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Abstract

Ignition delay times of methane-n-hexane-oxygen mixtures were studied experimen-

tally and numerically in a wide temperature range (640-2335 K) using both a rapid

compression machine (RCM) and a shock tube (ST). The RCM results demon-

strated a two-stage ignition and negative temperature coefficient (NTC) behavior.

Increasing n-hexane concentration, pressure and equivalence ratio shortened the ig-

nition delay time. For the ST experiments, the addition of 10% n-hexane (relative

to methane) can reduce the ignition delay time dramatically. However, no further

reduction effect can be achieved with increasing addition of n-hexane from 10% to

20%. In addition, increasing equivalence ratio reduces the effect of n-hexane ad-

dition on ignition delay time. Three detailed chemical mechanisms, CaltechMech,

GalwayMech and LLNLMech, were evaluated based on a quantitative error analysis.

LLNLMech and CaltechMech demonstrated the best performance in the RCM and

ST temperature ranges, respectively. Chemical kinetic analyses showed that the

addition of n-hexane to methane provides some chemical pathways not available for

methane oxidation which result in the production of active radicals and eventually

accelerate the ignition of the methane-oxygen mixtures. The crucial intermediate

species for the ignition process are H2O2 and H under RCM and ST conditions,

respectively.
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1. Introduction

A shortage of crude oil is expected within this century. In addition, air pollution

is becoming more concerning and more stringent regulations on pollutant emissions

from internal combustion engines are anticipated. The use of natural gas as a fuel for

internal combustion engine (ICE) operating under diesel conditions is a promising

approach for addressing these issues [1, 2].

Advantages of natural gas include vast and geographically widespread resources,

as well as some relevant combustion parameters such as a high octane number, a high

anti-knock capability and low pollutant emissions, leading to a substantial reduction

in carbon dioxide emissions, and possibly of NOx and particulate matter as com-

pared to diesel and gasoline fueled IC engines [3, 4, 5, 6]. On the other hand, natural

gas has unfavorable combustion characteristics, such as a long ignition delay time,

high auto-ignition temperature, low flame propagation speed for lean mixtures and

poor lean burn capability. These can result in increased cycle-to-cycle variations,

reduced thermal efficiency, and increased HC emission under fuel-lean conditions

[7, 8, 9]. Consequently, a strategy to enhance ignition is needed to take advantage

of the low emission of soot and NOx and the reduced formation of unburnt HC

and CO possible with natural gas fueled IC engines. Pilot-ignited dual-fuel engines

have proven to be a promising engine concept to improve and control the ignition of

natural gas-air mixture under diesel conditions [2]. This strategy consists of trigger-

ing the ignition of a premixed charge using a micro-spray of diesel fuel [10, 11, 12, 13].

Properly optimized, the adoption of the pilot injection strategy would reduce the

delay to the main ignition event, smoothen the premixed combustion phase, as well
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as reduce noise and pollutant emissions at partial loads [14, 15, 16, 17]. However,

because of the complexity of spray-induced ignition, substantial efforts are needed

to optimize the combustion chamber geometry, the spray characteristics and the

ignition strategies [18, 19, 20, 21, 22, 14, 23, 24]. In order to reducing the depen-

dence on engine tests and to improving work efficiency, such an optimization process

could be performed using Computational Fluid Dynamics (CFD) simulations, cou-

pling the fluid mechanics and the appropriate chemical kinetic mechanism. It has

been reported that the delay to ignition, the location of the ignition of the diesel

spray, as well as the energy release rate characteristics are very sensitive to the

content of methane in the methane-air pre-mixture [25, 4, 26, 18]. This indicates

that the ignition process is very sensitive to the mixing process and to the chemical

kinetics. Consequently, reliable chemical kinetic mechanisms are needed to support

CFD simulations to optimizing this type of pilot-ignited dual-fuel engine. Regarding

development and validation of chemical kinetic mechanisms, ignition delay time is

widely considered as a combustion characteristic parameter of primary importance.

Given the complexity and variability of both natural gas and diesel composi-

tion, simple surrogate fuels should be employed to perform related chemical kinetic

investigations. For natural gas, methane is generally considered as an appropriate

surrogate. For diesel, a large number of surrogates have been proposed and may

include up to 10 hydrocarbons [27]. The present study was carried out with n-

hexane because it can be studied with room temperature starting conditions. While

numerous experimental data on ignition are available for methane- [28, 29, 30] and n-

hexane-based [31, 32, 33, 34, 35] mixtures, experimental data for dual-fuel methane-

n-alkane mixtures are scarce. Liang et al. [36] studied the ignition delay-time of

n-heptane-methane-based mixtures in a shock tube. The present study differs from

that of Liang et al. in the approach used to prepare the mixtures. To determine the

respective effects of methane and n-heptane, they replaced a fraction of methane

by n-heptane whereas we have chosen to add a certain quantity of n-hexane to

methane-oxygen-diluent mixtures of a given equivalence ratio. The present study

also significantly extends the range of temperatures and pressures over which the
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ignition of the dual-fuel mixtures is studied.

The objective of the present study was to investigate experimentally and numer-

ically the impact of n-hexane addition on the ignition of methane. Due to its higher

vapor pressure as compared to n-heptane, n-hexane was chosen as a diesel surrogate.

We recognize that some of the physical properties of diesel are not captured when

using a single alkane such as n-hexane since real diesel is a blend of hundred of

hydrocarbons with carbon numbers in the range C10-C24, and a boiling temperature

in the range 190-360 ○C [37]. Studying real diesel requires to solve a number of

technical difficulties including heating the experimental facilities and ensuring the

thermal stability of the hydrocarbon-air mixtures [38]. A rapid compression machine

(RCM) and a shock tube (ST) were employed to assess the ignition characteristics of

dual-fuel methane-n-hexane-oxygen-diluent mixtures in a wide range of temperature

and pressure. In addition, three detailed chemical kinetic mechanisms were evalu-

ated. Chemical kinetic analyses were conducted to unravel the underlying ignition

mechanism of methane-n-hexane mixtures.

2. Material and method

2.1. Rapid compression machine

The low- and intermediate-temperature (640-878 K) ignition experiments were

performed using the Tsinghua University Rapid Compression Machine facility which

detailed description is given in Di et al. [39].

The ignition delay time was defined as the time between the end of compression and

the maximum pressure derivative. For two-stage ignition, the first-stage ignition was

defined as the time between the end of compression and the first local maximum in

the pressure derivative curve. The uncertainty on the delay time is estimated to be

approximately 10-15%. A typical experimental pressure signal obtained during the

RCM experiments is shown in Figure 1 (a).
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(a) RCM pressure signal (b) ST pressure and CH* signals

Figure 1: Typical experimental signals obtained using the RCM and ST facilities. (a): Mixture 1;

P=2 MPa; T=670 K. (b) Mixture 14; P=415kPa; T=1353 K. EOC stands for end of compression

2.2. Shock tube

The high-temperature (1250-2335 K) ignition experiments were carried out using

the Galcit 6-inch Shock Tube. A detailed description of the ST apparatus and diag-

nostics was previously given in [40, 41, 42]. The ignition event was studied behind

reflected shock waves using OH*, CH*, and CO2* emission. It was characterized

using two times of reaction defined as: (i) the time to half emission maximum (τ50%);

and (ii) the time to the emission maximum (τ100%). The uncertainty on the charac-

teristic reaction times is estimated to be approximately 20%. Typical pressure and

CH* emission signals obtained during the ST experiments are shown in Figure 1

(b).

2.3. Test mixtures

The reactive mixtures were prepared in a separate tank using the partial pres-

sure method for both the RCM and the ST experiments. The tank of the RCM

allowed mixtures to mix through diffusion for several hours before performing the

experiments. A brushless fan was mounted inside the tank for the ST experiments,

hence, approximately one or two hours were needed to ensure homogeneity. The

residual pressure in both mixture tanks before mixture preparation was below 1 Pa.

Ultra-high purity grade methane (99.999%), oxygen (99.999%), nitrogen (99.999%),

argon (99.999%) and pure n-hexane (99%) were used for all the experiments. No
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further purification was performed. The equivalence ratio was defined based on both

the main fuel (φm) only and on the total amount of fuel (φt). φm is expressed as

φm =
XFM
/XO2

(XFM
/XO2)stoic

, (1)

whereas φt is expressed as

φt =
2XC + 0.5XH

XO

. (2)

The addition ratio of the additive fuel was defined as

RA =
XFA

XFM

, (3)

where XFM
and XFA

denote the amount of main fuel and additive fuel, respectively.

FM stands for methane and FA stands for n-hexane except for Mixtures 14 to 16 for

which n-hexane was the main fuel and methane was the added fuel. For RCM ex-

periments, both nitrogen and argon were employed as diluent gas in order to extend

the range of tested temperatures by altering the overall heat capacity. For the ST

experiments, argon was used as the diluent gas to minimize the effect of vibrational

relaxation and reflected shock wave bifurcation. The dilution ratio was selected to

ensure the measured ignition delay times are in the appropriate ranges of observa-

tion times of the present RCM and ST facilities. Detailed mixture compositions and

experimental conditions are summarized in Table 1.
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Table 1: Experimental conditions and mixture compositions employed in the present work.

Mixture
Mole Fraction (%)

φm φt T (K) P (kPa) Facility
n-C6H14 CH4 O2 N2 Ar

1 0.94 9.42 18.87 23.58 47.19 1.00 1.47 652-853 1000,2000 RCM

2 1.88 9.4 18.9 13.22 56.6 1.00 1.94 640-825 1000,2000 RCM

3 0.49 4.92 19.72 30.57 44.3 0.50 0.74 656-878 1000,2000 RCM

4 - 1 3 - 96 0.67 0.67 1630-2125 234-315 ST

5 - 1.33 2.67 - 96 1.00 1.00 1539-2335 233-297 ST

6 - 2 2 - 96 2.00 2.00 1666-2286 200-295 ST

7 0.1 1 3 - 95.9 0.67 0.98 1398-1723 306-386 ST

8 0.13 1.33 2.66 - 95.88 1.00 1.46 1510-1761 278-332 ST

9 0.2 2 2 - 95.8 2.00 2.95 1675-2156 219-294 ST

10 0.2 1.1 2.99 - 95.71 0.74 1.37 1455-1784 271-380 ST

11 0.26 - 3.74 - 96 0.66 0.66 1298-1474 320-377 ST

12 0.38 - 3.62 - 96 1.00 1.00 1298-1585 258-405 ST

13 0.7 - 3.3 - 96 2.02 2.02 1336-1606 308-392 ST

14 0.26 0.03 3.69 - 96.02 0.67 0.69 1247-1536 353-417 ST

15 0.38 0.04 3.62 - 95.96 1.00 1.02 1297-1479 340-402 ST

16 0.7 0.07 3.3 - 95.93 2.02 2.06 1368-1490 324-365 ST
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2.4. Numerical modeling

Computational simulations were performed using the Senkin code [43] of the

Chemkin II package [44] or Cantera [45], through a numerical procedure implemented

in Matlab. Three state-of-the-art detailed reaction mechanisms were evaluated:

(i) CaltechMech [46] (1159 reactions and 192 species), (ii) GalwayMech [32] (4150

reactions and 913 species), and (iii) LLNLMech [47] (2834 reactions and 661 species).

The sub-mechanisms of the electronically excited species containing OH*, CH* and

CO2* [40] were added to each mechanism in order to reproducing ignition delay

times measured by emission diagnostics in the ST. A constant volume reactor was

used to predict the ignition delay times in shock tube. For the RCM experiments,

the ignition delay time is long enough to be affected by heat losses after the end of

the compression. Hence, a variable volume reactor model was employed as in [48].

A series of non-reactive experiments were performed in which oxygen was replaced

by nitrogen to avoid ignition. These experiments enabled the determination of the

equivalent specific volume profiles by measuring the pressure in the test section and

assuming an adiabatic isentropic expansion process is taking place after the end of

compression.

2.5. Evaluation of reaction model performance

In order to quantitatively evaluate the predictive capability of the three chemical

kinetic mechanisms, a number of indicators have been calculated.

The relative error of the ith experimental data point (Ei) enables to evaluate the

local performance of the models, that is for a single data point. It was calculated as

Ei =
τ imodel − τ

i
expe

τ iexpe
× 100 (4)

where τ iexpe and τ imodel are the experimental and numerical ignition delay time for

the ith data point, respectively.

In order to evaluate the overall performance of the mechanisms, the mean and

the maximum absolute errors were calculated. The expression of the mean absolute
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error (µ) was

µ =
1

N

n

∑
i=1

∣Ei∣ (5)

where N is the total number of experimental data points. The maximum absolute

error (Emax) was

Emax =max(∣Ei=1,...,N ∣) (6)

A more detailed evaluation of the mechanisms performance, was obtained by

calculating the distribution of relative error. Bins of 10% were employed. The

relative population for the jth bin, RPj, is expressed by

RPj =
nj

N
(7)

where nj is the number of data points that conforms to

∣Ej − vj ∣ < 5% (8)

where vj denotes the central value of the jth bin.

3. Results and discussion

3.1. Low- and intermediate-temperature ignition in RCM

3.1.1. Experimental results and reaction models performance

Figure 2 shows the effects of n-hexane concentration, pressure, and equivalence

ratio on the ignition delay time of methane-n-hexane-oxygen-diluent mixtures. Two-

stage ignition was observed for all mixtures and conditions within the temperature

range 700-820 K and corresponds to a characteristic feature of the ignition of n-

hexane-based mixtures. In addition, the negative temperature coefficient (NTC)

behavior of the total ignition was observed in all the experimental conditions except

for Mixture 2 at 2 MPa (shown in Figure 3(b)). This is because at higher pressure

and n-hexane content, the NTC region is shifted beyond the accessible ranges of

temperature and ignition delay time of our facility. The increase of n-hexane con-

tent from 10% to 20% dramatically shortens the first-stage and total ignition delay

time by a factor of 3 to 4 over the temperature range studied (see Figure 2(a)). The

increase of pressure from 1 to 2 MPa reduces the first-stage and total ignition delay
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time by a factor of 2, and 3 to 5 for temperatures above 700 K, respectively. There

is no evident effect of pressure for temperatures lower than 700 K (see Figure 2(b)).

Equivalence ratio only affects the total ignition delay for temperature above 750 K

with a decrease of approximately a factor of 2 as equivalence ratio is increased from

0.5 to 1 (see Figure 2(c)). It is noteworthy that the effects of pressure and equiva-

lence ratio occur for temperatures above 700-750 K, whereas the effect of n-hexane

addition on ignition delay time is observed over the entire temperature range. To un-

derline the effect of fuel blending, we have calculated the adiabatic constant volume

delay-time at P=1 MPa and T=745 K for a stoichiometric methane-oxygen-nitrogen-

argon mixture and a stoichiometric n-hexane-oxygen-nitrogen-argon mixture. For

these calculations performed with the LLNLMech, the dilution ratio was the same

as for fuel-air mixtures and ratio XAr/XN2 was 4.28 as in our experiments. The

delay-time for the methane-based mixture was 6.35 s, whereas the delay-time for

the n-hexane-based mixture was 11.2 ms (3.1 ms for the first stage). These results

should be interpreted with care because the calculated delay-time for the methane-

based mixture is essentially extrapolated from a much higher temperature range

over which methane combustion is typically studied. This indicates that, in the

low-temperature range, the ignition characteristics of the most reactive fuel seem to

dominate the ignition process of the dual-fuel mixture.

Figure 3 shows representative comparisons between the measured and predicted

ignition delay times. Additional modeling results for the LLNLMech are shown in

Figure 2. The three mechanisms reproduce the main trends experimentally measured

but significant quantitative discrepancies are observed with relative error as high as

300% under certain conditions. Table 2 summarizes the performances of the mech-

anisms by presenting the mean and maximum absolute error on the first-stage and

total ignition delay time. Overall, CaltechMech and GalwayMech overestimate both

first-stage and total ignition delay time, especially below 725 K, while LLNLMech

better predicts both the first-stage and total ignition with a mean absolute error on

the first-stage and total ignition delay times of 64.58% and 24.35%, respectively.
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(a) Effect of n-hexane concentration (b) Effect of pressure

(c) Effect of equivalence ratio

Figure 2: Effect of n-hexane concentration (a), pressure (b) and equivalence ratio (c) on the

first-stage and total ignition delay time of for CH4-C6H14-O2-diluent mixtures in a RCM. Lines

correspond to the predictions of the LLNLMech.
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(a) Low n-hexane content (b) High n-hexane content

Figure 3: Representative comparisons between the experimental and numerical first-stage and total

ignition delay time for (a) Mixture 3 at 1 MPa and (b) Mixture 2 at 2 MPa in a RCM. In bottom

plots, CM: CaltechMech; GM: GalwayMech; LM: LLNLMech.
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Figure 4 shows the relative population (RP ) of error for the first-stage and total

ignition delay times. For first-stage ignition, the distribution of RP for all the mech-

anisms are centered on positive values which indicates an overall over-estimation.

This implies that future work need to be focused on improving the predictive capabil-

ity for first-stage ignition. As previously seen from the other quantitative indicators,

LLNLMech demonstrates lower error. Concerning the total ignition delay, Caltech-

Mech demonstrates a broad distribution whereas GalwayMech exhibits a distribution

centered on approximately 50% error. Only LLNLMech exhibits a distribution of

RP centered approximately on zero.

Table 2: Mean and maximum absolute error on the first-stage and total ignition delay time pre-

dicted by the three reaction models for CH4-C6H14-O2-diluent mixtures under RCM conditions.

Ignition CaltechMech GalwayMech LLNLMech

delay time Mean % Max % Mean % Max % Mean % Max %

First-stage 68.94 303.05 99.17 313.81 64.58 281.44

Total 47.39 268.00 48.72 233.32 24.35 119.75

3.1.2. Chemical kinetic analyses

Since the present work mainly focuses on the effect of n-hexane addition on

the ignition delay time of methane-oxygen mixtures, chemical kinetic analyses were

performed by comparing the modeling results between Mixture 1 (10% n-hexane)

and Mixture 2 (20% n-hexane) at P=1 MPa and T=745 K. The temperature of

745 K was chosen because it is approximately the center of the temperature range

investigated with the RCM and because, at this temperature, noticeable differences

(approximately a factor of 3 for the total ignition delay) were observed between

the delay times obtained for Mixtures 1 and 2. Due to its better performances at

reproducing the RCM experimental data, the LLNLMech was employed for all the

analyses.

The results of the sensitivity analysis performed on temperature are shown in

Figure 5(a). It is noted that the sensitivity coefficients have been integrated over
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(a) Error on first stage ignition delay (b) Error on total ignition delay

Figure 4: Relative population (RP ) of relative error on (a) the first stage and (b) the total ignition

delay time predicted by the three chemical kinetic mechanisms for CH4-C6H14-O2-diluent mixtures

under RCM conditions.

(a) Sensitivity coefficient (b) Radical profiles

Figure 5: Comparison of (a) the sensitivity coefficients on temperature and (b) OH, HO2 and H2O2

mole fraction profiles between Mixture 1 (10% n-hexane) and Mixture 2 (20% n-hexane) at P=1

MPa and T=745 K. Calculations were performed with the LLNLMech.
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the full time of the simulation. The sensitivity coefficient on temperature for the ith

reaction is defined as

Ci =
∂ lnT

∂ lnki
=
ki
T

∂T

∂ki
, (9)

where ki is the rate constant of reaction i. A positive coefficient indicates a reaction

that promotes ignition, and a negative one indicates a reaction that delays ignition.

The reactions which exhibit the highest positive coefficients are almost all related to

the low-temperature oxidation of n-hexane. This demonstrates the primary influence

of the n-hexane addition to the mixture on the ignition process. With the increase of

n-hexane addition from 10 to 20%, the sensitivity coefficients for the isomerization

reactions C6H13O2-3 = C6H12OOH3-5 and C6H13O2-2 = C6H12OOH2-4 increase

and overcome that of the H abstraction reaction NC6H14 + OH = C6H13-2 + H2O.

The sensitivity coefficients of isomerization reaction C6H13O2-1 = C6H12OOH1-3

and its subsequent decomposition reaction C6H12OOH1-3O2 = NC6KET13 + OH

also increase. The decomposition reaction H2O2 (+M) = OH + OH (+M) and

the chain terminating reaction HO2 + HO2 = H2O2 + O2 exhibit high sensitivity.

This indicates that OH, HO2, and H2O2 play critical roles in the ignition process of

methane-oxygen mixture with n-hexane addition. Note that the species names we

employed correspond to those used in the LLNLMech. We have provided the names

and structures of these molecules as a supplemental material.

Figure 5(b) compares the OH, HO2, and H2O2 profiles predicted for Mixture 1 (10%

n-hexane) and Mixture 2 (20% n-hexane). There is an accumulation of H2O2 between

the first-stage and total ignition delay time, and this is due to the conversion of HO2

radical to H2O2 by HO2 + HO2 = H2O2 + O2. Then, the decomposition of H2O2

generates a large amount of OH radical inducing the second-stage ignition. This

chemical sequence explains the high sensitivity coefficient of these two reactions.

Figure 6 shows the rate of production (ROP) profiles for HO2 and OH radicals

production during the first-stage and total ignition for Mixture 1 (10% n-hexane)

and Mixture 2 (20% n-hexane).

Concerning HO2, before the first-stage ignition, the reactions of oxygen with HCO

and CH3O, which originate from the low-temperature n-hexane oxidation, initiate

the production of HO2 radical. Between the first-stage and total ignition delay time,
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(a) HO2 during first-stage ignition (b) HO2 during second-stage ignition

(c) OH during first-stage ignition (d) OH during second-stage ignition

Figure 6: Comparison of the key reactions for HO2 (a) (b) and OH (c) (d) radical production profiles

during first-stage and second-stage ignition between Mixture 1 (10% n-hexane) and Mixture 2 (20%

n-hexane) at P=1 MPa and T=745 K. Calculations were performed with the LLNLMech.
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reactions between oxygen and C2H3, CH2OH are responsible for the production of

HO2 radical. Simultaneously, a large amount of HO2 radical is converted into H2O2

through HO2 + HO2 = H2O2 + O2 and HO2 + H2O = H2O2 + OH. These explain

the accumulation of H2O2 between the fist-stage and total ignition delay time. Be-

sides, all the reactions abovementioned are enhanced by increasing the amount of

n-hexane.

As for OH radical, during the first-stage ignition, the production of OH radical

is mainly due to (i) the OH elimination reactions involving C6H12OOH3-5O2 and

C6H12OOH2-4O2, and (ii) the decomposition reactions of NC6KET35 and NC6KET24.

These latter reactions are the subsequent steps of the isomerization reactions and

exhibit high sensitivity coefficient as previously mentioned. These four reactions are

enhanced by the increased amount of n-hexane in the mixture. For total ignition,

chain branching reaction H + O2 = O + OH and H2O2 decomposition reaction H2O2

(+M) = OH + OH (+M) dominate the production of OH radical. Moreover, the

increasing addition of n-hexane from 10 to 20% promotes the OH radical production

rate of H2O2 (+M) = OH + OH (+M) which overcomes that of H + O2 = O + OH.

We also performed an analysis of the rate of production for CH4. The results

of this analysis are shown in Figure 7. During the first ignition stage, the con-

sumption of CH4 is only due to CH4+OH=CH3+H2O. During the second ignition

stage, the consumption of methane is distributed between CH4+OH=CH3+H2O and

CH4+H=CH3+H2.

Based on the sensitivity and rate of production analyses performed, the effect

of n-hexane addition on the ignition delay time of methane-oxygen mixtures is due

to the low-temperature chemistry of n-hexane. Chemical pathways not available

for methane oxidation become more and more important as n-hexane content is in-

creased and result in the production of active radicals, mainly OH, which accelerates

the ignition of the methane-oxygen mixtures. More precisely, the main chemical se-

quences responsible for the first-stage ignition are C6H13O2-3 → C6H12OOH3-5 →

C6H12OOH3-5O2 → NC6KET35 and C6H13O2-2 → C6H12OOH2-4 → C6H12OOH2-
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4O2 → NC6KET24; while the decomposition of H2O2 is responsible for the second-

stage ignition.

(a) First-stage ignition (b) Second-stage ignition

Figure 7: Comparison of the key reactions for CH4 during first-stage and second-stage ignition

between Mixture 1 (10% n-hexane) and Mixture 2 (20% n-hexane) at P=1 MPa and T=745 K.

Calculations were performed with the LLNLMech.

3.2. High-temperature ignition in ST

3.2.1. Experimental results and reaction models performance

Figure 8 to 10 show the ignition delay times obtained in ST based on OH* as

well as comparisons with the predictions of the three chemical kinetic mechanisms.

Results based on CH* and CO2* are provided in the supplementary material.

Methane exhibits much longer ignition delay times than n-hexane, which is in

accordance with previous experimental data [49]. With respect to the methane-n-

hexane mixtures, the ignition delay time decreases as temperature increases and no

negative temperature coefficient behavior was observed in current high-temperature

range. There is a distinguishable effect caused by the addition of 10% n-hexane,

which shortens the ignition delay time dramatically. It is compelling that a sharp

decrease by a factor of 5 to 7 was observed under fuel-lean conditions. Nevertheless,

no further influence can be exerted in reducing the ignition delay time when increas-

ing the addition of n-hexane from 10% to 20% as shown in Figure 8. From a different
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(a) τ50 (b) τ100

Figure 8: Comparisons between the experimental and numerical ignition delay time based on OH*

emissions for lean CH4-C6H14-O2-diluent mixtures. CM: CaltechMech model; GM: GalwayMech;

LM: LLNLMech.
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perspective, comparing the n-hexane with and without methane addition, it is note-

worthy that no perceptible effect can be achieved by the addition of 10% methane

to n-hexane. These imply that n-hexane with high reactivity overwhelmingly dom-

inates the ignition characteristics of methane-n-hexane mixtures when it exceeds a

certain amount. Regarding the effect of equivalence ratio, the effect of n-hexane

addition in shortening the ignition delay time weakens for stoichiometric and rich

mixtures, see Figure 9 and 10. This can be attributed to the self-inhibition property

of hydrocarbons on the ignition process in the high-temperature range [40, 31].

(a) τ50 (b) τ100

Figure 9: Comparisons between the experimental and numerical ignition delay time based on

OH* emissions for stoichiometric CH4-C6H14-O2-diluent mixtures. CM: CaltechMech model; GM:

GalwayMech; LM: LLNLMech.
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(a) τ50 (b) τ100

Figure 10: Comparisons between the experimental and numerical ignition delay time based on OH*

emissions for rich CH4-C6H14-O2-diluent mixtures. CM: CaltechMech model; GM: GalwayMech;

LM: LLNLMech.

Table 3: Mean and maximum absolute error on the high-temperature ignition delay time predicted

by the three reaction models under ST conditions for CH4-C6H14-O2-Ar mixtures.

CaltechMech GalwayMech LLNLMech

Mean % Max % Mean % Max % Mean % Max %

Ignition
32.61 166.76 37.67 196.14 41.196 210.77

delay time

All three chemical kinetic mechanisms capture the main experimental features

but significant deviations can be observed with relative error as high as 200% under

certain conditions. Overall, GalwayMech and LLNLMech overestimate the ignition

delay time more than CaltechMech, especially for mixtures with n-hexane under
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stoichiometric and fuel-rich conditions. Table 3 demonstrates the predictive perfor-

mance of the three mechanisms by listing the mean and maximum absolute error

on the measured ignition delay times of all the 13 mixtures based on OH*, CH*

and CO2* emission diagnostics. CaltechMech exhibits a better predictive capability

of the high-temperature ignition delay time with a mean absolute error of 32.61%.

Figure 11 shows the relative population of relative error for the ignition delay time

and it can be seen that CaltechMech exhibits a distribution of RP centered much

closer to zero as compared to the other two mechanisms.

Figure 11: Relative population (RP ) of relative error on ignition delay time in shock tube predicted

by the three chemical kinetic mechanisms for CH4-C6H14-O2-Ar mixtures under ST conditions.

3.2.2. Chemical kinetic analyses

In order to gain further insight into the effect of n-hexane addition on the ig-

nition of methane-oxygen mixtures at high temperature, chemical kinetic analyses

were conducted for Mixture 5 (methane) and Mixture 8 (methane and 10% n-hexane)

at P=0.3 MPa and T=1700 K. This temperature was chosen because it corresponds

approximately to the lowest and highest temperature for the experiments performed

with methane and n-hexane as the only fuel, respectively. Due to its higher per-

formance in reproducing the ST data, CaltechMech was adopted to perform these
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analyses of the effect of n-hexane addition on high-temperature ignition delay time.

(a) Sensitivity coefficient (b) Species profiles

Figure 12: Comparison (a) of the sensitivity coefficients on temperature and (b) of the H, O, OH,

CH4, and n-C6H14 mole fraction profiles between Mixture 5 (methane) and Mixture 8 (methane and

10% n-hexane) at P=0.3 MPa and T=1700 K. Calculations were performed with the CaltechMech.

The normalized sensitivity coefficients on temperature (see Equation 9) are com-

pared in Figure 12 (a). It is noted that the sensitivity coefficients have been inte-

grated over the full time of the simulation. For both conditions, the chain branching

reaction H + O2 = O + OH exhibits an overwhelmingly high positive sensitivity

coefficient due to its critical role in inducing the ignition. For all the CH4- and

CH3-related reactions, either with positive or negative sensitivity coefficients, the

sensitivity coefficients decrease dramatically when 10% n-hexane is added. The co-

efficient even changes from positive to negative for reaction CH3 + H (+M) = CH4

(+M). These imply that the n-hexane addition weakens the influence of methane on

the ignition process. Besides, the sensitivity coefficients of H-related reactions 2H

(+M) = H2 (+M) and OH + H2 = H + H2O are increased by the n-hexane addition.

Figure 12 (b) compares the H, O, OH, CH4 and n-C6H14 mole fraction profiles be-

tween Mixture 5 (methane) and Mixture 8 (methane and 10% n-hexane). Both the

time scale and the evolution of the species profiles are quite different for the two

mixtures. For Mixture 5, the concentration of methane decreases very slowly during

the initial stage of the reaction and most of methane is consumed at a time close

to ignition as the rate of methane removal becomes faster and faster. For Mixture

8, an initial rapid drop of the methane mole fraction is observed as n-hexane is
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decomposed within few µs. The rate of methane consumption then decreases for

approximately 50 µs and finally, increases again as the concentration of active rad-

icals starts to increase just before ignition is taking place. Concerning the radical

pool, the n-hexane addition induces a rapid production of H, O and OH radicals

during the initial stage of the ignition process which is not observed for Mixture 5.

In addition, the addition of n-hexane induces an increase of the peak concentration

of H atom and a decrease of the peak concentration of O and OH. These imply the

prominent importance of the rapid decomposition of n-hexane in producing active

radicals, especially H, to accelerate the ignition of methane-oxygen mixtures.

(a) H production for Mixture 5 (b) H production for Mixture 8

Figure 13: Comparison of the key reactions for H production and consumption during the ignition

process between (a) Mixture 5 (methane) and (b) Mixture 8 (methane and 10% n-hexane) at P=0.3

MPa and T=1700 K. Calculations were performed with the CaltechMech.

Since the addition of n-hexane induces an increase of the peak concentration of

H atom whereas that of O and OH decrease, rate of production analyses for H have

been performed as shown in Figure 13. Without n-hexane addition, H radical pro-

duction is initiated after several hundred microseconds. The main reactions which

are responsible for H production before the chain branching reactions are activated

correspond to HCO (+M) = H + CO (+M) and OH + H2 = H + H2O. The species

HCO and H2 originate from the slow oxidation sequence of methane, CH4 → CH3

→ CH2O → HCO. However, with n-hexane addition, H radical is produced rapidly

at the initial stage through the decomposition reactions C2H5 (+M) = C2H4 + H

(+M) and N-C3H7 (+M) = C3H6 + H (+M). The species C2H5 and N-C3H7 originate
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from the rapid decomposition of n-hexane. This early production of active radicals

readily triggers H-abstraction reaction on CH4 and as a consequence accelerates the

oxidation sequence mentioned above. This results in a continuous production of H

radicals by HCO decomposition and eventually triggers the ignition via the typical

chain branching mechanism H + O2 = O + OH and O + H2 = H + OH. Hence,

it can be concluded that reduction of the ignition delay time by n-hexane is largely

due to the rapid decomposition of n-hexane at initial stage which produces H atom.

4. Conclusion

In the present study, the ignition characteristics of dual-fuel methane-n-hexane-

oxygen-diluent mixtures were experimentally and numerically studied over wide

ranges of temperature and pressure using a RCM and a ST.

The RCM results show that the two-stage ignition occurs within the temperature

range 700-820 K. In addition, the typical NTC behavior of the total ignition was ob-

served. The increase of n-hexane addition, pressure and equivalence ratio shortened

the ignition delay time dramatically. In the ST experiments, the addition of 10%

n-hexane (relative to methane) results in a substantial reduction of ignition delay

time under fuel-lean conditions but no further reduction was observed with a larger

amount of n-hexane addition (20%). The increase of equivalence ratio weakens the

effect of n-hexane addition on shortening the ignition delay time.

Three detailed chemical kinetic mechanisms were evaluated based on a quantitative

analysis. LLNLMech and CaltechMech demonstrate the best agreement with the

experimental data obtained in the RCM and ST, respectively. Chemical kinetic

analyses showed that under RCM conditions, the low-temperature chemistry of n-

hexane induces OH radical formation through the decomposition of H2O2, which

plays a critical role during the ignition process. Under ST conditions, the prompt

decomposition of n-hexane results in an early production of active radicals, especially

H radical, which accelerates the ignition through typical chain branching mechanism.

The large variations of the ignition delay time with the changes of n-hexane addition

and equivalence ratio explain the large variation observed previously in the delay and

location of the ignition during methane-based mixtures piloted-ignition experiments.
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In order to minimize cycle-to-cycle variation of micro-spray ICE, initial conditions

before injection as well as the spray dynamics need to be accurately controlled to

limit the local variation of composition in the combustion chamber.

Future work should focus on developing a reduced reaction model which combines

the low-temperature LLNLMech and high-temperature CaltechMech mechanisms for

integration in realistic numerical simulations of micro-spray ICE for optimizing the

design of the injector and the geometry of the combustion chamber. In addition, ex-

perimental data for hydrocarbon fuel blends more representative of diesel are needed.
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