Next: Experimental Test Matrix
Up: No Title
Previous: Summary and Unresolved Issues
- Akbar and
Shepherd (1993)
-
Akbar, R. and J. Shepherd (1993, June).
Detonations in N2O-H2-N2-Air mixtures.
Prepared for the Los Alamos National Laboratory Under Consultant
Agreement C-4836.
- Akbar and
Shepherd (1996)
-
Akbar, R. and J. Shepherd (1996, September).
Detonations in N2O-H2 mixtures diluted with N2 or air.
Prepared for the Los Alamos National Laboratory Under Contract
929Q0015-3A, DOE W-7405-ENG-36.
- Allen
et al. (1995)
-
Allen, M., R. Yetter, and F. Dryer (1995).
The decomposition of nitrous oxide at 1.5
P
10.5 atm and
1103
T
1173 K.
Int. J. Chem. Kinet. 27(9), 883-909.
- Asaba
et al. (1963)
-
Asaba, T., K. Yoneda, N. Kakihara, and T. Hikita (1963).
A shock tube study of ignition of methane-oxygen mixtures.
In 9th Symp. Int. Combust. Proc., pp. 193-200.
- Balakhnine et al. (1977)
-
Balakhnine, V., J. Vandooren, and P. V. Tiggelen (1977).
Reaction mechanism and rate constants in lean hydrogen-nitrous oxide
flames.
Combust. Flame 28(2), 165-173.
- Baulch et al. (1992)
-
Baulch, D., C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling,
J. Troe, R. Walker, and J. Warnatz (1992).
Evaluated kinetic data for combustion modeling.
J. Phys. Chem. Ref. Data 21(3), 411-736.
- Baulch
et al. (1994a)
-
Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr,
T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994a).
Evaluated kinetic data for combustion modeling: Supplement I.
J. Phys. Chem. Ref. Data 23(6), 847-1033.
- Baulch
et al. (1994b)
-
Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr,
T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994b).
Summary table of evaluated kinetic data for combustion modeling:
Supplement I.
Combust. Flame 98(1), 59-79.
- Beeson et al. (1991)
-
Beeson, H., R. McClenagan, C. Bishop, F. Benz, W. J. Pitz, C. Westbrook, and
J. Lee (1991).
Detonability of hydrocarbon fuels in air.
In Prog. Astronaut. Aeronaut., Volume 133, pp. 19-36.
- Bennett (1986)
-
Bennett, C. A. (1986, March).
Personal communication.
Detonation Test Results and Predictions for NH3-O2-N2
Mixtures.
- Bhaskaran
et al. (1973)
-
Bhaskaran, K., M. Gupta, and T. Just (1973).
Shock tube study of the effect of unsymmetric dimethyl hydrazine on
the ignition characteristics of hydroge-air mixtures.
Combust. Flame 21, 45-48.
- Blumenthal et al. (1996)
-
Blumenthal, R., K. Fieweger, K. Komp, G. Adomeit, and B. Gelfand (1996).
Self-ignition of H2-air mixtures at high pressure and low
temperature.
In 20th Symp. Int. Shock Waves, pp. 935-940.
- Bollinger (1964)
-
Bollinger, L. (1964).
Experimental detonation velocities and induction distances in
hydrogen-air mixtures.
AIAA J. 2(1), 131-133.
- Bollinger
et al. (1961)
-
Bollinger, L., M. Fong, and R. Edse (1961).
Experimental measurements and theoretical analysis of detonation
induction distances.
Am. Rocket Soc. Pap. 31, 588-595.
- Bollinger
et al. (1962)
-
Bollinger, L., J. Laughrey, and R. Edse (1962).
Experimental detonation velocities and induction distances in
hydrogen-nitrous oxide mixtures.
Am. Rocket Soc. Pap. 32, 81-82.
- Borisov et al. (1977)
-
Borisov, A., V. Zamanskii, K. Potmishil, G. Skachkov, and V. Foteenkov (1977).
The mechanism of methane oxidation with nitrous oxide.
Kinet. Katal. 8, 307-315.
- Borisov
et al. (1978)
-
Borisov, A., V. Zamanskii, and G. Skachkov (1978).
Kinetics and mechanism of reaction of hydrogen with nitrous oxide.
Kinet. Katal. 19(1), 26-32.
- Bradley (1962)
-
Bradley, J. (1962).
Shock Waves in Chemistry and Physics.
Wiley.
- Bradley
et al. (1968)
-
Bradley, J., R. Butlin, and D. Lewis (1968).
Oxidation of ammonia in shock waves.
Trans. Faraday Soc. 64, 71-77.
- Bull (1968)
-
Bull, D. (1968).
A shock tube study of the oxidation of ammonia.
Combust. Flame 12, 603-610.
- Burcat
et al. (1996)
-
Burcat, A., M. Dvinyaninov, and A. Lifshitz (1996).
The effect of halocarbons on methane ignition.
In 20th Symp. Int. Shock Waves.
- Burcat
et al. (1971)
-
Burcat, A., K. Scheller, and A. Lifshitz (1971).
Shock-tube investigation of comparative ignition delay times for
C1 - C5 alkanes.
Combust. Flame 16(1), 29-33.
- Cheng and
Oppenheim (1984)
-
Cheng, R. and A. Oppenheim (1984).
Autoignition in methane-hydrogen mixtures.
Combust. Flame 58(2), 125-139.
- Cobos
et al. (1985)
-
Cobos, C., H. Hippler, and J. Troe (1985).
High pressure falloff curves and specific rate constants for the
reactions H+O2=HO2=HO+O.
J. Phys. Chem. 89(1), 342-349.
- Craig (1966)
-
Craig, R. (1966).
A shock tube study of the ignition delay of hydrogen-air mixtures
near the second explosion limit.
Technical Report AFAPL-TR-66-74, Air Force Aero-Propulsion Lab,
Wright-Patterson.
- Dean
et al. (1978)
-
Dean, A., D. Steiner, and E. Wang (1978).
A shock tube study of the H2/O2/CO/Ar and
H2/N2O/CO/Ar systems: Measurement of the rate constant for
H+N2O=N2+OH.
Combust. Flame 32(1), 73-83.
- Drummond (1967)
-
Drummond, L. (1967).
Shock-initiated exothermic reactions III. the oxidation of
hydrogen.
Aust. J. Chem. 20, 2331-2341.
- Drummond (1969)
-
Drummond, L. (1969).
Shock-induced reactions of methane with nitrous and nitric oxides.
Bull. Chem. Soc. Japan 42, 285-289.
- Drummond (1972a)
-
Drummond, L. (1972a).
Comments upon shock-initiated oxidations by nitrous oxide.
Combust. Sci. Technol. 5, 183-185.
- Drummond (1972b)
-
Drummond, L. (1972b).
High temperature oxidation of ammonia.
Combust. Sci. Technol. 5, 175-182.
- Drummond and
Hiscock (1967)
-
Drummond, L. and S. Hiscock (1967).
Shock-initiated exothermic reactions II. the oxidation of ammonia.
Aust. J. Chem. 20, 825-836.
- Frank and
Just (1985)
-
Frank, P. and T. Just (1985).
High temperature reaction rate for H+O2=OH+O and
OH+H2=H2O+H.
Ber. Bunsenges. Phys. Chem. 89(1), 181-187.
- Frenklach and
Bornside (1984)
-
Frenklach, M. and D. Bornside (1984).
Shock-initiated ignition in methane-propane mixtures.
Combust. Flame 56, 1-27.
- Frenklach et al. (1995)
-
Frenklach, M., H. Wang, C. Bowman, R. Hanson, G. Smith, D. Golden, W. Gardiner,
and V. Lissianski (1995).
An optimized kinetics model for natural gas combustion.
Technical report, Gas Research Institute.
For more information, see HTTP://www.gri.org.
- Frenklach
et al. (1992)
-
Frenklach, M., H. Wang, and M. Rabinowitz (1992).
Optimization and analysis of large chemical kinetic mechanisms using
the solution mapping method - combustion of methane.
Prog. Energy Combust. Sci. 18, 47-73.
- Fujii
et al. (1981)
-
Fujii, N., H. Miyama, M. Koshi, and T. Asaba (1981).
Kinetics of ammonia oxidation in shock waves.
In 18th Symp. Int. Combust. Proc., pp. 873-883.
- Hidaka
et al. (1996)
-
Hidaka, Y., K. Kimura, K. Hattori, and T. Okuno (1996).
Shock tube and modeling study of ketene oxidation.
Combust. Flame 106(1), 155-167.
- Hidaka
et al. (1985a)
-
Hidaka, Y., H. Takuma, and M. Suga (1985a).
Shock-tube studies of N2O decomposition and N2O-H2 reaction.
Bull. Chem. Soc. Japan. 58(10), 2911-2916.
- Hidaka
et al. (1985b)
-
Hidaka, Y., H. Takuma, and M. Suga (1985b).
Shock-tube study of the rate constant for excited OH*
(
)
formation in the N2O-H2 reaction.
J. Phys. Chem. 89(23), 4903-4905.
- Hunter
et al. (1994)
-
Hunter, T., H. Wang, T. Litzinger, and M. Frenklach (1994).
The oxidation of methane at elevated pressures: Experiments and
modeling.
Combust. Flame 97(2), 201-224.
- Kee
et al. (1989)
-
Kee, R., F. Rupley, and J. Miller (1989).
Chemkin-II: A fortran chemical kinetics package for the analysis of
gas-phase chemical kinetics.
Technical Report SAND89-8009, Sandia National Laboratory.
- Knystautas et al. (1984)
-
Knystautas, R., C. Guirao, J. Lee, and A. Sulmistras (1984).
Measurement of cell size in hydrocarbon-air mixtures and predictions
of critical tube diameter, critical initiation energy, and detonability
limits.
In Prog. Astronaut. Aeronaut., Volume 94, pp. 23-37.
- Lee (1984)
-
Lee, J. (1984).
Dynamic parameters of gaseous detonations.
Ann. Rev. Fluid Mech. 16, 311-336.
- Lindstedt
et al. (1994)
-
Lindstedt, R., F. Lockwood, and M. Selim (1994).
Detailed kinetic modelling of chemistry and temperature effects on
ammonia oxidation.
Combust. Sci. Technol. 99(4-6), 253-276.
- Lindstedt and
Selim (1994)
-
Lindstedt, R. and M. Selim (1994).
Reduced reaction mechanisms for ammonia oxidation in premixed laminar
flames.
Combust. Sci. Technol. 99(4-6), 277-298.
- Manzhalei
et al. (1974)
-
Manzhalei, V., V. Mitrofanov, and V. Subbotin (1974).
Measurement of inhomogeneities of a detonation front in gas mixtures
at elevated pressures.
Combust. Explos. Shock Waves (USSR) 10(1), 89-95.
- Miller and
Bowman (1989)
-
Miller, J. and C. Bowman (1989).
Mechanism and modeling of nitrogen chemistry in combustion.
Prog. Energy Combust. Sci. 15, 287-338.
- Miller
et al. (1983)
-
Miller, J., M. Smooke, R. Green, and R. Kee (1983).
Kinetic modeling of the oxidation of ammonia in flames.
Combust. Sci. Technol. 34, 149-176.
- Miyama (1968a)
-
Miyama, H. (1968a).
Ignition of ammonia-oxygen mixtures by shock waves.
J. Chem. Phys. 48, 1421-1422.
- Miyama (1968b)
-
Miyama, H. (1968b).
Kinetic studies of ammonia oxidation in shock waves. IV. comparison
of induction periods for the ignition of NH3-O2-N2 with thos for
NH3-O2-Ar mixtures.
Bull. Chem. Soc. Japan 41, 1761-1765.
- Miyama and
Endoh (1967a)
-
Miyama, H. and R. Endoh (1967a).
Ignition of ammonia-air mixtures by reflected shock waves.
Combust. Flame 11, 359-360.
- Miyama and
Endoh (1967b)
-
Miyama, H. and R. Endoh (1967b).
Vibrational relaxation of nitrogen in shock-heated NH3-
O2-N2 mixtures.
J. Chem. Phys. 46, 2011-2012.
- Miyama and
Takeyama (1965)
-
Miyama, H. and T. Takeyama (1965).
Kinetics of methane oxidation in shock waves.
Bull. Chem. Soc. Japan 38(1), 37-43.
- Moen
et al. (1984)
-
Moen, I., J. Funk, S. Ward, G. Rude, and P. Thibault (1984).
Detonation length scales for fuel-air explosives.
In Prog. Astronaut. Aeronaut., Volume 94, pp. 55-79.
- Pamidimukkala and
Skinner (1982)
-
Pamidimukkala, K. and G. Skinner (1982).
Resonance absorption measurements of atom concentrations in reacting
gas mixtures. VIII. rate constants for O+H2=OH+H and
O+D2=OD+D from measurements of O atoms in oxidation of H2 and D2 by N2O.
J. Chem. Phys. 76(1), 311-315.
- Petersen et al. (1996)
-
Petersen, E., D. Davidson, M. Rohrig, and R. Hanson (1996).
High-pressure shock-tube measurements of ignition times in
stoichiometric H2/O2/Ar mixtures.
In 20th Symp. Int. Shock Waves, pp. 941-946.
- Reynolds (1986)
-
Reynolds, W. C. (1986, January).
The Element Potential Method for Chemical Equilibrium Analysis:
Implementation in the Interactive Program STANJAN (3rd ed.).
Dept. of Mechanical Engineering, Stanford, CA: Stanford University.
- Ross and
Shepherd (1996)
-
Ross, M. and J. Shepherd (1996).
Lean combustion characteristics of hydrogen-nitrous oxide-ammonia
mixtures in air.
Technical Report FM96-4, Graduate Aeronautical Laboratories,
California Institute of Technology.
- Sausa et al. (1993)
-
Sausa, R., W. Anderson, D. Dayton, C. Faust, and S. Howard (1993).
Detailed structure study of a low pressure, stoichiometric
H2/N2O/Ar flame.
Combust. Flame 94(4), 407-425.
- Schott and
Kinsey (1958)
-
Schott, G. and J. Kinsey (1958).
Kinetic studies of hydroxyl radicals in shock waves. II. induction
times in the hydrogen-oxygen reaction.
J. Chem. Phys. 29(5), 1177-1182.
- Seery and
Bowman (1970)
-
Seery, D. and C. Bowman (1970).
An experimental and analytical study of methane oxidation behind
shock waves.
Combust. Flame 14(1), 37-48.
- Shepherd (1986)
-
Shepherd, J. (1986).
Chemical kinetics of hydrogen-air-diluent detonations.
In Prog. Astronaut. Aeronaut., Volume 106, pp. 263-293.
- Skinner and
Ringrose (1966)
-
Skinner, G. and G. Ringrose (1966).
Ignition delays of a hydrogen-oxygen-argon mixture at relatively low
temperature.
J. Chem. Phys. 42(6), 2190-2192.
- Soloukhin (1971)
-
Soloukhin, R. (1971).
High-temperature oxidation of ammonia, carbon monoxide and methane by
nitrous oxide in shock waves.
In 13th Symp. Int. Combust. Proc., pp. 121-128.
- Soloukhin (1973)
-
Soloukhin, R. (1973).
High-temperature oxidation of hydrogen by nitrous oxide in shock
waves.
In 14th Symp. Int. Combust. Proc., pp. 77-82.
- Spadaccini and
Colket III (1994)
-
Spadaccini, L. and M. Colket III (1994).
Ignition delay characteristics of methane fuels.
Prog. Energy Combust. Sci. 20, 431-460.
- Starikovskii (1994)
-
Starikovskii, A. (1994).
Kinetics and mechanism of reaction in the N2O - CO system at
high temperatures.
Chem. Phys. Reports 13(1), 151-190.
- Starikovskii (1995)
-
Starikovskii, A. (1995).
Development of flows with exothermic reactions behind reflected shock
waves. ignition and detonation in N2O - CO - H2 - He mixtures at high
temperatures.
Chem. Phys. Reports 13(8-9), 1422-1474.
- Takeyama and
Miyama (1965)
-
Takeyama, T. and H. Miyama (1965).
Kinetic studies of ammonia oxidation in shock waves. I. the
reaction mechanism for the induction period.
Bull. Chem. Soc. Japan 38, 1670-1674.
- Takeyama and
Miyama (1967)
-
Takeyama, T. and H. Miyama (1967).
A shock-tube study of the ammonia-oxygen reaction.
In 11th Symp. Int. Comb. Proc., pp. 845-852.
- Thibault et al. (1987)
-
Thibault, P., J. Shepherd, W. Benedick, and D. Ritzel (1987).
Blast waves generated by planar detonations.
In Proc. 16th Int. Symp. Shock Tubes Waves, pp. 765-771.
- Westbrook (1982)
-
Westbrook, C. (1982).
Chemical kinetics of hydrocarbon oxidation in gaseous detonations.
Combust. Flame 46(2), 191-210.
- Westbrook and
Urtiew (1983)
-
Westbrook, C. and P. Urtiew (1983).
Use of chemical kinetics to predict critical parameters of gaseous
detonations.
Fiz. Goreniya Vzryva 19(6), 65-76.
- White and
Moore (1965)
-
White, D. and G. Moore (1965).
Structure of gaseous detonation. IV. induction zone studies in
H2-O2 and CO-O2 mixtures.
In 18th Symp. Int. Combust. Proc., pp. 785-795.
- Zeldovich (1950)
-
Zeldovich, Y. (1950).
On the theory of the propagation of detonation in gaseous systems.
Technical Memorandum 1261, National Advisory Committee for
Aeronautics.
Translated from ``K Teorri Rasprostranenia Detonantsii v
Gasoobraznykh Sistremakh'', Zhurnal Experimentalnoi i Teoreticheskoi Fiziki,
T. 10, 1940.
- Zuev and
Starikovskii (1992)
-
Zuev, A. and A. Starikovskii (1992).
Reactions in the N2O - H2 system at high temperatures.
Sov. J. Chem. Phys. 10(3), 520-540.
Joe E. Shepherd
2000-01-17