next up previous contents
Next: Experimental Test Matrix Up: No Title Previous: Summary and Unresolved Issues

Bibliography

Akbar and Shepherd (1993)
Akbar, R. and J. Shepherd (1993, June).
Detonations in N2O-H2-N2-Air mixtures.
Prepared for the Los Alamos National Laboratory Under Consultant Agreement C-4836.

Akbar and Shepherd (1996)
Akbar, R. and J. Shepherd (1996, September).
Detonations in N2O-H2 mixtures diluted with N2 or air.
Prepared for the Los Alamos National Laboratory Under Contract 929Q0015-3A, DOE W-7405-ENG-36.

Allen et al. (1995)
Allen, M., R. Yetter, and F. Dryer (1995).
The decomposition of nitrous oxide at 1.5$\leq$P$\leq$10.5 atm and 1103$\leq$T$\leq$1173 K.
Int. J. Chem. Kinet. 27(9), 883-909.

Asaba et al. (1963)
Asaba, T., K. Yoneda, N. Kakihara, and T. Hikita (1963).
A shock tube study of ignition of methane-oxygen mixtures.
In 9th Symp. Int. Combust. Proc., pp. 193-200.

Balakhnine et al. (1977)
Balakhnine, V., J. Vandooren, and P. V. Tiggelen (1977).
Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames.
Combust. Flame 28(2), 165-173.

Baulch et al. (1992)
Baulch, D., C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1992).
Evaluated kinetic data for combustion modeling.
J. Phys. Chem. Ref. Data 21(3), 411-736.

Baulch et al. (1994a)
Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994a).
Evaluated kinetic data for combustion modeling: Supplement I.
J. Phys. Chem. Ref. Data 23(6), 847-1033.

Baulch et al. (1994b)
Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994b).
Summary table of evaluated kinetic data for combustion modeling: Supplement I.
Combust. Flame 98(1), 59-79.

Beeson et al. (1991)
Beeson, H., R. McClenagan, C. Bishop, F. Benz, W. J. Pitz, C. Westbrook, and J. Lee (1991).
Detonability of hydrocarbon fuels in air.
In Prog. Astronaut. Aeronaut., Volume 133, pp. 19-36.

Bennett (1986)
Bennett, C. A. (1986, March).
Personal communication.
Detonation Test Results and Predictions for NH3-O2-N2 Mixtures.

Bhaskaran et al. (1973)
Bhaskaran, K., M. Gupta, and T. Just (1973).
Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydroge-air mixtures.
Combust. Flame 21, 45-48.

Blumenthal et al. (1996)
Blumenthal, R., K. Fieweger, K. Komp, G. Adomeit, and B. Gelfand (1996).
Self-ignition of H2-air mixtures at high pressure and low temperature.
In 20th Symp. Int. Shock Waves, pp. 935-940.

Bollinger (1964)
Bollinger, L. (1964).
Experimental detonation velocities and induction distances in hydrogen-air mixtures.
AIAA J. 2(1), 131-133.

Bollinger et al. (1961)
Bollinger, L., M. Fong, and R. Edse (1961).
Experimental measurements and theoretical analysis of detonation induction distances.
Am. Rocket Soc. Pap. 31, 588-595.

Bollinger et al. (1962)
Bollinger, L., J. Laughrey, and R. Edse (1962).
Experimental detonation velocities and induction distances in hydrogen-nitrous oxide mixtures.
Am. Rocket Soc. Pap. 32, 81-82.

Borisov et al. (1977)
Borisov, A., V. Zamanskii, K. Potmishil, G. Skachkov, and V. Foteenkov (1977).
The mechanism of methane oxidation with nitrous oxide.
Kinet. Katal. 8, 307-315.

Borisov et al. (1978)
Borisov, A., V. Zamanskii, and G. Skachkov (1978).
Kinetics and mechanism of reaction of hydrogen with nitrous oxide.
Kinet. Katal. 19(1), 26-32.

Bradley (1962)
Bradley, J. (1962).
Shock Waves in Chemistry and Physics.
Wiley.

Bradley et al. (1968)
Bradley, J., R. Butlin, and D. Lewis (1968).
Oxidation of ammonia in shock waves.
Trans. Faraday Soc. 64, 71-77.

Bull (1968)
Bull, D. (1968).
A shock tube study of the oxidation of ammonia.
Combust. Flame 12, 603-610.

Burcat et al. (1996)
Burcat, A., M. Dvinyaninov, and A. Lifshitz (1996).
The effect of halocarbons on methane ignition.
In 20th Symp. Int. Shock Waves.

Burcat et al. (1971)
Burcat, A., K. Scheller, and A. Lifshitz (1971).
Shock-tube investigation of comparative ignition delay times for C1 - C5 alkanes.
Combust. Flame 16(1), 29-33.

Cheng and Oppenheim (1984)
Cheng, R. and A. Oppenheim (1984).
Autoignition in methane-hydrogen mixtures.
Combust. Flame 58(2), 125-139.

Cobos et al. (1985)
Cobos, C., H. Hippler, and J. Troe (1985).
High pressure falloff curves and specific rate constants for the reactions H+O2=HO2=HO+O.
J. Phys. Chem. 89(1), 342-349.

Craig (1966)
Craig, R. (1966).
A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit.
Technical Report AFAPL-TR-66-74, Air Force Aero-Propulsion Lab, Wright-Patterson.

Dean et al. (1978)
Dean, A., D. Steiner, and E. Wang (1978).
A shock tube study of the H2/O2/CO/Ar and H2/N2O/CO/Ar systems: Measurement of the rate constant for H+N2O=N2+OH.
Combust. Flame 32(1), 73-83.

Drummond (1967)
Drummond, L. (1967).
Shock-initiated exothermic reactions III. the oxidation of hydrogen.
Aust. J. Chem. 20, 2331-2341.

Drummond (1969)
Drummond, L. (1969).
Shock-induced reactions of methane with nitrous and nitric oxides.
Bull. Chem. Soc. Japan 42, 285-289.

Drummond (1972a)
Drummond, L. (1972a).
Comments upon shock-initiated oxidations by nitrous oxide.
Combust. Sci. Technol. 5, 183-185.

Drummond (1972b)
Drummond, L. (1972b).
High temperature oxidation of ammonia.
Combust. Sci. Technol. 5, 175-182.

Drummond and Hiscock (1967)
Drummond, L. and S. Hiscock (1967).
Shock-initiated exothermic reactions II. the oxidation of ammonia.
Aust. J. Chem. 20, 825-836.

Frank and Just (1985)
Frank, P. and T. Just (1985).
High temperature reaction rate for H+O2=OH+O and OH+H2=H2O+H.
Ber. Bunsenges. Phys. Chem. 89(1), 181-187.

Frenklach and Bornside (1984)
Frenklach, M. and D. Bornside (1984).
Shock-initiated ignition in methane-propane mixtures.
Combust. Flame 56, 1-27.

Frenklach et al. (1995)
Frenklach, M., H. Wang, C. Bowman, R. Hanson, G. Smith, D. Golden, W. Gardiner, and V. Lissianski (1995).
An optimized kinetics model for natural gas combustion.
Technical report, Gas Research Institute.
For more information, see HTTP://www.gri.org.

Frenklach et al. (1992)
Frenklach, M., H. Wang, and M. Rabinowitz (1992).
Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - combustion of methane.
Prog. Energy Combust. Sci. 18, 47-73.

Fujii et al. (1981)
Fujii, N., H. Miyama, M. Koshi, and T. Asaba (1981).
Kinetics of ammonia oxidation in shock waves.
In 18th Symp. Int. Combust. Proc., pp. 873-883.

Hidaka et al. (1996)
Hidaka, Y., K. Kimura, K. Hattori, and T. Okuno (1996).
Shock tube and modeling study of ketene oxidation.
Combust. Flame 106(1), 155-167.

Hidaka et al. (1985a)
Hidaka, Y., H. Takuma, and M. Suga (1985a).
Shock-tube studies of N2O decomposition and N2O-H2 reaction.
Bull. Chem. Soc. Japan. 58(10), 2911-2916.

Hidaka et al. (1985b)
Hidaka, Y., H. Takuma, and M. Suga (1985b).
Shock-tube study of the rate constant for excited OH* ( $^2\Sigma^+$) formation in the N2O-H2 reaction.
J. Phys. Chem. 89(23), 4903-4905.

Hunter et al. (1994)
Hunter, T., H. Wang, T. Litzinger, and M. Frenklach (1994).
The oxidation of methane at elevated pressures: Experiments and modeling.
Combust. Flame 97(2), 201-224.

Kee et al. (1989)
Kee, R., F. Rupley, and J. Miller (1989).
Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics.
Technical Report SAND89-8009, Sandia National Laboratory.

Knystautas et al. (1984)
Knystautas, R., C. Guirao, J. Lee, and A. Sulmistras (1984).
Measurement of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits.
In Prog. Astronaut. Aeronaut., Volume 94, pp. 23-37.

Lee (1984)
Lee, J. (1984).
Dynamic parameters of gaseous detonations.
Ann. Rev. Fluid Mech. 16, 311-336.

Lindstedt et al. (1994)
Lindstedt, R., F. Lockwood, and M. Selim (1994).
Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation.
Combust. Sci. Technol. 99(4-6), 253-276.

Lindstedt and Selim (1994)
Lindstedt, R. and M. Selim (1994).
Reduced reaction mechanisms for ammonia oxidation in premixed laminar flames.
Combust. Sci. Technol. 99(4-6), 277-298.

Manzhalei et al. (1974)
Manzhalei, V., V. Mitrofanov, and V. Subbotin (1974).
Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures.
Combust. Explos. Shock Waves (USSR) 10(1), 89-95.

Miller and Bowman (1989)
Miller, J. and C. Bowman (1989).
Mechanism and modeling of nitrogen chemistry in combustion.
Prog. Energy Combust. Sci. 15, 287-338.

Miller et al. (1983)
Miller, J., M. Smooke, R. Green, and R. Kee (1983).
Kinetic modeling of the oxidation of ammonia in flames.
Combust. Sci. Technol. 34, 149-176.

Miyama (1968a)
Miyama, H. (1968a).
Ignition of ammonia-oxygen mixtures by shock waves.
J. Chem. Phys. 48, 1421-1422.

Miyama (1968b)
Miyama, H. (1968b).
Kinetic studies of ammonia oxidation in shock waves. IV. comparison of induction periods for the ignition of NH3-O2-N2 with thos for NH3-O2-Ar mixtures.
Bull. Chem. Soc. Japan 41, 1761-1765.

Miyama and Endoh (1967a)
Miyama, H. and R. Endoh (1967a).
Ignition of ammonia-air mixtures by reflected shock waves.
Combust. Flame 11, 359-360.

Miyama and Endoh (1967b)
Miyama, H. and R. Endoh (1967b).
Vibrational relaxation of nitrogen in shock-heated NH3- O2-N2 mixtures.
J. Chem. Phys. 46, 2011-2012.

Miyama and Takeyama (1965)
Miyama, H. and T. Takeyama (1965).
Kinetics of methane oxidation in shock waves.
Bull. Chem. Soc. Japan 38(1), 37-43.

Moen et al. (1984)
Moen, I., J. Funk, S. Ward, G. Rude, and P. Thibault (1984).
Detonation length scales for fuel-air explosives.
In Prog. Astronaut. Aeronaut., Volume 94, pp. 55-79.

Pamidimukkala and Skinner (1982)
Pamidimukkala, K. and G. Skinner (1982).
Resonance absorption measurements of atom concentrations in reacting gas mixtures. VIII. rate constants for O+H2=OH+H and O+D2=OD+D from measurements of O atoms in oxidation of H2 and D2 by N2O.
J. Chem. Phys. 76(1), 311-315.

Petersen et al. (1996)
Petersen, E., D. Davidson, M. Rohrig, and R. Hanson (1996).
High-pressure shock-tube measurements of ignition times in stoichiometric H2/O2/Ar mixtures.
In 20th Symp. Int. Shock Waves, pp. 941-946.

Reynolds (1986)
Reynolds, W. C. (1986, January).
The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN (3rd ed.).
Dept. of Mechanical Engineering, Stanford, CA: Stanford University.

Ross and Shepherd (1996)
Ross, M. and J. Shepherd (1996).
Lean combustion characteristics of hydrogen-nitrous oxide-ammonia mixtures in air.
Technical Report FM96-4, Graduate Aeronautical Laboratories, California Institute of Technology.

Sausa et al. (1993)
Sausa, R., W. Anderson, D. Dayton, C. Faust, and S. Howard (1993).
Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame.
Combust. Flame 94(4), 407-425.

Schott and Kinsey (1958)
Schott, G. and J. Kinsey (1958).
Kinetic studies of hydroxyl radicals in shock waves. II. induction times in the hydrogen-oxygen reaction.
J. Chem. Phys. 29(5), 1177-1182.

Seery and Bowman (1970)
Seery, D. and C. Bowman (1970).
An experimental and analytical study of methane oxidation behind shock waves.
Combust. Flame 14(1), 37-48.

Shepherd (1986)
Shepherd, J. (1986).
Chemical kinetics of hydrogen-air-diluent detonations.
In Prog. Astronaut. Aeronaut., Volume 106, pp. 263-293.

Skinner and Ringrose (1966)
Skinner, G. and G. Ringrose (1966).
Ignition delays of a hydrogen-oxygen-argon mixture at relatively low temperature.
J. Chem. Phys. 42(6), 2190-2192.

Soloukhin (1971)
Soloukhin, R. (1971).
High-temperature oxidation of ammonia, carbon monoxide and methane by nitrous oxide in shock waves.
In 13th Symp. Int. Combust. Proc., pp. 121-128.

Soloukhin (1973)
Soloukhin, R. (1973).
High-temperature oxidation of hydrogen by nitrous oxide in shock waves.
In 14th Symp. Int. Combust. Proc., pp. 77-82.

Spadaccini and Colket III (1994)
Spadaccini, L. and M. Colket III (1994).
Ignition delay characteristics of methane fuels.
Prog. Energy Combust. Sci. 20, 431-460.

Starikovskii (1994)
Starikovskii, A. (1994).
Kinetics and mechanism of reaction in the N2O - CO system at high temperatures.
Chem. Phys. Reports 13(1), 151-190.

Starikovskii (1995)
Starikovskii, A. (1995).
Development of flows with exothermic reactions behind reflected shock waves. ignition and detonation in N2O - CO - H2 - He mixtures at high temperatures.
Chem. Phys. Reports 13(8-9), 1422-1474.

Takeyama and Miyama (1965)
Takeyama, T. and H. Miyama (1965).
Kinetic studies of ammonia oxidation in shock waves. I. the reaction mechanism for the induction period.
Bull. Chem. Soc. Japan 38, 1670-1674.

Takeyama and Miyama (1967)
Takeyama, T. and H. Miyama (1967).
A shock-tube study of the ammonia-oxygen reaction.
In 11th Symp. Int. Comb. Proc., pp. 845-852.

Thibault et al. (1987)
Thibault, P., J. Shepherd, W. Benedick, and D. Ritzel (1987).
Blast waves generated by planar detonations.
In Proc. 16th Int. Symp. Shock Tubes Waves, pp. 765-771.

Westbrook (1982)
Westbrook, C. (1982).
Chemical kinetics of hydrocarbon oxidation in gaseous detonations.
Combust. Flame 46(2), 191-210.

Westbrook and Urtiew (1983)
Westbrook, C. and P. Urtiew (1983).
Use of chemical kinetics to predict critical parameters of gaseous detonations.
Fiz. Goreniya Vzryva 19(6), 65-76.

White and Moore (1965)
White, D. and G. Moore (1965).
Structure of gaseous detonation. IV. induction zone studies in H2-O2 and CO-O2 mixtures.
In 18th Symp. Int. Combust. Proc., pp. 785-795.

Zeldovich (1950)
Zeldovich, Y. (1950).
On the theory of the propagation of detonation in gaseous systems.
Technical Memorandum 1261, National Advisory Committee for Aeronautics.
Translated from ``K Teorri Rasprostranenia Detonantsii v Gasoobraznykh Sistremakh'', Zhurnal Experimentalnoi i Teoreticheskoi Fiziki, T. 10, 1940.

Zuev and Starikovskii (1992)
Zuev, A. and A. Starikovskii (1992).
Reactions in the N2O - H2 system at high temperatures.
Sov. J. Chem. Phys. 10(3), 520-540.


Joe E. Shepherd
2000-01-17