Irreversible entropy rise and thermal efficiency

The role of the irreversible part of the entropy rise
can be explored further by considering Eq. 10. In order
to compare objectively different combustion modes,
the engine has to be studied in a given flight situa-
tion for a fixed amount of energy release during the
combustion, as shown in Fig. 8. Our notional engine
consists of an inlet, a combustion chamber, and a noz-
zle.

Fig. 8 Ideal steady engine in flight showing the
location of the combustion wave.

The entropy rise between the inlet and exit planes
is the sum of the entropy rise through the combustion
and the irreversible entropy increments through the
inlet and nozzle. Grouping together the irreversible
entropy increments through the inlet, the combustion
chamber, and the nozzle,

se − s0 = ∆smin + ∆sirr . (36)
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The minimum part of the entropy rise during combus-
tion is constant for a fixed energy release and a fixed
stagnation state upstream of the wave. From the gen-
eral principles of thermodynamics and consistent with
Eq. 10, the highest efficiency is obtained with the min-
imum irreversibility for a given chemical energy release
qc.

This general statement can be shown explicitly for
the case of the perfect gas. The minimum component
of the entropy rise for the one-γ model is

∆smin = Cp ln
(

1 +
qc

CpTt1

)
. (37)

Substituting Eq. 36 into Eq. 11, and using the result
of Eq. 37, the thermal efficiency can be expressed as a
function of the irreversible entropy rise

ηth = 1 − CpT0

qc

[(
1 +

qc

CpTt1

)
exp

(
∆sirr

Cp

)
− 1

]
.

(38)
From Eq. 38, the highest efficiency is obtained for
∆sirr = 0

ηth < ηth(∆sirr = 0) = 1 − T0

Tt1
, (39)

which is the classical expression for the ideal Brayton
cycle.

Consider an idealized version of our notional en-
gine, for which the thermal efficiency is determined
only by the irreversible entropy rise during combus-
tion. In order to compare different combustion modes,
we need to calculate the irreversible entropy rise for
all the possible solutions to Eqs. 12–14. However,
the result of Fig. 5 does not apply directly because
the velocity of the initial state and, consequently, the
total enthalpy are not constant for the conventional
Hugoniot analysis. Instead, it is necessary to com-
pute another solution curve corresponding to a fixed
freestream stagnation state, which we will refer to as
the stagnation Hugoniot.

The stagnation Hugoniot

The stagnation Hugoniot is the locus of the solutions
to the conservation equations (Eqs. 12-14) for a given
stagnation state upstream of the combustion wave.
The initial temperature and pressure upstream of the
wave vary with the Mach number M1. We compute
explicitly the stagnation Hugoniot for a perfect gas,
based on Eqs. 19–21. Equation 21 has to be rewritten
as a function of the parameter qc/CpTt1, which has a
fixed value for a given freestream condition.

1 +
qc

CpTt1
=

M2
2 (1 + γM2

1 )2(1 + γ−1
2 M2

2 )
M2

1 (1 + γM2
2 )2(1 + γ−1

2 M2
1 )

(40)

This equation can be solved analytically, and the solu-
tion for M2 as a function of M1 is plotted in Fig. 9. The

solution curves are very similar to those of Fig. 4, with
the CJ points yielding the maximum deflagration and
minimum detonation Mach numbers. There is, how-
ever, a difference for the weak detonation branch. As
M1 → ∞, M2 asymptotes to a constant value instead
of becoming infinite as for the Hugoniot.

M2 →

√√√√√1 − (γ − 1) qc

CpTt1
+

√
1 − (γ2 − 1) qc

CpTt1

γ(γ − 1) qc

CpTt1

(41)
This is due to the fact that the stagnation conditions
at state 2 are fixed by the stagnation conditions at
state 1 and the heat release. Detonation solutions are
found to be possible only for

qc

CpTt1
<

1
γ2 − 1

. (42)

This condition is imposed by the requirement that
T1 > 0 which is necessary for the limiting value of
Eq. 41 to be real. For higher values of qc/CpTt1, the
total enthalpy is not high enough to enable a steady
detonation in the combustor for the given value of the
heat release, and no steady solutions exist.5

M1

M
2

0 2 4 6 8 10
0

1

2

3

4

5

CJUCJL
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Fig. 9 Solutions of the conservation equations for
the stagnation Hugoniot for M2 as a function of M1,
γ=1.4, qc/CpTt1=0.8.

For the conventional Hugoniot, Fig. 3, the entropy,
pressure, and temperature at state 2 are finite for
a constant-volume (v2 = v1) explosion process even
though, in this limit, M1 → ∞. However, in the
stagnation Hugoniot representation, the pressure ra-
tio along the weak detonation branch becomes infinite
as this limit is approached. As M1 → ∞, the static
pressure at state 1 decreases towards zero because the
total pressure is fixed, but the static pressure at state
2 remains finite due to the finite value of M2. This ex-
plains the unusual shape of the stagnation Hugoniot,
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which is plotted in the pressure-specific volume plane
for γ=1.4 and qc/CpTt1=0.8 in Fig. 10. Just as for
the conventional Hugoniot, there is no solution in the
positive quadrant of the pressure-specific volume plane
for Rayleigh processes (Eq. 16). However, unlike the
conventional Hugoniot, the stagnation Hugoniot curve
is not continuous across this forbidden region. This
means that the detonation and deflagration branches
are disjoint.

v2/v1

P
2
/P

1

0 1 2 3 4
0

5

10

15

20

25

30

strong detonation

strong
deflagration

weak detonation

weak
deflagration

CJU

CJL

Fig. 10 Stagnation Hugoniot for a perfect gas with
γ=1.4 and qc/CpTt1=0.8.

The total entropy rise along the stagnation Hugoniot
is shown in Fig. 11 as a function of the specific volume
ratio. For a fixed heat release and initial stagnation
state, the minimum entropy rise is constant (Eq. 37).
As in the conventional Hugoniot, the CJ points corre-
spond to extrema of the entropy. However, they are
only local extrema because of the discontinuity of the
solution curve in the pressure-specific volume plane.
The CJ detonation point corresponds to a minimum in
entropy along the detonation branch, while the CJ de-
flagration point corresponds to a maximum in entropy
along the deflagration branch. However, the entropy
rise associated with the CJ detonation point is much
larger than that associated with the CJ deflagration
point for all possible values of qc/CpTt1. In general,
the irreversible entropy rise associated with any phys-
ical solution on the deflagration branch is much lower
than that for any detonation solution. Of all physically
possible steady combustion modes, constant-pressure
(CP) combustion at zero Mach number is the process
with the smallest entropy rise for a fixed stagnation
condition.

We now use the result of Eq. 39 to compare the
thermal efficiency of ideal steady propulsion systems
as a function of the combustion mode selected. Losses
associated with shock waves, friction, mixing, or heat
transfer are neglected, and the compression and ex-
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Fig. 11 Total entropy rise along the stagnation
Hugoniot. The minimum component of the en-
tropy rise is fixed along the stagnation Hugoniot
and is shown as the straight line. The total entropy
variation is due to the irreversible component only.
γ=1.4, qc/CpTt1=0.8.

pansion processes are assumed to be isentropic. The
thermal efficiency for an ideal steady propulsion sys-
tem flying at a Mach number of 5 is plotted in Fig. 12.
The irreversible entropy rise in detonations strongly
penalizes the efficiency of steady detonation-based en-
gines compared to the conventional ideal ramjet. The
values for the thermal efficiency at the upper CJ point
obtained based on the stagnation Hugoniot are iden-
tical to those predicted by flow path analysis for ideal
detonation ramjets.5 Thus, this approach reconciles
flow path analysis and thermodynamic cycle analysis
for detonation ramjets. The values of the thermal ef-
ficiency of Fig. 12 are not representative of practical
propulsion systems at a flight Mach number M0 = 5
because the total temperature at the combustor out-
let is too high to be sustained by the chamber walls.
More realistic studies limit the total temperature at
the combustor outlet based on material considerations,
which decreases substantially the thermal efficiency.5

The analysis of steady detonation-based ramjets also
has to take into account effects such as condensation
or auto-ignition of the fuel-air mixture and limitations
associated with fuel sensitivity to detonation.5 The
net effect is that propulsion systems based on steady
detonation waves have a very small thrust-producing
range5 and the maximum performance is always sub-
stantially lower than conventional turbojets or ram-
jets.5

For our ideal propulsion system, the CP combus-
tion process yields the highest thermal efficiency of all
physical solutions to the conservation equations. Foa9

concluded that CP combustion was always the opti-
mum solution for steady flow using an argument based
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Fig. 12 Thermal efficiency of an ideal engine flying
at M0 = 5 as a function of the combustion mode
selected, γ=1.4, qc/CpTt1 = 0.8.

on a polytropic approximation of the combustion mode
for the perfect gas. We have now extended his result
to all physically possible steady combustion modes.
However, in order to compare practical propulsion sys-
tems based on different combustion modes, one also
has to compute the irreversible entropy rise through
the other components of the engine. The entropy rise
associated with irreversible processes such as shocks,
friction, mixing, or heat transfer may become signif-
icant7 and dominate the results, particularly at high
supersonic flight Mach numbers.

Detonation applications in unsteady
flow: the Fickett-Jacobs cycle

The entropy minimum corresponding to CJ det-
onations and its implications on the thermal effi-
ciency have also motivated significant efforts to ap-
ply unsteady detonations to propulsion, in particular
through the research on pulse detonation engines.10

Unsteady detonations can be analyzed on a thermo-
dynamic basis by considering a closed system. The
Fickett-Jacobs (FJ) cycle is a conceptual thermody-
namic cycle that can be used to compute an upper
bound to the amount of mechanical work that can be
obtained from detonating a given mass of explosive.
The advantage of the FJ cycle is that it provides a
simple conceptual framework for handling detonations
in a purely thermodynamic fashion, avoiding the com-
plexity of unsteady gas dynamics11,12 of realistic pulse
detonation or pulsejet engines.

Basic FJ cycle

The FJ cycle for detonations is described in Fick-
ett and Davis13 (p. 35–38) and is an elaboration of the
original ideas of Jacobs.14 The notion of applying ther-
modynamic cycles to detonation was independently

considered by Zel’dovich15 15 years before Jacobs, but
Zel’dovich’s ideas were not known† to Jacobs or Fick-
ett and, until recently, there was no appreciation in
the West of this work by Zel’dovich.

piston A explosive piston B

cylinder

Fig. 13 Piston cylinder arrangement used to im-
plement Fickett-Jacobs cycle.

The idea of the FJ cycle is similar to standard ther-
modynamic cycles such as the Otto and Brayton cycles
that are the basis for computing the ideal performance
of internal combustion and gas turbine engines. The
basis of the cycle is the piston-cylinder arrangement
(Fig. 13) of elementary thermodynamics. The reac-
tants and explosion products are at all times contained
within the cylinder and pistons so that we are always
considering a fixed mass. The explosive, pistons, and
cylinder will be considered as a closed thermodynamic
system. All confining materials are assumed to be
rigid, massless, and do not conduct heat. The pis-
tons can be independently moved and there is a work
interaction W (> 0 for work done by the system) with
the surroundings that results from these motions. In
order to have a complete cycle, there will be a heat in-
teraction Q (> 0 for heat transferred into the system)
between the system and the surroundings. The piston-
cylinder arrangement initially contains reactants at
pressure P1 and temperature T1.

The steps in the cycle are shown in Fig. 14. The
cycle starts with the system at state 1 and the applica-
tion of external work to move the piston on the left at
velocity up. It instantaneously initiates a detonation
front at the piston surface (step a). The detonation
propagates to the right with a velocity UCJ consistent
with up. The detonation products following the wave
are in a uniform state. When the detonation reaches
the right piston, it instantaneously accelerates to ve-
locity up, and the entire piston-cylinder arrangement
moves at constant velocity up (step b). The system is
then at state 2. The energy of this mechanical motion
is converted to external work (step c) by bringing the
detonation products to rest at state 3. Then the prod-
ucts are adiabatically expanded to the initial pressure
(step d) to reach state 4. Heat is extracted by cooling

†Personal communication from W. C. Davis, April 2003
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Fig. 14 Physical steps that make up the Fickett-
Jacobs cycle. a) Detonation moving to right with
simultaneous application of external work to move
piston on left at velocity up. b) Instantaneous accel-
eration of piston on right when detonation has con-
sumed all the material. c) Conversion of mechan-
ical motion to external work to bring detonation
products to rest. d) Expansion of products back
to atmospheric pressure. e) Extraction of energy
as heat at constant pressure to return detonation
products to initial temperature. f) Conversion of
products to reactants at constant temperature and
pressure.

the products at constant pressure (step e) to the initial
temperature (state 5). Finally, the cycle is completed
by converting products to reactants at constant tem-
perature and pressure (step f) and the system reaches
state 1.

Based on this sequence of steps, it is possible to
calculate the work done by the system. During the
detonation part of the cycle (step a), from state 1 to 2,
the work received by the system is W12 = −P2up(t2 −
t1)A, since the piston exerts a force P2 while moving at
velocity up for a time t2 − t1 = L/UCJ required by the
wave to propagate across the explosive. Using the fact
that ρ1LA is the mass M of the explosive, the work
received by the system per unit mass of explosive is

w12 = − P2up

ρ1UCJ
. (43)

The work done by the system when extracting the en-
ergy of the mechanical motion (state 2 to 3) is equal
to the kinetic energy of the system. Hence, the work
per unit mass of explosive is

w23 =
u2

p

2
. (44)

The work per unit mass of explosive obtained during
the isentropic expansion of the detonation products to
initial pressure (state 3 to 4) is

w34 =
∫ 4

3

Pdv . (45)

The last steps from state 4 to state 1 involve the ex-
change of heat and mechanical work used to keep the
system at constant pressure. The work per unit mass
is

w41 = P1(v1 − v4) . (46)

The net work done by the system is equal to or less
than the net work of the cycle wnet = w12+w23+w34+
w41. Hence, wnet represents the maximum amount of
work that can be obtained from a detonation. The FJ
cycle can be represented in a pressure-specific volume
diagram (Fig. 15) and wnet geometrically represents
the area contained within the triangle formed by the
state points. Fickett and Davis13 (p. 35–38) do not
account for the work interaction during the process
4–1 in their definition of the net work. They do not
consider steps e) and f) to be physical since the detona-
tion products just mix with the surroundings, and they
consider the work generated between states 4 and 1 to
be “lost” work‡. However, these interactions have to
be included for consistency with the First Law of Ther-
modynamics. In high-explosive applications, P1 ¿ P2

‡Our first effort16 to apply the FJ cycle to modeling impulse
from detonation tubes used Fickett and Davis’ interpretation
of the available work rather than the approach taken here. As
a consequence, the numerical values of the efficiencies given in
Cooper and Shepherd16 are different than given here.
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Fig. 15 Pressure-specific volume diagram showing
the sequence of states and connecting paths that
make up the FJ cycle for a stoichiometric propane-
air mixture at 300 K and 1 bar initial conditions.

and the additional work term corresponding to w41

may be small compared to the other work terms.
For all steps in the cycle, the First Law of Thermo-

dynamics applies. Using the sign convention defined
previously,

∆E = Q − W (47)

where E is the total energy in the system, composed
of the internal and kinetic energies. The only heat
exchange between the system and the surroundings oc-
curs between steps 4 and 1. Hence, the work done by
the system per unit mass of explosive can be calcu-
lated for each process as a function of the total energy
per unit mass and w14 = e1 − e4. Using Eq. 46, the
net work done by the system over the FJ cycle is

wnet = e1 − e4 + P1(v1 − v4) = h1 − h4 . (48)

This result is consistent with Eq. 4 resulting from the
general thermodynamic cycle analysis for closed sys-
tems undergoing a cycle starting with an arbitrary
process between states 1 and 4 and ending with a con-
stant pressure process between states 4 and 1. This
consistency is achieved only if w41 is included in the
computation. It shows that the FJ cycle is a consis-
tent conceptual framework to calculate the amount of
work available from a detonation. Since all processes
other than the detonation are ideal, the work com-
puted is an upper bound to what can be obtained by
any cyclic process using a propagating detonation for
the combustion step.

It can be verified using the detonation jump condi-
tions that this result can also be obtained by comput-
ing the amount of work done during each individual
process. Although it is straightforward from the First
Law of Thermodynamics and Eq. 45 that w34 = e3−e4,

it is not obvious that w13 = w12 + w23 = e1 − e3. We
write the detonation wave jump conditions in terms of
the velocities in a fixed reference frame.

ρ2(UCJ − up) = ρ1UCJ (49)
P2 = P1 + ρ1UCJup (50)

h2 = h1 − u2
p/2 + UCJup (51)

The work per unit mass generated between states 1
and 3, which correspond respectively to reactants and
detonation products at rest, can be calculated using
the results of Eqs. 49–51. Note that the thermody-
namic properties of states 2 and 3 are identical, but
the system at state 3 is at rest whereas it is moving at
velocity up at state 2. From Eqs. 43 and 44,

w12 + w23 = u2
p/2 − P2up

ρ1UCJ

= h1 − h2 + UCJup − P2up

ρ1UCJ
.

(52)

The third term on the right-hand side of the previous
equation can be expressed using Eq. 50, and Eq. 52
becomes

w12 + w23 = h1 − h2 +
P2

ρ1

(
1 − up

UCJ

)
− P1

ρ1
. (53)

Using the result of Eq. 49, and after some algebra, this
equation yields

w12 + w23 = e1 − e3 (54)

where e = h − P/ρ is the specific internal energy per
unit mass of the mixture. Combining this with the
previous results, we have

wnet = w12 + w23 + w34 + w41 = h1 − h4 (55)

in agreement with Eq. 48. Thus, we have verified that
our two treatments give identical results. This gives
us additional confidence that the FJ physical model of
the detonation cycle is correct since the detailed en-
ergy balance agrees with the simpler thermodynamic
system approach.

Thermal efficiency

The FJ cycle is also used to define a thermal ef-
ficiency for the conversion of chemical energy into
mechanical work. The thermal efficiency is defined as

ηFJ =
wnet

qc
=

h1 − h4

qc
. (56)

For mixtures with a higher enthalpy at the end of the
expansion process (state 4), a higher portion of the
useful work is lost through heat transfer during the
constant pressure processes between states 4 and 5.

We first investigate the values of the thermal effi-
ciency for a perfect gas model. The detonation process

11 of 18

American Institute of Aeronautics and Astronautics Paper 2004-1033



MCJ

η F
J

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

γ = 1.2
γ = 1.1

Fig. 16 FJ cycle thermal efficiency as a function of
CJ Mach number for the one-γ model of detonation
for two values of γ representative of fuel-oxygen
(γ = 1.1) and fuel-air (γ = 1.2) detonations.

is represented using the one-γ model of detonation17

for values of γ representative of products from hy-
drocarbon fuel detonations with oxygen and air. The
thermal efficiency for the FJ cycle is calculated for a
perfect gas as

ηFJ = 1 − CpT1

qc

[
1

M2
CJ

(
1 + γM2

CJ

1 + γ

) γ+1
γ

− 1

]
.

(57)
The FJ cycle thermal efficiency is represented in
Fig. 16 as a function of the CJ Mach number for two
values of γ representative of fuel-oxygen and fuel-air
detonations. The thermal efficiency increases with in-
creasing CJ Mach number, which is itself an increasing
function17 of the heat of combustion qc. As qc in-
creases, a lower fraction of the heat released in the
detonation process is rejected during the final con-
stant pressure process. In the limit of large MCJ ,
the thermal efficiency approaches 1 with 1 − ηFJ ∝
(1/M2

CJ )1−1/γ . Looking at the detonation as a ZND
process,13 this result may be interpreted as follows:
a higher heat of combustion results in a higher pre-
compression of the reactants through the shock wave
before combustion and yields a higher thermal effi-
ciency.

Figure 16 also shows that the variation of the ther-
mal efficiency depends strongly on the value chosen for
γ. At constant CJ Mach number, a lower value of γ in
the detonation products yields a lower efficiency. The
parameter γ−1 controls the slope of the isentrope 3–4
in the pressure-temperature plane. Lower values of γ
generate lower temperature variations for a fixed pres-
sure ratio P4/P3. This means that the temperature at
state 4 is higher and the heat rejected during process

4–5 is larger, decreasing the thermal efficiency.
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Fig. 17 FJ cycle thermal efficiency for stoichiomet-
ric hydrogen, ethylene, propane, and JP10 mix-
tures with oxygen and air as a function of initial
pressure at 300 K.
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Fig. 18 FJ cycle thermal efficiency for stoichiomet-
ric hydrogen, ethylene, propane, and JP10 mix-
tures with oxygen and air as a function of initial
temperature at 1 bar.

The most realistic approach to accounting for prop-
erty variations is to use fits or tabulated thermochem-
ical properties as a function of temperature for each
species and the ideal gas model to find mixture prop-
erties. In keeping with the spirit of cycle analysis,
all chemical states involving combustion products are
assumed to be in equilibrium. The FJ cycle thermal ef-
ficiency was calculated using realistic thermochemistry
for hydrogen, ethylene, propane, and JP10 fuels with
oxygen and air. The equilibrium computations were
carried out using STANJAN.18 The thermal efficiency
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Fig. 20 FJ cycle thermal efficiency as a function
of nitrogen dilution for stoichiometric fuel-oxygen
mixtures at 300 K and 1 bar initial conditions for
hydrogen, ethylene, propane, and JP10.

was determined using Eq. 56. The results are signifi-
cantly influenced by the variation of the specific heat
capacity with temperature in the detonation products
and the dissociation and recombination processes.

The thermal efficiency is shown in Fig. 17 as a
function of initial pressure. The thermal efficiency
decreases with decreasing initial pressure due to the
increasing importance of dissociation at low pressures.
Dissociation is an endothermic process and reduces
the effective energy release through the detonation,
and the maximum amount of work that can be ob-
tained from the FJ cycle. Exothermic recombination
reactions are promoted with increasing initial pressure

and the amount of work generated during the FJ cycle
increases. At high initial pressures, the major prod-
ucts dominate and the CJ detonation properties tend
to constant values. Thus, the amount of work gen-
erated by the detonation and the thermal efficiency
asymptote to constant values. Figure 18 shows that
ηFJ decreases with increasing initial temperature. Be-
cause the thermal efficiency is an increasing function
of the CJ Mach number (Fig. 16), the decrease in ini-
tial mixture density and MCJ caused by the increasing
initial temperature17 is responsible for the decreasing
thermal efficiency.

The influence of equivalence ratio on the FJ cycle
thermal efficiency is shown in Fig. 19. The trends
for fuel-oxygen and fuel-air mixtures are very differ-
ent. The thermal efficiency for fuel-air mixtures is
maximum at stoichiometry, whereas it is minimum
for fuel-oxygen mixtures. This behavior illustrates
clearly the strong influence of dissociation processes
on the thermal efficiency. Fuel-air mixtures generate
much lower CJ temperatures than fuel-oxygen mix-
tures. The effect of dissociation in fuel-air mixtures is
weak because a significant part of the energy release
is used to heat up the inert gas (nitrogen) and the
temperatures are lower than in the fuel-oxygen case.
Because of the weak degree of dissociation, these mix-
tures tend to follow the same trends as the perfect
gas and yield a maximum efficiency when the energy
release is maximized near stoichiometry. Lean mix-
tures have very little dissociation and the CJ Mach
number increases with the equivalence ratio from 4 to
5 or 6 at stoichiometry. Thus, the thermal efficiency
increases with increasing equivalence ratio for φ < 1.
Rich mixtures (φ > 1) have significant amounts of car-
bon monoxide and hydrogen due to the oxygen deficit
and the dissociation of carbon dioxide and water, re-
ducing the effective energy available for work and the
thermal efficiency.

On the other hand, fuel-oxygen mixtures are char-
acterized by high CJ temperatures, in particular near
φ = 1. Endothermic dissociation reactions reduce
the effective energy release during the detonation pro-
cess. During the subsequent expansion process 3–4,
the radicals created by the dissociation reactions start
recombining. However, the temperature in the deto-
nation products of fuel-oxygen mixtures remains high
during this process and only partial recombination oc-
curs. The products at state 4 are still in a partially
dissociated state and a significant part of the energy re-
leased by the detonation is not available for work. This
extra energy is released during the constant pressure
process 4–5 under the form of heat and reduces the
net work. The influence of this phenomenon increases
with increasing CJ temperature, which explains why
fuel-oxygen mixtures have a lower efficiency near stoi-
chiometry.

The influence of nitrogen dilution is also investigated
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in Fig. 20. The thermal efficiency is plotted as a func-
tion of nitrogen dilution for stoichiometric mixtures
varying from fuel-oxygen to fuel-air. It increases with
increasing nitrogen dilution and is maximum for fuel-
air mixtures. This behavior is explained mainly by the
influence of dissociation phenomena. The reduction in
mixture specific heat capacity with increasing nitrogen
dilution also contributes to this behavior.

Although fuel-oxygen mixtures have a higher spe-
cific heat of combustion than fuel-air mixtures, Fig. 19
shows that fuel-air mixtures have a higher thermal
efficiency, in particular near stoichiometry. This is at-
tributed mainly to dissociation phenomena, but also
to the higher value of the effective ratio of specific
heats γ in the detonation products of fuel-air mix-
tures, which results in a higher thermal efficiency
(Fig. 16). In general, 1.13 < γ2 < 1.2 for fuel-oxygen
mixtures when varying the equivalence ratio, whereas
1.16 < γ < 1.3 for fuel-air mixtures. The parameter
γ−1 controls the slope of the isentrope in the pressure-
temperature plane. This difference is caused by the
influence of recombination reactions in the detonation
products. These exothermic reactions are favored in
the hot products of fuel-oxygen mixtures, and keep
the temperature from dropping as fast as in the colder
products of fuel-air mixtures. Note that, although sto-
ichiometric fuel-oxygen mixtures have a lower thermal
efficiency than fuel-air mixtures, they generate 2 to
4 times as much work as fuel-air mixtures because of
their larger specific heat of combustion.

In general, hydrogen yields the lowest efficiency.
Combustion of hydrogen with oxygen produces a mole
decrement, which generates a much lower CJ pressure
compared to hydrocarbon fuel detonations. Because
entropy increases with decreasing pressure, a lower
pressure translates into a higher entropy rise and a
lower thermal efficiency compared with hydrocarbon
fuel detonations. In terms of work done, the work
generated during the expansion process w34 is much
lower for hydrogen detonations because of their lower
CJ pressure, which reduces the thermal efficiency.
Hydrocarbon fuels have a higher thermal efficiency,
with propane and JP10 yielding the highest efficiency.
These two fuels have the highest molecular weight of
all, which translates into a higher initial density, CJ
pressure, and propensity to generate work during the
expansion process. The values obtained for the FJ cy-
cle efficiency are quite low, generally between 0.2 and
0.3 for the range of mixtures investigated. The typical
way to increase low thermal efficiencies is to precom-
press the reactants before combustion. The FJ cycle
with precompression is investigated next.

FJ cycle with precompression

The role of precompression is to reduce the entropy
rise through the combustion process by increasing the
initial temperature before combustion.1 Since entropy

increments are detrimental to the thermal efficiency,
the most ideal way to increase the fluid temperature
is isentropic compression.

The FJ cycle with precompression is based on the
steps described in Fig. 14, but it includes an addi-
tional process. Before the piston starts moving and
initiates the detonation, the reactants are isentropi-
cally compressed with the piston to a state 1’. The
subsequent sequence of steps is identical to the basic
FJ cycle case. The FJ cycle with precompression is
represented in Fig. 21 in the pressure-specific volume
plane for a propane-air mixture with a precompres-
sion ratio of 5. The precompression ratio is defined as
πc = P1′/P1.
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Fig. 21 Pressure-specific volume diagram showing
the sequence of states and connecting paths that
make up the FJ cycle with precompression (πc = 5)
for a stoichiometric propane-air mixture at 300 K
and 1 bar initial conditions.

During the initial compression of the reactants from
state 1 to state 1’, the work per unit mass is

w11′ = −
∫ 1′

1

Pdv . (58)

The net work done by the system is then wnet =
w11′ + w1′2 + w23 + w34 + w41. Expressions for the
terms in the previous equation are given respectively
by Eqs. 58, 43, 44, 45, and 46. Applying the First
Law of Thermodynamics, the result obtained for the
net work wnet = h1 − h4 is identical to that of Eq. 48.

The influence of the compression ratio on the ther-
mal efficiency is investigated first for a perfect gas. The
expression for ηFJ using the one-γ detonation model is
identical to the result of Eq. 57 for the basic FJ cycle.
However, in the case of the cycle with precompression,
the CJ Mach number varies because of the change in
initial temperature before detonation initiation. The
thermal efficiency is plotted in Fig. 22 as a function
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of πc for different values of the non-dimensional en-
ergy release. The FJ cycle thermal efficiency increases
with increasing compression ratio. This increase can
be explained by considering the temperature-entropy
diagram of Fig. 23. The heat rejected during the
constant-pressure portion of the cycle 4–5 is the area
under the temperature-entropy curve between states 4
and 5 (Eq. 9). For a given state 1 and qin, the thermal
efficiency is maximized when qout is minimized, which
occurs when s4 = s2 is minimized. Because the to-
tal entropy rise decreases with increasing combustion
pressure, the cycle thermal efficiency increases with
increasing compression ratio. In terms of net work,

precompressing the reactants increases the work done
during the expansion process (state 3 to 4). The ex-
pansion of the hot gases generates more work than is
absorbed by the cold gases during the precompression
stage, so that precompression increases the thermal ef-
ficiency. This idea applies equally well to other types
of thermodynamic cycles such as the Brayton or the
Otto cycles.
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Fig. 24 FJ cycle thermal efficiency as a function
of the compression ratio πc for hydrogen, ethylene,
propane, and JP10 with oxygen and air at initial
conditions of 1 bar and 300 K.

The result of Eq. 57, which also applies to the FJ
cycle with precompression, is identical to the result ob-
tained by Heiser and Pratt19 in their thermodynamic
cycle analysis of pulse detonation engines. They cal-
culated the entropy increments associated with each
process in the detonation cycle and formally obtained
the same result. However, the numerical values shown
in Fig. 22 are lower than those given in Heiser and
Pratt19 due to the difference in the value of the spe-
cific heat ratio used. They used a value of γ = 1.4
corresponding to the reactants, whereas we use values
of γ equal to 1.1 or 1.2 since these are more repre-
sentative of the detonation products. As illustrated
in Fig. 16, the value chosen for the specific heat ratio
has a strong influence on the results obtained for the
thermal efficiency in the one-γ model. A more realistic
cycle analysis for a perfect gas involves using the two-γ
model of detonations.17 This approach was applied by
Wu et al.,11 who extended the analysis of Heiser and
Pratt19 to the two-γ model of detonations.

In reality, one- or two-γ models of these cycles can-
not correctly capture all the features of dissociation-
recombination equilibria and temperature-dependent
properties. It is necessary to carry out numerical sim-
ulations with a realistic set of product species and
properties. Equilibrium computations using realistic
thermochemistry were carried out using STANJAN18
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for hydrogen, ethylene, propane, and JP10. The ther-
mal efficiency is given in Fig. 24 as a function of the
compression ratio. Its behavior is similar to the per-
fect gas case. The influence of dissociation reactions is
reduced with increasing compression ratio, but dissoci-
ated species are still present for fuel-oxygen mixtures,
even for high values of πc.

Comparison with Brayton and Humphrey cycles

CP combustion is representative of the process un-
dergone by a fluid particle in an ideal ramjet or turbo-
jet engine.8 Constant-volume (CV) combustion has
been used as a convenient surrogate for detonation
for the purposes of estimating the thermal efficiency.20

One viewpoint is that CV combustion is an instanta-
neous transformation of reactants into products. An-
other view is that CV combustion is the limit of a
combustion wave process as the wave speed approaches
infinity.

The ideal Brayton cycle consists of the following pro-
cesses: isentropic compression, CP combustion, isen-
tropic expansion to initial pressure, and heat exchange
and conversion of products to reactants at constant
pressure. For the perfect gas, the thermal efficiency of
the Brayton cycle depends only on the static temper-
ature ratio across the compression process.8

ηth = 1 − T1

T1′
= 1 − π

− γ−1
γ

c (59)

The Humphrey cycle is similar to the Brayton cycle,
except that the combustion occurs at constant volume
instead of constant pressure. Unlike the Brayton cycle
and like the FJ cycle, the efficiency of the Humphrey
cycle also depends on the non-dimensional heat release
qc/CpT1 and the specific heat ratio γ.

ηth = 1 − CpT1

qc

[(
1 + γ

qc

CpT1
π
− γ−1

γ
c

)1/γ

− 1

]
(60)

For fixed energy release and compression ratio, the
thermal efficiency of the Humphrey cycle is higher than
that of the Brayton cycle, which can be related to the
lower entropy rise generated by CV combustion com-
pared with CP combustion (Fig. 5).

Equilibrium computations were carried out using
STANJAN18 to compute the thermal efficiency of the
FJ, Humphrey, and Brayton cycles for a stoichiometric
propane-air mixture at 300 K and 1 bar initial condi-
tions. The amount of precompression was varied. In
comparing different combustion modes, the question
of which of the various pressures produced during the
combustion event should be considered.21 Two possi-
bilities are explored here. The first possibility consists
of comparing the cycles based on the same pressure
before combustion, which corresponds to propulsion
systems having equivalent feed systems. The second
possibility is based on the peak combustion pressure,
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Fig. 25 Pressure-specific volume diagram com-
paring the FJ, Humphrey, and Brayton cycles
with precompression (πc = 5) for a stoichiometric
propane-air mixture at 300 K and 1 bar initial con-
ditions.
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Fig. 26 Thermal efficiency as a function of com-
pression ratio for FJ, Humphrey, and Brayton cy-
cles for a stoichiometric propane-air mixture at 300
K and 1 bar initial conditions.

which corresponds to propulsion systems designed to
operate at the same level of chamber material stresses.

The cycle efficiencies are shown in Fig. 26 as a
function of the compression ratio and in Fig. 27 as
a function of the combustion pressure ratio. The
combustion pressure ratio π′

c is defined as the ratio
of post-combustion pressure to initial cycle pressure.
Detonation generates the lowest entropy rise, closely
followed by CV combustion and finally CP combustion
(Fig. 5). Thus, for a given compression ratio, the FJ
cycle yields the highest thermal efficiency, closely fol-
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Fig. 27 Thermal efficiency as a function of com-
bustion pressure ratio for FJ, Humphrey, and
Brayton cycles for a stoichiometric propane-air
mixture at 300 K and 1 bar initial conditions.

lowed by the Humphrey cycle and, finally, the Brayton
cycle. This calculation using detailed thermochem-
istry18 agrees qualitatively with the thermodynamic
cycle analysis results of Heiser and Pratt19 who used a
one-γ model for detonations. The fact that detonation
and CV combustion yield very close efficiencies when
calculated for the same compression ratio (Fig. 26) has
motivated some researchers to estimate pulse detona-
tion engine performance by approximating the detona-
tion process with CV combustion. However, when the
thermal efficiency is shown as a function of the com-
bustion pressure ratio (Fig. 27), the trend is inverted
and the Brayton cycle yields the highest efficiency, fol-
lowed by the Humphrey and FJ cycles. The lower
efficiency of the FJ cycle can be attributed to the very
high peak pressure behind the detonation wave. Al-
though these efficiencies cannot be precisely translated
into specific performance parameters, these general re-
sults agree with the observations of Talley and Coy21

based on specific impulse calculations using a gas dy-
namic model of CV combustion propulsion. The supe-
riority of the Brayton cycle in Fig. 27 will be reduced if
the Humphrey and FJ cycles are operated at a higher
combustion peak pressure or temperature.

The comparison of the thermal efficiencies in
Figs. 26 and 27 shows that unsteady detonations have
the potential to generate more mechanical work than
CP or CV combustion and, thus, appear to be more
efficient combustion process. This result can be di-
rectly related to the lower entropy rise associated with
detonations. However, as we have already seen for
the case of steady detonation, some care is needed in
interpreting thermodynamic results in terms of propul-
sion system performance. We cannot use these effi-
ciencies directly since performance estimates based on

Eq. 8 are applicable only to steady propulsion systems.
In particular, the initial state (before the detonation
wave) and the conversion of thermal energy to impulse
in unsteady systems requires detailed consideration of
the gas dynamic processes12 within the engine.

Conclusions

We have used thermodynamic considerations to in-
vestigate the merits of detonative combustion relative
to other combustion modes for applications in steady
and unsteady flow propulsion systems. For steady
flow systems, the irreversible component of the en-
tropy rise is shown to control the thermal efficiency.
Although detonations generate the minimum amount
of total entropy rise along the conventional Hugoniot,
they also generate the maximum amount of irreversible
entropy rise. For air-breathing propulsion applica-
tions, the thermodynamic cycle analysis has to be
conducted based on a fixed initial stagnation state. In
this case, the total entropy rise for the detonation so-
lutions is much higher than the deflagration solutions
and, therefore, engines based on steady detonation
have much poorer performance than those based on
deflagration. These findings reconcile thermodynamic
cycle analysis with flow path performance analysis of
detonation-based ramjets.3–5 The highest thermal ef-
ficiency occurs for the combustion process with the
lowest entropy increment, corresponding to the ideal
Brayton cycle.

For unsteady flow systems, we presented a thermo-
static approach of a closed system, the Fickett-Jacobs
cycle, to compute an upper bound to the amount of
mechanical work that can be produced by a cycle us-
ing an unsteady detonation process. This cycle is used
to calculate a thermal efficiency based on this ideal
mechanical work. Values of the thermal efficiency for
a variety of mixtures are calculated for the FJ cy-
cle with and without initial precompression. Fuel-air
mixtures are found to have a higher thermal efficiency
than fuel-oxygen mixtures near stoichiometry due to
dissociation phenomena and to the higher value of
the effective ratio of specific heats in their detonation
products.

Comparison with the Humphrey and Brayton cy-
cles shows that the thermal efficiency of the FJ cycle
is only slightly higher than that of the Humphrey cy-
cle, and much higher than that of the Brayton cycle
when compared on the basis of pressure at the start
of the combustion process. The opposite conclusion is
drawn when the comparison is made on the basis of the
pressure after the combustion process. Although these
efficiencies cannot be precisely translated into propul-
sive efficiency, these results are useful in comparing
unsteady detonation with other combustion modes.
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