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This paper investigates the relative importance of modal and non-modal growth mech-
anisms in flat-plate, hypersonic boundary layers as well as the effects of Mach number and
wall cooling on these processes. Optimal disturbances are calculated in both the spatial and
temporal frameworks using an eigenvector decomposition of the locally-parallel, linearized
Navier-Stokes equations. It is found that for every Mach number there is an optimal level
of wall cooling that minimizes transient growth; at this condition the wall temperature
is slightly below the freestream temperature, with lower wall temperatures needed as the
Mach number increases. The competition between modal and non-modal growth mecha-
nisms is examined over a range of Reynolds numbers by calculating N factor curves for both
processes. For conditions relevant to high enthalpy flows (high Mach number, cold wall),
transient growth is rapidly overtaken by modal instabilities while the level of amplification
remains small. At lower Mach numbers or adiabatic conditions, the transient growth is
overtaken more slowly. For low Mach numbers and cold walls, no modal instabilities exist,
but the level of non-modal amplification is increased such that the initiation of transition
by infinitesimal perturbations is plausible despite the absence of modal instabilities.

I. Introduction

Understanding and predicting the stability of supersonic and hypersonic boundary layers is necessary
for minimizing heat loads and skin friction drag on high speed aircraft and reentry vehicles. Most of

the early work in this field emphasized the exponential growth of perturbations corresponding to unstable
discrete eigenvalues1–4, but more recently it has been recognized that non-modal growth mechanisms can
lead to large transient amplification of disturbances in spite of their eventual asymptotic decay. It has been
hypothesized that this amplification may be sufficient to excite nonlinear interactions which ultimately cause
the breakdown into turbulent motion5,6.

Non-modal growth first received a great deal of attention in the incompressible flow regime5,7–11 since
it provides a plausible explanation for the experimentally observed transition of flows that are linearly
stable.12,13 The first transient growth analysis of compressible boundary layers was conducted by Hanifi et
al. using the temporal framework.14 They found that the optimal disturbances in compressible boundary
layers share many features with those in incompressible ones; for instance, optimal perturbations take the
form of streamwise vortices, energy growth scales with the Reynolds number based on x, and the amplification
is driven by Landahl’s “lift-up” effect15,16. Subsequent compressible transient-growth analyses have employed
the spatial framework17 and focused on the inclusion of nonparallel flow effects18–20.

As discussed by Corbett21 for the incompressible case, flows can experience a competition between modal
and non-modal growth mechanisms. At low enough Reynolds numbers, the flow is generally modally stable
and the only possible growth mechanism is non-modal, which may or may not produce large amounts of
amplification depending on the flow conditions. At higher Reynolds numbers, both modal and non-modal
growth mechanisms may be active, and one must determine whether the short-time dynamics of transient
growth are able to surpass the exponential amplification of unstable modes. The first objective of this paper
is to map out regions in the parameter space over which modal or non-modal mechanisms are dominant,
considering in particular the effects of Mach number, Reynolds number, and wall temperature.

In comparing the amplification caused by modal and non-modal mechanisms, the wall temperature con-
dition and Mach number are of great importance. It is well-known that the growth rates of both the first
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Figure 1. Effect of wall temperature on spatial growth rates of first and second instability modes. Reynolds number

is Rδ =
√
Uex/νe = 1500. Blue (− ◦ −) and red (− � −) curves correspond to the first and second modes. For all curves,

the growth rate is optimized over all frequencies ω and all wave angles ψ with respect to the streamwise direction. The
first mode is stable for cases having Tw/Te = 0.3 and 0.5.

and second mode instabilities are quite sensitive to these parameters2,3,22, the first mode being stabilized
by wall cooling and the second and higher modes being destabilized. These trends are demonstrated in
Fig. 1, in which the maximum spatial growth rates for the first and second modes are plotted as functions of
Mach number and level of wall cooling. The technique (to be published) used to produce this plot employs
the shooting method developed by Mack1 and has been validated by reproducing the work of several other
researchers for flat plate boundary layers3,23–25. Figure 1 shows that as the level of wall cooling is increased,
the second mode growth rate is significantly increased, and the Mach number at which the second mode
“cuts in” becomes smaller. Figure 1 also demonstrates a substantial reduction in first mode growth rate as
the wall is cooled, a finding which was first predicted (in the inviscid limit) by Lees and Lin26,27. Lines for
the first mode instability with Tw/Te = 0.3 and 0.5 are not included on the plot because the first mode is
stable at those conditions.

Although the influence of wall cooling is well-known for modal instabilities, with regard to transient
growth the effects of wall cooling are not so simple and have not been studied in great detail. Tumin et
al.17,18 did investigate the effects of wall cooling for relatively low Mach numbers of 0.5 and 3.0 as well as
modest levels of wall cooling (Tw/Tad = 0.25-1.0), and they observed a reduction in transient growth with
wall cooling for M = 3 and an increase for M = 0.5. Tempelmann et al.20 also investigated the effect of
wall cooling for a swept flat-plate boundary layer at M = 0.75 and found wall cooling to increase the level of
transient growth, which is consistent Tumin’s result. Reshotko and Tumin28 reported a wider range of wall
temperatures and Mach numbers and demonstrated that the wall temperature effect is strongly dependent
on the Mach number. In this paper, a systematic study of the effects of Mach number and wall temperature
is undertaken to further clarify the roles of these parameters in transient growth.

The previously-mentioned transient growth studies have, for the most part, considered only relatively
modest levels of wall cooling (Tw/Tad = 0.25 − 1.0). However when experiments are conducted in high
enthalpy impulse facilities, the temperature ratio may be much smaller. In such facilities the wall temperature
is typically ambient and the freestream temperature is on the order of 1000-2500 K, which leads to wall
temperature ratios in the range of Tw/Tad = 0.02−0.1 at about M = 5. At these conditions the ratio of wall
temperature to edge temperature is Tw/Te = 0.1− 0.3, so on the basis of Fig. 1 the first mode instability is
expected to be absent while the second mode is highly unstable for high Mach numbers. The transient growth
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response of boundary layers under such conditions is not known, so our present study seeks to evaluate the
non-modal growth and compare it with the amplification caused by the highly unstable second mode.

An interesting feature of Fig. 1 is the absence of modal instabilities for flows with a cold wall and
M < 2.5. At these conditions, the first mode is stable because of the high level of wall cooling and the
second mode is stable because of the low Mach number. The absence of modal instabilities raises the
question of whether or not such boundary layers are completely stable to infinitesimal perturbations, with
transition to turbulence being caused only by nonlinear interactions between finite amplitude disturbances.
In this paper we investigate whether transient growth produces sufficient amplification to plausibly lead to
transition in such flows.

The transient growth calculations reported in this paper are conducted mainly in the temporal framework,
but we also report several cases in the spatial framework as well. Although previous research has been done in
both the temporal14,29 and spatial17,18,20 cases, the connection between the two frameworks remains unclear
and few direct comparisons between the two methods are available. Several authors30,31 have reported
promising results in which spatial results are nearly reproduced from the temporal ones by a simple re-
scaling of variables; however, an analogue to the Gaster transform that might facilitate the comparison
between spatial and temporal results has not yet been proposed. Nevertheless, by comparing the results of
the references above it is clear that the spatial and temporal calculations have the same qualitative behavior,
including the form of the optimal perturbations, the magnitude of energy growth achieved, the scaling of
results with Reynolds and Mach numbers, and the effects of wall-cooling. In this study, we make both spatial
and temporal transient growth calculations for selected cases that are otherwise identical in order to clarify
the similarities and differences between the two methods.

II. Methodology

II.A. Mean Flow Calculation

The mean flow is modeled using a similarity solution based on the method of Klunker and McLean32 which is
able to incorporate arbitrary fluid transport properties so long as they depend only on the temperature. This
is the case when the flow is either in thermochemical equilibrium or thermochemically frozen. The effects
of chemical reactions are beyond the scope of the present paper, so we focus on low and moderate enthalpy
flows where chemical reactions are negligible. The mean flow is assumed to be in vibrational equilibrium
(thermally perfect gas), and the variation of specific heats with temperature is modeled by treating the
diatomic gas as a system of harmonic oscillators33. All simulations reported in this paper assume air as the
test gas. The viscosity is calculated using Sutherland’s formula and the thermal conductivity is modeled by
Euken’s method33.

The boundary layer equations of continuity, momentum, and energy for a compressible viscous flow over
a flat plate are the following:

∂

∂x∗
(ρ∗u∗) +

∂

∂y∗
(ρ∗v∗) = 0 (1a)

ρ∗u∗
∂u∗

∂x∗
+ ρ∗v∗

∂u∗

∂y∗
=

∂

∂y∗

(
µ∗
∂u∗

∂y∗

)
(1b)

ρ∗u∗
∂h∗

∂x∗
+ ρ∗v∗

∂h∗

∂y∗
=

∂

∂y∗

(
k∗
∂T ∗

∂y∗

)
+ µ∗

(
∂u∗

∂y∗

)2

(1c)

where ρ is the density, p the pressure, (u, v) the velocity components, µ the shear viscosity, h the enthalpy,
and asterisks denote dimensional quantities. These equations are made dimensionless using the following
definitions:

(u, v) =
(u∗, v∗)

Ue
(x, y) =

(x∗, y∗)

δ
p =

p∗

ρeU2
e

ρ =
ρ∗

ρe
µ =

µ∗

µe
Θ =

h− he
0.5U2

e

σ =
c∗pµ
∗

k∗
(2)

Here δ is the Blasius length scale δ =
√
νex/Ue and subscripts ‘e’ denote the edge conditions. Additionally,

a similarity variable η is defined by

η =
y∗

x∗

√
Uex∗

νe
(3)
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Figure 2. Mean profiles of velocity (left) and temperature (right) for several Mach numbers and wall temperature
conditions.

Substitution of the above dimensionless variables into (1) and elimination of the vertical velocity via the
continuity equation leads to a pair of ordinary differential equations in terms of the similarity variable η:

g
du

dη
+
d

η

(
µ
du

dη

)
= 0 (4)

g
dΘ

dη
+

1

σe

d

dη

(
µ

σ

dΘ

dη

)
= −2µ

(
du

dη

)2

(5)

where g is defined by

g =
1

2

∫ η

0

(ρu)dη′ (6)

These equations are solved by the method of successive approximations as described by Klunker and
McLean32; the incompressible Blasius boundary layer is used as an initial guess and the velocity and enthalpy
distributions are iteratively refined until the RMS error of both the velocity and enthalpy profiles falls below
10−9. Examples of several velocity and temperature profiles determined in this manner are shown in Fig. 2.

II.B. Global Eigenvalue Calculation

The calculation of the global eigenvalue spectrum is based on the single-domain spectral collocation method
of Malik34. The term “global” here refers to the fact that the method produces a discrete approximation
to the entire eigenvalue spectrum, as opposed to “local” methods which determine a single eigenvalue at a
time. To begin with, the relevant flow variables are assumed to take the form:




u

v

p

T

w




=




Ū(y)

0

P̄

T̄ (y)

0




+




û(y)

v̂(y)

p̂(y)

θ̂(y)

ŵ(y)



× exp (iαx+ iβz − iωt) (7)

where x, y, and z are the streawise, wallnormal, and spanwise directions. The flow is assumed to be locally
parallel, meaning that the mean-flow variables, designated (̄·), are functions only of y and the vertical
velocity of the mean flow is neglected. This assumption has been evaluated by Tumin and Reshotko18,
who demonstrated that the inclusion of non-parallel effects leads to some quantitative differences in the
maximum transient growth but little qualitative change in the behavior; they concluded that “nonparallel
effects probably are not significant for estimates of transient growth.” Since in this paper we are interested
mainly in qualitative trends and orders of magnitude, the slight numerical errors introduced by the locally
parallel flow assumption are deemed acceptable.
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When the Navier-Stokes equations have been linearized with respect to the perturbation quantities,

designated (̂·), the result can be expressed as a 5× 5 system:

(
AD2 + BD + C

)
q̂ = 0 q̂ =

[
û, v̂, p̂, θ̂, ŵ

]
(8)

Here D is the derivative operator with respect to y and A, B, and C are matrices that are listed by Malik34.
The derivative operators D are approximated using collocated Chebyshev differentiation matrices based on
N collocation points placed at the Gauss-Lobatto quadrature nodes35. The resulting system is expressed in
the form of a generalized eigenvalue problem

(
Ao + Aωω + Aα1α+ Aα2α2

)
q̂ = 0 (9)

where Ao, Aω, Aα1, and Aα2 are all 5N × 5N matrices. For a temporal analysis, the value of α is prescribed
and matrices Ao, Aα1, and Aα2 are combined leaving a generalized eigenvalue problem for ω. For a spatial
analysis the value of ω is prescribed, leaving a quadratic eigenvalue problem for α. Unless otherwise stated,
the quadratic term is neglected to produce a linear eigenvalue problem. This approximation is appropriate
since the optimal disturbances are characterized by very small streamwise wavenumbers. However, in a few
instances we also solve the full, quadratic eigenvalue problem to verify that the linearization is acceptable.
In these cases, the quadratic problem is solved by introducing the additional variables αû, αv̂, αθ̂, and αŵ,
which allows an equivalent 9N×9N linear eigenvalue problem to be constructed using the method of Malik34.
For both the linear and quadratic problems, eigenvectors and eigenvalues of the system are calculated using
the LAPACK implementation of the QZ algorithm. This global eigenvalue calculation has been verified by
reproducing the test cases of Malik34 and the eigenvalue spectra of Hanifi et al.14

II.C. Transient Growth Calculation

The transient growth calculation used in this paper closely follows the method of Hanifi et al.14 Denoting
the eigenvectors of (9) by q̃, the disturbance vector q is projected onto the truncated eigenvector space as
follows:

q =

N∑

k=1

κkq̃k(y)e−iωkt (10)

where κk are expansion coefficients. For spatial analysis, the argument of the exponential is replaced by
iαkx. The eigenvector decomposition may be represented compactly in vector notation by the relation

q = QΛκ (11)

where Q is a matrix containing the eigenvectors q̃k as its columns, Λ is the diagonal matrix having diagonal
elements exp(iωkt) or exp(iαkx), and κ is the column vector of expansion coefficients. The disturbance norm
selected for evaluation of energy growth is

2E =

∫ ymax

0

ρ̄
(
|û|2 + |v̂|2 + |ŵ|2

)
+

T̄

γρ̄M2
|ρ̂|2 +

ρ̄

γ(γ − 1)T̄M2
|θ̂|2dy (12)

This norm was proposed by Mack2 in the context of modal instability and was later re-derived by Hanifi et
al.14 by requiring that pressure work be conservative. An excellent description of this energy norm is also
provided by Chu36. The energy norm can be written in terms of the eigenvector expansion (11) as follows:

2E = (Λκ)H
[∫ ymax

0

QHMQdy

]
Λκ (13)

where superscript H designates the Hermitian transpose and M is a 5× 5 matrix containing the coefficients
of the disturbance quantities in (12). The integral in brackets is a positive-definite matrix, thus it may be
factored as the product of a matrix F and its Hermitian transpose37:

FHF ≡
∫ ymax

0

QHMQdy (14)
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The matrix F can be calculated using the Cholesky decomposition; this matrix does not depend on time or
on the eigenvector expansion coefficients κ, so it can be immediately computed once the eigenvector basis is
known. By combining the definition in (14) with (13), the energy norm can be written as a weighted 2-norm
of the expansion coefficients κ:

2E = (FΛκ)H(FΛκ) = ||FΛκ||22 (15)

The energy amplification G is then

G ≡ max
E

E(0)
= max

||FΛκ||22
||Fκ||22

= max
||FΛF−1Fκ||22
||Fκ||22

= ||FΛF−1||22 (16)

The 2-norm of this matrix is calculated using the singular value decomposition, and the eigenvector expansion
coefficients κ of the optimal perturbation are extracted from right singular vector corresponding to the largest
singular value37. For the temporal case, G(α, β, t) is the maximum possible amplification that can occur at
time t for a given combination of values of α and β. Likewise, for a spatial analysis G(α, β, x) is the maximum
amplification that can occur a distance x downstream of the initial station. Following the notation of Hanifi
et al.14, the maximum value of G over all values of t (temporal case) or x (spatial case) will be denoted
Gmax(α, β), and the value of Gmax that is optimized over all values of α and β will be referred to as Gopt.
This quantity can be regarded as a property of the boundary layer. The time or distance at which the
optimal amplification is achieved is denoted topt or xopt, and the optimal spanwise wavenumber is denoted
βopt.

The numerical implementation of the transient growth calculation is as follows. For a chosen pair of
wavenumbers (α, β), the global eigenvalue spectrum is computed as described in Sec. II.B. In all calculations,
the number of grid points is 150, the height of the domain is ymax = 100, and half of the grid points are
clustered below y = 10 using the algebraic grid stretching suggested by Malik34. We have performed point-
wise checks at a large number of different conditions using 100 or 200 grid points as well as domain heights
of 100, 200, or 300, and have found that the values of Gmax are affected less than 0.5% by these changes,
which confirms that the transient growth calculation is converged.

If any unstable modes are found in the global eigenvalue calculation, they are refined using a local stability
solver similar to that of Mack1. The difference between the eigenvalue from the global calculation and the
local refinement is typically less than 0.1%, which provides further validation of our technique since the same
result is obtained by two independent methods. If unstable modes are present, the calculation is terminated
since the maximum energy growth is then infinite. If no unstable modes are found by the global eigenvalue
calculation, then the matrix F defined in (14) is constructed from the eigenvector basis. The numerical
integration involved in (14) is carried out using the spectrally accurate method reported in the appendix of
Hanifi et al.14 Having constructed the matrix F and its inverse, the product FΛF−1 is formed for different
values of time t (or x for spatial analysis) and for each value of t the singular value decomposition is employed
to obtain G. This procedure is repeated until the time t is found that maximizes G.

The transient growth calculation described here has been validated by reproducing both the temporal
results of Hanifi et al.14 and the spatial results of Tumin17. An example of the comparison with Tumin’s
work is shown in Fig. 3, where good agreement is seen over a wide range of Mach numbers.

III. Results

III.A. Optimal Perturbations

Figure 4 shows contour plots of the maximum temporal energy amplification, Gmax, as a function of stream-
wise and spanwise wavenumber. Each plot is constructed on a grid of 150 values each of α and β. The Mach
numbers are 2.5 (left) and 5.0 (right), the wall is adiabatic, and the Reynolds number based on boundary
layer thickness is Rδ ≡

√
Uex/νe =

√
Rex = 300. The colored contours represent Gmax(α, β), but the

white regions contain unstable modes and hence the maximum possible energy amplification in these zones
is infinite. Contour lines in these regions instead indicate the temporal growth rate, ωi, with contour lines
equally spaced between zero and the maximum value, which is reported in Table 1. The unstable regions
that are visible in Fig. 4 correspond to the first mode instability and have their maximum growth rate for
β > 0, indicating that oblique disturbances are most unstable. The second mode is also unstable at this
Reynolds number for M = 5, but the instability region is located at α > 0.1 and is not visible on the plot.
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Figure 3. Comparison of present results (thick solid lines) with those of Tumin17 (markers). Adiabatic wall, spatial

analysis, To = 333 K, ω = 0, Rδ =
√
Uex/νe = 300.

For both Mach numbers, the energy amplification Gmax features a local maximum for an oblique wave
having α = 0. This condition corresponds to a streamwise vortex, as is verified by the shape of the optimal
disturbance shown in Fig. 5. The disturbance is comprised mainly of vertical and spanwise velocities, with the
the temperature fluctuation being substantially smaller and the pressure and streamwise velocity negligible.
This form of optimal disturbance has been widely demonstrated for incompressible5,8 and compressible17,18

flows alike. By comparison of the two cases in Fig. 5, it is apparent that the shape of the optimal velocity
distribution is insensitive to the Mach number. Although the optimal disturbance does contain a noticeable
temperature perturbation for the M = 5 case, the energy of the disturbance is mostly kinetic: 99.4% of the
initial energy is contained in the first three terms of (12).

Figure 6 shows the shape of the optimal perturbation after it has grown to its maximum amplification
(t = topt). In this plot the disturbances have been scaled to have a maximum of 1.0, but in fact they
have grown by about two orders of magnitude relative to the input disturbance. The amplified disturbance
consists mainly of temperature and streamwise velocity, which is consistent with the findings of Hanifi et
al.14 These amplified disturbances take the form of streamwise streaks of alternating high and low velocity
and temperature. The physical interpretation of this amplification is the well-known lift-up effect15,16 in
which the streamwise vortices transport low velocity and high temperature (for an adiabatic wall) fluid from
the wall towards the outer edge of the boundary layer and vice versa. Although the input disturbances were
composed mainly of kinetic energy, after amplification the kinetic energy makes up only 55% (for M = 2.5)
and 20% (for M = 5.0) of the total energy. This demonstrates that the inclusion of the last two terms in
(12) has a significant impact on the computed energy growth. A similar distribution of energy amongst its
various components was observed by Tempelmann et al.20

Table 1. Summary of temporal transient growth characteristics for Rδ = 300.

Me Tw/Te Gopt Topt βopt ωi,max(1st mode)

2.5 2.1 (adiabatic) 437 1030 0.22 9.2× 10−4

5.0 5.3 (adiabatic) 483 1150 0.10 5.1× 10−4

2.5 1.0 337 750 0.33 0

5.0 1.0 251 897 0.25 0

2.5 0.3 390 602 0.44 0

5.0 0.3 239 770 0.31 0
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Figure 4. Contours of maximum (temporal) energy amplification Gmax vs. streamwise and spanwise wavenumbers.
Mach number is 2.5 (left) and 5.0 (right), and Tw = Tad, Rδ = 300, Te = 70 K. Colored contours indicate maximum
energy amplification, while black contours indicate the growth rate ωi in regions that are modally unstable. Maximum
growth rates in the unstable region are ωi = 9.2× 10−4 for M = 2.5 and ωi = 5.1× 10−4 for M = 5.0.
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Right: M = 5.0, α = 0, β = 0.12.
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At M = 5.0, Fig. 4 features a second local maximum that borders the first mode instability region, and
the energy amplification at this local maximum is slightly larger than at α = 0. The optimal disturbance at
this condition is composed of the (slightly) damped Tollmien-Schlichting wave combined with several other
more highly damped discrete modes as well as modes from the continuous spectra. This is demonstrated in
Fig. 7 where the global eigenvalue spectrum is plotted and the 10 modes that contribute most significantly
to the optimal disturbance are marked with red boxes. Because of the non-normality of the Navier-Stokes
operator, the TS mode and the modes from the vorticity branch interfere destructively such that the initial
energy is 1.0 despite the large amplitudes of the modes involved. As time progresses, the modes belonging
to the vorticity branch rapidly decay leaving a large-amplitude, slowly-decaying Tollmien-Schlichting mode
behind. This process results in a large transient increase in energy. A similar process is always involved
in transient growth38, but this instance is somewhat unique because discrete modes contribute significantly
to the transient amplification, rather than modes from the continuous spectrum alone. Interactions of this
sort have not been reported in most prior compressible transient growth studies because the perturbations
are usually assumed to have α = 0 for temporal analyses and ω = 0 for spatial ones. However, there is
some similarity between the present result and the “optimally-perturbed TS mode” considered by Farrell39

and Corbett21, who sought the initial conditions that produce the largest possible amplitude of Tollmien-
Schlichting wave at a later time.

Figure 8 provides contour plots of maximum amplification for a cooled wall with temperature ratio
Tw/Te = 1.0; this condition was achieved by setting both the freestream temperature and wall temperature
to 300 K. Again, the Mach numbers are 2.5 and 5 and the Reynolds number is Rδ = 300. Owing to the
reduction in Tw/Te relative to the adiabatic case, the first mode instability region is no longer present. There
is still a second mode unstable region for M = 5, but it is again located at α > 0.1 and is not visible in the
contour plots. The optimal amplification Gopt is somewhat reduced compared to the adiabatic case shown
in Fig. 4. Numerically, Gopt is reduced by a factor of 1.3 for M = 2.5 and a factor of 1.9 for M = 5. Also
the optimal spanwise wavenumber βopt is increased for Tw/Te = 1, which is a consequence of the thinner
boundary layer. By comparison of Figs. 4 and 8, it appears that as the Mach number or level of wall
cooling is increased, the transient growth drops off more rapidly away from the optimal condition. That is,
near-optimal disturbances are less effective for high Mach numbers and cooled walls.

Figure 9 shows amplification contours for a further reduction in wall temperature relative to the freestream
value, Tw/Te = 0.3. In this case the wall temperature is held at 300 K and the freestream temperature
is 1000 K, which is representative of a low or moderate enthalpy conditions in a reflected shock facility
(Ho = 2.3 MJ/kg for M = 2.5, 6 MJ/kg for M = 5). We have chosen to investigate the effects of wall
cooling by raising the freestream temperature rather than by cooling the wall in order to match the conditions
found in blowdown facilities and shock tunnels, where the wall temperature is usually ambient. It should
be noted that when the ratio Tw/Te is small (i.e., high edge temperature), this assumption produces slight
numerical differences from the results of other researchers who maintain low stagnation temperatures in their
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Figure 8. Contours of maximum energy amplification Gmax vs. streamwise and spanwise wavenumbers. Mach number
is 2.5 (left) and 5.0 (right), and Tw/Te = 1.0, Rδ = 300, Te = 300 K.
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Figure 9. Contours of maximum energy amplification Gmax vs. streamwise and spanwise wavenumbers. Mach number
is 2.5 (left) and 5.0 (right), and Tw/Te = 0.3, Rδ = 300, Te = 1000 K.

simulations. The numerical differences are caused by the variation of specific heats at high temperature,
which we include in our mean flow calculation. Comparison of Fig. 9 to Fig. 8 reveals a further increase
in βopt because of the decreased boundary layer thickness caused by wall cooling, but for M = 5 there is a
slight increase in Gopt relative to the case Tw/Te = 1. This suggests that transient growth is minimized for
a particular wall temperature condition, as will be verified in the next section.

III.B. Effects of M and Te

The effects of Mach number and wall temperature ratio on the optimal growth were assessed by assembling
values of Gopt for a large number of different conditions. Different wall temperature ratios were achieved
by fixing the wall temperature at 300 K and varying the freestream temperature; as discussed in Sec. III.A,
this method was selected in order to match the experimental conditions in impulse facilities. Because of the
considerable computational expense of the transient growth calculation, the search for Gopt was performed
only for α = 0 which, as discussed above, is normally where the optimal growth is found. Figure 10 reports
values of Gopt/R

2
δ that are optimized over all time, α, and β. This scaling between energy growth and

Reynolds number is chosen on the basis of the work by Hanifi et al.14,29. The red line with markers indicates
the adiabatic wall temperature. Most experimental and flight conditions would fall below this line, but
it is possible to conceive of situations in which the wall temperature would be hotter than adiabatic; for
instance, a re-entry vehicle that is decelerating from high to low Mach number could experience elevated
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wall temperatures of this sort.
Figure 10 reveals that the adiabatic line is nearly tangent to an isoline of energy amplification, so if

only adiabatic conditions are considered one finds only a slight increase in transient growth as the Mach
number is increased, as can be seen in Fig. 3. If the wall is cooled below the adiabatic temperature, however,
reductions in amplification can be achieved at high Mach numbers. In particular, as the Mach number is
increased there is locus of wall temperature ratios slightly less than 1.0 along which the transient growth
is minimized. This minimum in Gopt/R

2
δ is also visible in the results of Tumin and Reshotko18,28, and the

results of the present study are in good agreement with theirs. The agreement is excellent for low Mach
numbers, but small numerical differences are found at higher Mach numbers and high levels of wall cooling
because of our high stagnation temperature and the variable specific heats which are included in our mean
flow calculation.

For low Mach numbers, the influence of wall cooling on the transient growth is substantial. Cooling or
heating the wall by a factor of 2.0 results in more than an order of magnitude increase in energy amplification.
As noted in the introduction, no modal instabilities exist for low Mach numbers and highly cooled walls, and
the route to turbulence under these conditions was questioned. The results of Fig. 10 suggest that transition
to turbulence can still be initiated by infinitesimal perturbations since the large density gradients introduced
by wall cooling result in high levels of non-modal amplification.

III.C. Temporal vs. Spatial

For convective flows like the boundary layer, the spatial framework is often preferred over the temporal
one since it is easier to interpret experimentally. Figure 11 reports transient growth contours for the same
conditions as Fig. 4 except that here the spatial framework is used. Both plots in this figure have been
generated using the full quadratic eigenvalue problem described in Sec. II.B, and the results do not differ
appreciably from those obtained by linearization. Despite the fact that the independent variable is the
frequency rather than the wavenumber, the qualitative behavior in the spatial case (Fig. 11) is quite similar
to that of the temporal case (Fig 4). Specifically, the energy amplification features a local maximum for an
oblique disturbance at α = 0 or ω = 0, and the values of Gopt and βopt at these conditions are the same. This
similarity between the spatial and temporal cases arises from the fact that most of the modes involved in the
optimal disturbance belong to the vorticity and entropy branches of the continuous spectrum, for which the
phase speed is very nearly 1.0, meaning that the values of α and ω are nearly identical along these branch
cuts.

For M = 2.5 there is a noticeable difference between the spatial and temporal results, namely, the
appearance of a second local maximum in the energy amplification for ω > 0 that is not present in the
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Figure 11. Contours of maximum (spatial) energy amplification Gmax vs. streamwise and spanwise wavenumbers. Mach
number is 2.5 (left) and 5.0 (right). Tw = Tad, Rδ = 300, Te = 70 K. Conditions are the same as in Fig. 4 except that
the spatial analysis is used here. The distance xopt at which optimal growth is reached is 790 for M = 2.5 and 1150 for

M = 5.0. For M = 2.5, the maximum modal growth rate is −αi = 1.3 × 10−3 (first mode). For M = 5, the maximum

growth rates are 5.9× 10−4 (first mode) and 1.2× 10−3 (second mode).

temporal case. This second peak at ω = 0.022 has a slightly lower amplification that the one at ω = 0 but
develops more rapidly, reaching maximum energy growth at x = 400. The optimal disturbance at ω = 0, on
the other hand, is maximized at x = 790. This demonstrates the fact that slightly sub-optimal disturbances
can grow more rapidly than the optimal ones, as will be discussed in the next section.

III.D. Optimization for prescribed downstream distance

As was pointed out by Butler and Farrell8 and Corbett21 for incompressible flows, the optimal disturbances
take a rather long time to develop. For instance, in Fig. 11 the distance xopt at which the energy is
maximized is 790 and 1150 for the respective Mach numbers of 2.5 and 5.0. Recalling that x is normalized
by the boundary layer thickness δ, this suggests that the optimal disturbance requires O(1000δ) to develop.
From a modeling standpoint, this fact makes the locally parallel assumption questionable; however, it may be
noted that large values of xopt relative to the boundary layer thickness are found in non-parallel simulations
as well5,18. From a practical standpoint, if xopt is O(1000δ) it may be unlikely that this distance is reached
in a typical laboratory experiment. Moreover, when transient growth requires a large optimization distance,
it is less likely that the disturbance will surpass any exponentially growing modal instabilities. These
considerations suggest that it may be preferable to maximize the amplification G at a particular distance
or time that is relevant to the streamwise length scale of interest rather than optimizing over all possible
distances.

Figure 12 provides contours of spatial energy growth G at six fixed distances downstream of the initial
disturbance. For each pair of values (α,β), the energy growth G from (16) is calculated at a single, fixed
value of x rather than optimizing over all values of x as was done in Figs. 4-9. Although the basic features of
the plots in Fig. 12 are similar to those at xopt (Fig. 11), the level of amplification is somewhat lower and the
optimal disturbance is no longer found at ω = 0. This is consistent with the (temporal) observation of Butler
and Farrell8 that disturbances having smaller streamwise wavelengths reach their maximum amplitude more
rapidly. Although the level of amplification has been reduced relative to the optimal value, the reduction is
not always so great as to render the non-modal amplification negligible. For example, at M = 2.5 the energy
amplification reaches about 2/3 of its optimal value at x/xopt = 0.25, which demonstrates that near-optimal
amplification can be achieved at distances much less than xopt.

The topology of Fig. 12 is the same as that observed by Corbett and Bottaro for incompressible flow21.
An isolated peak in G is seen which increases in strength as x is increased. For small x the peak is located at a
larger value of ω and approaches ω = 0 as x increases. When x reaches xopt (about 790 for these conditions),
the peak value of G is located at ω = 0 and the disturbance takes the form of the optimal streamwise vortex
noted in Fig. 5. However, for x < xopt the optimal disturbance is not a streamwise vortex, as shown in Fig. 13
(left). This figure contains the optimal disturbance which produces the peak amplification at x = 400 in
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Figure 12. Contours of maximum (spatial) energy amplification G vs. streamwise and spanwise wavenumbers at six
different streamwise distances. Mach number is 2.5, adiabatic wall, Rδ = 300, Te = 70 K. Optimal growth is found at
xopt = 790, α = 0,β = 0.22.

Fig. 12. This initial perturbation evolves into the amplified disturbance shown in Fig. 13 (right) at x = 400.
As was true in the case of the streamwise vortices in Fig. 6, the amplified disturbance consists of streaks of
velocity and temperature, which suggests that the lift up effect is again responsible for the transient growth.

III.E. Modal vs. Non-modal

Our final consideration is a direct comparison between modal and non-modal energy amplification. To
minimize the computational expense, we assume ω = 0 in the transient growth calculation, meaning that
the optimal perturbation is always a streamwise vortex. Spatial transient growth calculations are carried
out for several initial Reynolds numbers, and the downstream evolution of energy for each Reynolds number
is compared with the energy growth arising from modal instabilities. For the purposes of comparison, we
use the N factor for modal instabilities as defined by:

Nmodal(ω, β) =

∫ x

xo

−αi(x, ω, β)dx (17)

where xo is the location at which disturbances of frequency ω first become unstable. The analogous N factor
for non-modal growth is defined by the relation

Nopt ≡
1

2
ln(G) (18)

where the factor of 1/2 arises from the fact that the energy amplification G scales quadratically with the
disturbance amplitude. The definition (18) is chosen by requiring that Nopt and Nmodal be equal when the
response consists of a single unstable mode.

An example of the comparison is shown in Fig. 14. Here the Mach number is 2.5 and the wall temperature
is adiabatic. The N factors involving transient growth are labeled Nopt, and the ten curves correspond to ten
different initial Reynolds numbers Rex between 104 and 106. For each initial Reynolds number, the optimal
disturbance corresponding to the maximum of Fig. 11 (α = 0, β = 0.22) is selected and its downstream
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Figure 13. Optimal disturbance for a prescribed downstream distance of x = 400. M = 2.5, Rδ = 300, α = 0.025, β = 0.186.
Left: Optimal disturbance at x = 0. Right: Amplified disturbance at x = 400.
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Figure 14. Comparison of N factors from modal and non-modal stability calculations for M = 2.5, Tw = Tad, Te = 70 K.
Nopt is the N factor corresponding to non-modal disturbances, Nmodal is the modal N factor envelope over all values of
ω and β.

amplification is calculated. The envelope of these curves marks the maximum level of transient growth that
is plausible at each location. The dashed red line represents the envelope of all possible N factor curves
corresponding to modal instabilities; this envelope curve is optimized over all frequencies and contains both
2D and 3D disturbances for both the first and second mode instabilities.

For the adiabatic condition shown in Fig. 14, modal growth surpasses non-modal growth at a Reynolds
number of about Rex = 2.9× 106. The N factor at this location is 4.2, which corresponds to an increase in
modal amplitude of about 67 and an energy amplification of 4400. This level of amplification is not large,
suggesting that under these conditions transition via transient growth might be expected only in a noisy
environment where disturbance amplitudes are high, or in situations involving discrete surface roughness
elements where strong streamwise, vortical disturbances are likely28. However, the level of N at which
nonlinear breakdown begins is open to question and may be different for modal and non-modal instabilities,
given the differences in the disturbance shapes. The value of N at which transition occurs is also expected
to depend on the strength of disturbance sources and the boundary layer’s receptivity to them.

Two additional examples of N factor distributions are shown in Fig. 15 which demonstrate the effects of
wall cooling. The first example (left) is flow at Mach 5 with a cold wall, Tw/Te = 0.3. This condition might
be encountered in a shock tunnel operating at a moderate enthalpy of Ho = 6 MJ/kg. In comparison to the
low Mach number, adiabatic case shown in Fig. 14, the modal instability overtakes the non-modal one much
more rapidly. This is caused by both lower levels of energy amplification and the larger growth rate of the
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Figure 15. Comparison of N factors from modal and non-modal stability calculations. Left: M = 5.0, Tw/Te = 0.3,
Te = 1000 K. Right: M = 2.5, Tw/Te = 0.3, Te = 1000 K.

second mode instability. The modal instability overtakes the transient growth at Rex = 1.2× 106 where the
N factor is 3.7 and the energy amplification is only 1600. Experiments conducted at similar conditions40 have
reported transition at Reynolds numbers of 2 − 3 million; at this point modal instabilities have undergone
more than an order of magnitude larger amplification than non-modal ones.

The second example, Fig. 15 (right), is flow at Mach 2.5 with a cold wall, Tw/Te = 0.3. As discussed in
the introduction, there are no modal instabilities for these conditions so the modal N factor is zero. At a
Reynolds number of 2.0×106, Nopt is about 4.2 which corresponds to G = 4500. At lower Mach numbers the
effect of wall cooling is even greater; for example, at M = 0.5 with Tw/Te = 0.3, the N factor at Rex = 2×106

is 5.4 and the energy amplification G is 49,000. Moreover, given the well-known29 scaling Gopt ∝ Rex, much
larger amplification is possible as the Reynolds number is increased. On the basis of this result, it seems
reasonable to conclude that flows at low Mach numbers with wall cooling can transition to turbulence from
infinitesimal perturbations despite the absence of modal instabilities. In contrast, high Mach number flows
with cold wall conditions seem likely to transition by modal mechanisms alone.

IV. Conclusion

This paper investigated the effects of Mach number and wall cooling on the transient growth of distur-
bances in flat plate boundary layers. Optimal disturbances were calculated in both spatial and temporal
frameworks using an eigenvector decomposition of the locally-parallel, linearized Navier-Stokes equations.
Both the spatial and temporal frameworks produced similar results in terms of the level of energy amplifica-
tion, the form of the optimal disturbances, and the optimal spanwise wavenumber. The optimal disturbance
was found to consist of streamwise vortices which develop into streamwise streaks of high velocity and tem-
perature. Additional disturbances were found which, though sub-optimal, were highly amplified and grew
more rapidly than the optimal ones. Such disturbances were found to have nonzero frequency (or streamwise
wavenumber) and did not take the form of streamwise vortices.

For every Mach number, an optimal level of wall cooling was found which minimized the level of transient
growth. Although the minimization of transient growth at a particular level of wall cooling can be seen in
the results of Reshotko and Tumin28, the effect of Mach number on this trend was not clear, especially when
M is large. The systematic study undertaken in this paper significantly clarifies the roles of Mach number
and wall cooling on non-modal amplification. In particular, as M → 0 the transient growth is minimized
with no wall cooling, but at high Mach numbers the optimal wall temperature is slightly lower than the edge
temperature, and increased wall cooling is needed at higher Mach numbers. Transient growth is found to
be especially sensitive to heating or cooling of the wall at low Mach numbers, where a factor of 2 change in
wall temperature produces an order of magnitude increase in transient growth.

This paper provides the first direct comparison between modal and non-modal growth in compressible
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boundary layers in which integrated N factors are compared for both mechanisms. For conditions relevant
to high enthalpy flows (high Mach number, cold wall), modal instability rapidly overtakes the transient
growth while the level of amplification is still relatively small (N = 3-4). This suggests that transition to
turbulence via transient growth would be significant at these conditions only if the disturbance level is high
and the disturbance takes the form of a streamwise vortex, as can be the case for 3D roughness elements. It
is also observed that when the Mach number is low and the wall is cooled, no modal instabilities are present
and transient growth appears to be the only growth mechanism for infinitesimal perturbations. However,
the increased level of transient growth caused by wall cooling under these conditions makes transition by
non-modal growth plausible.
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