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Research at Caltech is being carried out into the reaction zone structure of propagating detonations, 
initiation of detonation using hot jets and detonation focusing, direct measurement of impulse 
examining the effects of partial-fill and exit geometry, detonation cell width measurements for JP10 
with addition of hydrocarbons that typically result from JP10 decomposition, and the structural 
response of detonation tubes, including fracture and failure. 
 

Introduction 
 The Explosion Dynamics Laboratory at Caltech 
is carrying out investigations on many aspects of 
detonation propagation and initiation which are relevant 
to pulse detonation engines (PDEs).  A brief review of 
activities over the past year is presented here. 
 

Detonation Structure 
  OH Planar Laser Induced Fluoresence (PLIF) 
was used for direct experimental observations of 
detonation reaction zone structure.  Characteristic 
“keystone” structures in the OH intensity have been 
revealed and correlated with detonation wave instability 
structures computed on the basis of reduced chemistry 
and also inferred from gas dynamic considerations1.  The 
keystone shape is due to the variation of reaction zone 
length with shock strength and is bounded by the shear 
layer that is associated with the triple points in the 
detonation front.  Keystone structures were observed to 
be more irregular in nitrogen-diluted mixtures than in 
argon-diluted mixtures, which is consistent with the 
known characterization of the cellular structures as 
irregular and regular, respectively.  This study was 
extended to include more irregular mixtures. Several 
new features were observed including shear layer 
instabilities in highly nitrogen-diluted mixtures and fine 
scale density and OH front disturbances in mixtures with 
cellular substructure (Figure 1). Islands of reacted and 
unreacted gas are observed.  The study suggests that 
besides the classical theory of detonation propagation, 
other, more complex, combustion processes play a role 
for more irregular mixtures. 

In the current experimental setup, three-
dimensional effects complicate both schlieren and PLIF 
images. An investigation was made of the possibility of 
simplifying the flow field by damping out-of-plane 
transverse waves using a porous wall.  The technique 
was found to be successful, but only for a limited range 
of mixtures.  The experiments also studied detonation 
propagation through narrow channels of different 
widths.  Diagnostics included soot foils to record cell 

structure and pressure gauges to measure velocity 
deficits.   
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the chemical energy of the high explosive that is 
converted into the kinetic energy of the body.  These 
energy values are well known for most high explosives 
only.  For gaseous combustible mixtures, we have 
utilized the Jacobs thermodynamic cycle that connects 
the equilibrium states to determine the maximum 
available work obtainable from the detonation of these 
gaseous fuels.  The energy used to impart impulse to the 
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to the detonation. A large amount of thermal energy is 
lost when hot products are ejected from the tube.  We 
found energy going into impulse to be approximately 45-
65% of the total available energy available for ethylene- 
and propane-oxygen-nitrogen mixtures at 100 kPa.  
These energies are approximately 10-30% of the heat of 
combustion of the fuel. 

Based on experimental and numerical data and 
also simple physical ideas, we have developed a semi-
empirical model relating the percent of the detonation 
tube filled with the combustible mixture to the resulting 
impulse.  The experimental impulse has been normalized 
by the impulse predicted from our analytical model13 for 
the fully-filled tube.   Our partial-fill model appears in 
Figure 4 along with experimental data for detonation 
tubes of a constant cylindrical cross-section.  The data 
has been corrected for the additional explosive tamping 
effect of the diaphragm. 
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Figure 4:  Normalized impulse versus percent fill for tubes
of constant cylindrical cross-section.  Data has been
corrected for diaphragm effects.  

In cases of detonation tubes with varying cross-
sectional area such as tubes with diverging nozzles, the 
impulse depends primarily on the volume ratio of the 
combustible mixture to the air mixture (or the percent of 
the tube filled with the combustible mixture).  Figure 5 
shows the experimental data for tubes of varying cross-
sectional area as a function of the fill fraction.  
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The model was also validated against additional 

experimental data from multi-cycle experiments by 
Schauer et al.12 as shown in Figure 6.   

detonation ca

A separate quasi-steady model has been 
developed to treat the restricting effects of converging 
nozzles.  Preliminary results indicate heat transfer may 
play an important role in determining the performance of 
detonation tubes with converging-diverging nozzles at 
the exit. 

 
 

 
 

 

 

Figure 6:  Comparison of partial-fill curve with
experimental data from Schauer et al.12  Symbols represent
different operating frequencies and detonation tubes. 

Hot Jet Initiation 
The effectiveness of using a hot turbulent jet to 

initiate a detonation in a short distance was investigated 
experimentally. A turbulent jet of combustion products, 
passing from a driver section through an orifice into a 
test section, was used to initiate a turbulent flame in the 
test gas.  The turbulent flame may transition to 

detonation.  Such low energy methods of detonation 
initiation are of particular interest to PDEs. 

The experiments were performed in the ballistic 
pendulum facility with a tube that consists of two 
vessels: a 100 cm3 volume driver section and a 1 m long 
by 76.2 mm diameter test section. The vessels are 
connected by an orifice, the diameter of which can be 
varied. The test section is equipped with three pressure 
transducers and ten ionization probes to measure the 
pressure history and wave velocity.  The driver section 
has a pressure transducer on the ignition end wall.  The 
driver is filled with stoichiometric propane-oxygen and 
the test section is filled with stoichiometric propane-
oxygen mixture with varying nitrogen dilution.  A Mylar 
diaphragm initially separates the driver and test gases.  
The aim of the current study is to examine the effect of 
the orifice diameter and the initial pressure of the driver 
section on the maximum nitrogen dilution for which a 

n be initiated in the test section.   

Figure 5:  Normalized impulse versus percent fill for tubes
of varying cross-section.  Data has been corrected for
diaphragm effects. 
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Figure 7: N2 dilution of the test gas vs initial pressure in 
the driver section. 

Driver pressure is found to have a mild effect o

 critical N2 dilution.  Figure 7 is a plot of test section 
 dilution versus initial driver pressures of 1 to 4 bar.  
e orifice diameter is 3.125 mm.   Increasing the driver 
ssure by a factor of four resulted in a 10% increase in 
 critical N2 dilution.   

Figure 8 shows the orifice diameter versus N2 
ution with the initial driver pressure at 1 bar. Specific 
pulse measurements are also shown.  The black line 
rresponds to the analytical model12.  Increasing the 
fice diameter from 3 mm to 19 mm increases the 
tical dilution level from 30% to 40% N2.   

Experiments were also carried out with an array 
orifices to examine the role of jet mixing.  For a given 
en area, the multiple hole geometry resulted in a 5% 
rease in the critical dilution level over the equivalent 
gle hole geometry 
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design allows the initiator to be incorporated into the 
walls of a PDE.  Since no part of the initiator is inside 
the flow path, there are very few losses in propulsive 
efficiency associated with the device.   

 
 
 
 
 
 
 A
% N2 Figure 8: Left: N2 dilution of the test gas vs orifice
diameter. Right: Corresponding ISP measurements.  

 

Figure 10:  Schematic of annular detonation wave
initiator. (Covering shell omitted for clarity.)   

Initiation By Detonation Focusing 
A device capable of creating a collapsing 

toroidal detonation wave front has been designed and 
constructed.  The goal is to generate pressures and 
temperatures at the focal point of the collapsing 
detonation wave that will be sufficient to initiate 
detonations in insensitive fuel-air mixtures inside a 
detonation tube without blocking the flow path and 
causing associated losses in propulsive efficiency.  This 
toroidal initiator uses a single spark and an array of 
small diameter channels to generate and merge many 
detonation waves to create a single detonation wave with 
a toroidal front.   

A planar detonation wave initiator was first built 
and tested to demonstrate the principles of merging a 
series of wave fronts into a single front.  This device 
served as a stepping-stone in the development of the 
toroidal wave generator discussed below.  The planar 
initiator is capable of producing a large aspect ratio, 
planar detonation from a weak spark.  The planar 
version, shown in Figure 9, consists of a main channel 
with secondary channels branching off the main channel.  
All secondary channels terminate on a line and exhaust 
into a common test section area.  The channel geometry 
is such that all path lengths from the spark point to the 
secondary channel termination line are equal. 

To create a toroidal wave, the planar initiator 
design was modified such that the exit of each channel 
lies on a circle with the channels exhausting inwards.  
This involved mapping the planar design onto a cylinder, 
creating an annular imploding wave instead of a planar 
wave as shown in Figure 10.   The mapping transforms 
the metal substrate containing the channels into an inner 
sleeve while the cover plate becomes the outer sleeve.  
Creation of a pressure seal between the inner and outer 
sleeves was accomplished by a shrink fit  All initiator 
channel dimensions are similar to that of the previously 
described planar initiator.  The small channels exhaust 
into a test section that is 76.2 mm in diameter.  This 
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Figure 9:  Left:schematic of planar initiator. (A+B = 
constant for all paths.)  Right:chemiluminesence image of 
merged planar detonation front. Flow is left to right.  

Testing was performed with stoichiometric 
propane-oxygen mixtures at 1 bar to determine the 
pressure increase achieved by toroidal focusing.  The 
device was filled using the method of partial pressures.  
The mixture was circulated to ensure homogeneity using 
a bellows pump which limited initial mixture to 
pressures of 1 bar or greater.  Pressure histories were 
obtained at locations near the focus of the collapsing 
torus by four pressure transducers, one of which was 
placed as close to the implosion axis as possible.  The 
distance separating the pressure transducer axis from the 
implosion center was 19.05 mm.  The transducers were 
equally spaced 10.7 mm apart on a radial line with the 
central transducer located on the central axis of the 
initiator tube.  A typical set of pressure traces is shown 
in Figure 11.   

 
 
 
 
 
 
 
 
 

The outermost three pressure transducers show a 
gradually decreasing pressure wave as the radius of the 
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imploding torus decreases.  The central pressure 
transducer (P4), however, recorded a value above its 
maximum reliable operating range.  This value was four 
times larger than the Chapman-Jouguet pressure for the 
mixture.   

 
 Figure 13: Crack propagation and bifurcation under 

detonation loading.  Detonation propagated from left to 
right. PCJ=6.2 MPa, notch length 50.8 mm. 
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It is common for flaws such as voids or cracks to 
develop in aerospace structures during their manufacture 
or lifetimes. Flaws can be small and insignificant, or 
they can lurk until they are fatigued to a critical size, at 
which point the structure fails. A fracture threshold 
model was developed to predict the single-cycle 
detonation pressure at which the tubes would burst given 
the tube’s geometry and material properties. The 
experimental data showed fair agreement with the model s 
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Figure 14: Fracture threshold model and experimental 
data. Mesh surface: theoretical threshold. Filled squares: 
rupture. Open triangles: no rupture. 

f the detonation front show a nearly 
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e window.  

(Figure 14). Strain gages were also mounted on the tubes 
to monitor the large scale yielding during dynamic 
fracture. 
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The parameters used in developing the model 

and the symbols in Figure 14 are given in the Tables 
below. 
 
 
 
 
  

Tube material       6061-T6  
Wall thickness      0.89- 1.2 mm 
Tube O.D.             41.3 mm 
Axial flaw length  13 to 76 mm 
d/h                         0.5 to 0.8 
PCJ                          2 to 6 MPa     

 

Table 1. Experimental parameters



             ∆P     PCJ- Patm 
R       Tube mean radius 
h        Tube wall thickness 
d        Surface notch depth 
2a      Surface notch length 
KIc     Fracture toughness 
Φ       Dynamic amplification factor 
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