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Abstract Dynamic buckling of submerged structures is a challenging problem for
which experimental data is scarce and generalized theoretical models are difficult to
employ. In addition to the complexities of dynamic buckling, this problem features
additional difficulties due to the strong fluid-solid interaction that is characteristic of
structures submerged in a dense fluid. This chapter reviews some recent experiments
in which time-resolved measurements of pressure and strain were made during the
buckling of submerged tubes. This data clarifies the buckling behavior over a use-
ful range of conditions and provides a means to validate theoretical models with a
rigor not possible using post-collapse measurements alone. Observations from the
experiments are then used to develop simple models of buckling and fluid-structure
interaction; comparisons with the experimental data demonstrate good agreement in
spite of the many simplifications used in the modeling.

1 Introduction

Designing submerged structures to withstand blast loads is a challenge encountered
in numerous military and industrial applications. The fundamental difference be-
tween blast loads in a gaseous medium and blast loads in a dense fluid, like water, is
the strength of the coupling between the fluid and solid motion. This strong coupling
complicates dynamic failure predictions since the fluid and solid motion cannot in
general be solved independently. The presence of a dense fluid can play an important
role in the failure of the structure. For instance, structural deformation can produce
local volume changes in the fluid domain which reduce the intensity of the pressure
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load. In addition, the added mass of the fluid can alter the timescales of structural
motion, and radiation of energy into the surrounding fluid provides an additional
damping mechanism not present for freely-vibrating structures. To address these
complications, the effects of fluid-structure interaction (FSI) are carefully consid-
ered as we study dynamic buckling in this chapter.

One of the most common and detrimental failure modes of submerged struc-
tures is buckling of hollow components due to external pressure. Components of
cylindrical shape are frequently used in marine applications, and this shape is also
a useful idealization of more complicated real geometries. Accordingly, this chap-
ter considers dynamic buckling in the specific context of cylindrical tubes, focusing
in particular on tubes loaded by axisymmetric shock waves which travel along the
tube axis. More general load cases, such as a blast wave impinging on the side of
the tube or at an angle relative to the tube axis, are beyond the scope of this review,
but some experimental data (Lindberg and Sliter, 1969) are available for the case
of blast waves in air. For experimental convenience, we also do not consider the
effects of uniform hydrostatic pressure, assuming instead that the magnitude of the
blast load is much greater than the hydrostatic component of pressure. However, the
theoretical models presented here are easily extended to include hydrostatic effects
that are encountered in practice.

Static buckling of cylindrical tubes due to external pressure has been studied
for several decades, and classical theories such as the linear theory of Timoshenko
and Gere (1961) provide reasonable estimates of the buckling threshold under many
conditions; the accuracy of these predictions is especially good for long tubes (Bat-
dorf, 1947). Much effort has also been committed towards modeling the effects of
boundary conditions (Sobel, 1964, Galletly and Bart, 1956), shape imperfections
(Hutchinson and Koiter, 1970, Kempner et al., 1957, Koiter, 1945), and non-linear
pre-buckling deformation (Yamaki, 1969, Stein, 1964), and considerable progress
has been made. Review papers on static buckling have been written by Simitses
(1986) and Teng (1996), and a detailed description of the most common theoretical
techniques for elastic static buckling is given by Yamaki (1984).

For transient pressure loads, the analysis is in some ways more complicated. Due
to inertial effects, structures can usually withstand loads significantly exceeding the
static buckling limit, provided that the duration is sufficiently short. As a result, the
buckling threshold depends on both the amplitude of the applied load and its dura-
tion, or equivalently, its impulse. For time-varying loads, there is also potential for
large deformations due to resonance, which may be caused either by periodic forc-
ing or by autoparametric resonance (Goodier and McIvor, 1964, Lindberg, 1974).
In this review, such resonance is not considered because our experiments show that
the effects of fluid-structure interaction and internal material damping limit the am-
plitude of axisymmetric vibrations and inhibit autoparametric excitation.

In the 1960s, an extensive research effort was initiated by the Air Force Weapons
Laboratory to study dynamic buckling of tubes subjected to blast waves in air (Lind-
berg et al., 1965, Abrahamson et al., 1966, Lindberg and Firth, 1967, Lindberg and
Sliter, 1969, Lindberg and Florence, 1987). These experiments used several differ-
ent configurations of explosives to measure the dynamic buckling threshold over a
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range of pressures and impulses, and fair agreement with two-dimensional, plane-
strain models was found.

As an outcome of these experiments, Lindberg (1964) reported on the buckling
of very thin shells (a/h = 480) subjected to “impulsive loads”, that is, loads which
have a duration much less than the response time of the tube. He found that the
tube’s buckling behavior was controlled purely by elastic effects. Abrahamson et al.
(1966) studied the corresponding problem of thick shells (a/h = 10−30) subjected
to impulsive loads, and showed that the response is governed primarily by effects of
plasticity. Anderson and Lindberg (1968) investigated the response of tubes under
“quasi-impulsive” loads, i.e., loads having a duration comparable to the response
time of the tube. They found that both elastic and plastic effects can be important
and developed a model which takes this factor into account.

A common challenge in all of these studies was making a direct comparison
between experiments and theoretical models. In many of the experiments, the re-
sponse was evaluated only through post-collapse analysis, so the predictions of mod-
els during the intermediate stages of buckling could not be evaluated. In a few in-
stances (Lindberg, 1974, Lindberg et al., 1965) dynamic strain measurements were
recorded; however, only limited data was reported and the strain traces exhibited
many features which could not be easily explained by the theoretical models.

Recently we have developed an experimental facility for studying buckling of
submerged tubes in which the loads are applied using shock waves in water rather
than blast waves in air. This approach enables dynamic strain measurements to be
made while the tube buckles, which provides significantly more information about
the mechanics of failure than can be obtained from post-collapse inspection alone. In
addition, our experimental facility can operate in regions in the parameter space that
are not easily reachable using explosives, and can also explore the effects a dense
fluid surrounding the tube. As a result, our new experiments nicely complement
previous results and allow for a more thorough evaluation of theoretical dynamic
buckling models.

The first part of this chapter presents some recent experimental measurements
of the buckling behavior of submerged tubes. The specimen tubes are relatively
thick, with ratios of radius to wall thickness in the range of 13-25. The duration
of the applied pressure load is 50-100 times the period of axisymmetric vibration,
so the response is considered “quasi-static”. However, the peak pressures required
to buckle the tubes are still 5-10 times greater than the static buckling pressure,
demonstrating the importance of inertial effects. For the load conditions considered
in this chapter, the buckling behavior is controlled by elastic effects alone.

The second part of this chapter describes an approximate theoretical model of the
tube’s buckling behavior. Observations from experiments are used to justify several
simplifications, including the treatment of the tube as a 2D ring in a state of plane
strain along its axis. This model is then used to predict the dynamic response of tubes
and generate buckling threshold curves, and good agreement with experimental data
is found in both cases.
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Fig. 1 Diagram of experimental apparatus. Confining outer tube is 1.1 m long overall and 127 mm
in outer diameter. Inset: photograph of support plate (127 mm outer diameter) used to prevent axial
loading of the specimen tube.

2 Experimental Results

Figure 1 shows a diagram of our experimental facility, which is an adaptation of
the apparatus developed by Damazo et al. (2010). A thin-walled specimen tube
is mounted concentrically inside of a larger cylindrical vessel made of 4140 high
strength steel and having an inner radius of 38.1 mm and wall thickness of 25.4 mm.
The ends of the specimen tube are supported and sealed using internal plugs with
gland seals. These plugs restrict inward radial motion of the specimen tube, but do
not constrain axial displacement except through the friction between the tube and
plug that is generated as the tube compresses. The upper plug (left side of Fig. 1)
is fixed to a support plate so that pressure waves in the water do not produce an ax-
ial load on the specimen tube. As shown in the inset photograph, this support plate
features four holes which allow pressure waves to pass through.

The annular space between the specimen tube and the thick-walled outer tube is
filled with water, and a small volume of water is also present above the support plate.
Shock waves in the water are generated using a vertical gas gun, which is described
in more detail by Inaba and Shepherd (2010). The gas gun fires a steel projectile
into a buffer, which generates a stress wave that is then transmitted into the water
and travels along the outside of the specimen tube. The resulting pressure pulse in
the water is approximately exponential in shape, and the rate of decay is dictated by
the wave mechanics in the projectile and the buffer. As a result, the duration of the
pressure pulse and can be controlled by changing the lengths and materials of these
two components. The results reported in this chapter were obtained using a 1.5 kg
steel projectile that is 120 mm long and 50 mm in diameter. The buffer is made from
either aluminum or steel and is 130 mm long. The buffer is capped with a 25.4 mm
thick steel striker plate to prevent damage during the projectile impact.
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Fig. 2 a) Variations in wall thickness around the circumference of several specimen tubes. Varia-
tions are reported as a percentage of the mean wall thickness. b) Photograph of a tube buckled in
mode 2 orientation. Tube is 6061-T6 aluminum with a = 15 mm and a/h = 17.4.

The characteristics of the pressure wave, such as speed, peak pressure, and im-
pulse, are measured using a row of six piezo-electric pressure transducers (PCB
model 113A23) along the side of the thick-walled outer cylinder. The transduc-
ers have a response time of less than 1 µs and a resonant frequency greater than
500 kHz, and are sampled at 1 MHz. Since the radii of the specimen tube and the
outer cylinder differ by only 15-20 mm, the radial transit time of pressure waves
through the annulus of water is about 10-15 µs, which is quite short compared to
the other timescales involved in the problem. As a result, the measured pressure is
expected to be very close to that at the surface of the specimen tube.

Deformation of the specimen tube is measured using bonded strain gauges, which
are coated with a compliant sealant (Vishay PG, M-Coat D) to eliminate electrical
interference by the water. Signals are amplified using a Vishay 2310B signal condi-
tioners operated in wide-band mode (-3 dB at 250 kHz) and digitized at 1 MHz. The
strain gauges are usually installed in the hoop direction, and by installing multiple
gauges around the circumference of the tube at a given axial location, the number
of lobes (usually 2-3) in which the tube vibrates or buckles can be determined.

The specimen tubes are all 0.91 m long and have radii a of 15, 20, or 22 mm
and wall thicknesses h of 0.9, 1.25, or 1.5 mm. The combinations of radius and wall
thickness that were tested give a/h in the range 13-25 and L/a in the range of 40-60.
Tubes were made from 6061-T6 aluminum, 3003-H14 aluminum, or 304 stainless
steel. The steel tubes were of welded construction, while the aluminum tubes were
extruded (seamless).

We have found that systematic variations in wall thickness of the specimen tubes
significantly affect the orientation of the buckles. For extruded tubes, the wall thick-
ness typically varies sinusoidally around the circumference, as depicted in Fig. 2a
where measurements were made using a round-tipped micrometer. These variations
in wall thickness appear to be uniform or slowly-varying along the axis of the tube.
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Fig. 3 Pressure (a) and strain (b) histories for a tube with pmax/pstatic = 1.4. Tube is 6061-T6
aluminum with radius a = 15 mm and a/h = 17.4.

It is important to point out that other types of imperfections, such as non-circular
shape or residual stresses, may also be present. However, as shown in Fig. 2b, our
experiments indicate that variations in wall thickness are the dominant imperfection
since the major axis of mode 2 buckles always aligns with the point of minimum
wall thickness. This consistent behavior also facilitates dynamic strain measure-
ments: the strain gauges can be placed along the thinnest side of the tube to measure
the maximum strains that occur.

2.1 Linear Elastic Deformation

For pressure waves of small enough amplitude or short enough duration, the tube’s
response is elastic and primarily axisymmetric. Examples of pressure and strain
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traces, plotted on an x-t diagram, are shown in Fig. 3. An incident wave character-
ized by a jump in pressure followed by an exponential decay travels along the tube
with an approximately constant speed and wave profile. This wave then reflects off
of the bottom end of the test fixture and traverses the specimen tube once more. Note
that the maximum pressure is greater than the static buckling pressure by a factor of
1.4, yet the motion remains axisymmetric. This occurs because the duration of the
pressure pulse is short and buckles do not grow rapidly enough at this pressure to be
observable.

It is interesting to note that the tube’s response for low pressures is analogous
to that of a waterhammer event occurring in an internally pressurized tube. Such a
situation was examined using a very similar projectile-impact facility by Inaba and
Shepherd (2010), who recorded pressure and strain traces that look very much like
those in Fig. 3. This suggests that the axisymmetric deformation that occurs prior
to buckling can be predicted using models that have been developed and thoroughly
evaluated by the waterhammer community (Tijsseling, 1996, Wylie and Streeter,
1993, Wiggert and Tijsseling, 2001, Shepherd and Inaba, 2010).

2.1.1 Simple Model of Pressure Wave

One of the simplest of these waterhammer models, first devised by Korteweg (1878)
and experimentally validated by Joukowsky (1900), is based on the assumption that
radial inertia of the tube and fluid, as well as the effects of bending of the tube
along its axis, are small. These assumptions are strictly valid only for low frequen-
cies and long wavelengths, but experiments by Inaba and Shepherd (2010) have
demonstrated that the performance of this model is quite good for many practical
conditions. As discussed by Shepherd and Inaba (2010), the speed ck of the coupled
fluid-solid wave predicted by the Korteweg-Joukowsky theory is given by:

ck =
c√

1+βk
(1)

where

βk = c2
ρw

2a
Eh

Here βk is a dimensionless parameter that describes the extent of fluid-solid cou-
pling, which increases as βk increases. Given the success of this simple model for
analyzing pressure waves inside of tubes, this theory will be extended for use in the
present annular geometry.

If the width of the fluid annulus is small enough that the radial reverberation
time of pressure waves is small compared to other timescales, then it is reasonable
to model the fluid pressure as averaged across the annular gap. This is equivalent
to neglecting the radial inertia of the fluid. Using this assumption, the linearized
equations of conservation of mass and momentum (Lighthill, 1978) of the fluid can
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be combined and written in the following form:

∂ 2 p
∂x2 =

1
c2

∂ 2 p
∂ t2 +

ρw

Ao

∂ 2A′

∂ t2 (2)

where ρw is the fluid density, Ao is the original cross-sectional area of the annulus,
and A′ is the change in area due to deformation. As this equation shows, the system
obeys the usual linear wave equation for the pressure with an additional term involv-
ing the change in cross sectional area A of the tube. This additional term models the
compliance of the tube wall and, as will be shown, has the effect of reducing the
speed of pressure waves.

Deformation of both the inner and outer tubes of the annular channel are mod-
eled. Deflection of the outer tube (radius b) is denoted wo and is taken positive
outward, while deformation of the inner tube (radius a) is denoted wi and assumed
positive inward. The area A of the channel can then be written in terms of these
deformations.

A(x, t) = Ao +A′(x, t)

= π(b2−a2)+2π(awi +bwo) (3)

The Korteweg-Joukowsky hypothesis neglects bending and inertia of the tube, treat-
ing it as a massless membrane. Using this approximation, the radial deformations of
the inner and outer tubes are proportional to the pressure:

wi =
pa2

Eihi
wo =

pb2

Eoho
(4)

where E and h are the elastic modulus and wall thickness. Substituting (3) and (4)
into (2) produces a wave equation with a modified wave speed:

∂ 2 p
∂x2 =

[
1
c2 +

2ρw

b2−a2

(
a3

Eihi
+

b3

Eoho

)]
∂ 2 p
∂ t2 (5)

The effective wave speed can be expressed in the form of (1) if a modified fluid-solid
coupling parameter βmod is used:

βmod =
2ρwc2

b2−a2

(
a3

Eihi
+

b3

Eoho

)
(6)

The predictions of this theory are compared with our present experimental mea-
surements in Fig. 4. The experimental wave speeds were obtained made by fitting a
line to time-of-arrival data from the pressure measurements and computing the slope
of this line. In all cases, the experimentally measured wave speeds are within 1-4%
of the theoretical predictions; the fact that the experimental speeds are consistently
low is likely due to air bubbles in the water which accumulate when the vessel is
filled.
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Fig. 4 Comparison of predicted and measured wave speeds for several tube materials and sizes.

2.1.2 Coupling between Fluid and Solid Motion

The high frequency oscillations observed in the pressure and strain traces of Fig. 3
are not unidentifiable “noise”, but rather are repeatable axisymmetric vibrations that
are excited by the sharp pressure wavefront. This fact is shown more clearly for a
different tube in Fig. 5, where pressure and strain traces at a single axial location are
directly compared with one another. At this axial location, three hoop strain gauges
have been installed: one is mounted on the thinnest side of the tube, while the other
two are offset by 90◦ and 180◦ around the circumference. The phase difference be-
tween these gauges then indicates whether or not the motion is axisymmetric. Upon
arrival of the incident pressure wave at t = 0, the tube begins to vibrate axisym-
metrically, as indicated by the close agreement of all the strain gauges. At about
t = 0.5 ms, the reflected pressure wave from the bottom of the tube arrives and
further increases the pressure and strain. At this point a slight departure from ax-
isymmetric motion is observed. As the pressure wave dies away, the tube continues
to vibrate in a mode 2 shape, as indicated by the fact that strain gauges positioned
180◦ apart are in phase while gauges 90◦ apart are out of phase.

Figure 5 leads to several important conclusions about fluid-structure interaction
in this geometry. The first observation is that as long as the deformation remains
axisymmetric, the pressure is very nearly proportional to the strain. In fact, on the
time interval of 0 – 0.5 ms the instantaneous measured strain ε(t) is within about
10% of the predicted static value based on the instantaneously measured pressure
p(t):

ε(t) =
p(t)a(1−ν2)

Eh
(7)

This suggests that the effects of bending along the tube axis are small and the use of
a membrane-type model for the pre-buckling motion of the tube is reasonable.



10 Neal P. Bitter and Joseph E. Shepherd

Fig. 5 Comparison of pressure and strain traces 250 mm from the reflecting end wall. Tube is
6061-T6 aluminum with a = 20 mm, a/h = 13.5, and pmax/pstatic = 2.5.

A second important observation is that the amplitude of axisymmetric vibrations
is fairly small compared to the quasi-static component of strain, and the vibrations
die away on the order of tens of cycles. Furthermore, as the specimen tube is made
thinner (such as in Fig. 3), the vibratory component of strain becomes even smaller.
This differs from situations in which the effects of FSI are negligible, such as a tube
subjected to an internal shock or detonation wave. In those cases, the amplitude
of vibration is about twice the quasi-static strain and the vibrations can persist for
many cycles without significant change in amplitude (Shepherd, 2009). Based on
these observations, it is reasonable to expect that autoparametric excitation due to
the interaction between the axisymmetric and non-axisymmetric modes will not be
significant in our present experiments.

A third observation from Fig. 5 is that unlike the axisymmetric vibrations, non-
axisymmetric vibrations are not strongly coupled to the fluid pressure. This is clearly
demonstrated by examining the pressure and strain traces after t = 2 ms, where
the tube continues to vibrate in a mode 2 shape but the pressure remains constant.
This behavior suggests that the non-axisymmetric vibrations are nearly volume-
preserving, at least provided that these vibrations are small. The smallness criterion
can be estimated by considering an annulus of water of outer radius b and inner
radius a, with the inner tube subjected to a radial deformation w in the form of a
Fourier series:

w(θ , t) = wo(t)+
∞

∑
n=1

wn(t)cos(nθ) (8)
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If it is assumed that one particular mode n = N is dominant, then the relative change
in volume of the annulus due to the deformation (8) is given by:

∆V
V

=

(
2wo

a
+

w2
o

a2 +
w2

N
2a2

)
/

(
b2

a2 −1
)

(9)

Typically w/a << 1, so the linear term is dominant and the change in volume de-
pends primarily on the axisymmetric motion. It will be shown in Section 3.2.1 that
the non-axisymmetric vibration frequencies are low enough that the radiated pres-
sure field is negligible, which means that changes in pressure scale with the volume
change:

∆ p = K f
∆V
V

(10)

where K f is the bulk modulus of the liquid. As a result, the change in pressure due
to non-axisymmetric vibrations alone (i.e., for wo = 0) can be expressed as:

∆ p =
K f

2(b2/a2−1)

(wN

a

)2
(11)

For a practical situation, such as a steel tube submerged in water and deformation
restricted to less than the yield strain, this pressure is less than about 50 kPa unless
b/a is very small (less than about 1.05). This result shows that non-axisymmetric
deformation has only a small effect on the pressure in the fluid surrounding the
tube, and hence the speed and amplitude of pressure waves depend primarily on the
axisymmetric component of deformation. This fact will also be demonstrated exper-
imentally in the following sections where experimental results at higher pressures
are considered. The implication is that in developing buckling models, the motion
of the pressure wave can initially be decoupled from the buckling deformation.

2.2 Nonlinear Elastic Deformation

As we have already observed in Fig. 5, higher pressures begin to excite non-
axisymmetric modes of deformation. As the pressure or impulse of the load in-
creases further, these non-axisymmetric motions grow rapidly and become much
larger than the axisymmetric component of deformation. An example of this is
shown in Fig. 6.

The speed and shape of the pressure wave resemble those shown for lower pres-
sures (e.g., Fig. 3), but the response of the tube is quite different. The strain traces
feature a series of large amplitude, mode 2 vibrations which persist for much longer
than the duration of the pressure load. Despite the excitation of non-axisymmetric
displacement, the motion remains elastic and no permanent deformation is observed.

The three strain gauges located at the bottom of the tube (150 mm from the re-
flecting end) are spaced 90◦ apart around the circumference. The two strain gauges
on opposing sides of the tube are exactly in phase with one another, while the strain
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Fig. 6 Pressure (a) and strain (b) histories with multiple strain gauges around the circumference
at a single axial location. Tube is 304 stainless steel with radius a = 22 mm and a/h = 18.5.
pmax/pstatic = 1.2.

gauge between them is exactly out of phase. This confirms that the deformation con-
sists of two lobes. Note that the two gauges on opposite sides of the tube have been
attached at the thickest and thinnest points on the tube wall. Thus the major axis of
vibration is exactly aligned with the points of maximum and minimum wall thick-
ness, indicating that this imperfection plays a key role in determining the orientation
of the vibration.

It is interesting to note that in Fig. 6 the maximum pressure was 1.2 times the
static buckling threshold and non-axisymmetric deformation was observed, while
in Fig. 3 no non-axisymmetric deformation occurred despite having a larger value
of pmax//pstatic = 1.4. The reason for this behavior is that the load duration is the
same in both cases, but due to differences in material properties (steel vs. aluminum)
and tube diameter (22 mm vs 15 mm), the natural frequency of the tube in Fig. 3
is about 1.5 times that of the tube in Fig. 6. Thus when normalized by the tube’s
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Fig. 7 Pressure (a) and strain (b) traces showing superposed deformation of modes 2 and 3. Tube
is 6061 aluminum with radius a = 15 mm and a/h = 17.4. pmax/pstatic = 2.0.

response time, the load duration for the tube in Fig. 6 is about 1.5 times longer and
hence non-axisymmetric deformation is more strongly excited.

For thinner tubes and higher pressures, vibration in mode numbers greater than
2 can be observed. An example of mode 3 vibrations is shown in Fig. 7. The strain
traces exhibit a superposition of vibrations in mode 2 (longer period of about 1 ms)
and mode 3 (shorter period of about 0.3 ms). These vibration periods agree closely
with theoretical predictions (described in more detail in Sec. 3.2.1), which helps
confirm that the behavior has been correctly interpreted. This superposition of mul-
tiple excited modes is a well-known feature of dynamic buckling and is more pro-
nounced for shorter impulses and thinner tubes (Lindberg, 1974, Lindberg and Flo-
rence, 1987). Note that the mode 3 vibrations are excited only near the reflecting
end of the tube where the pressure is greatest; elsewhere the pressure is insufficient
to destabilize these modes and only mode 2 vibrations are (slightly) excited.

In many of these experiments, axial strains have also been measured in order to
determine whether or not bending along the tube axis plays in important role in the
buckle development. The data has revealed that axial bending is negligible, since
the measured axial strains are almost exclusively caused by Poisson coupling with
the hoop strain. This is demonstrated in Fig. 8 where the measured axial strain εx
is compared with the axial strain due to Poisson coupling: −νεθ . The only place
where these two quantities differ substantially is in the precursor wave, which is to
be expected since the precursor wave is a longitudinally dominant wave (Shepherd
and Inaba, 2010). Over the rest of the trace, the agreement is quite good, which
indicates that the effects of bending along the tube axis (which would otherwise
show up prominently in the axial strains) are quite small. This result adds further
support for the use of a membrane-type model to predict the tube motion prior to
buckling.
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Fig. 8 Comparison of hoop (εθ ) and axial (εx) strains 250 mm from the reflecting end of the
tube. Gauges are spaced 90◦apart circumferentially. Tube is 3003-H14 aluminum with a = 15 mm,
a/h = 17.4, and pmax/pstatic = 1.8.

2.3 Onset of Plastic Deformation

Further increases in the load’s pressure or duration lead to plastic deformation and
the formation of plastic hinges at the extremities of the buckle where the strain is the
greatest. This behavior is demonstrated in Fig. 9, where pressure and strain traces
are plotted for three consecutive shots using the same tube from shot to shot.

The first shot, marked (1), produced purely elastic deformation with a peak strain
of 4.2 millistrain (which is very close to the yield strain of about 4.5 millistrain for
6061 aluminum); the pressure and strain traces in this shot look very similar to those
shown in previous elastic cases (for example, Fig. 6).

The second shot, marked (2), has a peak strain of 6.3 millistrain, which exceeds
the yield strain. As a result, slight permanent deformation is observed as indicated
by the final strain offset of about 0.9 millistrain due to the residual stresses. Note
that the pressure trace in this shot looks very similar to that of the preceding shot,
which again supports the conclusion that the pressure wave is unaffected by the
non-symmetric elastic vibration, even for relatively large strains.

In the third shot, marked (3), the peak strain is 7.7 millistrain and additional
permanent deformation is observed. The strain is no longer oscillatory since much of
the kinetic energy is dissipated via plastic work. In this case, the pressure trace looks
quite different from that of the preceding shot. Despite a 5% increase in projectile
velocity from the gas gun, the peak pressure dropped by about 40% relative to the
preceding shot. Furthermore, the pressure wave spreads out and decays more slowly
over time. This dispersion of the pressure wave and reduction in peak pressure are
likely caused by the residual plastic deformation from the preceding shot. Evidently
plastic deformation is not volume preserving, so pressure waves disperse as they
encounter the volume change in regions of plastic deformation. This result suggests
that the our prior conclusion that the pressure wave can initially be decoupled from
non-axisymmetric motion is only valid until plastic deformation occurs.
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Fig. 9 Comparison of pressure (a) and strain (b) traces for three consecutive shots. For clarity, the
traces have been offset vertically from one another. Traces are recorded 0.25 m from the reflecting
end. Tube is 6061-T6 aluminum with a = 15 mm and a/h = 17.4.

2.4 Single-Shot Collapse

The final regime of motion considered in these experiments is single-shot collapse,
which occurs when the pressure and impulse are high enough to catastrophically
fail the tube during a single pressure pulse. Examples of pressure and strain traces
for a collapsing tube are shown in Fig. 10. Unlike the results shown previously, in
which pressure and strain were measured near the bottom end of the tube where the
pressure is greatest, in this shot the pressure and strain were measured 150 mm from
the top end of the tube. For high pressure shots, this is the location at which collapse
first occurs.

The strain trace exhibits a series of vibrations superimposed over an offset that
steadily increases with time. The frequency these vibrations is the same as those
shown in Fig. 7, which indicates that these are mode 3 vibrations. The permanent
deformation observed after the test, shown in Fig. 11, was also mode 3, which sup-
ports this interpretation. The increasing offset of this strain trace appears to be the
plastic component of strain. The fact that the peak-to-peak amplitude of the vibra-
tions is equal to twice the yield strain lends further support for this conclusion. An
interesting observation is that the buckle grows on a timescale that is significantly
slower than that of the pressure wavefront. As a result, the leading edge of the pres-
sure wave is not affected by the buckle. However, the pressure drops off sharply
behind the incident wave, and the reflected pressure wave at about 1.2 ms is sub-
stantially attenuated.

It is interesting to consider whether the permanent deformation observed in these
results is associated with flexure due to buckling alone, or consists also of hoop
yielding. For loads with duration longer than the period of axisymmetric vibration,
the pressure py beyond which the tube is brought to hoop yield is given by:
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Fig. 10 Pressure and strain traces for a collapsing aluminum tube of radius a = 15 mm and
a/h = 17.4. The static buckling pressure for this tube is 3.7 MPa. Pressure and strain were mea-
sured 150 mm from the top end of the tube. The strain gauge de-bonded from the surface of the
tube at the point marked by an x.

Fig. 11 Post-collapse photographs of tube following the test which generated the data shown
in Fig. 10 and illustrating buckling in mode 3. Tube is 6061-T6 aluminum with mean radius
a = 15 mm and a/h = 17.4.

py <
σyh
a

(12)

where σy is the yield stress. For the conditions used in Fig. 10, the pressure limit
for hoop yielding is py ∼ 17 MPa. The measured pressure is well below this value,
and the overshoot of axisymmetric vibrations due to dynamic loading appears to be
small, hence the plastic deformation observed in the strain traces is due primarily to
flexure due to buckling.

The data in Fig. 10 are just one example of the possible types of behavior that
can occur at higher pressures. As shown in the strain traces, the effects of plasticity
become important almost immediately, so the development of the buckle is dictated
by both elastic and plastic effects rather than elastic effects alone. An additional
difficulty is that as the applied pressure increases, the mode number of the buckles
increases and their length decreases. As a result, the buckles become more spatially
localized and it is more difficult to measure their development using bonded strain
gauges. Interpretation of the resulting strain measurements is also more challenging.
Characterizing the buckling behavior under high pressures is a subject of ongoing
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Fig. 12 Pressure vs. impulse curves for three identical tubes under loads of various ratios P/I.
Tubes are 6061-T6 aluminum with mean radius a = 22 mm and a/h = 24.5. The classical static
buckling pressure for these tubes is 1.3 MPa. The bottom curve was generated using an alternate
apparatus which features windows for visualization of the buckling process; the compliance of
these windows facilitated the small slope P/I achieved in that data set.

investigation in our laboratory, but in this chapter we focus on the behavior at lower
pressures and higher impulses where elastic effects are dominant.

2.5 Measurements of the buckling threshold

A convenient experimental criterion for the buckling threshold is the onset of plastic
deformation. This criterion is practically meaningful since the tube’s strength is
greatly reduced after plastic deformation occurs, and this metric can also be applied
quite repeatably in experiment using bonded strain gauges. Even if a strain gauge is
not located at the point of peak strain, any plastic deformation that occurs produces
residual stresses and strains which are readily detected.

For dynamic loads, the buckling threshold is a function of both peak pressure
and impulse (Lindberg and Florence, 1987). In principle, then, one could measure
the buckling threshold by fixing one of these variables and gradually increasing the
other until plastic deformation occurs, which would reveal a single point along the
buckling threshold. By repeating this process, one could then map out the buckling
threshold over some range of pressures and impulses.

In our experiments, we cannot vary the pressure and impulse independently;
rather, the load duration is approximately fixed and as the speed of the projectile
from the gas gun increases, the pressure and impulse increase in proportion to one
another with the load duration as the constant of proportionality. The load duration
is governed by the wave dynamics between the buffer and projectile used to generate
the pressure pulse (see Fig. 1), so adjustment of the pulse duration is accomplished
by changing the materials and dimensions of these components. Our measurements
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of the buckling threshold are then made by fixing the load duration and increasing
the pressure and impulse until plastic deformation occurs.

An example of the measured buckling threshold for three identical tubes is shown
in Fig. 12. Each line of data points represents a sequence of consecutive shots for
which the peak pressure and impulse were gradually increased, and the slopes of
these lines were adjusted by changing the duration of the load. The dark x’s mark
the points at which plastic deformation first occurred, and hence they map out a
segment of the buckling threshold.

This data exhibits the expected trend that the tube is able to withstand greater
pressures when the impulse is shorter. The classical static buckling threshold for
this tube is 1.3 MPa, so pressures more than seven times this value were needed to
fail the tube at the lower impulses. This demonstrates that despite the classification
of the load as “quasi-static,” effects of inertia are still quite important.

As described by Lindberg and Florence (1987), for very large impulses the buck-
ling threshold curve tends asymptotically towards a horizontal limit that is close to
the static buckling pressure. For very short impulses, the threshold curve approaches
a vertical limit at a particular critical impulse. However, as the impulse of the load
is decreased, the effects of plasticity eventually become important in determining
the initial buckling behavior (Abrahamson et al., 1966). We have not yet made mea-
surements in this regime, but some data is available from Lindberg and Sliter (1969)
which supports these expectations.

3 Theoretical Models

3.1 Background

The general theory of dynamic buckling due to pressure loads that vary along the
tube axis remains rather undeveloped. A few researchers have considered this and
related problems and made some progress, but usually the results are restricted to
very specific situations or are not readily applied to engineering problems. Instead,
progress has been made by applying simplifications that are valid for restricted sets
of load conditions or tube geometries. Here we briefly review several noteworthy
investigations in order of increasing level of approximation.

To the authors’ knowledge, only one researcher has reported on the buckling of
cylindrical shells due to transient external pressure loads that are not uniform along
the tube axis. Hegemier (1966, 1967) analyzed a class of steady-state traveling loads
and demonstrated a reduction in the buckling pressure as the speed of the load in-
creased. He also postulated the existence of a critical load speed at which, in the
absence of damping, the tube buckles under arbitrarily low pressures. At this criti-
cal speed, the group, phase, and load velocities are all equal, so energy introduced
by the load cannot disperse away from the load front. Such behavior is quite sim-
ilar to the resonance that occurs in tubes loaded internally by shock or detonation
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waves, which results in large displacements when the speed of the shock or deto-
nation reaches the same critical velocity (Beltman and Shepherd, 2002, Tang, 1965,
Simkins et al., 1993, Schiffner and Steele, 1971).

Several researchers have employed a considerable simplification by assuming
that the pressure load is spatially uniform, but still modeling axially-varying pre-
buckling displacements. Thus the boundary conditions are strictly enforced at the
ends of the tube and the effects of bending along the tube are explicitly modeled.
Lockhart and Amigazo (1975) assumed that uniform pressure was instantaneously
applied to the tube and held constant for all subsequent time. They obtained the in-
teresting result that in the limit of small imperfections, the dynamic buckling thresh-
old could be obtained directly from the classical buckling load (i.e., for a perfect
tube) and the static buckling load (i.e., for an imperfect tube). However, their result
is only applicable for loads that are a step function in time and does not apply to
finite-duration loads. Their approach is similar to that of Budiansky and Hutchin-
son, who developed approximate relationships between the dynamic and static buck-
ling loads for general structures rather than for a specific geometry (Budiansky and
Hutchinson, 1965, Hutchinson and Budiansky, 1966).

The same problem of a tube subjected to uniform pressure, incorporating axially-
varying pre-buckling displacements, was studied by McIvor and Lovell (1968) using
Fourier series in both the axial and circumferential directions. This produces a set of
ordinary differential equations for the Fourier modes which, due to the nonlinearity
of the shell equations, are highly coupled. However, for small deformations, many
of the nonlinear terms were found to be negligible and the initial buckling behavior
was shown to be governed by a Mathieu-type equation for each Fourier mode. The
stability characteristics of this type of equation are quite well-known (McLachlan,
1964).

Due to the difficulty of the general theory of dynamic buckling, most researchers
have simplified their analysis to the case of a two dimensional ring. Goodier and
McIvor (1964) wrote a landmark paper on the elastic stability of thin shells using
this assumption, and Abrahamson and Goodier (1962) developed the corresponding
theory for plasticity-dominated motions which occur for thick tubes or very low im-
pulses. The intermediate range in which both elastic and plastic effects are important
was considered by Anderson and Lindberg (1968).

The objective of this chapter is not to discuss the general theory of dynamic
buckling, but rather to describe some simple theories which still provide useful pre-
dictions that agree well with experimental results. Such simple theories also give
insight regarding the parameters that affect buckling. In accordance with this goal, a
theory that is very similar to that of Goodier and McIvor (1964) is adopted in which
the tube is treated as a plane-strain ring. This model is then modified to allow the
tube to be loaded by an external pressure rather than an initial radial velocity, as
well as to account for the effects of fluid-structure interaction.
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3.2 Elastic Two-Dimensional Model

The tube is modeled as a ring in a state of plane strain along the tube axis. This 2D
approximation and the model that follows are only valid if several constraints on the
geometry and load conditions are satisfied:

Load Speed: In order to apply the 2D approximation, axial motion of the tube and
bending along the tube axis must be negligible. This places restrictions on the speed
of the applied load. Mann-Nachbar (1962) performed a parameter study which sug-
gests that if a shock wave traveling along a tube moves sufficiently rapidly, then
bending stresses are very small and the deformation can be predicted quite accu-
rately using a membrane-type model, which would be equivalent to the present 2D
ring. For the membrane model to be accurate, the load must travel faster than the
“critical velocity” studied by Beltman and Shepherd (2002). For loads which travel
at speeds very close to this critical speed, the displacements and stresses are highly
amplified, but as the load speed is raised above the critical velocity, the contribu-
tion of axial bending to the total response of the tube decreases rapidly. To a good
approximation, this critical speed υcr can be estimated by (Jones and Bhuta, 1964):

υcr =

[
E2h2

3ρ2(1−ν2)2a2

]1/4

(13)

A second constraint is that the load speed must remain below the shear wave velocity
υs =

√
κG/ρ and the dilatational wave velocity υd =

√
E/ρ(1−ν2); if these con-

ditions are not met then the effects of transverse shear deformation and rotary inertia
become important and the membrane-type model is no longer valid (Lin and Mor-
gan, 1956, Chonan, 1977, Naghdi and Cooper, 1956). Fortunately, for metal tubes
of practical sizes, the lower limit on the load speed given by (13) is on the order of
500-1000 m/s and the shear wave speed is on the order of 3000 m/s. Many realistic
load cases, such as shock waves in water or detonations in gaseous media, travel at
velocities which fall between these bounds. For instance, in the present experiment
the critical velocity is about 900 m/s, the shear wave speed is about 2800 m/s, and
the measured pressure wave speeds are 1200-1500 m/s.

The restriction that the load speed fall between υco and υs provides a general
guideline regarding the applicability of membrane-type models. To ensure that the
membrane model is sufficiently accurate under a specific set of conditions, one can
always solve the axisymmetric problem using a shell theory which includes effects
of bending, shear deformation, and rotary inertia (such as the theory of Tang, 1965)
and compare the results with the predictions of a membrane model.

Tube Length: The 2D approximation also requires that the length of the specimen
tube be much greater than its diameter, so that the local reinforcement due to bound-
ary conditions at the ends of the tube is negligible. In the present experiments, the
length of the tube is 0.91 m and the tube radius is 15−20 mm, so this condition is
satisfied.
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Fig. 13 Diagram of two dimensional ring with surrounding annulus of fluid.

Wavelength of Pressure Wave: In the sections that follow, fluid-structure interac-
tion is analyzed using a 2D fluid model, which is only valid if the axial wavelengths
of the pressure load is much greater than the width of the annular gap between the
specimen tube and the rigid outer tube. In the present experiments, the spatial extent
of the load (duration times speed) is on the order of 1-2 m and the width of the fluid
annulus is at most 23 mm, so this criterion is met.

Magnitude of Pressure Pulse: A final restriction on the pressure load is that the
maximum pressure must not bring the tube to hoop yield. The maximum pressure
which satisfies this condition can be estimated using (12). Abrahamson et al. (1966)
have developed a shell theory which is appropriate if this criterion is violated, but
since the focus of this chapter is on elastic effects and the corresponding experiments
do not involve hoop yield, such a model is not pursued here.

A diagram of the 2D tube model is shown in Fig. 13. The deformable tube under
consideration has a radius a, density ρ , elastic modulus E, and Poisson’s ratio ν . It
is surrounded by an annulus of dense fluid of sound speed c, pressure p, and density
ρw, which is contained in a rigid outer cylinder of radius b. Radial deformation of
the specimen tube is denoted w and is taken positive inward.

The equations of motion that follow are based on a model that was first intro-
duced by Goodier and McIvor (1964) and later described in more detail in the mono-
graph by Lindberg and Florence (1987). In those references, the buckling model was
developed for impulsive loads which were represented by applying an initial inward
radial velocity to the surface of the tube. In what follows, this model is suitably
adapted to allow pressure loads to be simulated and the effects of FSI included.
For conciseness, some of the details are omitted when they have been discussed
elsewhere; a more comprehensive discussion of these details is available in the pre-
viously mentioned references.

For a ring in a state of plane strain, the total hoop strain εθ consists of a compo-
nent due to stretching of the middle surface and a component due to bending:

εθ = εo +κz (14)
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Here εo(θ) is the hoop strain at the middle surface of the tube, κ(θ) is the curva-
ture, and z is the normal distance from the middle surface. The membrane strain εo
and curvature κ are modeled by choosing an appropriate set of strain-displacement
relations. Many different strain-displacement models have been proposed (Leissa,
1973, Mushtari and Galimov, 1961), but in the present case the following relations,
based on the work of Lindberg and Florence (1987), are selected:

ε0 =
1
a

∂v
∂θ
− w

a
− w

a2
∂v
∂θ

+
1

2a2

(
∂w
∂θ

)2

+
1
a2

(
∂w
∂θ

∂wi

∂θ
−wi

∂v
∂θ
−w

∂vi

∂θ

)
(15a)

κ =
1
a2

(
w+

∂ 2w
∂θ 2

)
(15b)

In these equations, w and v are the radial and circumferential displacements. Dis-
placements with subscript i describe the shape imperfection, that is, the initial de-
viation of the tube from a circular shape when no external loads are present. Thus
(15) models the changes in membrane strain and curvature that are produced when
the tube deforms relative to an initially non-circular shape.

Using the above models, the strain energy U and the kinetic energy TK per unit
length of the tube are expressed as:

U =
1
2

Eha
(1−ν2)

∫ 2π

0

(
ε

2
o +

h2

12
κ

2
)

dθ (16a)

TK =
1
2

ρha
∫ 2π

0

(
∂w
∂ t

)2

+

(
∂v
∂ t

)2

dθ (16b)

To account for loading by the external fluid pressure, the work Wp per unit length
done by the pressure as the tube deforms must also be included.

Wp =
∫ 2π

0
(pw)adθ (17)

This model is much more conveniently described in terms of several dimensionless
parameters:

[W,V,Wi,Vi]
T =

1
a
[w,v,wi,vi]

T
β

2 =
h2

12a2

(18)

T = t

√
E

ρ(1−ν2)a2 P =
pa(1−ν2)

Eh

In terms of these dimensionless parameters, the strain energy, kinetic energy, and
pressure work are given by:
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U =
1
2

Eha
(1−ν2)

∫ 2π

0

(
ε

2
o +β

2(κa)2)dθ (19a)

Tk =
1
2

Eha
(1−ν2)

∫ 2π

0

(
Ẇ 2 +V̇ 2)dθ (19b)

Wp =
Eha

(1−ν2)

∫ 2π

0
PWdθ (19c)

where dots above the variables denote differentiation with respect to the dimen-
sionless time T . The deformations, shape imperfections, and pressure can now be
expanded using Fourier series:

W =Wo(T )+
∞

∑
n=2

Wn(T )cos(nθ) (20a)

P = Po(T )+
∞

∑
n=2

Pn(T )cos(nθ) (20b)

V =
∞

∑
n=2

Vn(T )sin(nθ) (20c)

{Wi,Vi}=
∞

∑
n=2
{δn,αn}cos(nθ)+{γn,βn}sin(nθ) (20d)

The sine components of the Fourier series for the displacements W and V have been
neglected since the frame of reference can always be rotated such that these compo-
nents are zero. However, both terms in the expansions for the shape imperfections
must be retained since there is no reason to expect that they have the same phase
angle as the deformations. In addition, the n = 1 mode of deformation has been
excluded from the summations since it corresponds to a rigid translation of the tube.

Goodier and McIvor (1964) proposed a significant simplification in which the
only extensional component of deformation is Wo, the axisymmetric part. All non-
axisymmetric components of deformation are assumed to be inextensible. This as-
sumption greatly simplifies the analysis by allowing the circumferential displace-
ments v to be described in terms of the radial displacements w. This condition of
inextensionality can be expressed as:

W − ∂V
∂θ
≈Wo (21)

Physically, this approximation assumes that, to first order in displacements, flexure
of the tube produces no net change in length of the tube’s middle surface. This
aspect of the model is similar to the inextensional static buckling model described
by Timoshenko and Gere (1961), with the exception that they assumed the motion to
be completely inextensional, i.e., Wo = 0. The inextensional approximation typically
improves as the tube is made thinner or the wavelength of flexural motion grows
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longer (i.e., for low mode numbers n). In terms of the Fourier coefficients of (20),
the inextensional condition implies that nVn =Wn, nβn = δn, and nαn =−γn.

Using the inextensional model, Lindberg and Florence (1987) showed that the
integrals for the strain energy and kinetic energy given in (19) evaluate to:

TK =
Ehaπ

(1−ν2)

{
Ẇ 2

o +
1
2

∞

∑
n=2

(
n2 +1

n2

)
Ẇ 2

n

}
(22)

U =
Ehaπ

(1−ν2)

{
W 2

o +
1
2

∞

∑
n=2

[
β

2(n2−1)2−Wo(n2−2)
]
W 2

n

−
∞

∑
n=2

Wo(n2−2)δnWn

}
+O(W 4

n ) (23)

In calculating these integrals, many of the terms involved in the strain-displacement
equations integrate identically to zero due to the orthogonality of the trigonometric
functions. Because of this property, only one of the Fourier coefficients for the shape
imperfections, namely δn, plays a role in the response. A number of 4th order terms
arising in (23) have been listed as O(W 4

n ), and will be excluded from the subsequent
analysis since they are small during the initial stages of buckling.

The integral (19c) for the pressure work can be expressed as:

Wp =
Eha

(1−ν2)

∫ 2π

0

[
PoWo +

∞

∑
n=2

[PoWn cos(nθ)+WoPn cos(nθ)]

+
∞

∑
n=2

∞

∑
m=2

PnWm cos(nθ)cos(mθ)

]
dθ (24)

The first-order terms integrate to zero and the second order terms are nonzero only
if m = n, due to the orthogonality of the cosines. The resulting expression for the
pressure work is:

Wp =
Ehaπ

(1−ν2)

[
2PoWo +

∞

∑
n=2

PnWn

]
(25)

Having obtained expressions for the kinetic energy, strain energy, and work due to
external loads, ordinary differential equations for the Fourier modes Wo and Wn can
now be obtained from Lagrange’s equation of motion:

d
dT

(
∂TK

∂ q̇i

)
− ∂TK

∂qi
+

∂U
∂qi

=
∂Wp

∂qi
(26)

where qi is a generalized displacement, which may be either Wo or Wn. The respec-
tive equations of motion for qi =Wo and qi =Wn are the following:
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Ẅo +Wo = Po +O(W 2
n ) (27a)

(
n2 +1

n2

)
Ẅn +

[
β

2(n2−1)2−Wo(n2−2)
]
Wn = Pn +Wo(n2−2)δn +O(W 3

n ) (27b)

The first equation (27a) describes the axisymmetric component of the defor-
mation. As shown, this equation contains a term which is quadratic in Wn so that
(27a) and (27b) are coupled. Goodier and McIvor (1964) have considered retain-
ing this non-linear coupling and predicted a cyclic transfer of energy between the
axisymmetric vibrations Wo and non-axisymmetric vibrations Wn. However, in our
experiments we have observed that the small amplitude and rapid damping of ax-
isymmetric vibrations preclude autoparametric excitation of this sort, and hence the
nonlinear terms are neglected.

The second equation (27b) describes the growth of non-axisymmetric Fourier
modes Wn, the motion of which is forced by Wo. This equation also contains non-
linear terms of cubic order which couple the motion amongst the non-axisymmetric
modes (Lindberg and Florence, 1987). However, this coupling can be neglected on
the grounds that cubic terms are small during the initial stages of buckling, an as-
sumption which is supported by our experiments which show no evidence of cou-
pling between modes.

To solve (27), one requires a model for the shape imperfection δn. The shape
imperfection can sometimes be measured, although this is difficult for small im-
perfections or large mode numbers n. A common alternative is to assume shape
imperfections of unit amplitude and analyze the amplification of buckles, that is,
their growth relative to the size of the shape imperfection (Lindberg and Florence,
1987). Another technique is to choose random imperfections that satisfy an appro-
priate statistical distribution (Lindberg, 1988).

In our experiments, we have found that wall thickness variations are the dom-
inant imperfection rather than shape imperfections. Whereas shape imperfections
describe an initial non-circularity of the tube in the absence of applied loads, wall
thickness variations are characterized by a circumferentially-varying wall thickness
that is present in a perfectly circular tube. In practice, both types of imperfections
are always present.

3.2.1 Self-induced Pressure Loads

In (27b), the parameter Pn is the acoustic pressure load due to vibration of the tube
and resonance in the surrounding annulus of water. To model Pn, the fluid motion is
described using the linear wave equation for the velocity potential φ :

1
c2

∂ 2φ

∂ t2 =
∂ 2φ

∂ r2 +
1
r

∂φ

∂ r
+

1
r2

∂ 2φ

∂θ 2 (28)
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If the velocity potential is represented using a Fourier series expansion in θ and har-
monic vibrations are assumed with frequency ω , then (28) reduces to a Helmholtz
equation for each Fourier mode φn:

r2 ∂ 2φn

∂ r2 + r
∂φn

∂ r
+

(
r2ω2

c2 −n2
)

φn = 0 (29)

In general the solutions to this equation are either Bessel functions (for a bounded
domain, such as an annulus) or Hankel functions (for an unbounded domain). How-
ever, in many situations the frequency of vibration is low enough that an incom-
pressible approximation is applicable. Referring to (29), the criterion for which this
approximation can be made is:

r2ω2

c2n2 << 1 (30)

In our current experiments, this quantity is less than about 0.01, so the frequency
term in (29) can be neglected. A physical interpretation of this approximation is that
the reverberation time of pressure waves is much shorter than the period of struc-
tural vibration, so the radiated pressure field can be treated as uniform. This is also
equivalent to taking the limit of c→∞ in (28), such that the fluid is incompressible.
After applying this low-frequency approximation, (29) reduces to a Cauchy-Euler
equation:

r2 ∂ 2φn

∂ r2 + r
∂φn

∂ r
−n2

φn = 0 (31)

which has solutions r±n. The relevant boundary conditions at the rigid outer wall
(r = b) and the deforming inner wall (r = a) are that the radial fluid velocity must
match the radial speed of the wall:

∂φ

∂ r

∣∣∣∣
r=b

= 0
∂φ

∂ r

∣∣∣∣
r=a

=−∂wn

∂ t
(32)

The minus sign in the second boundary condition is needed because the tube dis-
placement is defined positive inward. Applying these boundary conditions, the so-
lution for the velocity potential is:

φn(r, t) =
∂wn

∂ t
a
n

anbn
[
(r/b)n +(b/r)n

b2n−a2n

]
(33)

Within the linear theory used to model the fluid (Lighthill, 1978), pressure is related
to the velocity potential by:

p =−ρw
∂φ

∂ t
(34)

As a result, the pressure at the tube wall (r = a) is found to be:



Dynamic Buckling and Fluid-Structure Interaction of Submerged Tubular Structures 27

−pn =

[
ρwa

n

(
(b/a)2n +1
(b/a)2n−1

)]
∂ 2wn

∂ t2 ≡ m
∂ 2wn

∂ t2 (35)

The constants which pre-multiply the tube acceleration ẅn have been labeled m
since they describe the effective added mass of the fluid. Since the self-induced
pressure pn contains only terms proportional to ẅn, the effect of the liquid is purely
mass-like and contributes only to a change in vibration frequency with no damp-
ing. Such behavior is characteristic of incompressible fluid models; however, the
same purely mass-like behavior is observed even when the exact solution to (29) is
used instead of the incompressible approximation. To obtain this exact solution, one
would express solutions to (29) in terms of Bessel functions and solve the eigen-
value problem which arises when boundary conditions (32) are applied. To each
of the resulting eigenfrequencies there corresponds a purely mass-like contribution
to the pressure. This property is a consequence of the confined, annular geometry
for which no energy-radiation mechanism is present. In contrast, when a tube is
submerged in an unbounded medium, the fluid-structure interaction produces terms
that are both mass-like (proportional to ẅ) and resistive (proportional to ẇ) which
results in damping of vibrations (Junger and Feit, 1972).

After the self-induced pressure of (35) has been made dimensionless using (18),
it is applied to the equations of motion (27). It is convenient also to define a dimen-
sionless added mass coefficient M as follows:

M ≡ m
ρh

n2

n2 +1
=

[
ρwa
ρhn

(
(b/a)2n +1
(b/a)2n−1

)](
n2

n2 +1

)
(36)

Using this definition of the added mass coefficient, (27) can be re-written:

Ẅo +Wo = Po (37a)

Ẅn +
[
Ω

2
n −F2

n Wo(T )
]
Wn = F2

n Wo(T )δn (37b)

where

Ω
2
n =

n2β 2(n2−1)2

(1+M)(n2 +1)
(38)

F2
n =

n2(n2−2)
(1+M)(n2 +1)

(39)

The parameter Ωn is the frequency of free vibration for mode number n, while the
parameter Fn models the interaction between the axisymmetric mode Wo and the
nonsymmetric modes Wn.

Verification of this model was obtained by comparing the natural frequency pre-
dictions of (38) with some experimental measurements, as shown in Table 1. Exper-
imental values were found using the same setup that was used to examine buckling;
in this setup we can also measure the long-time frequencies of elastic vibration
which occur when tubes are subjected to loads near, but not above, the buckling
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Table 1 Comparison of measured and predicted natural frequencies. “No FSI” indicates frequen-
cies calculated using (38) with M = 0, while values in the column labeled “FSI” were computed
with the values of M listed in the table. The percent error is computed between the measured
frequencies and the frequencies calculated with the inclusion of FSI.

Material a/h h n M — Frequency [kHz] — Error
[mm] No FSI FSI Measured [%]

6061 Alum. 13.5 1.47 2 2.3 2.45 1.35 1.36 1.0
6061 Alum. 17.4 0.89 2 2.7 2.46 1.28 1.21 5.6
6061 Alum. 17.4 0.89 2 2.7 2.46 1.28 1.20 6.5
6061 Alum. 17.4 0.89 2 2.7 2.46 1.28 1.24 3.1
6061 Alum. 17.4 1.24 2 3.2 1.76 0.86 0.85 1.4

304 SS 17.4 0.89 2 0.9 2.36 1.70 1.82 6.3
6061 Alum. 24.5 0.89 2 4.5 1.24 0.53 0.54 2.4
6061 Alum. 17.4 1.24 3 2.1 4.98 2.84 2.82 0.9
6061 Alum. 17.4 0.89 3 2.0 6.97 4.06 3.97 2.3
6061 Alum. 24.5 0.89 3 2.9 3.50 1.77 1.85 4.5

threshold (see, for example, Fig. 6). Frequencies were extracted from the strain
traces either by using fast fourier transforms or by counting periods, depending on
how many cycles were present in the data. Only mode numbers 2 and 3 are included
in Table 1 since only these modes were observed in experiment. In some cases (such
as Fig. 7), vibration frequencies from more than one mode could be extracted from
a single strain trace.

The results in Table 1 demonstrate fair agreement between the predicted and mea-
sured frequencies. This validates a number of assumptions involved in the model,
including the 2D plane strain approximation, the neglect of axial bending, and the
incompressible FSI model. Good agreement with the experiments was still found
even for vibrations of large amplitude approaching yielding of the tube, which sug-
gests that the shell model described above is reasonable over the whole range of
elastic deformations that we seek to model. This result also confirms that our ne-
glect of geometrical nonlinearities (quadratic and cubic terms in the shell equations
(27)) is reasonable.

3.2.2 Static Buckling

Before considering dynamical solutions to (37), it is interesting to explore the static
buckling limit of this equation. Taking the time derivatives equal to zero, we find that
Wo = Po and displacements Wn become unbounded when Ω 2

n = F2
n Po. This criterion

yields the static buckling pressure for the nth mode:

Pcrn = β
2 (n

2−1)2

n2−2
(40)

When written in terms of dimensional variables, the static buckling limit becomes
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pcrn =
Eh3

12(1−ν2)a3
(n2−1)2

n2−2
(41)

This result differs slightly from the classical static buckling threshold for an in-
finitely long tube derived by Timoshenko and Gere (1961):

pcrn =
Eh3

12(1−ν2)a3 (n
2−1) (42)

The discrepancy arises primarily because in the development of (27), the pressure
force was taken in the direction of the undeformed normal rather than that of the
deformed normal. This problem has been encountered in other shell formulations,
as evaluated by Simitses and Aswani (1974). This difference is smaller for larger
values of n; for n≥ 5, the error is less than 5%.

3.2.3 Direct integration of Fourier Modes

For a general pressure load Po(T ), (37) cannot be solved analytically. However, nu-
merical solutions to this pair of uncoupled ordinary differential equations can be
easily integrated with modern computational tools. To demonstrate the predictions
of this model, experimentally measured pressure traces were fed into the model as
Po and the numerical solution was computed for the first 10 Fourier modes. To make
comparisons with experimental measurements, it was necessary to estimate the nu-
merical value of the shape imperfections δn in (37). This was done by multiplying
the measured variations in wall thickness (described in Sec. 2) by a factor of a/h,
an approach which was motivated by comparing the relative contributions of shape
imperfections and wall thickness variations to the total strain energy of the tube.

After solving for the dimensionless displacements Wo and Wn, hoop strains at the
outer surface of the tube were calculated using (14) and (15). Strains were evaluated
at angles of 0◦, 90◦, and 180◦ around the circumference, which is where the cor-
responding strain gauges from experiment were located. The results are compared
with the experimental strain measurements in Fig. 14.

Both the simulation and the experiment feature a superposition of vibrations of
modes 2 and 3. The amplitude and frequency of both modes is well-predicted, with
the exception that the numerical solution does not predict any damping. This behav-
ior is a consequence of the incompressible fluid model and the omission of mechan-
ical damping within the tube material.

The membrane strain from the experiments was estimated by averaging the mea-
surements from two strain gauges located 90◦apart. Since these guages were located
on the major and minor axes of the vibration, averaging their measurements cancels
out any bending strain due to mode 2 vibration (though bending strains from modes
3 and higher are not necessarily canceled). Good agreement between the measured
and simulated membrane strains is also observed. These results demonstrate that
in spite of the numerous simplifications used to develop this buckling model, the
predictions are in remarkably good agreement with experimental measurements.
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Fig. 14 Comparison of simulations and experiments for a steel tube very near the buckling thresh-
old. Traces have been offset for clarity. Tube is 304 stainless steel with radius a = 22 mm and
a/h = 17.4.

3.2.4 Generalized Loads

Although integrating the dynamic response of a tube for a given pressure load is
often of interest, in many cases it is preferable to study the response to a class
of generalized dynamic loads rather than to a specific load. Several types of loads
that are of practical interest are a square wave of finite duration, a triangular wave,
and an exponentially decaying wave. These pulse shapes can be used as idealized
representations of many practical loads, such as shock or blast waves. Each of these
pulse shapes can be characterized by a peak pressure Pi and a total impulse I, which
is the integral of the pressure distribution over time. It is also convenient to define a
characteristic load duration, τ ≡ I/Pi.

In Sec. 2.1 it was observed experimentally that prior to buckling, the strain con-
sists of small vibrations around the quasi-static value. Since these vibrations are
small and damp out quickly, it is reasonable to neglect the axisymmetric breath-
ing motion altogether and assume that the hoop strain consists only of its quasi-
static component. In terms of the present non-dimensional variables, this means that
Wo ≈ Po.

It should be recognized that neglecting the dynamics of axisymmetric vibration
eliminates the possibility of autoparametric excitation. Such excitation has been the
subject of much research (Goodier and McIvor, 1964, Lindberg, 1964, 1974), but
is usually not observed in experiments due to the internal damping that is present
in real materials. Lindberg (1974) considered this problem in detail and found that
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Fig. 15 a) Buckling threshold in terms of pressure and impulse. b) Buckling threshold in terms of
pressure and load duration. Numbers indicate the most unstable mode number ncr . Curves were
computed with a/h=20 and an amplification of 100.

since autoparametric buckling often occurs only after a large number of vibration
cycles, it is mitigated by even small amounts of damping. As a result, he was able
to observe experimental evidence of autoparametric buckling only under very care-
fully chosen test conditions. In our present experiments, the small amplitude and
fast damping of axisymmetric vibrations due to FSI add further evidence that for
submerged structures, autoparametric excitation is likely to be insignificant and ax-
isymmetric vibrations can be neglected. Disregarding the axisymmetric vibration is
also appropriate only if the load duration is longer than the period of these vibration,
which is the case here.

To study the buckling of tubes under square, triangular, and exponential loads, it
is necessary to choose a criterion for the buckling threshold. A convenient choice
is to consider the tube to be buckled when the maximum displacement divided by
the initial shape imperfection exceeds a particular amplification, A. The buckling
threshold can then be determined by choosing a peak pressure Pi and integrating
(37) numerically, gradually increasing the load duration τ until one of the Fourier
modes exceeds the chosen amplification A. This value of τ then marks a point on
the buckling threshold. By repeating this process for many values of Pi, the buck-
ling threshold can be mapped out. This same approach was taken by Lindberg and
Florence (1987), who investigated the effects of pulse shape and amplification A on
the computed buckling threshold and concluded that both effects are small.

Examples of buckling thresholds for a/h = 20 obtained using this method are
plotted in Fig. 15. An amplification of A = 100 was chosen, so these curves repre-
sent contours along which the maximum deformation is 100 times the size of the
initial imperfection. The numbers along the curves indicate the most unstable mode
number. Although the amplification value of A = 100 has been arbitrarily chosen, it
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is representative of realistic values and the qualitative features of the results are not
sensitive to the precise value of A.

In Fig. 15a, the buckling threshold is plotted in terms of the dimensionless pres-
sure and impulse. This plot reveals that the buckling threshold tends towards two
asymptotes: there are a minimum pressure (the static buckling pressure) and a min-
imum impulse below which the tube is always stable. The differences between the
three load shapes are quite small along these asymptotes, but near the knee in the
curve larger differences are observed. As will be seen, this is the region in which
our experimental measurements were recorded.

In Fig. 15b, the same buckling threshold data is represented on a plot of peak
pressure vs. dimensionless load duration τ . In this scaling, the period of axisym-
metric vibration falls at 2π on this plot, which is far below the knee in the curve.
This reveals that the dynamic buckling pressure can be more than an order of mag-
nitude greater than the static buckling pressure even for loads that are classified as
“quasi-static”.

3.3 Effects of FSI

Recall from the fluid-structure interaction model developed in Section 3.2.1 that the
dimensionless added mass of the fluid is given by:

M =
1
n

ρw

ρ

a
h

[
(b/a)2n +1
(b/a)2n−1

](
n2

n2 +1

)
(43)

For a tube submerged in an infinite medium, the term in brackets tends to 1 and the
added mass depends only on the ratio of densities, the thickness of the tube, and
the mode number. Since the added mass is always greater for lower mode numbers,
this indicates that FSI effects are most pronounced near the knee in the buckling
threshold curve, where the mode numbers are smallest.

Examples of buckling threshold curves are plotted in Fig. 16 for tubes made from
several practical materials and submerged in air and water. The tubes are subjected
to a square-wave pressure pulse, and the amplification chosen to define the buckling
threshold is A = 100. As expected, the effect of the fluid is greatest near the knee in
the curve, and is largest for tubes of low density1. For comparison with our experi-
ments, the buckling thresholds in Fig. 16 were computed for relatively thick tubes,
with a/h = 20. Under these conditions, the added mass coefficient for an aluminum
tube with n = 2 is about M = 3 and the buckling threshold is shifted to the right
by about a factor of

√
1+M = 2. However, for very thin shells (a/h∼ 100) and

lightweight materials, or for tubes in a confined space, the added mass coefficient
can be on the order of 30-40 and can shift the buckling threshold by a factor as high
as 5-7.

1 For composite materials, the non-isotropic stiffness can affect the buckling behavior in other
ways, but the added mass effect is expected to follow the same scaling as for metal tubes.
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Fig. 16 Effect of added mass on buckling threshold for a square-wave pressure pulse with
a/h = 20 and several tube materials. CFC is carbon fiber composite. a) Bucking threshold in terms
of pressure and impulse. b) Buckling threshold in terms of pressure and load duration.

Because of the primarily mass-like influence of FSI, the only effect of the fluid
is to decrease the frequency of vibrations or the growth rate of buckles. In fact, by
re-scaling the time variable T in (37b) by a factor of

√
1+M, one can eliminate the

added mass from the equation entirely. This would suggest that if one computes the
buckling threshold for a tube in vacuo, then the corresponding threshold curve for
a submerged tube can be obtained by re-scaling the load duration τ by a factor of√

1+M. Since M is a function of mode number, this re-scaling would have to be
done separately for each segment of the buckling threshold.

A nuance to this approach is that the presence of FSI shifts the transition points
at which the most unstable mode number changes from one to the next. However,
as shown in Fig. 16, the transition points do not shift very much. This suggests that
the naı̈ve approach of simply shifting the in vacuo buckling threshold to the right
by a factor of

√
1+M will still provide reasonable predictions. In fact, this has

been done for the tube shown in Fig. 16, and the results (not shown) were nearly
indistinguishable from the curves plotted in the figure.

3.4 Comparison with Experiments

Having developed a theoretical model for the buckling of cylindrical tubes, we now
consider how well its predictions compare with experimental measurements. This
comparison is made in Fig. 17 for aluminum tubes with a/h = 17.4 and 24.5. For
each tube size, the data is represented using both the impulse and the load duration
as independent variables. The theoretical curves were computed by assuming an
exponential load shape and an amplification of A = 100, while experimental data
points correspond to the conditions at which plastic deformation was first observed.
Good agreement between the experiments and predictions is observed.
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Fig. 17 Comparison of predicted and experimental buckling thresholds 6061-T6 aluminum tubes.
Theoretical predictions are computed assuming an exponential pulse shape and an amplification
of A = 100. a) Buckling threshold for a/h = 17.4 in terms of load impulse. b) Same as a), but in
terms of load duration. c) Buckling threshold for a/h = 24.5 in terms of load impulse. d) Same as
c), but in terms of load duration.

For each value of a/h, Fig. 17 includes buckling thresholds both with and without
the effects of fluid-structure interaction. In most cases, the experimental data points
lie closer to the curve for which the effects of FSI are included. However, since
the tubes are fairly thick, the effects of fluid-structure interaction are rather small
and demonstration of the added mass effect based on these results is by no means
conclusive.

A final observation from Fig. 17 is that some data points lie near the boundary at
which the most unstable mode transitions from 2 to 3. Such behavior was confirmed
in the experiments: tubes subjected to loads near this boundary exhibited excitation
of both modes 2 and 3. However, the theoretical curves were computed by assuming



Dynamic Buckling and Fluid-Structure Interaction of Submerged Tubular Structures 35

that each mode is excited independently, whereas in the experiments tube failure
occurred via a superposition of multiple excited modes (see, for instance, Fig. 7).
This demonstrates that the most excited mode does not transition abruptly, but rather
a gradual transition is made over a range of pressures and impulses in which two or
more modes are strongly excited.

4 Summary

This chapter has considered the dynamic buckling of tubes with an emphasis on the
complexities that arise when the tubes are submerged in a dense fluid. Experimental
measurements of dynamic strains have clarified the behavior of the tube during the
intermediate stages of buckling, a subject which has not been studied in detail in
the literature. These results have confirmed many of the theoretical expectations
that have been developed in the past, including the shape of the buckling threshold
on a pressure-impulse diagram and the increase in the most unstable mode number
as the applied pressure is increased. The experiments have also demonstrated that
variations in wall thickness around the circumference of the tube have a significant
and repeatable effect on the orientation of the tube’s vibration and buckling which
is in good agreement with theoretical predictions.

The experimental measurements have also clarified several of the effects of fluid-
structure interaction on the dynamic response of the tubes. Measured vibration fre-
quencies were in good agreement with theoretical added-mass models, and an in-
compressible fluid model was found to capture the added-mass effects quite ade-
quately due to the relatively low frequency of non-axisymmetric vibrations. Due to
FSI, axisymmetric vibrations were found to play only a small role in the response
of the tube and measured hoop strains were quite close to those predicted by static
models. The coupling between non-axisymmetric motion and the fluid pressure was
found to be small due to the negligible volume changes involved in these vibrations;
however, at the onset of plastic deformation, these volume changes were no longer
negligible.

A two-dimensional buckling model was developed by making approximations
based on the observations from experiments, and good agreement with both dy-
namic strain measurements and buckling threshold measurements was obtained.
This model showed that the main effect of FSI is a reduction in the growth rate
of buckles; depending on the extent of the fluid-structure interaction, this reduced
growth rate can increase the impulse the tube can withstand by a factor as high as
5-7.
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