
Supplementary Material

Appendix A. Uncertainty Analysis

This Appendix provides a step by step procedure for quantifying the error

in the processed temperature (interferogram→wrapped optical phase→phase

unwrapping→bias removal→inversion of the Abel transform→processed tem-

perature) due to the phase demodulation, algorithm used for the inversion

of the Abel transform, and the straight ray path assumption.

The error introduced through the image processing is investigated by cre-

ating synthetic interferograms with added noise that represented the noise

observed in the experimental interferograms. The synthetic interferograms

are generated from synthetic temperature distributions that simulate typical

temperature profiles found experimentally. First, the optical phase difference

is calculated by performing ray tracing of refracted rays traveling through the

disturbed medium and their corresponding interfering rays traveling through

an undisturbed medium. Once the optical phase difference is obtained, a

synthetic interferogram is generated and noise is added to simulate typical

noise found in the experimental interferograms. Afterwards, the image post-

processing is performed on the noisy synthetic interferogram to calculate the

processed temperature and the error, εT , between the processed temperature

and synthetic temperature. The error corresponds to the cumulative error

of the phase demodulation, inversion algorithm, and straight ray path as-

sumption. The procedure developed to determine the uncertainty due to the

image post-processing is listed below:

1. Create synthetic temperature, T , field
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2. Compute the density, ρ, using the ideal gas law

3. Compute the refractive index, n, using the Gladstone-Dale relation

4. Perform ray tracing of refracted rays through disturbed medium and

reference rays through undisturbed medium to calculate the optical

phase difference

5. Add bias to optical phase difference

6. Wrap biased optical phase difference between −π and π

7. Extract the phase from the wrapped optical phase difference to create

synthetic interferogram

8. Add noise to synthetic interferogram

9. Perform image post-processing procedure detailed in paper to calcu-

lated processed temperature

10. Compare processed temperature with synthetic temperature to calcu-

late the error

A schematic of a refracted ray traveling through a disturbed axisymmet-

ric medium and its corresponding reference ray (ray that travels through

undisturbed medium with refractive index n0) is shown in Fig. A.1. Path

ABC corresponds to the path taken by the refracted ray as it passes through

the disturbed medium and path DEF corresponds to the path taken by the

reference ray as it passes through an undisturbed medium. The two rays

shown interfere and have the same optical phase at points A and D; beyond

C and F, both rays will traverse the same optical path length if a lens is used

to form an image of the center plane of the phase object. Vest [1] determined

that the interference patterns are due to the difference in optical phase of the

refracted ray as it travels through ABC and the reference ray as it travels
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through DEF. Therefore, the optical phase difference between the refracted

ray and reference ray is,

∆ϕ =
2π

λ

∫ B

A

n(s) ds+ n0(BC −DEF ), (A.1)

where s is the path of the refracted ray.

Figure A.1: Strongly refracted ray (blue) passing through disturbed medium and reference

ray (red) passing through undisturbed medium, schematic adapted from Vest [1].

The path of the refracted ray through the disturbed medium and corre-

sponding refractive index profile is calculated by using Snell’s law.

sinαi−1

sinαi
=

ni
ni−1

(A.2)

In Eq. A.2, αi is the incident angle on the interface between the medium at

i−1 and the medium at i. The index i corresponds to different points along s.

The corresponding reference ray is located at a vertical distance AD from the

initial entrance location, A, of the refracted ray. AD is the vertical distance

from point A to where the straight line drawn from path BC intersects the

x−axis. The reference ray at that location is the interfering ray since the
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plane at z = 0 is being focused by a lens onto an image plane, similar to the

experimental interferometer setup described in the paper.

To start the ray tracing, axisymmetric temperature fields are generated

on the x− z plane. The temperature field tested simulates the temperature

field in the thermal boundary layer of the hot sphere near the region of flow

separation. The top halve of the temperature field is shown in Fig. A.2. The

maximum temperature, Tmax, is 1400 K and the freestream temperature, T∞,

is 300 K. The density field is computed from the temperature field by using

the ideal gas law and then the refractive index is calculated by using the

Gladstone-Dale relation.
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Figure A.2: Temperature field simulating the temperature profile in thermal boundary

layer of the hot sphere near the region of flow separation.

The synthetic refractive index field is used as an input in the ray tracing

algorithm described in Table A.1. The variables defined in the algorithm

are illustrated in the images of filled contours of refractive index shown in

Figs. A.3, A.4, and A.5. Figure A.3 shows the ray at an incoming angle α4

measured relative to the normal axis of contour n4. The outgoing angle, β4,

of the ray is measured relative to normal axis of contour n4. θ4 is the angle
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of the outgoing ray measured relative to the axis parallel to the z−axis.

Figure A.3: Illustration of ray tracing angles in axisymmetric medium; filled contours of

refractive index.

Figure A.4 illustrates the method used to determine if the ray originating

at (z3, x3) travels to the next concentric circle, n4, or if it remains on the

same concentric circle, n3. These two options are illustrated in Fig. A.5.

The value xh, shown in Fig. A.4, is the location where the ray originating at

(z3, x3) would intersect the x−axis if traveling in a straight path. Figure A.5

shows that if xh > r4, the ray travels to the same concentric circle of n3 and

if xh ≤ r4, the ray travels to the next concentric circle n4.

The algorithm shown in Table A.1 is applied to different values of x1

corresponding to the distance of the refracted ray from the z−axis. This

is illustrated in Fig. A.1 as the x−coordinate of point A. Equation A.1 is

applied to each ray to determine the optical phase difference.
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Figure A.4: Illustration of ray tracing parameter xh in axisymmetric medium; filled con-

tours of refractive index.

if xh > r4 if xh ≤ r4

Figure A.5: Illustration of ray tracing parameters si,∆xi, di (where i = 3) in axisymmetric

medium; filled contours of refractive index.
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Table A.1: Algorithm for ray tracing through axisymmetric medium.

1: Inputs: x1,∆r, n

2: Outputs: x, y, s

3: θ0 = 0, i = 0, R = rN

4: while zi ≤ rN
5: i = i+ 1

5: ηi = sin−1
(xi
R

)
6: if zi < 0

7: αi = ηi + θi−1

8: βi = sin−1

(
n(R+ ∆r) sinαi

n(R)

)
12: θi = βi + ηi

8: else

9: αi = ηi − θi−1

10: βi = sin−1

(
n(R−∆r) sinαi

n(R)

)
14: θi = −βi + ηi

15: if i = 1

16: zi = R cos ηi

17: if zi < 0

17: q = zi tan θi

18: xh = q + xi

19: if xh > R−∆r

20: xi+1, zi+1 ← z2i+1 + x2i+1 = R2 and xi+1 = (zi+1 + zi) tan θi − xi
21: R = R

21: else

22: xi+1, zi+1 ← z2i+1 + x2i+1 = (R−∆r)2 and xi+1 = (zi+1 + zi) tan θi − xi
23: R = R−∆R

24: else

22: xi+1, zi+1 ← z2i+1 + x2i+1 = (R+ ∆r)2 and xi+1 = (zi+1 + zi) tan θi − xi
23: R = R+ ∆R

23: di = zi+1 − zi
24: ∆xi = xi+1 − xi
25: si =

√
d2i + ∆x2i
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The algorithm of Table A.1 is validated using a refractive index equation

with known optical phase difference solution presented by Kahl and Mylin [2].

The example used for validation is the case of an axisymmetric disturbance

that generates constant refractive field, n1. The refractive field is given by

n0 cos γ = n1 cos

(
γ +

ψ

2

)
, (A.3)

and the solution for the optical phase difference is,

∆ϕ =
2π

λ
Rn0

(
2
n1

n0

sin

(
γ +

ψ

2

)
− 2 sin γ − cos γ tan γ

)
(A.4)

An average error of 2× 10−4% is found between the solution of Eq. A.4 and

the numerical solution obtained with the ray tracing algorithm of Table A.1.

With the algorithm validated, the profile of optical phase difference is

expanded onto two dimensions to visualize and simulate the 2D interfero-

grams that are generated experimentally. It should be noted that the 2D

synthetic optical phase difference field does not simulate the gradients in the

y−direction observed around the hot sphere. Performing ray tracing along

one z − x plane is already computationally expensive, therefore, performing

ray tracing along all the planes shown in the experimental images requires

additional computational resources or optimization of the algorithm. A bias

of 200 rad is added to the optical phase difference field and subsequently

wrapped from −π to π. The bias is added so the fringes in the synthetic

wrapped field, ∆ϕW , match up with the number of horizontal fringes present

in the experimental interferograms. The phase, shown in Fig. A.6 (a), is

extracted from the synthetic wrapped optical phase difference field using

I = cos ∆ϕW . (A.5)
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Finally, random noise of 10% is added to the phase to generate the synthetic

interferogram shown in Fig. A.6 (b). The image post-processing is applied

to the interferogram of Fig. A.6 (b) to obtain a processed temperature field.
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Figure A.6: Synthetic interferogram with (a) no noise and (b) 10% added noise.

The error between the synthetic and processed temperature fields is shown

in Fig. A.7. Figure A.7 shows that the freestream region has the lowest error.

The error quickly grows in the thermal boundary layer as r approaches the

centerline. Based on Fig. A.7, an error of 2% is observed in the thermal

boundary layer (equivalent to the thermal boundary layer of the sphere near

the region of flow separation). At the heated surface (equivalent to the sphere

surface), a higher error of 15 − 30% is observed. This high error region is

confined to less than 0.1 mm from the hot surface. In the freestream, the

error is less than 2%. It is seen from Fig. A.7 that the error introduced by

the phase demodulation procedure, inversion algorithm, and straight path
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assumption are quite small in the thermal boundary layer of a sphere.
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Figure A.7: Error between synthetic and processed temperature fields.

Additionally, the optical phase difference profiles calculated by using the

Abel transform and the ray tracing algorithm for the temperature field of

Fig. A.2 are almost identical. This indicates, that the contribution to the

error from refraction is negligible. Finally, the addition of noise to the syn-

thetic interferogram appears to alter the distribution of the error, however,

it does not affect the magnitude. Therefore, the major contributions to the

error come from the the phase demodulation procedure and the inversion

algorithm.
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