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A method for injection of gas into the boundary layer on a slender body in supersonic flow while minimizing

perturbation to the mean flow is examined. Injection of gas is equivalent to a sudden increase in the displacement

thickness of the boundary layer, which produces an oblique shock that propagates into the inviscid region of the flow.

It is found that modification of the geometry of the body can compensate for the increased displacement thickness

created by injection andminimize the production of obliquewaves.However, the resulting near-wall injection layer is

observed to be unstable and a turbulent boundary layer develops downstream of the injection region. The instability

of the flow is examined experimentally using high-speed schlieren visualization and numerically using linear stability

analysis of velocity profiles from a compressible Navier–Stokes computation. At the present postshockMach number

of about 3.8, both first- and second-mode instabilities are active, though computations predict that the first mode is

primarily responsible for transition downstream of the injector.

Nomenclature

L = length of injector, m
Lc = cone length, 0.25 m
M = Mach number
m = normalized injection mass flow rate
_m = mass flow rate, kg∕s
p = pressure, Pa
R = specific gas constant, J∕�kg · K�
Rex = Reynolds number based on x
r = injector radial coordinate, m
rc = local cone radius, m
T = temperature, K
U = velocity, m∕s
x = coordinate along cone surface, m
αi = spatial growth rate, normalized by Lc
β = spanwise wavenumber, normalized by Lc
γ = ratio of specific heats
δ = injection/boundary-layer thickness, m
κ = permeability, m2

μ = dynamic viscosity, kg∕�m · s�
ω = frequency, normalized by Lc and U∞
ρ = density, kg∕m3

Subscripts

∞ = freestream quantity
e = injection/boundary-layer edge quantity
w = wall quantity

I. Introduction

I NJECTION of a gas into the boundary layer in a supersonic flow
has a number of applications to high-speed flight. In scramjet

inlets, injection can reduce skin friction drag, cool the wall by film
cooling, increase the resistance of the boundary layer to separation
via transition to turbulence, and mix some fuel with air before
entering the combustor [1,2]. The motivation for the present study is
the potential for instability control by the modification of boundary-
layer gas composition. The concept is based on the observation that
gases that are vibrationally active can convert acoustic energy into
thermal energy, damping waves associated with boundary-layer in-
stability and delaying transition to turbulence [3]. However, injection
is also potentially destabilizing because of the modification of the
boundary-layer velocity profile and the potential for adverse pressure
gradients due to oblique shock wave generation. The present study
does not consider the effects of vibrational nonequilibrium but only
explores the fluid mechanics of supersonic flow with injection.
Hypervelocity boundary layers are highly unstable to acoustic

disturbances via the so-called second or Mack mode [4]. The growth
rates for the first mode, caused by Tollmien–Schlichting instability,
are much smaller compared with that of the Mack mode when the
freestreamMach number is high. The growth rate for theMackmode
is strongly dependent on the wall temperature, and when the wall is
cold, as is usually the case in hypersonic flight, the Mack mode is
dominant in controlling boundary-layer transition.
Current understanding of the mechanism for the Mack mode is

summarized in Fedorov [5]. It is an inviscid instability brought about
by trapped acoustic waves inside the boundary layer. The velocity
and sound speed profiles in the boundary layer create a wave guide
that refracts acoustic disturbances toward the wall and prevents them
from escaping. The coupling of mean flow gradients with the trapped
acoustic waves extracts energy from the mean flow, which reinforces
and amplifies the fluctuations and eventually leads to turbulence. The
linewhere the phase speed of the disturbance is equal to the sumof the
flow velocity and the local sound speed, called the relative sonic line,
acts as the upper boundary of the wave guide.
Past research has shown that acoustic energy can be absorbed by

nonequilibrium effects in the gas in the boundary layer [6,7]. This
occurs if two conditions are met: energy exchange between vibra-
tional and translational/rotational modesmust occur on the same time
scale as the period of the most amplified frequency in the boundary
layer, and the vibrational energy modes must be sufficiently popu-
lated to absorb a significant amount of acoustic energy. The most
amplified frequency in hypervelocity boundary layers is on the order
of 1 MHz. Both of these conditions are met for carbon dioxide at
high-enthalpy flow conditions. For these reasons, if carbon dioxide
could be injected into the boundary layer in a hypervelocity air flow
without creating a significant disturbance, transition to turbulence
would be delayed.
CO2 injection was previously tested in the T5 hypervelocity shock

tunnel at Caltech by Leyva and Jewell [3,8]. These experiments were
performed using a porous conical injector made from sintered
stainless steel, the slope of which matches the slope of the cone
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model, shown in Fig. 1. One complicating factor in interpreting these
experiments is that previous studies have shown that a porous surface
with no injection absorbs acoustic energy and can significantly delay
or suppress boundary-layer transition [9]. The results are inconclu-
sive regarding the effectiveness of injection on delaying the onset of
boundary-layer transition, motivating a closer study of the effects of
gaseous injection in supersonic flow.
Upon further investigation, it is clear that injection from a conical

injector creates a disturbance to the mean flow, which is undesirable.
The injected gas can be seen as increasing the displacement thickness
of the boundary layer over a short distance, which has the effect of a
positive angle change of the surface of the cone. This causes an oblique
shock to form that propagates into the exterior flow and creates an
adverse pressure gradient on the surface, along with another wave
system downstream related to the specifics of the injected gas flow.
It was hypothesized by A. Fedorov that a negative slope of the

injector section could compensate for the increase in the displace-
ment thickness caused by injection. This would minimize the strength
of the oblique shock and other waves if the injection rate was properly
tuned. Fedorov et al. [10] examined this hypothesis for T5 conditions
with numerical simulations using an approach similar to that presented
in Sec. IV.B. An illustration of this idea is shown in Fig. 2, and Fig. 1
shows the assembled model. On a cone with a cylindrical section
without injection, it is well known that the boundary layer separates
over the compression turn at the end of the cylindrical section. It will be
investigated whether this occurs with injection.

II. Experimental Setup

Experiments for the current study were performed in the Ludwieg
tube at Caltech [11]. A perspective view of the facility is shown in
Fig. 3. The Ludwieg tube in its present configuration produces Mach
4 air flowwith a freestream velocity of 670 m∕s, a steady test time of
100 ms, and a unit Reynolds number range of 5–15 × 106 per meter.
The noise level is about 1% in pitot pressure. A standard Z-type
schlieren visualization setup is used to visualize the flow. A Phantom
v710 high-speed camera is used to record images, and two separate
light sources are used. For sensitive, full-field images that clearly
detect the shock system, a Cree X-Lamp MC-E Cool White contin-
uous white light LED is used with a frame rate of 3000 frames per
second and an exposure time of 30 μs. Images taken with this config-
uration cannot resolve small or transient structures in the flow, and so
a second light source is used in a separate set of experiments with a
different frame rate to capture these. The second source is an Osram
SPL PL90-3 infrared laser diode with a wavelength of 905 nm. The
beam is expanded to achieve a field of view surrounding the injector,
and the diode is pulsed according to the frame rate of the camera
of 100,000 frames per second with a pulse width of 40 ns using a
PicoLAS LDP-V 50-100 V3 laser driver. This allows resolution of

small-scale or transient structures in the flow that cannot be observed
using the continuous light source, but with the sacrifice of some
spatial resolution. The pulsed diode technique in schlieren imaging is
documented in [12].
Both the conical and cylindrical injectors used in this study are

approximately 40mm longwith a diameter of 23mmand are inserted
between sections of a 5-deg half-angle cone. The beginning of the
injector section is 127 mm from the tip of the cone. Both injectors are
made from sintered 316L stainless steel, and the cylindrical injector is
observed to have a larger mean pore size than the conical injector and
therefore has a higher permeability. Figure 4 shows 5×-magnified
images of the surface of each injector, clearly illustrating the larger
pores on the cylindrical injector. The permeability of each is calcu-
lated in Sec. III.
The mass flow rate of injected gas is measured with a Sensirion

EM1mass flowmeter and is presented as a parameterm, which is the
injected mass flow rate normalized by the mass flow rate of the
incoming laminar boundary layer based on δ99. The EM1 is cali-
brated for air by the manufacturer with a rated accuracy of�5% and
was calibrated for carbon dioxide using a King Instruments rotame-
ter. The incoming boundary-layer profile used for calculation ofm is
calculated using the Taylor–Maccoll solution for supersonic flow
over a cone coupled with the similarity solution of Lees for a laminar
compressible boundary layer on a cone. The boundary layer is
observed with high-speed schlieren imaging to be laminar before the
injector in all configurations. The calculated laminar velocity and
density profiles are multiplied and integrated from zero to δ99 to
calculate the mass flow rate. δ99 in this case is 0.75 mm and the mass
flow rate of gas in the incoming boundary layer is calculated to be
0.80 g∕s. The unit Reynolds number based on freestream quantities,
Re∞ � ρ∞U∞∕μ∞, is approximately 107∕m, corresponding to a
Reynolds number based on x, Rex � ρ∞U∞x∕μ∞, where x is the
coordinate along the cone surface, of 1.27 × 106 at the beginning of
the injector.

III. Porous Media Analysis

Before examining the results of the experiments it is worthwhile to
analyze the flow through the porous injectors. A more complete
discussion of the flow through the injectors can be found in a report
by Schmidt [13]. Only the relevant results are reported here. The flow
through an injector is assumed to be axisymmetric and steady, and a
relationship between the pressure inside the injector and the mass
flow rate through the injector can be derived from the continuity and
momentum equations. The conservation of mass for steady flow in
the radial direction through the injector is

Fig. 1 Cylindrical (top) and conical (bottom) injector assemblies. Ruler
units are inches.

Fig. 2 Illustration of the concept of a negatively-sloped injector.

Fig. 3 Solid model of the Caltech Ludwieg tube.
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ρur � constant � _m

2πL
(1)

for a cylinder of length L. The momentum equation is a balance
between the pressure difference across the injector and the drag inside
the pores modeled with Darcy’s law for porous flow

−
dp

dr
� μu

κ
(2)

Here κ is the permeability of the porous material. Substituting the
mass flow rate for velocity according to Eq. (1), the following relation
between pressure and mass flow rate is derived:

−ρ
dp

dr
� _mμ

2πLκr
(3)

Using the ideal gas law to express ρ as a function ofp and T allows
this equation to be integrated from the inside of the injector to the
outside approximating the gas as isothermal through the injector,
which is reasonable because the local Mach number remains small.
This integration yields
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_mμRT

πLκ
ln

�
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ri

�
(4)

where subscripts i and o denote conditions at the inside and outside
of the injector, respectively. In the experiments, the pressure at the
outside of the injector is the boundary-layer edge pressure for the
cone, which can be computed according to the Taylor–Maccoll
solution to be 1.73 kPa. The pressure required to drive an appreciable
mass flow through the injector, as can be seen fromFigs. 5a and 5b, is
on the order of 100 kPa. Thus, p2

o∕p2
i ≪ 1 and Eq. (4) can be

approximated as

p2
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_mμRT

πLκ
ln

�
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�
(5)

Aset of experimentswas performed to simultaneouslymeasure the
pressure inside the injector and the mass flow rate in order to confirm
the validity of Eq. (5) and determine the value of the permeability
of each injector. A measurement unit fitted with a Kulite XT-190
piezoresistive pressure transducer was fitted to the front of the
injector instead of the cone tip used in flow experiments, and the
apparatus was placed inside the test section of the Ludwieg tube at a
partial vacuum of approximately 1.7 kPa to simulate the proper edge
pressure that would occur during a flow experiment.
Figure 5 shows the results of these experiments with air as the

injected gas for each injector. The permeability κ is determined by
linear least squares by considering the relationship between pressure
and the square root of the mass flow rate. It can be seen from Eq. (5)
that κ is the only unknown parameter, and so it is determined by the fit
that minimizes the total error. The permeability of the cylindrical
injector is 3.5� .003 × 10−12 m2 and the permeability of the conical
injector is 1.1� .0006 × 10−14 m2. Uncertainty in κ is calculated by
the quadrature sum of the uncertainty based on the 95% confidence
interval of the curve fit and the propagation of uncertainties in
pressure and mass flow rate. The calculated values for permeability
are typical for sintered metal [14].

IV. Results and Discussion

Tests in supersonic flow are performed across a wide range of
injection mass flow rates with both injectors. Although carbon diox-
ide would eventually be the injected gas in a boundary-layer transi-
tion control experiment in hypervelocity flow, both carbon dioxide
and air were used as the injected gas in the current study. Injecting air
simplifies computational analysis of the flow because the mass
transport equation decouples from the Navier–Stokes equations. At
room temperature, the temperature at which the gas is injected, car-
bon dioxide is not significantly vibrationally active, and so injection
of gaseswith such similar density is not expected to qualitatively alter

Fig. 4 Five-times-magnified images of the surface of injectors.
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Fig. 5 Pressure versus mass flow rate data for air for both injectors fit with Eq. (5) to determine permeabilities.
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the flow characteristics. This assumption is shown to be valid in a set
of experiments performed with carbon dioxide as the injected gas.

A. Experiment

Schlieren images from four tests with the conical injector are
shown in Fig. 6. The vertical lines on the cone model mark the
location of the injector, and the parameter m again represents the
normalized mass flow rate described in Sec. II. A stronger shock,
relative to the shock at the cone tip, is visible in all three injection tests
at the beginning of the injector due to the increased displacement
thickness as predicted in Sec. I. The shock angle at the cone tip is
determined to be 15� 0.1° both by experiment and via the Taylor–
Maccoll solution, which corresponds to a nondimensional pressure
jump of Δp∕p1 of 0.084� 0.016 by perfect-gas shock relations.
The shock angle at the beginning of injection is measured to be
approximately 21� 0.1° relative to the cone surface, corresponding

to a pressure jump of Δp∕p1 of 1.00� 0.02, or about 13 times
stronger than the shock at the cone tip. The shock created by injection
is curved, and so it is difficult to precisely determine its angle at the
surface of the cone, and the angle is 21° within experimental uncer-
tainty for all injection mass flow rates studied. Besides appreciably
disturbing the inviscid region of the flow, the oblique shock also
creates a strong adverse pressure jump for the incoming boundary
layer, potentially leading to separation or rapid transition to turbu-
lence. An expansion wave appears in the region behind this shock,
and a second oblique shockwave is visible at the end of the injector in
tests with high mass flow rates. This wave system is what one would
predict by modeling the additional displacement thickness over the
injector as a convex bump on the surface of the cone.
Figure 7 shows the results from four representative tests with the

cylindrical injector. Three regimes are possible in this configuration.
In cases with high mass flow rates, represented by m � 1.0 and

Fig. 6 Long-exposure schlieren images from conical injector experiments using air.

Fig. 7 Long-exposure schlieren images from cylindrical injector experiments using air.
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m � 1.5, an oblique shock is still formed at the beginning of the
injector as the additional displacement thickness from injection
overcompensates for the negative slope of the injector itself. If the
mass flow rate is sufficiently small, such asm � 0.3, the injection is
not large enough to compensate for the shape change of the injector,
resulting in a weak expansion wave at the beginning of the injector.
However, at a normalized mass flow rate of approximatelym � 0.5,
the slope from the increasing displacement thickness very nearly
matches the slope of the cone and no visible waves are observed to
propagate into the free stream. The mean flow is therefore closely
matched to flow past a cone with no injection and no changes to its
geometry. These results validate the hypothesis of Fedorov and
demonstrate that it is possible to inject gas in the boundary layer
around a bodywith aminimal impact on the exterior supersonic flow.
For the specific application of influencing boundary-layer transi-

tion, the key issue is the effect of injection on boundary-layer stabil-
ity: does the boundary layer transition rapidly from laminar to
turbulent, or does it remain laminar downstream? Previous work by
Pappas and Okuno [15,16] and others [17] reveal that injection on a
cone causes transition to occur earlier than with no injection in cold
supersonic flow with lighter injected gas having a more pronounced
effect [17]. Shaping of the injector has not been considered in
previous studies, and so our results are unique in that regard.
Mean transition locations can be determined from high-speed

schlieren images like the one shown in Fig. 8. The transition location
is defined as the position where the injection layer edge ceases to be a
sharp change in contrast in the image and becomes a smooth gradient
broadening in extent with increasing downstream distance. Transi-
tion is observed to occur immediately at the beginning of the injector
with the conical injector. This result differs from that of many other

researchers [17,18], likely because of the particular injector being
used in the present study. The injector is considerably smaller in area
than those used in other studies, and so the injection rate per unit area
is about an order of magnitude higher. This would create a stronger
shock wave at the leading edge of the injector, possibly causing
bypass transition associated with the large pressure jump across the
shock. The precise cause will be examined further in future work.
Transition does not occur immediately with the cylindrical injec-

tor, however. Even at the highest mass flow rate tested (m � 3.8), the
angle of the shock wave created by injection is 18� 0.1° relative to
the cone surface, which is a pressure jump of 0.442� 0.017, about
half of that created by injection with a conical injector. This may
explain why bypass transition is not observed with the cylindrical
injector. Figure 9 shows transition Reynolds number (based on
freestream parameters) plotted versus normalized mass flow rate for
both carbon dioxide and air injection. Error bars in transition location
are determined from two factors: the width of the breakup region
illustrated in Fig. 8 and unsteadiness in transition location observed in
movies of images like that in Fig. 8. Transition location is unsteady
due to perturbations in the tunnel freestream. In certain cases inwhich
air is the injected gas, uncertainties are larger because of decreased
contrast in the images compared with carbon dioxide cases. The
decreased contrast makes determining transition location more dif-
ficult, particularly for cases with lower injection rates. Unsteadiness
in the freestream also seems to have a more pronounced effect of
changing transition location for low-mass flow cases with air. The
trends in Fig. 9 agree qualitatively with those of Pappas and Okuno;
namely, transition length decreaseswith increasing injection rate, and
the trend appears to be more pronounced for air than for carbon
dioxide, which also agrees with the findings of Pappas and Okuno on

Fig. 8 Example schlieren image used to determine injection layer transition location.Transition location is clear from the breakupat the outer edge of the
layer.
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the effect of injected gas density [15]. This effect is due at least in part
to the higher injection velocity for lighter gases for a given mass flow
rate. Computed transition Reynolds numbers following the analysis
in Sec. IV.B agreewith the experimental data for values ofN between
5 and 6.
Figure 10 shows an image taken with the pulsed laser source

revealing regular turbulent structures formingdownstreamof injection.
The structures appear to be very similar to those noted by Pappas and
Okuno [16] but the nature of the instability is unclear. The sketch on the
right of Fig. 10 shows the velocity profile and the resulting production
of vorticity. The laser source also reveals that with injection the
boundary layer does not appear to separate over the compression turn
at the aft end of the injector.
Two cases with different injection mass flow rates are examined

with pulsed laser schlieren imaging. The 40 ns exposure time freezes
the motion of the instability waves and spatial wavelengths can be
extracted. Each case contains 4000 images captured at 100,000
frames per second. Each image is 152 by 320 pixels, and the field of
view is from x � 151 mm to x � 200 mm measured from the cone
tip. An algorithm processes the images as follows. Each image is first
filtered using pixelwise adaptive Wiener filtering with 3 by 3
neighborhoods to remove excess noise. Pixel intensities are sampled
on a line 231 pixels (42.4 mm) long parallel to the cone edge at

varyingwall-normal distances. Figure 11 shows a filtered image from
Shot 267 (m � 0.6) with a sampling line for reference. A low-pass
filter is then applied to the sampled data with a spatial frequency
cutoff of 2 per mm, which further suppresses pixel-to-pixel varia-
tions. The peak spatial frequency can be shown to be insensitive to the
cutoff if it is greater than 0.5 permm.Welch’smethodwith 8windows
with 50%overlap is used to estimate the power spectral density (PSD)
of the pixel intensities along the sample line. The resulting PSD is
interpolated from 129 points to 1000 using cubic spline interpolation
to smooth the result at low spatial frequencies (long wavelengths).
The resulting 4000 spectra fall into three general categories, which

are illustrated in Fig. 12. The majority of images contain no well-
definedwavelength and therefore have a peak at zerowavenumber in
their spectra, as shown in Fig. 12a. Some images have spectra con-
taining a nonzero peak in wavenumber but also have significant low-
frequency noise, as shown in Fig. 12b. The signal-to-noise ratio in
these images is therefore not considered to be high enough to retain
them for spectral analysis. Approximately 20% of the images, how-
ever, have spectra like that in Fig. 12c, exhibiting a well-defined
nonzero peak in wavenumber substantially above the low-frequency
noise. Spectra are rejected if they have a peak at zero wavenumber or
if the power density at the peak is less than twice as high as the power
density at zerowavenumber. The spectra that are retained for analysis
are averaged to give final spectra like those shown in Fig. 13.
A final averaged PSD is recorded for each sampling line location.

The peak wavelength at each wall-normal distance is shown in
Fig. 14. The sizes of the circular markers on the image correspond
to the intensity of the peak wavelength. From analyzing the data
the average thickness of the layer can be determined, it is slightly
greater than 3 mm for m � 0.6 and about 6 mm for m � 1.7.
Figure 14 demonstrates that the wavelength determined by the image
processing algorithm is not sensitive to the location of the sampling
line over the majority of the injection layer. Figure 13 shows the
averaged PSD for the locationwith the highest peak intensity for each
case, which is 1.47 mm from thewall form � 0.6 and 3.86 mm from
the wall form � 1.7. The peak wavelengths are 6.8 mm form � 0.6
and 6.6 mm for m � 1.7. It is interesting to note that the dominant
instability in the layer has the same wavelength within experimental

Edge of  injection layer 
Instability 

Injector section 
Cone frustum 

Fig. 10 Schlieren image from a test with 40 ns exposure withm � 0.6.

Fig. 11 Smoothed single image from case with m � 0.6 with line

representing location of samples for spectral analysis.
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uncertainty in both cases even though the injection layer is approxi-
mately twice as thick in the m � 1.7 case as the m � 0.6 case. This
behavior is not characteristic of second- or third-mode acoustic
boundary-layer instabilities.
There is a short-wavelength wave present near the wall that is not

present elsewhere in both cases. Spectra from sampling lines close to
the wall can be examined to investigate this phenomena. Figure 15
shows three spectra from sampling lines nearest the wall for the
m � 0.6 case and Fig. 16 is the same for the m � 1.7 case. These
spectra show that a short-wavelength disturbance with a wavelength
of approximately 2 mm is dominant nearest the wall, but as one
moves away from the wall the strength of the short-wavelength dis-
turbance is rapidly reduced while the longer-wavelength disturbance
that is dominant elsewhere in the layer grows in amplitude. Inter-
estingly, the short-wavelength disturbance has the same wavelength
for both cases just like the long-wavelength disturbance.

B. Stability Calculations

The stability of the injection layer directly above and downstream
of the porous surfacewas explored using linear stability analysis. The

mean boundary-layer profile was computed using a shock-capturing
Navier–Stokes solver that is included in the STABL stability software
suite, developed at the University of Minnesota [19–21]. This
program uses the data parallel line relaxation method to obtain
steady-state solutions of the Navier–Stokes equations. Simulations
were carried out for both the cone and cone–cylinder geometries
described in Sec. II. For the conical geometry, a mesh of 400 stream-
wise and 420wall-normal cells was used, while for the cone–cylinder
geometry 1450 streamwise and 650 wall-normal cells were used. In
both cases the grid points were clustered vertically near the wall
and also horizontally over the injector. For the cylindrical injector,
simulations were also carried out with a coarser mesh of 850 × 450
cells and no significant differences were seen either in the mean
boundary layer or in the stability calculations, indicating that the
mesh is converged.
The prescribed freestream conditions match those of the Ludwieg

tube. The freestreamvelocity is 670 m∕s, the pressure is 1335Pa, and
the temperature is 70 K. The injector is modeled using a fixed mass
flux with an injection temperature of 300 K. Both the freestream and
injected gas are air, which is modeled as a calorically perfect ideal
gas. Examples of computed density contours for several different
injection rates are shown in Fig. 17, in which injection rates are
chosen to match those of the experiments in Figs. 6 and 7. The sim-
ulated wave structures are in good qualitative agreement with the
schlieren photographs. For the conical injector, all values of m pro-
duce a shock at the leading edge of the injector because of the
increased displacement associated with injection. For the cone–
cylinder geometry, the leading edge of the injector produces an
expansion wave form < 0.5 and a shock wave form > 0.5, while at
m ∼ 0.5 these wave structures are nearly eliminated.

Figure 18 shows velocity and temperature profiles for the cylin-
drical injector with m � 0.5. The first profile in this sequence
matches the self-similar profile, unaffected by injection. Over the
injector, 127–167 mm, the boundary-layer thickness increases by
about a factor of four and the velocity profile develops an inflection
point. For large injection rates, the inflection in the velocity profile
grows narrower and the velocity profile begins to resemble that of a
shear layer. Downstream of the injector the velocity and temperature
profiles slowly relax back toward self-similarity, though they do not
relax fully by the time the end of the cone is reached.
At each streamwise location x, the base flow from the Navier–

Stokes simulation is interpolated onto a wall-normal mesh and
a locally parallel stability analysis is conducted using the shoot-
ing method developed by Mack [22]. Perturbations of the form
q�y� exp�iαx� iβz − iωt� are substituted into the linearized
Navier–Stokes equations, where α and β are the streamwise and
spanwise wavenumbers, ω is the frequency, and q is the vector of
complex disturbance amplitudes:

q �
�
û;

dû

dy
; v̂; p̂; θ̂;

dθ̂

dy
; ŵ;

dŵ

dy

�T
(6)

The frequency and wavenumbers are nondimensionalized using
the cone length, Lc � 0.25 m, as the length scale and the convection
time, Lc∕Ue, as the characteristic time scale. In terms of the
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disturbance variables above, the linearized Navier–Stokes equations
can be cast in the form:

dq

dy
� Aq (7)

where A is an 8 × 8 matrix whose coefficients are given by Malik
[23]. This system of equations is solved starting in the freestream
where the asymptotic behavior as y → ∞ is known (see [22]). In the
freestream there are eight fundamental solutions of Eq. (7), but
because the disturbances must be decaying as y → ∞, only four of
them are admissible. These four admissible (decaying) fundamental
solutions are then integrated toward the wall using a fourth-order
Runge–Kutta routine. Gram–Schmidt orthonormalization is em-
ployed intermittently as this integration proceeds to control parasitic
growth of numerical errors [24–26]. Linear combinations of the four
decaying solutions of Eq. (7) are taken at the wall to satisfy the
homogeneous velocity boundary conditions û � v̂ � ŵ � 0 and the
normalization condition p̂ � 1, while the remaining homogeneous
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boundary condition on the temperature fluctuation, θ̂ � 0, is satisfied
when an eigenvalue α has been found. The complex eigenvalue
search is conducted using the secant method with a convergence
tolerance of 10−5. The code used to perform the stability analysis has
been validated by reproducing the results of several other researchers

for flat-plate boundary layers under hypersonic, perfect gas condi-
tions [4,23,27,28].
In this paper the stability analysis is locally parallel, meaning that

streamwise gradients in the mean flow are ignored, as is the wall-
normal velocity. The neglect of the wall-normal velocity is reason-

Fig. 19 Contours of spatial growth rate versus streamwise distance and frequency for the baseline case of a conewith no injection. Left, 2-Dwaves; right,
3-D waves with β � 290.
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able because the injection velocity (< 20 m∕s) is less than 3% of the
freestream velocity. Likewise, for a conical injector the wall-normal
component of velocity in the freestream above the injector (caused by
the change in slope of thewall) is only 8.7% of the tangential velocity
component. However, the parallel flow approximation is question-
able in the injection region because the mean flow varies strongly in
the streamwise direction. Likewise, the assumption of a planar
boundary layer may be questionable because the thickness of the
boundary layer over the injector (3–5 mm) is not much smaller than
the 11 mm radius of the injector (c.f. Fig. 8). A further difficulty is
that, for the cylindrical injector, the slope of thewall is discontinuous
at the beginning and end of the injector. Because the linear stability
analysis is carried out onwall-normal planes, the flowprofiles used in

the stability analysis are discontinuous at these locations, and
likewise the growth rates can be discontinuous. All of these factors
are likely to quantitatively affect the disturbance growth rates and are
deserving of further investigation. Nevertheless, the present method
produces results that are in reasonably good agreement with the
experiments and furnishes some insight regarding the influence of
injection on the stability of the boundary layer.
Figure 19 shows contours of the spatial growth rate −αi against

streamwise distance and frequency for a cone with no injection. This
provides a reference configuration against which the cases with
gas injection can be compared. The diagram on the left contains
2-D waves, while the diagram on the right contains 3-D waves with
spanwise wavenumber β � 290, which is the wavenumber that
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produces the largest N factors for 0 < x < 0.25 m. The unstable
regions in both figures correspond to first-mode waves, while the
second mode remains stable at these conditions. The flow is nomi-
nally atMach 4,with a postshockMach number of about 3.8,which is
very close to the point at which the secondmode begins to be unstable
according to the adiabatic stability calculations of Mack [4]. In this
experiment, however, the wall temperature of 300 K is slightly above
the adiabatic temperature, which further stabilizes the second mode
so that it is completely stable for theReynolds numbers relevant to the
experiment.
Next the effect of gas injection is considered. Examples of dis-

persion curves for the cylindrical injector withm � 0.6 are shown in
Fig. 20. Each dispersion curve contains several different spanwise
wavenumbers between 0 and 500 (nondimensionalized by the cone
length Lc). Upstream of the injector (x � 120 mm), only the first
mode is unstable and the spatial growth rate is rather small. Slightly
downstream of the leading edge of the injector (x � 129 mm), the
secondmode also becomes unstable and its growth rate surpasses that
of the first mode. Further downstream, the frequencies of the unstable
modes shift to lower values because of the increasing thickness of the
injection layer, and the third mode also becomes unstable (upper-
right frame of Fig. 20). Finally, downstream of the injector the flow
profile relaxes back toward that of an undisturbed boundary layer and
the stability characteristics do likewise. However, even at the end of
the cone the flow profiles have not completely relaxed and the second
mode remains unstable. The dispersion curves for the conical injector
are qualitatively similar to those shown in Fig. 20. However, because
the “dead flow” region is thicker for a cylindrical injector than for a
conical one (see Fig. 17), the second- and third-mode growth rates are
larger for the cylindrical case.
Figure 21 presents the stability diagram in contour form, which

clarifies the streamwise variation of the unstable regions. The top
and bottom rows show the growth rates for cylindrical and conical
injectors, respectively, both at an injection rate of m � 0.6. The left
column reports the amplification rates for 2-D waves, while the right
column represents the 3-D waves that feature the largest first-mode
growth rate. For both injector geometries, the 2-D stability diagram
(left) is dominated by second and higher instability modes with very
little contribution from the firstmode.However, for 3-Dwaves (right)
the first mode contributes a broad unstable region. Although the
maximum growth rate of the first mode is not as large as that of the
second mode, the first mode is unstable over a much longer stream-
wise distance.
For the first mode, the most unstable frequency remains nearly

constant along the cone length. In contrast, the second- and third-
mode frequencies drop sharply over the injector (127–167 mm) and
then rise again downstream of the injector, varying inversely with the
injection layer thickness (see Fig. 18). This behavior has a major
impact on the growth of instability waves. Second- and third-mode
wave packets of a given frequency that are propagating downstream
are only unstable over a short distance, and so their net amplification
is rather small. In contrast, first-modewave packets are unstable over
a much longer distance and experience larger total amplification.
This fact is made quantitative by computing N factors, that is,

horizontal integrals across the stability diagrams in Fig. 21. The N
factors are determined according to the formula

N�x;ω; β� �
Z
x

xo

−αi�ξ;ω; β� dξ (8)

where xo�ω; β� is the location at which the wave first becomes
unstable. Separate N-factor curves are computed for each frequency
ω and spanwise wavenumber β. For each condition (x, ω, β), the
stability analysis may find more than one discrete mode, and the N-
factor integral is carried out using the envelope over all of these
modes; that is, the most unstable or least stable value of−αi is used in
computing the integral of Eq. (8). Although in this work the spanwise
wavenumber β is held constant during the calculation of theN-factor
integral, it may be more meaningful to hold the product βrc�x�
constant during the integration, where rc�x� is the local cone radius.
This approach has also been tested and has been found not to signi-

ficantly affect the maximum N factors or the qualitative behavior of
any of the results that follow. Figure 22 shows the envelope of theN-
factor curves over all frequencies for several different injection rates.
The left diagram in this figure presents theN-factor distribution for 2-
D waves, while the right diagram is for 3-D waves with β � 220,
which is the value that produced the largest N factors at the higher
injection rates. For reference, the N factors of a plain cone with no
injection are also included. Clearly, theN factors are much larger for
the 3-D waves than for the 2-D ones, indicating that the first-mode
instability plays an important role in the transition process. This
possibility has not been explored in previous computational studies
of boundary-layer transition with gas injection. For the cylindrical
injector with no injection, the 3-D waves are slightly stabilized
relative to the plain cone. This is consistent with the finding of Malik
[29] that favorable pressure gradients tend to stabilize the first mode.
The most amplified wavenumbers from the stability analysis

can be compared with the values determined experimentally. These
wavenumbers were extracted from the schlieren photographs in
Sec. IV.A and the resulting distribution of spectral power versus
wavenumber was given in Fig. 13. Here a similar analysis is per-
formed using the linear stability results by plotting the N factor vs
wavenumber, as shown in Fig. 23. Each line in this diagram corre-
sponds to a different streamwise location x, with the disturbance
frequency parameterizing the curves. The results shown are for a 3-D
wave with β � 220, which was the spanwise wavenumber that
resulted in the largest N factor at the end of the cone.
The taller peak in Fig. 23 corresponds to first-mode waves, which

grow monotonically in amplitude and decrease slightly in wave-
number as x increases. The second peak at about 1∕λ � 0.16∕mm
corresponds to second-mode waves, which grow mainly over the
injector and slightly downstream from it, but stop growing farther
downstream. By comparing Figs. 13 and 23, it is found that the most
unstable wavelength (13.1 mm) from stability analysis is consid-
erably larger than that of the experiments (6.8 mm), but the wave-
length of the 2-D second-mode waves (6.25 mm) is quite close to the
experimental value. This discrepancy may be the result of the experi-
mental technique. Schlieren images are integrated in the spanwise
direction and may be less sensitive to the oblique first-mode waves
than to 2-D waves. It is more likely, however, that the discrepancy
is due to limitations on the linear stability analysis because of the
assumptions made. Nonparallel effects are ignored in this analysis,
and the most amplified streamwise wavelength of 13.1 mm is about
one third the length of the injector and is clearly not small compared
with the length scale over which the mean flow is changing. Addi-
tionally, the spanwise wavelength of the first-mode waves (7 mm) is
not negligible compared with the circumference of the cone down-
stream of the injector, which is on the order of 100 mm. In the
physical flow this could inhibit the development of periodic oblique
waves as they would have to wrap three-dimensionally around the
cone.
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Transition Reynolds numbers can be predicted using the semi-
empirical eN method inwhich transition is correlatedwith a particular
value of theN factor. Figure 9 compares the experimentallymeasured
transition locations with those predicted by the linear stability theory
forN � 5 and 6. The measured data match the prediction for N � 5
quite well. Transition locations for N � 6 are also shown to give an
indication of the sensitivity of transition distance to the choice of N.
For all injection rates, the maximum growth is experienced by 3-D
waves with spanwise wavenumbers in the range of β � 200–300,
which correspond to spanwise wavelengths of 5–7 mm. The ampli-
fication of 2-D waves is considerably smaller: for injection rates of
0 < m < 1, the 2-D N factor is less than 4 at the measured transition
location, which suggests that the second mode is not responsible for
the observed instability.

V. Conclusions

An experimental study was performed to examine the effects of
injecting gas into the boundary layer on a slender body in supersonic
flow.Of particular interest is the stability of the injection layer formed
downstream of injection and whether through shaping the injector a
stable flow could be created that would allow a vibrationally active
gas such as carbon dioxide to stabilize a hypervelocity boundary
layer. The present study does not consider effects of vibrational
nonequilibrium but focuses only on the fluid mechanics of the flow
created by boundary-layer injection. Injector shaping helps to
minimize waves formed by injection, but injection still creates an
unstable layer near the wall of the body.
Experiments were performed in the Mach 4 Ludwieg tube at

Caltech using a 5-deg half-angle cone equipped with either a conical
injector or a cylindrical injector at a variety of injection mass flow
rates. Injection is found to form a strong oblique shock wave that
propagates into the inviscid region of the flow when the conical
injector is used, and the resulting pressure jump across the shock is
believed to cause rapid transition to turbulence in the injection layer.
When the cylindrical injector is used, there is a “tuned” injection rate
that minimizes the strength of the oblique wave, and at other mass
flow rates the strength of thewave is significantly lessened compared
with that of the wave formed using the conical injector. Transition
does not occur immediately when the cylindrical injector is used;
rather, transition occurs downstream of the injector with higher mass
flow rates producing earlier transition. It is possible to determine the
wavelength of the instabilitywaves in the injection layer using a high-
speed schlieren visualization technique, and the wavelength for the
“tuned” case nearly matches the prediction for that of 2-D second-
mode waves. However, the wavelength of the instability waves does
not scale with the thickness of the injection layer.
Our computational results suggest that the instability is dominated

by oblique first-mode waves, which have not been considered in
other injection studies at higher Mach numbers and larger flow
enthalpies. There is also an unstable second mode in the linear
stability analysis, but N factors for the first-mode waves are higher.
Thus, it is expected that the first mode is primarily responsible for
transition in this flow. The observation of large-scale structures in the
flow downstream of injection in the experiments suggests a sub-
stantial cross-stream coherence and the measured wavelength of the
instability waves in the experiment agrees well with that of the
second-mode waves in the linear stability analysis. This is likely due
to the limitations of the computational analysis where the flow is
assumed to be locally parallel, which is not the case near the injector,
and the thickness of the injection layer is small compared with the
cone radius, which is not true for this flow. The wavelength of the
instability waves in the experiment does not appear to scale with
the layer thickness, which is not true for second-mode waves in a
boundary layer. It is possible that transition in this flowmaybe caused
by a 2-D Kelvin–Helmholtz instability.
Clearly, the stability characteristics of supersonic flow with

injection are complex and worthy of further study. These are the first
quantitative measurements of the instability waves in such a flow
[17]. An experimental campaign to make more in-depth quantitative
measurements is currently underway to better characterize the stabil-

ity properties of this flow. The use of injection for delaying boundary-
layer transition appears to be limited because of the instability
presented here, but because turbulence is desired in scramjet inlets
injection in supersonic flow remains a highly relevant research topic.
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