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Shock propagation through a bubbly liquid contained in a deformable tube is
considered. Quasi-one-dimensional mixture-averaged flow equations that include
fluid–structure interaction are formulated. The steady shock relations are derived and
the nonlinear effect due to the gas-phase compressibility is examined. Experiments
are conducted in which a free-falling steel projectile impacts the top of an air/water
mixture in a polycarbonate tube, and stress waves in the tube material and pressure
on the tube wall are measured. The experimental data indicate that the linear theory
is incapable of properly predicting the propagation speeds of finite-amplitude waves
in a mixture-filled tube; the shock theory is found to more accurately estimate the
measured wave speeds.
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1. Introduction
Fluid–structure interaction (FSI) problems arise in industrial piping systems,

underwater explosions and turbomachinery (Cole 1948; Wylie & Streeter 1993;
Brennen 1994). These flows often involve gas (or vapour) bubbles that alter the
dynamics of the fluid dramatically (Brennen 1995, 2005). Dynamic loading of fluid-
filled, deformable tubes has been extensively studied as an FSI model problem
(Tijsseling 1996; Ghidaoui et al. 2005). Liquid-filled tubes were first studied by
Korteweg (1878) and Joukowsky (1898), who introduced a linear wave speed that
accounts for the compressibility of both the liquid and the structure. The Korteweg–
Joukowsky wave speed is also known as the Moens–Korteweg wave speed in a
biomedical context concerning pressure pulses through blood vessels (Pedley 1980).
The wave speed in the case of bubbly liquids was later validated by Kobori, Yokoyama
& Miyashiro (1955).
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For cases without FSI, shock problems in bubbly liquids have also been considered
by many researchers. The shock theory has been validated by experiments (Campbell
& Pitcher 1958; Noordzij & van Wijngaarden 1974; Beylich & Gülhan 1990; Kameda
& Matsumoto 1996; Kameda et al. 1998). In these experiments, bubbly mixtures were
created in a tube, but the shock pressure was small enough to minimize the FSI effect.
The detailed shock structure was also confirmed by computations (Kuznetsov et al.
1978; Nigmatulin, Khabeev & Hai 1988; Watanabe & Prosperetti 1994; Kameda &
Matsumoto 1996; Kameda et al. 1998; Delale, Nas & Tryggvason 2005; Delale &
Tryggvason 2008). However, to the authors’ knowledge, a (nonlinear) shock theory
that includes both structural compressibility and bubbles has not been presented so
far.

The goal of this paper is thus to develop the steady shock theory for a bubbly
liquid in a deformable cylindrical tube. In § 2, we describe the bubbly flow model
and formulate quasi-one-dimensional equations for flows in a cylindrical tube. In
§ 3, we introduce the propagation speed of linear waves in the mixture considering
the compressibility of both the mixture and the tube, and derive the steady shock
relations. In § 4, we report on experiments in which a free-falling steel projectile
impacts the top of a polycarbonate tube filled with air/water mixtures with void
fractions up to 1%. Stress waves in the tube material are measured and used to infer
wave speeds. Finally, the comparison of the theory and the experiments is presented
in § 5.

2. FSI bubbly flow model
2.1. Ensemble-averaged equations

The liquid and disperse phases are treated as a continuum in order to evaluate the
average mixture dynamics. We first review the continuum bubbly flow model (Ando
2010) based on the ensemble-averaging technique of Zhang & Prosperetti (1994).
The continuum model assumes that (a) fission and coalescence of the (spherical)
bubbles do not occur; (b) direct interactions between the bubbles are negligible; (c)
wavelengths in the mixture are large compared to the average inter-bubble distance;
(d ) the bubbles advect with the ambient liquid-phase velocity; and (e) density and
velocity fluctuations in the liquid phase due to the bubble oscillations are uncorrelated.
The assumptions (b) to (d ) are generally valid in the dilute limit. The model limitations
are further discussed in Ando (2010).

With these assumptions, we write the one-dimensional mixture conservation
equations with no FSI as

∂ρ

∂t
+

∂ρu

∂x
= 0, (2.1)

∂ρu

∂t
+

∂

∂x

(
ρu2 + pl − p̃

)
= 0, (2.2)

∂n

∂t
+

∂nu

∂x
= 0, (2.3)

where ρ is the mixture density, u is the mixture velocity, pl is the averaged liquid
pressure, and n is the number of bubbles per unit volume of the mixture. For dilute
mixtures, the mixture density is well approximated by (1 − α)ρl , where ρl is the liquid
density and α is the void fraction defined as

α =
4π

3
n

∫ ∞

0

R3f (R0) dR0. (2.4)
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Here, R is the bubble radius, R0 is the equilibrium bubble radius corresponding to the
ambient pressure pl0, and f (R0) represents the normalized distribution of equilibrium
bubble sizes in polydisperse mixtures. For monodisperse mixtures, the distribution is
given by the Dirac delta function; the integration in (2.4) is irrelevant. Assuming that
the liquid-phase flow is homentropic, the averaged liquid pressure will be described
by the Tait equation of state (Thompson 1972),

pl + B

pl0 + B
=

1

ρ
γ

l0

( ρ

1 − α

)γ

, (2.5)

where ρl0 is the reference liquid density at pl0, and γ and B denote the stiffness
and tensile strength of the liquid, respectively. The term p̃ in the momentum flux
in (2.2) represents pressure fluctuations due to the phase interactions (Ando 2010)
and vanishes in the equilibrium state. If one neglects the phase interaction term, the
ensemble-averaged bubbly flow equations (2.1) to (2.3) are essentially the same as the
volume-averaged equations of van Wijngaarden (1968, 1972).

2.2. Quasi-one-dimensional FSI equations

In what follows, we include the effect of FSI in the mixture-averaged equations (2.1)
to (2.3). Let A be the internal cross-sectional area of the cylindrical tube. We now
make the following simplifications: (f ) the changes in the tube area are small and
gradual in the flow direction; (g) the tube inertia is negligible; (h) the liquid pressure
is only balanced by the hoop stress; and (i ) the viscous shear stress on the inner wall
is negligible. As a result of these assumptions, the tube area is given quasi-statically
by (Shepherd & Inaba 2009)

A = A0

[
1 +

2a0

Eh
(pl − pl0)

]
, (2.6)

where a is the mid-plane tube radius that is the average of inner and outer radii, h

is the wall thickness, E is Young’s modulus of the tube material, and the subscript
0 denotes the initial (undisturbed) values. Note that the effect of p̃ is ignored in this
expression. Also, note that in terms of hoop strains, εθ =(a − a0)/a0, the quasi-static
relation (2.6) is written as

εθ =
a0

Eh
(pl − pl0). (2.7)

With a conventional control volume analysis, the quasi-one-dimensional versions
of (2.1)–(2.3) (in terms of the cross-sectionally averaged quantities) become

∂ρA

∂t
+

∂ρuA

∂x
= 0, (2.8)

∂ρuA

∂t
+

∂

∂x

[
ρu2A + (pl − p̃)A

]
= pl

∂A

∂x
, (2.9)

∂nA

∂t
+

∂nuA

∂x
= 0. (2.10)

With the aid of (2.6), the momentum equation (2.9) is rewritten as

∂ρuA

∂t
+

∂

∂x

[
ρu2A + (pl − p̃)A − A0a0

Eh
p2

l

]
= 0. (2.11)
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3. Steady shock theory
3.1. Sonic speeds

We first derive the sonic speeds of a bubbly liquid in a low-frequency limit. These
are needed to define the shock Mach numbers. For convenience, we define the bulk
modulus of the mixture, K , as

1

K
=

1 − α

Kl

+
α

Kg

, (3.1)

where Kl and Kg are the bulk moduli of the liquid and gas, respectively. For Tait
liquids, we have Kl = γ (pl + B). If the effects of the vapour and the surface tension
are neglected, we may take Kg = κpl , where κ is the polytropic index of the gas. Note
that in the low-frequency limit, the polytropic index approaches unity so that the
bubbles behave isothermally (Brennen 1995). With the mixture bulk modulus (3.1),
the sonic speed of the mixture (in which the bubbles behave quasi-statically) becomes

c =

√
K

ρ
=

√√√√√ Kl/ρ

1 + α

(
Kl

Kg

− 1

) . (3.2)

In the dilute limit (α → 0),

c → cl =

√
Kl

ρl

, (3.3)

where cl is the sonic speed of the liquid alone.
We now include the effect of the structural compressibility on the mixture’s sonic

speed (3.2). The Korteweg–Joukowsky wave speed for the mixture may be defined
and evaluated as

cJ =

(
1

A

∂ρA

∂pl

∣∣∣∣
κ

)−1/2

=
c√

1 + ξ
=

√√√√√ Kl/ρ

1 + α

(
Kl

Kg

− 1

)
+ ξl

, (3.4)

where ξ and ξl determine the extent of fluid–structure coupling for the cases of the
mixture and the liquid alone, respectively:

ξ =
2Ka0

Eh
, ξl =

2Kla0

Eh
. (3.5)

This wave speed (3.4) for the mixture is identical to that of Kobori et al.
(1955). It yielded good agreement with their experiments. Note that the structural
compressibility reduces the linear wave speed in the mixture (i.e. cJ < c). In the dilute
limit,

cJ → clJ =
cl√

1 + ξl

, (3.6)

where clJ is the (non-dispersive) wave speed for the case of the liquid alone.
Skalak (1956) quantified the effects of tube dynamics, with shell theory, on linear

waves (also see Tijsseling et al. 2008). Even for the case of pure liquids, the tube
inertia with bending resistance leads to wave dispersion. Skalak’s extended theory of
water hammer predicts the wave speeds, in a low-frequency limit, for the pure liquid
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case:

c1, c2 = cl

[
r3 ∓

√
r2
3 − 4r2

2 (1 − ν2)(2r1 + r2)

2(2r1 + r2)

]1/2

, (3.7)

where

r1 =
ρl

ρs

a0

h
, r2 =

c2
s

c2
l

, r3 = 2r1r2 + r2 + r2
2 (1 − ν2), cs =

√
E

ρs(1 − ν2)
. (3.8)

Here, cs , ρs and ν are the (longitudinal) sonic speed, the density and the Poisson’s
ratio of the tube material, respectively. The wave speeds c1 and c2 are the extended
versions of the Korteweg–Joukowsky wave speed clJ and the precursory wave speed,
respectively. For the experiments presented in § 4 with water (cl = 1491 m s−1) in a
polycarbonate tube (E = 2.13 GPa, ρs = 1200 kg m−3, ν = 0.37, a0 = 3.5h = 22.2 mm),
we obtain

clJ = 517.9 m s−1, c1 = 512.6 m s−1, cs = 1434 m s−1, c2 = 1435 m s−1. (3.9)

It follows that the speed c1 is only slightly lower than the Korteweg–Joukowsky
speed clJ . Hence, in the low-frequency limit, the effects of the tube dynamics on the
primary wave speed are negligible. We also notice that the precursory wave speed c2

is very close to the sonic speed of the tube material.

3.2. Steady shock relations

We now develop the steady shock relations for a shock in a bubbly liquid in a
deformable cylindrical tube. In front of the shock, the bubbles are in equilibrium
at (R0, T0, pl0), where T0 is the initial temperature of the bubble contents. Far
downstream of the shock front, the bubble dynamics are finally damped out and
the bubbles are once again in equilibrium at (RH , T0, plH ), where RH is the new
equilibrium radius corresponding to shock pressure plH >pl0. The specification of T0

in the final equilibrium state follows from the assumption that the liquid temperature
is undisturbed and the bubble temperature finally returns to the liquid temperature.
Note that under equilibrium conditions, the term p̃A in the momentum equation
(2.11) vanishes.

The quasi-one-dimensional equations (2.8), (2.11) and (2.10) are now written in a
coordinate system (x ′ = x − Ust and velocity u′) moving with the shock velocity Us:

d

dx ′ (ρu′A) = 0, (3.10)

d

dx ′

(
ρu′2A + g(pl) − p̃A

)
= 0, (3.11)

d

dx ′ (nu′A) = 0, (3.12)

where

g(pl) = A0

(
1 − 2pl0a0

Eh

)
pl +

A0a0

Eh
p2

l . (3.13)

Integrating (3.10) to (3.12) from upstream (denoted by the subscript 0) to far
downstream (denoted by the subscript H ), it transpires that, independent of the
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detailed shock structure,

−ρHu′
HAH = ρ0UsA0, (3.14)

ρHu′2
HAH + g(plH ) = ρ0U

2
s A0 + g(pl0), (3.15)

−nHu′
HAH = n0UsA0, (3.16)

where ρ0 = (1 − α0)ρl0 and ρH = (1 − αH )ρlH .
The shock pressure, plH , may be written as

plH =

(
pl0 − pv +

2Υ

R0

)(
RH

R0

)−3κ

+ pv − 2Υ

RH

, (3.17)

where κ is set to unity because the bubble temperature eventually returns to T0. If
vapour pressure pv and surface tension Υ are neglected, (3.17) reduces to

plH = pl0

(
RH

R0

)−3

. (3.18)

It follows from (3.14) and (3.16) that

nH = n0

[
(1 − α0)

(
pl0 + B

plH + B

)1/γ

+
4π

3
n0

∫ ∞

0

R3
Hf (R0) dR0

]−1

. (3.19)

With the aid of (3.17) and (3.19), the void fraction αH corresponding to plH is
computed by (2.4). With the neglect of vapour pressure and surface tension, (3.19)
reduces to

nH = n0

[
(1 − α0)

(
pl0 + B

plH + B

)1/γ

+ α0

pl0

plH

]−1

, (3.20)

and the void fraction at plH is

αH =
4π

3
nH

∫ ∞

0

R3
Hf (R0) dR0 =

[
1 +

1 − α0

α0

plH

pl0

(
pl0 + B

plH + B

)1/γ
]−1

. (3.21)

In this manipulation, we do not make any assumptions regarding the shape of the
gas volume so that the bubble number conservation equation (2.3) is irrelevant; the
relation (3.21) simply represents the conservation of the gas-phase mass. This implies
that the effect of bubble fission or coalescence may be unimportant in determining the
steady shock speed if the effects of vapour pressure and surface tension are minimal
(i.e. if the bubbles are not too small). This fact may be verified by the observation
that the void fraction (3.21) at plH does not depend explicitly on the bubble number
density.

From (3.14) and (3.15), the steady shock speed becomes

Us =

√√√√√ g(plH ) − g(pl0)

ρ0A0

(
1 − ρ0A0

ρHAH

) , (3.22)

and the induced velocity far downstream of the shock front is then given by

uH = u′
H + Us =

(
1 − ρ0A0

ρHAH

)
Us. (3.23)
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Figure 1. (a) Steady shock speeds and (b) shock Mach numbers as a function of initial void
fraction in bubbly water with ξl = 7.29 (FSI) and ξl = 0 (no FSI). The curves are parametrized
by the shock pressure plH /pl0 = 1, 2.5, 5, 10, where pl0 = 101 kPa.

It is readily shown that the shock speed (3.22) approaches the Korteweg–Joukowsky
wave speed (3.4) if the shock strength is infinitesimal. Consequently, the shock Mach
number may be defined as

Ms =
Us

cJ

. (3.24)

In the limit of infinite structural stiffness (E → ∞), the steady shock relations derived
in this section reduce to the standard result for dilute bubbly flows (see for example
Ando 2010):

Us =

√√√√√ plH − pl0

ρ0

(
1 − ρ0

ρH

) , uH =

(
1 − ρ0

ρH

)
Us, Ms =

Us

c
. (3.25a–c)

3.3. Gas-phase nonlinearity

We document the steady shock relations for the case of bubbly water with ξl = 7.29,
where the value of ξl is computed based on the properties of the polycarbonate tube
that is used in the experiments described in § 4. For simplicity, we ignore the effects of
vapour pressure and surface tension. Figure 1 demonstrates the effects of the initial
void fraction and the shock pressure on the shock speed and Mach number. Note that
plH = pl0 indicates the linear wave cases, in which the shock speeds (3.22) and (3.25a)
reduce to the sonic speeds (3.4) and (3.2), respectively. It follows from figure 1(a) that
the gas-phase compressibility dominates over the compressibility of the water and
structure for a sufficiently high void fraction. It is also seen that the shock speeds are
greatly reduced by even a tiny void fraction. Moreover, unless the void fraction is
extremely small, the finite shock strength yields a significant deviation from the linear
wave speed due to the nonlinearity associated with the gas-phase compressibility. As
a result, the shock Mach number increases as the void fraction increases, as seen
in figure 1(b). We note that the shock Mach numbers are only slightly greater than
1 for the case of water alone (α0 = 0) since the pressure perturbations (in water)
up to several hundred atmospheres remain very weak (Thompson 1972). This fact
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Figure 2. Modified bulk modulus of bubbly water with ξl = 7.29 (FSI) and ξl = 0 (no FSI).

was experimentally confirmed by Nagayama, Mori & Shimada (2002) and Inaba &
Shepherd (2010).

To quantify the effect of the gas-phase nonlinearity, we further examine the steady
shock relations. For the case of infinitesimal shock strength (�pl = plH − pl0 � pl0),
the shock speed (3.22) can be approximated by

Us ≈ cJ

(
1 +

�pl

K̂

)
, (3.26)

where K̂ is defined as

K̂ = cJ

(
dUs

d�pl

∣∣∣∣
�pl=0+

)−1

. (3.27)

In the limits of α0 → 0 (pure liquid) and ξ → 0 (no FSI), we find K̂ → 4Kl/(γ + 1).
Thus, K̂ may be called the modified bulk modulus. It follows from (3.26) that the
linear theory (where the relation Us = cJ holds) is effectively valid under the condition
K̂ 	 �pl . Hence, the modified bulk modulus, K̂ , of the mixture can be regarded as a
measure of the nonlinearity in the sense that larger values of K̂ make the linear theory
applicable to a broader range of the shock pressures. The modified bulk moduli of
bubbly water (with and without FSI) are plotted as a function of α0 in figure 2. It
turns out that even a small void fraction yields several-orders-of-magnitude reduction
in the value of K̂ . This implies that the applicability of the linear theory is limited
in the case of bubbly mixtures. In other words, unless the void fraction is extremely
small, the gas-phase nonlinearity comes into play and the shock theory is needed to
properly predict the wave speeds.

4. Water-hammer experiments
4.1. Experimental set-up

Experiments were conducted in order to measure wave speeds in a mixture-filled tube.
The experimental apparatus depicted in figure 3 is similar to that of Inaba & Shepherd
(2010), and consists of a vertical polycarbonate tube (PCT0021.25, San Diego Plastics;
E = 2.13 GPa, ρs =1200 kg m−3, a0 = 3.5h = 22.2mm) filled with an air/water mixture.
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Figure 3. A schematic diagram of the experimental set-up.

A barrel is mounted above the tube and a 1.50 kg cylindrical steel projectile falls
under gravity, g. The free-falling projectile (with drop height Hp = 2 m or 0.5 m)
impacts a 0.42 kg polycarbonate buffer inserted into the top of the tube rather than
directly hitting the bubbly liquid surface. Stress waves in the tube are measured using
six strain gauges (SR-4, Vishay; denoted by g1 to g6 in figure 3) placed at intervals of
100 mm along the tube and oriented in the hoop direction. The signals are processed
using a signal conditioning amplifier (2300 System, Vishay) and are stored in a digital
recorder (NI 6133, National Instruments; sampling rate 2.5 MHz). Strain detection at
the strain gauge location g2 triggers the recording at t = 0. For selected cases, liquid
pressure on the inner tube wall is measured using six pressure transducers, p1 to
p6 (Model 113A24, PCB Piezotronics), which are located at the opposite side of the
strain gauges.

It should be pointed out that the buffer motion (before the direct impact on the fluid
surface) compresses the air in the gap between the column surface and the bottom of
the buffer. The wave that results from the air compression thus propagates through
the fluid column before the direct collision. However, the air inertia is negligible
compared with the buffer inertia, so the resulting wave will have smaller energy than
that generated by the direct impact of the buffer.

4.2. Method of bubble generation

The bubbles are created using a bubble generator consisting of an aluminium plate
and capillary tubes (TSP020150, Polymicro Technologies; inner diameter 20 µm), as
shown in figure 3. The intent is to create small bubbles and as homogeneous a mixture
as possible. Up to an initial void fraction of α0 = 0.0056, 91 capillary tubes are used;
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5 mm

Figure 4. Evolution of the compression wave that propagates downward through an air/water
mixture for Hp = 2 m and α0 = 0.0081. The white lines denote the estimated wavefront position.
The frame rate is 20 000 f.p.s.

for higher void fractions, the number increases to 217. The capillary tubes are located
in the drilled holes of the plate and are fastened with epoxy. One side of the plate is
tightly covered with a chamber. The chamber is pressurized, and the air is injected,
due to the pressure head, into the fluid column. The injected bubbles rise upward to
the column surface, and eventually escape from an air outlet in the buffer.

Distilled water is used for the case of no air injection; otherwise, tap water is used.
Note that the volume of tiny bubbles present in tap water is negligible compared
with that of the injected air. The water temperature is kept 23◦C so that the vapour
pressure (pv = 2.8 kPa) is much smaller than one atmosphere, pl0. The sonic speed of
water, cl , at 23◦C is 1491 m s−1 with γ = 7.15 and B = 310 MPa.

Images of the bubbles are captured by a high-speed video camera (Phantom
v7.3, Vision Research). A white LED lamp (Model 90 0445, Visual Instrumentation
Corporation) is used for backlighting. A water jacket is attached outside the tube to
minimize image distortion. The evolution of the compression wave for the case of
Hp = 2 m and α0 = 0.0081 is shown in figure 4, where the wavefront position is also
estimated from the measured wave speed (Us = 355 m s−1) that is computed in § 4.6.
It turns out that the predicted wave position generally corresponds with where the
bubbles are collapsing. Moreover, the bubble size is found to be broadly distributed
(i.e. the mixture is polydisperse), and the mixture is nearly homogeneous. The detailed
images of the compressed bubbles are presented in figure 5. The bubble fission in
figure 5(a) may be due to a Rayleigh–Taylor-type instability (Brennen 2002). The
re-entrant jets in figure 5(b) are induced by interaction with the shock wave (see for
example Johnsen & Colonius 2009).

The initial void fraction (up to 1 %) is estimated based on the difference in the
column height with and without the air injection. Uncertainty in this measurement
is ±0.1 mm except for the case of the highest void fraction, α0 = 0.01, in which
the column surface waves increase the uncertainty to ±0.5 mm. In the experiments,
the following void fractions were tested: α0 = 0 (no air injection), 0.0013 ± 0.0001,
0.0024 ± 0.0001, 0.0056 ± 0.0001, 0.0081 ± 0.0001 and 0.010 ± 0.001.
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(a) (b)

2 mm 2 mm

Figure 5. Examples of the images of (a) bubble fission and (b) re-entrant jets. The frame
rates are 25 000 and 79 000 f.p.s., respectively.
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Figure 6. An example of (a) the evolution of hoop strains without FSI and (b) the locations
of the wavefronts. The dotted lines in (a) denote the threshold values used to determine the
wavefronts for (b).

4.3. Precursory wave speeds

In order to verify the physical properties of the tube material, stress waves
were generated by hammering the top of the tube and, with no water in the
tube, wave speeds were computed. The evolution of the hoop strains is presented
in figure 6. For comparative purposes, three threshold strain values (30 %, 40 % and
50 % of the maximum strain measured at the strain gauge g1) are used to determine
the position of the wavefront. Then, the wave speed was obtained from the slope
of a linear least-squares fit to the wavefront positions; the standard deviation of
the slope was also computed. It transpires that the wave speed is fairly constant
and the dispersion resulting from the thresholding is very small. Furthermore, the
computed wave speed is found to agree with the theoretical value of cs = 1434 m s−1

discussed in § 3.1. We also note that within the measurement period, the error
associated with the sampling rate (±0.4 µs) or the inter-gauge distance (±1 mm)
is negligible compared with that of the thresholding.

We now examine the precursory waves for the tube filled with water. Figure 7
shows the precursory wave evolution and the wavefront location for Hp =2m and
α0 = 0. The thresholding is again based on 30 %, 40 % and 50 % of the minimum
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Figure 8. Illustration of the tube deformation and the corresponding x–t diagram showing
the relation of the precursory and primary waves.

strain measured at g1. It is seen that the precursory waves travel slightly faster than
the sonic speed, cs , of the tube material and are followed by the primary waves. The
wave structure becomes more oscillatory as time progresses. Wave dispersion results
from structural oscillations in which the tube dynamics come into play (Skalak 1956).
Also, note that the precursory wavefront leads to contraction in the hoop direction, as
illustrated in figure 8. Behind the shock front, the shock pressure expands the tube in
the radial direction. As a result of mass (or volume) conservation, the section in front
of the shock needs to elongate in the axial direction. The resulting stresses propagate
with a precursory wave speed that is close to the sonic speed of the tube material.
Since the precursor propagates faster than the shock, the separation between the
precursory and shock fronts expands and the dispersion grows as the waves evolve
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Figure 9. An example of the evolution of hoop strains for Hp = 2 m and α0 = 0. The slope
of the dashed line is the computed wave speed.

(see figure 7). The net expansion in the radial direction behind the wavefront results
in a tensile precursor and contraction in the axial direction because of the Poisson
coupling between the axial and radial motions.

4.4. Primary wave speeds

We now examine the shock (or primary) waves, which produce larger amplitude hoop
strains than the precursory waves. These water-hammer experiments are characterized
by the drop height Hp and the initial void fraction α0. To confirm repeatability in the
measurements, three experimental runs were conducted for each case of Hp and α0.
In what follows, we choose some particular cases, and investigate the wave structures
and infer the propagation speeds from the strain measurements.

The evolution of the hoop strains for the case of Hp = 2 m and α0 = 0 is shown
in figure 9. Unlike in figures 6 and 7, the strain histories at the different gauges are
separately presented in the vertical axis for clarity. Every strain gauge records the
primary wave following a small-amplitude precursor. It also records a wave reflected
from the tube bottom. In addition, as described in § 4.3, the primary wave speed
is computed and presented in figure 9; three different threshold strain levels (30 %,
40 % and 50 %of the maximum strain measured at the strain gauge g1 before the
reflected wave is observed) are chosen to determine the position of the wavefront. The
computed speed (521 m s−1) is in reasonable agreement with the Korteweg–Joukowsky
wave speed (clJ = 518 m s−1), and the dispersion due to the thresholding is very small.
This suggests that the linear theory is effectively valid for the case of pure water, even
though the wave is dispersive and unsteady.

The bubbly water case (Hp = 2 m, α0 = 0.0081) is presented in figure 10. A
comparison of figures 9 and 10 reveals that the bubbles reduce the tube deformation.
This is due to the fact that some fraction of the potential energy of the projectile is
used to compress the bubbles. Moreover, the wave speed is remarkably reduced by the
bubbles. It should also be pointed out that the propagation speed is fairly constant
(with small standard deviation). To further see the effect of the bubbles, the case
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Figure 10. As figure 9, but with Hp = 2 m and α0 = 0.0081.
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Figure 11. As figure 9, but with Hp = 0.5 m and α0 = 0.0081.

of the lower drop height (Hp = 0.5 m, α0 = 0.0081) is presented in figure 11. In this
case, the wave propagation is evidently unsteady in the sense that the compression
wave steepens as it evolves. In figure 12 we superpose the shifted strain signals at
different gauges from figures 10 and 11. This clearly confirms the steepening of the
wavefront for the case of Hp =0.5 m. As pointed out in § 4.1, the wave due to the
air compression propagates before the primary wave; the larger-amplitude primary
wave catches up the preceding wave so that the wavefront steepens as it evolves.
As a result of the unsteadiness, the threshold value becomes more critical and the
standard deviation of the computed wave speed becomes larger. It should be noticed
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Figure 13. An example of the evolution of liquid pressures for Hp = 2 m and α0 = 0. The
solid and dash-dotted lines denote the measured and estimated pressures, respectively.

that the lower piston velocity (with decreasing Hp) further reduces the propagation
speed. This is the effect of the gas-phase nonlinearity as pointed out in § 3.3.

4.5. Pressure measurements

Measurements of the liquid pressure (as well as the hoop strain) along the tube wall
were conducted in order to investigate their correlation. Here, we selected the two
cases without air injection (α0 = 0) and with bubbles (α0 = 0.0024). For both cases, we
chose the higher drop height of the projectile (i.e. Hp = 2 m).

The evolution of the liquid pressure for the case of α0 = 0 is presented in figure 13.
For comparison, the pressure evolution estimated from the quasi-static relation (2.7)
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given the measured hoop strains is also plotted. We observe a quantitative discrepancy
between the measurement and the prediction. The wall thickness, across which a stress
distribution exists, needs to be considered to accurately predict the fluid pressure from
the hoop strains (Tijsseling 2007; Inaba & Shepherd 2010). The neglect of the inertia
and bending stiffness of the tube wall can also account for the discrepancy (Shepherd
& Inaba 2009). It is also interesting to note that every pressure evolution shows a
considerable drop after the first peak. After the buffer collides with the fluid surface, a
compression wave would be generated and propagate in the buffer from the collision
side. The generated shock will be reflected at the other end of the buffer as a tension
wave, which will eventually be transmitted back to the fluid. The time for the two-way
passage of waves in the buffer is about 0.4 ms and approximately consistent with the
observation in figure 13.

Next, we examine the case with bubbles in figure 14. Now that the bubbles collapse
after the shock compression, the pressure signals exhibit some oscillations due to
radiated pressure pulses from the bubbles neighbouring the pressure transducers. It
is obvious that the amplitude and frequency of the radiated pressure waves at the
pressure transducers p1–p6 vary because the size and standoff distance of bubbles
neighbouring the measurement points would be different. However, in this example,
the structural response is rather insensitive to the bubble dynamics (see the pressure
evolution estimated from the strain signals). To investigate the pressure radiation
from collapsing bubbles, we consider an idealized, one-way-coupled flow in which
spherical bubbles are forced according to a step-wise pressure change. The radiated
pressure field is given by (Brennen 1995)

pa =
ρlR

r
(2Ṙ2 + RR̈), (4.1)

where r is the distance from the bubble centre. To determine the bubble dynamics
on the right-hand side of (4.1), we solve the equation of Gilmore (1952), which is
a generalization of the Rayleigh–Plesset equation and accounts for effects of liquid
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Figure 15. (a) Evolution of the liquid pressures at p2 in figures 13 and 14. For comparison,
(b) the one-way-coupled Gilmore solution and (c) the corresponding radiated pressure with a
stepwise pressure change (one atmosphere to 2 MPa) at 0.215 ms are presented.

compressibility, with the assumption of adiabatic air and the effects of surface tension
and vapour pressure (at 23 ◦C). As an example, in figure 15 we compare the pressure
signals at p2 in figures 13 and 14 to the one-way-coupled flow computation in
which the shock pressure is assumed to be 2 MPa and the equilibrium bubble radius
is inferred from the bubble images in § 4.2. In this particular example, the time
for bubble collapses with R0 = 1.5 mm and the associated radiated pressure pulses
corresponds well to that for the observed sharp pressure peaks at p2.

As in figure 12, the shifted pressure signals at different measurement points from
figures 13 and 14 are superposed in figures 16 and 17, respectively. The mean and
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Figure 17. Superposition of the wave forms at different pressure transducers in figure 14.

standard deviation of the six different signals are also plotted. In the case of no
bubbles, the pressure wave decays so gradually that the standard deviation of the
different time frames is limited. With the air injection, on the contrary, the pressure
signals are contaminated by a wave scattering due to the collapsing bubbles. As
a result, the standard deviation is emphasized in particular just after the shock
compression, but exhibits gradual decay as the bubble dynamics are damped away
from the shock front. We also notice that the averaged pressure signal is rather
smoothed because the individual fluctuations with different frequencies are cancelled
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αmean
0 0 0.0013 0.0024 0.0056 0.0081 0.010

�α0 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.001

521 ± 5 502 ± 1 459 ± 2 404 ± 2 353 ± 4 313 ± 2
Hp = 2m 524 ± 2 499 ± 3 458 ± 1 386 ± 2 356 ± 2 329 ± 2

524 ± 3 492 ± 2 475 ± 3 388 ± 1 356 ± 1 321 ± 2

508 ± 4 477 ± 5 421 ± 13 259 ± 3 200 ± 8 168 ± 5
Hp = 0.5m 524 ± 4 440 ± 9 385 ± 3 242 ± 4 201 ± 13 170 ± 5

515 ± 5 446 ± 13 368 ± 3 257 ± 2 200 ± 10 183 ± 2

cJ (κ = 1.4) 518 279 221 153 129 117
cJ (κ = 1) 518 246 191 131 110 99.4

Table 1. Primary wave speeds (together with sonic speeds cJ ) (m s−1) for every experimental
run with various Hp and α0. The error bounds in the wave speeds are standard deviations.

out. Finally, we note that the rise time of the shock in figure 16 is about 0.3 ms
and comparable to the natural period of bubbles with R0 = 1 mm; the larger bubbles
cannot respond to the pressure forcing and may thus have minor contributions to
the mixture compressibility to determine the primary wave speed. For future use, we
report that the peak of the averaged pressures for α0 = 0 and 0.0024 is 2.92 MPa and
2.42 MPa, respectively.

4.6. Summary

The wave speeds are calculated for each experimental run and are organized,
together with the sonic speeds (3.4) with adiabatic and isothermal compression
of air bubbles, in table 1. To compute the sonic speed of the mixture, the adiabatic
assumption with κ =1.4 may be more appropriate, for the relaxation time for thermal
diffusion in air bubbles in the experiments may be comparable to or larger than the
measurement period. For air bubbles with R0 = 1 mm, the relaxation time is estimated
as R2

0/αT ≈ 40 ms, where αT is the thermal diffusivity. Note that the difference in
the wave speeds among the three experimental runs is small. Also, note that the
standard deviations of the wave speeds are small in particular for Hp = 2 m, indicating
constant propagation speeds. The wave speeds are not well predicted by the Korteweg–
Joukowsky linear wave speed when the air is injected; for these cases, the measured
wave speeds are much higher than the sonic speeds. More specifically, the deviation,
due to the gas-phase nonlinearity, from the sonic speeds is augmented with increasing
the piston velocity (or Hp). In the next section, we show that the shock theory predicts
the wave speeds better.

5. Comparison of theory and experiments
5.1. Buffer dynamics

The discrepancy between the linear theory and the experiments clearly suggests a
need to incorporate the gas-phase nonlinearity. Now, we compare the shock theory
to the experiments. One way to close the steady shock relations is to assign the
piston velocity uH . The buffer velocity may be regarded as representative values of
uH . For every experimental run reported in table 1, the buffer position xb (represented
by the two lines with a 10 mm separation seen in figure 3) was recorded using a
high-speed video camera (Phantom v7.3, Vision Research) with a recording rate of
32 000 frames per second (f.p.s.), and the position history was extracted from the
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movies with MATLAB image processing. As an example, the evolution of the buffer
position for the case of Hp = 2 m and α0 = 0 is exhibited in figure 18. The projectile
impacts the buffer at time t1; the projectile and the buffer separate after the collision.
The buffer then impacts the top of the fluid column at time t2. The projectile again
impacts the buffer at time t3. For comparison, the case of Hp = 2 m and α0 = 0.0081
is also plotted in this figure. Because the reaction force from the fluid is reduced with
(more compressible) bubbles, the buffer motion shows more gradual decay.

The buffer motion from t2 to t3 may be described by Newton’s second law
(Dashpande, Heaver & Fleck 2006; Shepherd & Inaba 2009). For simplicity, the
buffer is treated as a rigid body and wall friction is neglected. The equation of motion
of the buffer is then given by

Mbẍb = −�plA0, (5.1)

where Mb is the mass of the buffer and the right-hand side represents the pressure
force acting on the bottom of the buffer. In the linear case, this pressure force may
be approximated by �plA0 = ρ0cJ ẋbA0, as can be derived from (3.14) and (3.15).
Integrating (5.1) once and specifying the initial condition at time t2, we get a solution
of the form

ẋb = ẋb(t2) exp
(

− t − t2

τ

)
, (5.2)

where τ is the relaxation time for the exponential decay:

τ =
Mb

ρ0cJ A0

. (5.3)

The measured buffer positions between t2 and t3 were fitted to an exponential by the
least-squares method. In addition, the time t2 was determined by observing the still
images taken from the high-speed camera. The resulting buffer velocity ẋ

fitted
b (t2) and

the relaxation time τ fitted for every experimental run with Hp = 2 m are summarized in
table 2. In addition, the buffer velocity after the measurement period tm is estimated
from the fitted function. Here, we define the measurement period for each run as
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αmean
0 0 0.0013 0.0024 0.0056 0.0081 0.010

�α0 ±0.0001 ±0.0001 ±0.0001 ±0.0001 ±0.001

6.9 8.5 8.2 8.4 7.8 7.3

ẋ
fitted
b (t2) (m s−1) 6.9 8.0 8.3 8.0 8.5 7.3

6.9 7.9 8.4 8.2 8.1 7.9

2.2 3.1 3.6 3.5 3.8 3.2

ẋ
fitted
b (t2 + tm) (m s−1) 2.0 3.5 3.3 3.2 4.2 3.3

1.8 3.4 3.5 3.7 3.6 3.3

0.82 1.0 1.3 1.4 2.0 1.8
τ fitted (ms) 0.76 1.2 1.2 1.4 2.0 1.8

0.71 1.2 1.2 1.6 2.0 1.8

τ (κ = 1.4) (ms) 0.713 1.33 1.68 2.43 2.89 3.19
τ (κ = 1) (ms) 0.713 1.50 1.93 2.84 3.39 3.75

Table 2. Velocity and relaxation time of the buffer motion for every experimental run with
Hp = 2 m. For comparison, the relaxation time is calculated from the linear analysis.

tm =(xg6 − xg1)/Us , where xg6 − xg1 = 500 mm and the wave speed Us is taken from
table 1. It turns out that the constant buffer velocity, which the shock theory favours,
is not well achieved in the measurements. Nonetheless, the measured waves propagate
fairly with constant speeds (see for example the wave propagation in figure 10),
regardless of the decelerating buffer motion. This may be explained as follows. The
rarefaction wave resulting from the deceleration cannot catch up the preceding wave
that is propagating faster with larger peak pressure. As a result, the peak pressure of
the wavefront will not change if the effects of damping and tube inertia are minimal
(see figure 16). Assuming that the peak pressure is critical to the shock state (or the
corresponding shock speed) even in the case with bubbles, we will obtain constant
propagation speeds as observed in the experiments. Even though the induced velocity
corresponding to the peak pressure is unknown, it may be bounded by the initial and
decaying buffer velocities. That is, we may consider ẋ

fitted
b (t2) and ẋ

fitted
b (t2 + tm) as the

upper and lower bounds, respectively, of the representative value of uH .

5.2. Induced fluid motion

Provided that the slip between the host liquid and the bubbles is minimal, it is
reasonable to trace the positions of the compressed bubbles, rather than the buffer
positions, in the sequential images (as presented in figure 4) in order to infer the
induced velocity. Here, the cross-correlation technique with MATLAB is adopted to
compute the translation of the compressed bubbles between the two images with time
separation �t .

The procedure for Hp = 2 m and α0 = 0.0013 is illustrated in figure 19. First, we
set the sub-image in the frame at t to enclose the collapsing bubbles behind the
shock front, and calculate its cross-correlation, which is a function of the offset in
both the axial and radial directions, with respect to the (reference) frame at t + �t .
Then, the offset that yields the peak of the cross-correlation can be regarded as
the displacement of the bubbles during �t . If taking �t = 0.5 ms, the mean particle
velocity is estimated as �x/�t =7.35 ± 0.67 m s−1, where �x is the displacement in
the axial direction and the deviation is due to one-pixel errors. Note that the bubbles
seem to advect uniformly in space (i.e. the cross-correlation is sharply peaked), so
that the velocity variation may be minor inside the sub-image. This indicates that
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Figure 19. Illustration of the cross-correlation method to estimate the displacement of the
compressed bubbles (encircled by the white line) that advect downward with the shock-induced
ambient liquid flow for Hp = 2 m and α0 = 0.0013. The time separation, �t , is 0.5 ms.

the typical wavelength may be large enough to minimize the relative motion of the
bubbles (Brennen 1995). Repeating the same procedure between the frames at t + �t

and t + 2�t , the mean velocity is now computed as �x/�t = 5.34 ± 0.67 m s−1. That
is, like the buffer motion, the induced fluid motion will considerably decay within
the measurement period (tm ≈ 1 ms). We also confirm that these estimated values fall
between the upper and lower limits in table 2.

5.3. Theoretical predictions

Finally, we compare the theoretical shock speeds with the measured speeds for
Hp = 2 m. As discussed in § 5.1, ẋ

fitted
b (t2) and ẋ

fitted
b (t2 + tm) in table 2 are regarded as

the upper and lower bounds of uH and used to close the steady shock relations. To
be specific, we select the maximum of ẋ

fitted
b (t2) and the minimum of ẋ

fitted
b (t2 + tm)

(out of the three experimental runs) for each α0 in order to define estimation errors.
We consider only the case of isothermal compression (κ = 1) of bubbles and neglect
the vapour pressure and the surface tension (i.e. pv = 0, Υ =0) for the computations;
variations due to these parameters are much smaller than those due to the range of uH .

In figure 20, the theoretical shock speeds are compared to the measured values
for Hp = 2 m. The errors in the measured speeds and void fractions (documented
in table 1) are small and omitted for clarity. We confirm that the value of uH

is irrelevant at α0 = 0 since the liquid-phase nonlinearity is minor in this example.
However, the measured speeds for the cases with air injection clearly exhibit differences
from the sonic speeds, and clearly indicate the effect of the gas-phase nonlinearity
on the wave speeds. Although the uncertainty associated with the non-constant
value of uH increases as the void fraction increases, the shock theory is capable of
more accurately capturing the trend with increasing α0 than the linear theory. This
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Figure 20. Estimated wave speeds as a function of α0. The symbols denote the
measurements for every experimental run with Hp = 2 m.

comparison suggests that the gas-phase nonlinearity (as well as FSI) needs to be
considered to properly estimate the propagation speeds of finite-amplitude waves in a
mixture-filled pipe. Finally, we note that the averaged peak pressures, plH , for α0 = 0
and 0.0024 (presented in § 4.5) yield uH = 5.44 m s−1 and 5.04m s−1, respectively, which
fall between the upper and lower limits of the buffer velocities.

To quantify the decay rate as well as the dispersion, the dynamics of both fluids and
structures need to be evaluated. The viscoelasticity of the polycarbonate may affect
the wave speed and damping (Meißner & Frank 1977; Gally, Güney & Rieutord
1979; Suo & Wylie 1990; Covas et al. 2004). The unsteady wall friction may also
have some impact on the wave damping (Bergant 2001). If bubble fission occurs
after passage of the shock, the fission damping needs to be included in bubble-
dynamic modelling (Brennen 2002). Moreover, because polydispersity results in
different frequency responses for different-sized bubbles, phase cancellations cause
an additional apparent damping of the wave propagation (Smereka 2002; Colonius
et al. 2008; Ando, Colonius & Brennen 2009; Ando 2010).

6. Conclusions
A quasi-one-dimensional conservation law governing continuum bubbly flows in a

deformable cylindrical tube was formulated and used to derive steady shock relations.
The modified bulk modulus of the mixture is introduced, and the nonlinear effect due
to the gas-phase compressibility is shown to be important for shock propagation. The
present FSI shock theory is found to be in better agreement with the measured wave
speeds than the linear theory. This suggests that the gas-phase nonlinearity (as well
as FSI) needs to be taken into account to accurately estimate the propagation speeds
of finite-amplitude waves in a bubbly-liquid-filled pipe.

The authors would like to express their thanks to T. Nishiyama for his help
with the experimentation, R. Porowski for the bubble images and S. Hori for his
observations about the experimental data. This work was supported by ONR grant
N00014-06-1-0730.
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