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Introduction

Several test cases are presented in this section to demonstrate the accuracy and robustness of the
Euler code used for simulations of cellular detonations. These test cases are logically divided in two
groups: the first one deals with nonreacting flows of perfect gas and the second one with reacting
flows, for which the thermochemical model used is the same as in detonation simulations. Each test
case has specific objectives and the validity of the simulation results can be verified by comparison
with a reference solution either obtained by the authors or known from the literature.
Unfortunately, direct comparisons of detonation simulations are not really possible because there is
no real reference due to the instable nature of the numerical solution. In particular, it is not possible
to validate a code by comparing a fluctuating numerical solution to a steady-state ZND solution.
Instabilities exhibited by the detonation fronts in either 1D or 2D configurations are very sensitive to
the intrinsic properties of the numerical schemes used. Hence, it is not sure that detonation simulation
results obtained with one code are reproducible by another one except for some cases of very stable
mixtures.

1D unsteady flow in a shock tube

This test case represents the classical 1D shock tube problem, which is used to test Euler solvers to see
how they are able to resolve shocks, rarefactions and contact discontinuities. It belongs to the class
of Riemann problems whose initial conditions (t = 0) are specified as two semi-infinite homogeneous
states with a discontinuity at x = 0. The particular case presented below is the Sod problem, which
is classically defined as follows. The gas is calorically perfect with a specific heat ratio of 1.4. The
nondimensional parameters of the left sate are pressure 1 and density 1 whereas those of the right
state are pressure 0.1 and density 0.125. The gas is initially at rest. At t > 0, the initial discon-
tinuity is decomposed in three waves: a left-running rarefaction fan, and right-running shock and
contact discontinuity; the latter separates the two states perturbed by the fan and shock. As the two
initial states are homogeneous, the waves propagate at constant speeds and the flow states between
them are constant. An exact selfsimilar solution can be obtained for this problem (see for example [1]).

The computational domain is 1D symmetric with respect to the coordinate origin, x ∈ [−0.5, 0.5],
with a uniform numerical grid of 101 points. The boundary conditions at both ends are treated as
continuation or zero gradient. The exact wave front trajectories are plotted as a time-space diagram
in Figure 1 (a). The exact and numerical solutions for the gas density at nondimensional time t = 0.25
are traced in Figure 1 (b). The rarefaction fan, delimited by the leading and trailing boundaries,
produces a gradual density variation whereas the two other waves are marked by abrupt density
changes. The numerical solution smoothes the flow parameter variation near the fan boundaries
and at the discontinuities due to the dissipative properties of the numerical scheme, which guaranty
stability and monotonicity of the solution. One can see that the wave velocities and intensities are
well reproduced by the numerical result.
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Figure 1: Sod problem solution: a) Exact wave trajectories in nondimensional time-space coordinates:
1: leading boundary of the rarefaction fan; 2: trailing boundary of the rarefaction fan; 3: shock; 4:
contact discontinuity. b) Exact and WENO solutions for the nondimensional density at t = 0.25.
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2D unsteady flow with a double Mach reflection

This test case is often used to validate Euler solvers by simulating an unsteady flowfield with strong
shocks and triple points in 2D. The simulated flowfield can be experimentally obtained by installing
a flat wedge in a shock tube. A normal shock, propagating at Mach number Ms, will interact with a
wedge surface, which makes an angle αs with the shock front as shown in Figure 2. This interaction
results in a complex shock structure called a double Mach reflection that grows in time in a selfsimilar
manner.

αs Ms 

Figure 2: Schematic of a setup to generate a double Mach reflection.

To test our code, we took the numerical problem formulation from [2]. The computational domain
is schematically shown in Figure 3. To simplify geometrical definition, the problem is considered in a
Cartesian coordinate system whose x-axis is aligned with the wedge surface. The rectangular domain
has dimensions Lx × Ly. Figure 3 presents the initial condition when the shock front touches the
wedge tip at point A. At this time instant, the straight shock front AB divides the domain in two
zones with uniform gas states: the unperturbed state, Q1, and the state behind the shock, Q2.
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Figure 3: Schematic of the computational domain for simulating a double Mach reflection.

The boundary conditions are formulated as follows. State Q2 is imposed on the left boundary. On
the lower boundary, state Q2 is imposed at x ≤ xA and slip wall or symmetry conditions are used
at x > xA. On the upper boundary, states Q2 and Q1 are imposed on the left and right of point B
respectively. On the right boundary, continuation or zero gradient conditions are used. During the
simulation, the position of point A is fixed whereas point B moves along the upper boundary with the
velocity corresponding to the normal shock propagation; this latter condition is valid if the gas state
near the upper boundary remains unperturbed.
For the particular case presented below, the problem parameters were chosen as follows: Lx = 3.2,
Ly = 1, xA = 1/6, αs = 60◦, Ms = 10. The gas is assumed to be calorically perfect with a constant
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Figure 4: Instantaneous fields of density (a) and pressure (b) resulting from the double Mach reflection
in nondimensional coordinates at t = 0.2. Number marks: 1: incident shock; 2: Mach stem; 3: first
reflected shock; 4: contact discontinuity; 5: curved shock; 6: second reflected shock; 7: jet head.

specific heat ratio of 1.4. Nondimensional flow parameters that characterize state Q1 are density 1.4,
pressure 1, velocity magnitude 0, and sound speed 1. Given a nondimensional shock speed of 10,
flow parameters corresponding to state Q2 are density 8, pressure 116.5, velocity magnitude 8.25, and
sound speed ≈4.515. The computational mesh is Cartesian with a uniform step of 1/120 in both
directions. The time advancement is controlled by a Courant number ≤ 0.7.
The computational result at nondimensional time t = 0.2 is given in Figure 4. The pattern of the
first Mach reflection is composed of the incident and reflected shocks on the upper side and a Mach
stem near the wall. This creates two gas flows separated by a strong contact discontinuity. The
second Mach reflection pattern has the inverse orientation and results from the intersection of the first
reflected shock and the curved shock originating from the wedge tip. As a result, a second reflected
shock is formed as well as a weak contact discontinuity, which is not visible in the density field. The
pressure behind the Mach stem is lower than that between the wall and the curved shock. This
longitudinal pressure gradient drives a jet flow near the wall. One can compare the present results
with those shown in Figure 4 of [1] in order to see that the flowfields computed with different codes
are very similar including the shock front positions and the contour line patterns.
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Selfignition in a closed volume

This test case is intended to validate the numerical integration scheme and to check its capability to
treat stiff problems with chemical source terms. The problem is equivalent to a homogeneous constant
volume reactor, for which a reference solution can be obtained using 0D models with stiff ODE solvers
like, for example, SENKIN [3] of the CHEMKIN-II package [4].
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Figure 5: Temporal profiles of temperature (a) and H radical mass fraction (b) in a constant volume
reactor obtained using CHEMKIN and the Euler code with different integration schemes and time
steps.

A square computational domain is considered with the symmetry boundary conditions. The geo-
metrical dimensions are chosen large enough to avoid any time step limitation by the CFL stability
condition. The mesh is simply 3 by 3 points. To be representative with respect to the detonation
simulations considered below, we took a H2-O2 stoichiometric mixture diluted with Ar in a volumetric
proportion 1/4. The mixture is at rest, its initial pressure and temperature correspond to the post-
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shock conditions of a Chapman-Jouguet detonation: 0.4994 MPa and 1898 K.

Numerical results for this problem have been obtained with two second-order Runge-Kutta integra-
tion schemes available in the Euler code: the RKTVD2 explicit scheme with TVD properties and the
ACIRK2C semi-implicit scheme whose explicit part is identical to RKTVD2. The time step was fixed
during all the integration process. These results are compared with a reference solution produced by
the SENKIN code of CHEMKIN-II in Figure 5. One can see from this comparison that the ACIRK2C
scheme provides stable solutions even if integration errors are significant due to a large time step. With
time reduction, the solution converges to the reference one. On the contrary, solutions produced by
the RKTVD2 scheme with a much smaller time step coincide with the reference solution during some
part of the combustion process but become instable when approaching the chemical equilibrium. This
test clearly proves the robustness of the ACIRK2C scheme and the advantage that it has in reactive
simulations.

Selfignition in a 1D steady flow

This test case is to verify the spatial resolution of a reaction front by the WENO scheme of the Euler
solver. The problem corresponds to a constant area tube with a hot flow of fresh mixture at the
entrance. If the flow velocity is sufficiently high, the diffusion effects in the reaction zone can be
neglected. A steady-state problem of this kind is described by a set of ODE that can be numerically
integrated along the spatial coordinate to get a reference solution.

The length of the computational domain is L = 0.1 m. A 1D mesh is defined by two parameters:
the length of the first part with a constant step, L1, and the corresponding step, ∆x1. In the second
part of the mesh, the step is progressively increasing. Three 1D meshes, composed of 1000 points,
were used: (i) L1 = L, ∆x1 = 10?4 m; (ii) L1 = L/4, ∆x1 = 5x10?5 m; (iii) L1 = L/10, ∆x1 = 2x10?5

m.

Characteristic boundary conditions were used at both ends of the domain allowing to deal with
the subsonic flow. To be representative, we took as a reference solution a part of a ZND solution for
an overdriven detonation starting from the post-shock state. The gas is initially composed of a H2-O2

stoichiometric mixture diluted with Ar in a volumetric proportion 1/4. The detonation velocity is 1600
m/s in comparison to the Chapman-Jouguet velocity of 1518 m/s. Due to the overdriven regime, the
final Mach number of the combustion product flow is 0.7 and the numerical solution can be stabilized
whereas it is always instable in the Chapman-Jouguet regime with a choked flow. The theoretical
inlet state is defined by pressure 0.5556 MPa, temperature 2075 K and flow speed 405.1 m/s; the cor-
responding final state is defined by pressure 0.4264 MPa, temperature 2866 K and flow speed 693.5 m/s.

Numerical results provided by the Euler code on different meshes are compared with a reference
solution, produced by a ZND code based on CHEMKIN-II, in Figure 6. Numerical solutions obtained
on the two finer meshes are in good agreement with the reference one. On the coarsest mesh, the in-
duction distance is significantly reduced due to numerical errors. One can note an important fraction
of the H radical in the very first mesh point. The solution being sensitive to the numerical errors is
not fully steady in this case and exhibits periodical fluctuations, which disappear after mesh refinement.
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Figure 6: Spatial profiles of temperature (a) and H radical mass fraction (b) in a 1D reacting flow
obtained using a CHEMKIN-based ZND code and the Euler code with different meshes.
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