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ABSTRACT

This paper analyzes the performance of shell models when predicting stresses and strains in thick-
walled tubes subjected to shock or detonation loads. Of particular interest are the large axial strains
which are produced at the inner and outer surfaces of the tube due to bending along the tube axis. First,
comparisons between simple shell theory and a static finite element model show that the axial strain
varies proportionally with wall thickness and inversely with the square of the axial wavelength. This
scaling is valid until the wavelength decreases below about 10 times the pipe’s wall thickness, at which
point nonlinear behavior is observed and the shell model predicts excessive axial strain. This point may
be reached even for classically “thin” pipes if the axial wavelength of the deformation becomes small
enough. Second, dynamic finite element simulations are used to evaluate the performance of a transient
shell model. The transient shell model performs well even for very thick pipes, though the peak axial
strain is over-predicted when the axial wavelength is small. Finally, comparisons with experimental
measurements show that the large axial strains which are sometimes observed in experiments cannot
be attributed to through-wall bending and appear to be caused instead by non-ideal conditions that are
present in the experiments.

Note: This is a revised and extended version of the 2013 conference paper [1] by Bitter and Shepherd.
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Nomenclature
a Mean tube radius
h Wall thickness
E Elastic modulus
G Shear modulus E/2(1+ν)
L Tube length
u Axial displacement
uo Axial displacement of middle surface
υd Dilatational Wave speed

√
E/ρ(1−ν2)

υs Shear wave speed
√

κG/ρ

υco First critical wave speed
w Radial displacement
wo Radial displacement of middle surface
wb Component of radial displacement due to axial bending
ws Component of radial displacement due to transverse shear
z Radial distance from middle surface of tube
β Shell thickness parameter h/

√
12a

εθ Hoop strain
εx Axial strain
κ Shear correction factor, taken to be 5/6
ν Poisson’s ratio
ρ Density of tube
ψx Angular deformation of tube
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1 INTRODUCTION
Linear, elastic, thin-shell theories have formed the foundation for our current understanding of the dynamic

response of cylindrical tubes and pipes. Although a large number of variations on the thin-shell equations have
been proposed [4], most of them are based on a set of assumptions commonly called “Love’s first approximation”
[5]. These assumptions are the following:

1. The wall thickness h is much smaller than any other dimension of the shell, including the radii of curvature
2. Non-linear terms in the strain-displacement relations are negligible
3. Transverse normal stress is negligibly small
4. During deformation, normals to the undeformed middle surface remain straight and normal and their lengths

are preserved (Kirchhoff’s hypotheses)

Shell formulations based on these assumptions have been used very successfully to predict the behavior of
thin tubes subjected to internal detonations and shock waves. For instance, Beltman et al. used a steady-state shell
model to analyze peak strains in thin (a/h = 16) tubes loaded by internal shock waves and found reasonably good
agreement with finite element models and experimental measurements except in the vicinity of the first critical
velocity, where effects of material damping are important and the steady-state approximation is inadequate [6, 7].
Likewise Simkins measured hoop strains in a much thicker tube (a/h = 5.2) and found good agreement with
the predictions of shell theory [8]. However, recent experiments [3] with thick-walled tubes (a/h = 7.2) have
demonstrated axial strains that are 2-3 times larger than would be expected on the basis of thin shell models, even
though hoop strains are well-predicted. This discrepancy calls for a thorough evaluation of the axial strains that
develop in thick tubes subjected to shock or detonation type loads.

A possible explanation for the differences between experimental measurements and the predictions of shell
models is that these models may no longer be adequate for tubes of large wall thickness. Thus one objective of this
paper is to quantify how rapidly errors in shell models grow when the thin-wall approximation is violated. A pipe
can only be considered thin-walled if the wall thickness is much smaller than all other length scales, including
the radii of curvature. The most obvious scenario which violates this condition is a tube with wall thickness h
comparable to the undeformed radius of curvature a. However, for both thick and thin tubes subjected to dynamic
loads, it is also possible for the axial radius of curvature to become comparable to the wall thickness, which is a
second mechanism by which the thin-wall assumption might fail. Both of these cases are considered in this paper.

Various authors have evaluated the performance of thin-shell theories using comparisons with the three-
dimensional equations of elasticity [9–12]. These comparisons are usually made by assuming displacements
in the form of harmonic vibrations and comparing the dispersion curves from shell models with those from 3D
elasticity. For instance, Herrmann and Mirsky proposed a shell model which included the effects of both shear
deformation and rotary inertia and showed that the lowest branch of the dispersion curve for this model differed
negligibly from that of 3D elasticity for all wavenumbers [12]. However, as pointed out by Greenspon [11], for
high frequency vibrations the displacements may vary nonlinearly through the shell thickness and outer-surface
stresses and strains can be in considerable error even when vibration frequencies are well-predicted.

Although the usual free-vibration analysis provides a simple framework in which solutions to the 3D equations
of elasticity are tractable, it also involves a considerable departure from realistic loads, such as impulsive loads or
shock waves, which are more commonly encountered in practice. The structural response of tubes subjected to
shock and detonation loads often features a dynamic load amplification [7, 13, 14] that leads to large stresses and
strains near or behind the load front. The magnitude of these stresses and strains cannot be easily quantified using
free-vibration analysis.

This paper seeks to evaluate the performance of shell equations for thick tubes in the specific context of shock
or detonation type loads. Emphasis is placed on the prediction of stresses and strains at the inner and outer surfaces
of the tube, which are often predicted less accurately than vibration frequencies or middle-surface deformation. In
the first part of this paper, static finite element modeling is used to investigate the relationship between the axial
curvature of the deformation and the resulting axial strains that are developed at the inner and outer surfaces of a
tube. In the second part of this paper, the predictions of dynamic shell equations for shock wave type loads are
evaluated through comparisons with finite element simulations.
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It is worth noting that much of the discussion in this paper regarding thin shell models is also applicable to
finite element simulations. Many types of shell elements are based on thin shell models and assume linear strain
variation through the element thickness. As a result these models are subject to restrictions on wall thickness
that are similar to those of thin shell theory. These restrictions can only be avoided by using several elements or
integration points through the wall thickness in order to capture non-linear strain variation.

2 STRAIN PREDICTIONS FROM SHELL MODELS
A diagram of an axisymmetrically bending tube is shown in Fig. 1. The tube has a mean radius of a and a

wall thickness of h and is deformed into a series of waves of wavelength λ along the tube axis. The thin-shell
approximation involves the construction of a local coordinate system along the middle surface of the tube (dashed
line) such that z = r−a is the radial distance from the middle surface and x is the coordinate along the tube axis.
Displacements in the radial and axial directions are denoted w and u, respectively.

For axisymmetric deformation, the only non-zero components of strain at a point (x,z) on the tube are given
by:

εz =
∂w
∂z

εθ =
w

a+ z
(1)

εx =
∂u
∂x

εzx =
1
2

(
∂u
∂z

+
∂w
∂x

)
In these expressions, shell approximations have not yet been introduced, so these strains are subject only to the
constraint of small deformations, i.e., the products of displacement gradients are much smaller than the displace-
ment gradients themselves.

Suppose that the displacements w and u are expressed using Taylor series expansions centered at the middle
surface:

u(x,z) = uo(x)+
∂u
∂z

∣∣∣∣
z=0

z+O(z2) (2a)

w(x,z) = wo(x)+
∂w
∂z

∣∣∣∣
z=0

z+O(z2) (2b)

In these equations, wo and uo are the displacements at the middle surface z = 0. We now apply the Kirchhoff
hypothesis which, as described in Ref. [5], is comprised of two assumptions: 1) that normals to the undeformed
middle surface remain straight and normal and 2) the length of these normals is preserved, i.e., radial deformation
is constant through the wall thickness. The later condition dictates that w(x,z) = wo(x) so only the first term in
Eq. (2b) is non-zero. The assumption that normals to the undeformed middle surface remain straight and normal
can only be satisfied if the shear strain εzx from Eq. (1) is zero. Application of this constraint to Eq. (2) reveals
that:

∂u
∂z

∣∣∣∣
z=0

=−∂wo

∂x
(3)

and the coefficients of all terms of quadratic and higher order in Eq. (2a) are zero. As a result, the displacement
field that satisfies the Kirchhoff hypothesis is the following:

w(x,z) = wo(x) (4a)

u(x,z) = uo(x)−
∂wo

∂x
z (4b)
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Fig. 1. Axisymmetric deformation of a tube with a wavelength λ of flexure. The coordinate system (x,z) is a local construction with z
parallel to the radial direction and x to the axial direction. The mean radius is a, and the distance z is measured from the shell middle surface

(dashed line).

Upon substituting Eqs. (4) into Eqs. (1), the axial and hoop strains become:

εx =
∂uo

∂x
− ∂2wo

∂x2 z (5a)

εθ =
wo

a+ z
=

wo

a
− wo

a2 z+O(z2) (5b)

In the latter of these equations, a Taylor series in z has been applied. These two equations relate the strain at any
point through the wall thickness of the tube to the displacements uo and wo of the middle surface. The strains at
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the outer and inner surfaces of the tube (z =±h/2) are then:

εx =
∂uo

∂x
∓ ∂2wo

∂x2
h
2

(6a)

εθ =
wo

a

(
1∓ h

2a

)
(6b)

By assuming that radial stress is small in comparison to hoop and axial stresses, Hooke’s law can be ap-
plied to show that the stress resultants (i.e., the integrals of stress through the wall thickness) in the axial and
circumferential directions are [15]:

Nx =
E

1−ν2

∫ h/2

−h/2
(εx +νεθ)dz (7a)

Nθ =
E

1−ν2

∫ h/2

−h/2
(εθ +νεx)dz (7b)

Upon substituting the strain-displacement relations from Eq. 5, the stress resultants become:

Nx =
Eh

1−ν2

(
∂uo

∂x
+ν

wo

a

)
(8a)

Nθ =
Eh

1−ν2

(
wo

a
+ν

∂uo

∂x

)
(8b)

It is interesting to note that the strains in Eq. (6) have errors of order O(h2), while the errors in the stress resultants
of Eq. (8) are of order O(h3). This can be demonstrated by integrating Eqs. (7) and finding that the quadratic terms
are identically zero. This result suggests that middle-surface strains, which are computed by applying conservation
laws to the stress resultants, may be predicted more accurately than strains at the inner and outer surfaces of the
tube.

3 TYPES OF ERRORS IN SHELL MODELS
The procedure for calculating the dynamic response of a pipe begins with the stress resultants from Eqs. 8.

One first applies momentum conservation laws to these stress resultants to obtain equations of motion for the
middle surface of the shell, as will be done in Section 5.1. These equations of motion are then solved subject
to appropriate boundary and load conditions, thereby producing solutions for uo and wo as functions of space or
time. The final step in the analysis is to calculate the strains at the inner and outer surfaces of the tube using the
strain-displacement relations from Eqs. 5.

The above procedure consists of two main steps: 1) calculating the middle-surface displacements uo and wo,
and 2) recovering stresses and strains at the inner or outer surface of the pipe. Each of these steps involves slight
errors caused by the linearization of the displacements (Eq. 2) and the application of Kirchhoff’s hypotheses. As
has already been pointed out, the linearization produces larger errors in the strain-displacement equations (Eqs. 5)
than in the stress resultants (Eqs. 8). As a result, one might expect that for thick-walled pipes the middle-surface
displacements will be determined more accurately than the outer-surface stress and strain.

The first part of this paper investigates the accuracy of step 2, the application of the strain-displacement
relations. The middle-surface displacements uo and wo are prescribed a priori, which allows the errors arising in
the strain-displacement relations (Eqs. 5) to be isolated. These errors are quantified by applying identical middle-
surface displacements to both a shell model and a static finite-element model, and comparing the differences in
outer-surface strains.

In the second part of the paper, a dynamic shell model is developed and used to predict both middle surface
displacements and outer surface strains for a pipe subjected to a traveling shock wave. The capabilities of the
dynamic shell model are evaluated by making comparisons with dynamic finite element simulations.
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4 PART I: ACCURACY OF STRAIN-DISPLACEMENT RELATIONS
In this section the performance of linear strain-displacement relations is evaluated for various wall thicknesses

and axial curvatures. This is done by prescribing a sinusoidal, prototype deformation in both the shell model and
in finite element simulations and comparing the resulting outer-surface strains. This procedure clarifies the role
of axial curvature in the development of axial strains and also reveals the limitations of linear shell theories.

For both the shell model and the finite element model, a sinusoidal deformation is imposed at the middle
surface of the tube:

wo =
δ

2

[
1− cos

(
2πx
λ

)]
(9)

where λ is the wavelength of the sinusoid and δ is the maximum radial displacement. This form of deformation
is motivated by the sinusoidal vibrations that are observed behind a shock or detonation wave [7], which will be
considered in more detail in Sec. 5.

4.1 Expectations from Shell Theory
After substituting the deformation of Eq. (9) into Eq. (5b), the hoop strain evaluated at z =±h/2 is found to

be:

εθ =
δ

2a

(
1∓ h

2a

)[
1− cos

(
2πx
λ

)]
(10)

and its maximum value is:

εθ,max =
δ

a

(
1+

h
2a

)
(11)

This maximum occurs at the inner surface of the tube (z =−h/2) at an axial position of λ/2, and its value does
not depend on the wavelength of the deformation.

The axial strain in Eq. 5a consists of two terms. The first term is known as the membrane strain, and its
evaluation requires a model for the axial displacement uo. Since the deformation imposed here is motivated by
the sequence of vibrations following a shock or detonation wave, it would be appropriate to choose an axial
displacement model that is consistent with that scenario. One model that is frequently used is to assume that the
axial stress behind the detonation wave is small, that is, Nx ≈ 0. Referring to Eq. (8a), the assumption of zero
axial stress implies that the membrane strain is given by:

εx,membrane ≡
∂uo

∂x
=−ν

wo

a
(12)

Upon substituting the assumed displacement field from Eq. (9), the membrane strain becomes:

εx,membrane =−
νδ

2a

[
1− cos

(
2πx
λ

)]
(13)

This component of strain arises due to the Poisson coupling between radial and axial motion. When the tube
expands radially, stretching of the tube is accompanied by a contraction in the axial direction, and the magnitude
of this contraction is the axial membrane strain. By comparing this equation with Eq. 10, it is seen that the
membrane strain is always out of phase with the hoop strain. Like the hoop strain, the amplitude of the membrane
strain does not depend on the axial wavelength λ.
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The second term in Eq. 5a is known as the bending strain, given by:

εx,bend ≡−
∂2wo

∂x2 z (14)

Upon substituting the assumed deformation from Eq. (9) and evaluating at z =±h/2, the bending strain becomes:

εx,bend =∓π
2 hδ

λ2 cos
(

2πx
λ

)
(15)

This component of the axial strain is produced by changes in axial curvature of the middle surface. At the outer
surface of the tube, the bending strain is out of phase with the hoop strain from Eq. (10), while at the inner surface
it is in phase. Unlike the hoop and membrane strains, the bending strain does depend on the axial wavelength,
being inversely proportional to λ2.

After adding together the membrane and bending strains, the total axial strain evaluated at z =±h/2 is:

εx =−
δν

2a
+

(
δν

2a
∓ π2δh

λ2

)
cos
(

2πx
λ

)
(16)

At the inner surface of the tube, both terms in the coefficient of the cosine are positive, and hence they are
additive. As a result, the maximum axial strain occurs when the cosine takes on a value of −1, which produces a
maximum strain of:

εx,max =−
νδ

a
−π

2 δh
λ2 (Inner Surface) (17)

At the outer surface of the tube, however, the terms involved in the coefficient of the cosine are of opposite sign
and cancellation occurs. At a certain critical wavelength λcr, these two terms cancel out entirely leaving an axial
strain with no spatial variation. The critical wavelength at which this occurs is:

λcr

h
= π

√
2a
νh

(18)

The axial strain in Eq. (16) can only become tensile if the wavelength is smaller than this critical value.
Furthermore, if λ > λcr, then the outer surface axial strain is out of phase with the hoop strain, while for smaller
values of λ it is in phase.

4.2 Static Finite Element Model
Static finite element simulations were conducted using the program FEAPpv [16], discussed in Chap. 19

of [17]. The pipe was modeled using 4-node, axisymmetric quadrilateral elements. The number of nodes through
the wall thickness was always 20, while the number of nodes along the axis was varied as the tube length was
changed in order to preserve an element aspect ratio of 1.0. The pipe was assumed to be made from an isotropic
material with E = 193 GPa and ν = 0.29, which are representative of 304 stainless steel. The inner radius of
the pipe was fixed at 26.25 mm, which is the nominal value for 2 inch schedule 40 pipe, and the outer radius
was varied to model pipes of several wall thicknesses. Three different pipe sizes having a/h = 20, 7, and 4 were
analyzed. These values of a/h are close to those for 2 inch pipe of schedules 5, 40, and 120.

The same sinusoidal deformation from Eq. (9) was applied at the middle surface of the tube. Since the
objective is to model the series of vibrations that occurs behind a detonation wave, periodic boundary conditions
were imposed at the ends of the pipe. Several examples of axial stress fields for various values of λ/h are shown in
Fig. 2. These plots demonstrate the increasing stress (for fixed radial displacement) at the inner and outer surfaces
of the tube as the wavelength of deformation approaches the tube wall thickness.
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Axial Stress σx [Pa] 

Fig. 2. Contours of axial stress σx for a tube with a/h = 7 and three different values of λ/h. These values are top: λ/h = 2; middle:

λ/h = 5; bottom: λ/h = 10. In all three cases, E = 193 GPa, ν = 0.29, Ri = 26.25 mm, and the maximum displacement of the

middle surface is δ = 20 µm.

4.3 Comparison between Shell Model and FEM

Since the boundary conditions chosen for the finite element model are periodic, ∂uo/∂x = 0 is imposed at
the boundaries and hence the membrane strain is zero. As a result, the axial strain can be computed using only
the bending contribution, given in Eq. (15). This prediction is compared with the finite element results in Fig. 3.
Equation (15) suggests that if the wavelength λ is normalized by the wall thickness h and the axial strains are
scaled by h/δ, the strains for different wall thicknesses should collapse onto a single curve. As shown in the
Fig. 3, this is the case, even for small wavelengths where the predictions of the finite element model deviate from
those of the shell model. These results also demonstrate that the axial bending strain is independent of the mean
radius a of the tube.

For large wavelengths λ/h, the finite element predictions are asymptotic to those from shell theory. In this
limit, the slope of −2 on the log-scale plot confirms the inverse quadratic relationship between the outer-surface
axial strain and the wavelength of the deformation that was predicted by Eq. (15). At small wavelengths, the
predictions of the finite element model deviate substantially from this trend, but for λ/h > 10 the relative error
between the finite element and shell models is less than 10%. This result demonstrates that even for classically
“thin” pipes having h/a� 1, it is possible for linear shell models to be in error if the axial curvature is large
enough.
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Fig. 3. Variation of maximum axial strain (same at both inner and outer surface ) with dimensionless wavelength of deformation. Solid line:

shell theory (Eq. 15). Markers: finite element analysis.

5 PART II: PERFORMANCE OF DYNAMIC SHELL EQUATIONS

The preceding sections demonstrated that for a given set of middle-surface displacements wo and uo, the shell
equations adequately predict outer-surface strain as long as the wavelength of the deformation is greater than about
λ/h∼ 10. We now consider whether or not the middle-surface actually deforms into such small wavelengths under
practical conditions and investigate whether or not transient shell models are capable of accurately predicting the
middle-surface displacements for thick tubes. This is done by comparing the predictions of a transient shell model
with those of highly resolve finite element simulations.

5.1 Shell Models of Dynamic Tube Response

In the sections that follow, an axisymmetric dynamic shell model based on the work of Tang [13] is described
and a solution technique is presented for solving the initial value problem of a shock wave traveling along the tube
at a fixed velocity. The chosen shell model includes the effects of transverse shear deformation and rotary inertia
of the pipe, both of which are important when modeling thick-walled tubes and high-speed loads [18, 19].
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5.1.1 Equations of Motion
Following the approach of [13], the dynamic shell equations for a pipe under a pressure load p are given by:

ρh
∂2uo

∂t2 =
∂Nx

∂x
(19a)

ρh
∂2wo

∂t2 =
∂Qx

∂x
− Nθ

a
+ p (19b)

ρh3

12
∂2ψx

∂t2 =
∂Mx

∂x
−Qx (19c)

Here uo, wo, and ψx are the axial, radial, and angular displacements of the middle surface, and ρ, h, and a are the
tube’s density, wall thickness, and mean radius. The axial and circumferential stress resultants, denoted Nx and
Nθ, and the shear and moment resultants, Qx and Mx, are given by

Nx =
Eh

1−ν2

[
∂uo

∂x
+ν

wo

a

]
(20a)

Nθ =
Eh

1−ν2

[
wo

a
+ν

∂uo

∂x

]
(20b)

Qx = κGh
[

ψx +
∂wo

∂x

]
(20c)

Mx =
Eh3

12(1−ν2)

∂ψx

∂x
(20d)

The stress resultants above are the same as those obtained in Eq. (8), so the present formulation is consistent with
the strains presented in Eq. (5).

Using the approach of [13], the radial displacement wo of the middle surface is decomposed into a component
due to bending, wb, and a component due to shear, ws, such that wb +ws = wo. The bending contribution satisfies
(by definition) the relation ∂wb/∂x = −ψx. Here a slight departure from the formulation in Sec. 2 is introduced
by the inclusion of transverse shear deformation, ws. Since the shear deformation ws does not change the axial
curvature of the middle surface, it has no effect on the axial bending strain. Thus to correctly calculate the axial
strains at the inner and outer surfaces of the tube, only the deformation due to bending, wb, should be used to
evaluate wo in Eq. (5a). However, hoop strains do not involve the change in axial curvature of the middle surface,
so the total deformation wo = ws +wb should be used to evaluate the hoop strains in Eq. (5b).

It is convenient to develop and solve the shell model in terms of the following dimensionless variables:

Wb =
wb

h
Ws =

ws

h

U =
uo

h
β

2 =
h2

12a2

(21)

X =

√
12
h

x T =

√
12υd

h
t

δ
2 =

κG(1−ν2)

E
P =

1−ν2

12E

The parameter υd is the shell dilatational wave velocity, given by υd =
√

E/(1−ν2)ρ, and κ is the shear correction
factor, assumed here to have a value of 5/6 as proposed by [18]. Eliminating the stress resultants from Eqs. (19-20)
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and expressing the result in terms of the dimensionless parameters (21) gives:

∂2U
∂T 2 −

∂2U
∂X2 −νβ

(
∂Wb

∂X
+

∂Ws

∂X

)
= 0 (22a)

∂2

∂T 2 (Ws +Wb)−δ
2 ∂2Ws

∂X2 +β
2 (Ws +Wb)+νβ

∂U
∂X

= P (22b)

∂2Wb

∂X2 −
∂2Wb

∂T 2 +δ
2Ws = 0 (22c)

The boundary conditions chosen for this analysis are the following:

W (0,T ) =W (L,T ) = 0 (23a)

∂2W
∂X2

∣∣∣∣
X=0,L

= 0 (23b)

∂U
∂X

∣∣∣∣
X=0,L

= 0 (23c)

The radial boundary conditions are those of a simply-supported tube. Referring to Eq. (20a), the axial boundary
condition is one of zero axial stress (Nx = 0) corresponding to a pipe with ends that can deform freely in the axial
direction.

We now employ a Fourier series expansion in the X coordinate which satisfies the boundary conditions:

U =
∞

∑
n=1

Un cos(kX) (24a)

Ws =
∞

∑
n=1

Sn sin(kX) (24b)

Wb =
∞

∑
n=1

Bn sin(kX) (24c)

P =
∞

∑
n=1

Pn sin(kX) (24d)

where k = nπ/L. Inserting these series into Eqs. (22) reduces the system to a set of three linear, second order
ODEs in time:

Ün = kνβ(Bn +Sn)− k2Un (25a)

S̈n = Bn
(
k2−β

2)−Sn
[
δ

2 (1+ k2)+β
2]

+ kνβUn +Pn(T ) (25b)

B̈n = δ
2Sn− k2Bn (25c)

The Fourier coefficients Pn of the pressure load are found by assuming that the pressure is a step function of
amplitude Po traveling along the tube at a dimensionless velocity V = υ/υd

P(X ,T ) = PoH(V T −X) (26)
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where H is the Heaviside step function. By integrating over the domain and using the orthogonality of the trigono-
metric functions, the coefficients Pn are determined to be:

Pn(T ) =
2Po

nπ

[
1− cos(kV T )

]
(27)

Using this result, Eqs. (25) can be expressed as a second order linear system:

∂2y
∂t2 = Ay+ f

[
1− cos(kV T )

]
(28)

where

y = [Un,Bn,Sn]
T

f = [0,0,2Po/nπ]T

and

A =

−k2 kνβ kνβ

0 −k2 δ2

kνβ (k2−β2) −(β2 +δ2 + k2δ2)



The matrix A has three eigenvalues, designated−ω2
1,−ω2

2,−ω2
3, which in this analysis were always distinct, real,

and negative. Although it has not been proven that this is always the case, the eigenvalues differ only slightly
from those in shell formulations without shear deformation and rotary inertia, for which it can be shown that
the eigenvalues are always distinct, real, and negative. Further support for the assumption of distinct negative
eigenvalues is obtained on physical grounds: If any eigenvalue is positive or has a non-zero imaginary part, then
the tube’s response will grow exponentially with time, even if no pressure load is applied. Likewise, a repeated
eigenvalue will produce unbounded linear growth of deformation with time even when the system is unforced.
Such behavior is non-physical in the absence of applied loads since no mechanism for the addition or depletion of
energy is available. When the system is forced (for instance, by the traveling pressure wave), unbounded growth
may occur by resonance between the tube vibration and the applied load, but this does not involve complex or
repeated eigenvalues.

Dispersion curves for three tubes having thicknesses of a/h = 4, 7, and 20 are shown in Fig. 4; the curves
plotted are the phase speeds ω/k corresponding to the three eigenvalues of the matrix A. For real wavenumbers
the velocity spectrum is composed of three branches, with branch 1 consisting of coupled radial and axial motion,
branch 2 being predominantly axial, and branch 3 being predominantly rotary. For practical cases involving
detonations or shock waves in metal tubes, the velocities are small enough that the first branch plays the most
important role in the response. The dispersion curves can be used to estimate the most prominent wavelengths in
the response: these are the intersection points between the load speed and the dispersion curve, which correspond
to steady-state solutions to the shell equations [6,13]. As discussed by Tang, these steady-state solutions exhibit a
resonance at the critical velocity υco corresponding to the minimum of the first branch of the dispersion curve [13].
Our simulations show that except near this velocity, the pipe response rapidly approaches the steady-state solution
after the load has traveled several flexural wavelengths past in incident end of the pipe. In the sections that follow,
loads traveling at a constant speed of 1800 m/s are applied, which correspond to the horizontal line at 0.35 in
Fig. 4.
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5.1.2 Solution Technique
Because the eigenvalues of the linear system in Eq. (28) are distinct, the system can be diagonalized using the

mapping

ỹ≡ P−1y (29a)

f̃≡ P−1f (29b)

where P is the matrix containing the right eigenvectors of A as its columns. The diagonalized system is then

∂2ỹ
∂T 2 =−Λ

2ỹ+ f̃
[

1− cos(kV T )
]

(30)

where Λ is the diagonal matrix having the three eigenvalues ω2
1,ω

2
2,ω

3
3 as its diagonal entries. Eq. (30) represents

three uncoupled equations of the form:

∂2ỹ j

∂T 2 =−ω
2
j ỹ j + f̃ j

[
1− cos(kV T )

]
( j = 1..3) (31)
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The appropriate initial conditions are that the tube is initially undeformed and has zero velocity, that is, y = ẏ = 0
at time T = 0. The solution to Eq. (31) which satisfies these initial conditions can be found using the usual
methods for linear, constant-coefficient ordinary differential equations [20, 21], and is determined to be:

ỹ j =
f̃ j

ω2
j

[
1− cos(kV T )

+
2k2V 2

k2V 2−ω2
j

sin
(

ω j + kV
2

T
)

sin
(

ω j− kV
2

T
)]

(32)

Although it is possible for the denominator in the last term to reach zero, there is no singularity since the sine
function in the numerator also becomes zero at that point. Regularity of the solution near this point can be
demonstrated by taking the Taylor Series of the sine function, which also produces the solution for ω j = kV .

Having found the solutions ỹ j from Eq. (32), the mapping (29) can be inverted to obtain the vector y, from
which the Fourier coefficients Bn, Sn, and Un are extracted. The middle surface displacements are then evaluated
from the summations in Eq. (24), and strains are computed using Eq. (5). As discussed previously, only the
bending component of radial displacement wb is used in Eq. (5a) while the total radial displacement wb +ws is
used in Eq. (5b).

The number of terms required in the Fourier series depends on the length of the tube and the speed of the
applied load. For example, if the length of the tube is doubled, the number of terms must be doubled in order to
resolve the same maximum wavenumber. The largest wavenumber that must be resolved can be estimated a priori
from the dispersion curves (Fig. 4) by finding the intersection points between the load velocity and the dispersion
curves.

5.2 Dynamic Finite Element Modeling
To analyze the performance of the above shell model, finite element simulations were conducted using the

commercial software package LS-DYNA [22]. The pipe was modeled using axisymmetric, quadrilateral elements
with 35 nodes through the tube wall, and the number of nodes along the tube axis was chosen by setting the aspect
ratio of the elements equal to 1.0. For the results presented in this paper, these conditions correspond to 130-150
elements per axial wavelength for the shortest waves observed in the response. At this resolution the results are
well-converged; however, no attempt was made to determine the coarsest mesh that is sufficient to accurately
resolve the smallest wavelengths.

As was done in the static analysis of Sec. 4, the pipe was modeled as elastic and isotropic with E = 193 GPa,
ν = 0.29, and ρ = 8040 kg-m-3 (nominal values for 304 stainless steel). A 2 m long segment of pipe was modeled
with inner radius of 26.25 mm and wall thicknesses of 7.5, 4.0, and 1.3 mm. These give values a/h of 4, 7, and 20,
which are similar to those for 2-inch pipe of schedules 5, 40, and 120. The load applied to the tube was taken to
be a shock wave of amplitude po = 2.5 MPa traveling along the tube with a speed of 1800 m/s. These conditions
are representative of detonations in hydrocarbon-air mixtures at atmospheric initial pressure [23].

The boundary conditions for the finite element model were chosen to mirror those of the dynamic shell model
as closely as possible. At the ends of the tube, only the nodes lying on the middle surface of the pipe were
constrained radially so that the ends of the pipe are free to rotate. This matches the boundary condition in the shell
model from Eq. (23), where the radial displacement is zero but the slope ∂w/∂x at the ends of the pipe can be
non-zero. In order to match the axial boundary condition in Eq. (23), the ideal constraint would be ∂u/∂x = 0 at
both ends of the tube, which is satisfied if the ends of the tube are free of axial forces. However, such a boundary
condition is not admissible in FEM since the tube must be anchored axially in at least one place, so the boundary
condition u(L, t) = 0 was also applied. As a result, the solution from the finite element simulation is only expected
to match the shell model until the wave system that develops first encounters the end of the pipe at x = L.

5.3 Comparison of Transient Shell Model with FEM
Before making comparisons between the different tube sizes, it is worth noting that the qualitative features

of the tube response depend strongly on the ratio of the applied load speed υ to the “first critical velocity,” υco.
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The behavior of tubes near this critical velocity has been studied by numerous authors [7, 13, 14, 24] who have
found that a resonance between the traveling load and the speed of flexural waves results in highly amplified
displacements, stresses, and strains. This critical velocity is the minimum phase speed of sinusoidal waves in the
tube, and hence is located at the minimum of the lowest branch of the dispersion curve (see Fig. 4). As indicated
in that figure, the critical speed increases significantly as the tube is made thicker. In the results that follow, the
speed of the load is held fixed at 1800 m/s while the thickness of the tube is increased. As a result, for thicker
tubes the load speed is closer to the critical velocity. A more detailed discussion of the pipe response near this
critical velocity will follow in Sec. 6, but first we validate the transient shell model through comparisons with
finite element results.

Strain traces for three different tube sizes are compared in Figs. 5-7. To facilitate comparisons between the
different wall thicknesses, all strains have been normalized by the static hoop strain that would occur at the applied
pressure of po = 2.5 MPa:

εθ,static =
poa(1−ν2)

Eh
(33)

Figure 5 compares hoop and axial strains for a rather thin tube with a/h = 20. The position of the pressure
wave corresponds to the large jump in hoop strain at about 0.75 m. The response of the tube consists primarily
of two wavelengths: ahead of the pressure load the vibrations have a very short wavelength of about λ = 5.0 mm
(λ/h = 3.7) while behind the pressure load the wavelength is 62 mm (λ/h = 46). These two wavelengths corre-
spond to the two intersection points between the load speed and the dispersion curve, as shown in Fig. 4. Within
the low-frequency vibrations behind the load, the peak hoop and axial strains from the finite element and shell
models differ only by 2-3%, which is to be expected since the wavelength of these is vibrations fairly large com-
pared to the wall thickness.

The high-frequency vibrations ahead of the pressure load (magnified in the inset plot) are much more promi-
nent in the axial strain than in the hoop strain. Although the frequency of these waves is well-predicted, the peak
strains from the shell model are 10-30% greater than those from finite elements. This result is in agreement with
the expectations from Fig. 3, where significant errors are predicted for the present value of λ/h = 3.7.

The leading edge of the high-frequency wave packet travels at the shear wave speed, υs =
√

κG/ρ∼ 2800 m/s,
which is faster than the load speed, so this packet increases in width as time progresses. Ahead of the shear
waves is a small amplitude bar wave, primarily an axial wave, which travels at the dilatation wave velocity
υd =

√
E/ρ(1−ν2). At the time shown in Fig. 5, the bar wave is just reaching the end of the pipe. Further

discussion about the axial wave propagation and a simple model for its prediction can be found in Ref. [25].
The results in Fig. 5 demonstrate that for thin tubes, the predictions of transient shell models are virtually

indistinguishable from those of finite element simulations, which is expected considering the relatively long axial
wavelength of the vibrations. Only in the high-frequency shear waves ahead of the load do the predictions of the
shell model and the finite elements differ appreciably.

Figure 6 shows the hoop and axial strains for a slightly thicker tube with a/h = 7. Again very good agreement
is observed; however, the peak hoop strains predicted by the shell model are about 7% greater than those reported
in the FEM. The low-frequency flexural waves behind the load again have a wavelength of about 62 mm which
corresponds to λ/h = 16, while the high-frequency waves ahead of the load have λ = 15.7 mm, or λ/h = 4.

Figure 7 shows hoop and axial strains at the outer surface of an even thicker-walled tube with a/h = 4. In
this case, the load speed of 1800 m/s is only about 1.04 times the first critical velocity υco, so strains are highly
amplified relative to the static values. As shown in Fig. 4, the nearness of the load speed to the critical velocity
causes the wavelengths ahead of the pressure wave (35 mm) and behind it (56 mm) to be very close to one
another. These wavelengths correspond to λ/h = 7.5 and 4.7, respectively. This behavior has also been observed
in experiments by Beltman et al. [6], who recorded hoop strain traces that look much like those in Fig. 7.

In Fig. 7 the wavelengths of the deformation are well-predicted by the shell model, but the peak strains are
in error by about 20% for the hoop strain and 30% for the longitudinal strain, with the strains from FEM being
lower than those from the shell model. It should be noted that similar errors are observed in the middle surface
displacements, so in this case the shell model’s errors at the outer surface of the tube cannot be attributed to
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Fig. 5. Comparison of finite element and shell model predictions of hoop and axial strains at the outer surface of a pipe. The pipe has

mean radius a = 26.9 mm and wall thickness h = 1.34 mm (a/h = 20). Load velocity is υ = 1800 m/s, which corresponds to

υ/υd = 0.35 and υ/υco = 2.2. Axial strains have been offset by -1 for clarity. Inset plot magnifies the high frequency waves ahead of

the load.

the strain-displacement relations alone. It is also worth noting that the axial and hoop strains have about the
same amplitude, which demonstrates the importance of including the biaxial state of stress or strain in design
calculations.

The differences in the qualitative features of the strain traces in Figs. 5-7 are primarily due to the changes in
load velocity relative to the first critical velocity υco. Although the load velocity was held fixed at υ = 1800 m/s
for all three figures, the critical velocities increased as the tube was made thicker, resulting in smaller values of
υ/υco for the thicker tubes.

By comparing Figs. 5-7, it can be seen that the frequency of the longer wavelength vibrations behind the shock
wave does not depend strongly on the wall thickness of the tube. In fact, this frequency is close to the breathing
frequency of an infinitely long tube [26]:

fn =
1

2πa

√
E

ρ(1−ν2)
(34)

For metal pipes in 2-6 inch sizes, this frequency is on the order of 10-30 kHz, and for detonations traveling
at 1500-2500 m/s, the associated wavelengths are 5-15 cm. Such frequencies and wavelengths usually are not
difficult to measure in experiment using ordinary strain gauges or predict in finite element models. In contrast, the
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Fig. 6. Comparison of finite element and shell model predictions of hoop and axial strains at the outer surface of a pipe. The pipe has mean

radius a = 28.3 mm and wall thickness h = 4.0 mm (a/h = 7). Load velocity is υ = 1800 m/s, which corresponds to υ/υd = 0.35
and υ/υco = 1.32. Axial strains have been offset by -1 for clarity.

wavelengths of the high frequency vibrations in the precursor wave ahead of the pressure load fall in the range of
1-10 times the wall thickness of the tube. As a result, these wavelengths are often in the range of 1-10 mm and
have frequencies of 300 kHz - 3 MHz. Such small wavelengths and high frequencies are very difficult to measure
experimentally and require high spatial and temporal resolution to predict correctly in finite element models.

5.4 Variation of Strain through Wall Thickness
So far, only the strain at the outer surface of the tube has been presented since this is where measurements

are usually made. However, often the axial strain at the inner surface is even larger than at the outer surface. To
illustrate this, axial strains at the inner, middle, and outer surfaces of a tube with a/h = 7 are plotted in Fig. 8. At
the middle surface of the tube, the axial strain is caused by Poisson coupling alone and bending plays no role. This
plot reveals axial strain at the inner surface that is more than twice as large as the strain observed at the middle
and outer surfaces.

The reason for the larger strain at the inner surface can be explained by decomposing the axial strain into
its membrane and bending components. These two terms are plotted in Fig. 9 along with the total axial strains
at the inner and outer surfaces of the tube. As this figure shows, the components of axial strain due to bending
and stretching are of similar amplitude, but are very nearly out of phase. Thus at the outer surface of the tube,
there is significant cancellation and the net strain is rather small. At the inner surface of the tube, however, the
superposition of these two components results in very large strains.
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Fig. 7. Comparison of finite element and shell model predictions of hoop and axial strains at the outer surface of a pipe. The pipe has mean

radius a = 30.0 mm and wall thickness h = 7.5 mm (a/h = 4). Load velocity is υ = 1800 m/s, which corresponds to υ/υd = 0.35
and υ/υco = 1.04. Axial strains have been offset by -5 for clarity.

6 STRUCTURAL RESONANCE
The preceding sections have pointed out the existence of a critical velocity, υco, at which a structural resonance

is established between the pressure load and the flexural waves in the pipe. In fact there are three additional
resonant velocities involving axial motion of the pipe [14, 25] and the propagation of shear waves [27], but for
metal pipes these resonances involve velocities larger than those normally encountered in shock and detonation
waves and are therefore not considered here.

Figure 10 shows the maximum radial displacement normalized by the static displacement for a wide range
of load velocities. For this plot the length of the pipe has been increased to 10 m to allow larger amplification,
and the amplification is reported when the pressure wave has traveled a distance of 5 m. A sharp amplification
peak is observed at the critical velocity, with nearly identical behavior for both thick and thin pipes. Also shown
is the amplification factor obtained using the steady-state model of Beltman and Shepherd [7]; the predictions of
this model are graphically indistinguishable for a/h = 7.2 and 20. For velocities less than υco, the amplification
factors from the unsteady model agree very closely with the steady-state predictions; however, above υco the
unsteady amplification is slightly greater. The reason is that the pipe never reaches a truly steady state, and the
waves generated by the initial interaction with the pipe boundary lead to slight differences from the steady-state
model.

The extent of amplification at the critical velocity depends on the distance the load has traveled. Figure. 11
displays the maximum radial displacement that occurs at each station x, maximized over all time. Near the
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critical velocity the maximum displacement increases with the square root of distance as predicted analytically
by Schiffner and Steele [14]; they arrived at an asymptotic amplification factor of 0.3[x/(ah)1/2]1/2, whereas the
curve for a/h = 7.2 in Fig. 11 is better described by the expression 1+0.4[x/(ah)1/2]1/2. For velocities differing
from the critical one, the amplification initially grows like

√
x but plateaus at a value near that of a steady wave

in an infinite pipe. Similar behavior was also reported by Steele for a beam on an elastic foundation [28]. The
oscillations in peak displacement for sub-critical velocities are caused by unsteady waves that are generated by
the boundary conditions at x = 0. By normalizing the distance x by the length scale

√
ah, the results for both thick

and thin pipes nearly collapse onto a single set of curves. This indicates that similar resonance behavior can be
expected for all pipe thicknesses.

7 DISCUSSION OF EXPERIMENTS
As described in the introduction, the analysis performed in this paper was intended to clarify the behavior of

axial strains for thick-walled tubes subjected to detonation loads. In this section, examples of experimental strain
measurements are provided and evaluated on the basis of the models developed in this paper.

Figure 12 shows axial and hoop strain traces measured in Ref. [2] for a thin-walled tube with a/h = 39.
The tube was loaded by a detonation with a Chapman Jouguet (CJ) speed of UCJ = 2343 m/s and pressure of
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PCJ = 1.5 MPa. These measurements are compared with the predictions of the transient shell model described
in Section 5.1 (dashed lines). Very good agreement is observed, especially in the first few cycles following the
arrival of the pressure wave at t = 0. The high-frequency shear waves ahead of the pressure wave are not observed
in the experiments due to limitations on spatial and temporal resolution, but the frequency and amplitude of the
vibrations behind the wavefront are well predicted. For such a thin tube, the contribution of bending to the axial
strain is small: the ratio of axial to hoop strain is very close to ν = 0.3 and the measured axial strain is out of
phase with the hoop strain.

Figure 13 plots axial and hoop strains measured in Ref. [3] for a 2 inch, schedule 40, stainless steel pipe with
a/h = 7.2. The tube was loaded using a detonation in H2-N2O with CJ speed and pressure of UCJ = 2090 m/s
and PCJ = 2.5 MPa. The measurements are again compared with the predictions of shell theory, shown as dashed
lines. This case was also simulated using finite element analysis, and the results (not shown) were graphically
indistinguishable from those obtained from the shell model. The amplitude and frequency of the hoop strains are
close to the expectations from shell theory, but both the qualitative features and quantitative values of the axial
strains are significantly different. The wavelength of these vibrations is about 70 mm, or λ/h = 18, which is
large enough that the shell model is expected to be accurate. For these conditions, the ratio of λ to the critical
wavelength given by Eq. (18) is about 0.82, so the membrane and bending components of strain at the outer
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surface of the tube are expected to nearly cancel out. This behavior is observed in the shell model, but not in the
experiments. Instead, the measured axial strains exhibit large vibrations with amplitudes that are nearly the same
size as the hoop strains.

This paper has demonstrated that the predictions of shell models agree quite adequately with the results of
highly resolved finite element simulations, even for tubes with wall thickness as large as a/h = 4. As a result, the
discrepancy between the predictions of shell models and the experimental measurements cannot be attributed to
the breakdown of the shell model for thick tubes. The large axial strains observed in the experiments also cannot
be explained by the through-wall bending effect since the wavelengths of the vibration are too large to produce
bending strains as large as those measured in experiment.

The source of the unusual features of the measured strains must therefore be non-ideal conditions that are
present in experiments and are not included in the modeling. Several potential causes are the following:

1. Transition to detonation (DDT) after ignition, which occurs inside of the specimen pipe, may produce a non-
ideal, transient wave system.
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Fig. 11. Maximum radial displacement at each position x for various load velocities. Response was calculated using the dynamic shell

model with a 10 m long pipe.

2. Non-axisymmetric features of the pipe specimen, such as weldments and inserts where pressure transducers
are mounted, might excite non-axisymmetric modes of vibration that involve coupling between radial and
axial motion.

3. Interactions between the vibrating pipe and the mounting hardware used to support the pipe might generate
additional wave systems.

4. The cellular structure of the detonation wave may produce to local pressure transients or a non-normal wave-
front, which would introduce temporal or spatial variations in pressure near the wavefront.

Because there are many potential sources of non-ideal behavior, additional experiments conducted under more
precisely controlled conditions are needed in order to understand the source of the large axial strains that have
been observed.

8 CONCLUSIONS
By applying a prescribed middle-surface displacement to both finite element models and shell models, it has

been shown that the axial strain at the inner or outer surface of a tube varies inversely with the square of the
deformation’s wavelength. This scaling is valid until the wavelength decreases below about 10 times the tube’s
wall thickness, at which point nonlinear behavior is observed and the strains predicted by shell equations become
substantially greater than those obtained from finite element models.

Comparisons between dynamic shell models and finite element simulations for shock wave type loads have
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Fig. 12. Hoop and axial strain measurements for a thin tube (a/h = 39) loaded by an internal detonation [2]. Tube is made from C1010

steel with Ri = 63.5 mm and h = 1.65 mm, and is loaded by a detonation with CJ speed and pressure of UCJ = 2343 m/s and

PCJ = 1.5 MPa. The first critical velocity is υco = 650 m/s. Solid lines are measurements, dashed lines are predictions from transient

shell model.

shown that shell models which include the effects of rotary inertia and transverse shear deformation can adequately
predict the response of tubes for most practical tube sizes. For the thickest tubes simulated (a/h = 4), the peak
strains predicted by shell models were up to 20-30% greater than those obtained using finite element models.
Nevertheless, the predictions of shell models adequately capture most features of the response, so such models
can be useful tools for understanding the response even of very thick-walled tubes.

The analysis in this paper has demonstrated that the large axial strains which have been observed in experi-
ments cannot be explained by the ideal situation of a shock wave traveling along the inside of a perfect pipe. The
magnitude of the through-wall bending strains is not large enough to account for the measured strains, and the
breakdown of shell models for thick-walled tubes is also not sufficiently large (nor of the correct sign) to explain
those results. Instead, non-ideal features of the experiment such as pipe imperfections or mounting hardware seem
to be responsible for these large strains.
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