# Detonations in $H_2$ - $N_2O$ - $CH_4$ - $NH_3$ - $O_2$ - $N_2$ Mixtures

Raza Akbar, Michael Kaneshige, Eric Schultz, Joseph Shepherd

Graduate Aeronautical Laboratories California Institute of Technology Pasadena, CA 91125

Explosion Dynamics Laboratory Report FM97-3

July 24, 1997 Revised January 17, 2000

Prepared for Los Alamos National Laboratory under Contract 929Q0015-3A, DOE W-7405-ENG-36

#### Abstract

This report describes experimental studies and analyses on the detonation properties of flammable gases that may be present in the waste storage tanks at Hanford, WA. These studies were carried out in the Explosion Dynamics Laboratory, part of the the Graduate Aeronautical Laboratories of the California Institute of Technology (GALCIT). Detonation cell sizes and pressures were measured in the GALCIT detonation tube facility for mixtures of hydrogen, ammonia, methane, nitrous oxide, oxygen and nitrogen. Measurements were made as a function of nitrogen and air dilution for stoichiometric mixtures of fuels and oxidizers and also specific retained gas compositions of tanks such as SY-101. Chemical kinetic modeling of these mixtures has been performed using the idealized ZND model. Existing reaction mechanisms and rate constant sets were benchmarked against shock tube data available in the literature. Correlations between reaction zone length and detonation cell width were developed that can be used to correlate and extrapolate the existing experimental data base.

# Contents

| Ez           | cecut | tive Summary                                                                                                                                     | vii |
|--------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1            | Inti  | roduction                                                                                                                                        | 1   |
| <b>2</b>     | Exp   | periments                                                                                                                                        | 1   |
|              | 2.1   | Apparatus and Procedure                                                                                                                          | 1   |
|              | 2.2   | Results                                                                                                                                          | 3   |
|              | 2.3   | Summary of Experimental Data                                                                                                                     | 9   |
| 3            | Che   | emical Reaction Kinetics                                                                                                                         | 10  |
|              | 3.1   | Validation of Reaction Mechanisms                                                                                                                | 11  |
|              |       | 3.1.1 Experimental Data                                                                                                                          | 12  |
|              |       | 3.1.2 Numerical Technique                                                                                                                        | 12  |
|              |       | 3.1.3 $H_2 - O_2 - N_2 (-Ar) \dots \dots$  | 14  |
|              |       | 3.1.4 H <sub>2</sub> - N <sub>2</sub> O (- Ar)                                                                                                   | 16  |
|              |       | 3.1.5 $CH_4 - O_2 - N_2 (-Ar) \dots \dots$ | 17  |
|              |       | 3.1.6 $CH_4 - N_2O$ (- Ar)                                                                                                                       | 17  |
|              |       | 3.1.7 $NH_3 - O_2$ (- Ar)                                                                                                                        | 18  |
|              |       | 3.1.8 $NH_3 - O_2 - N_2$                                                                                                                         | 19  |
|              |       | 3.1.9 $NH_3 - N_2O$ (- Ar)                                                                                                                       | 19  |
|              |       | 3.1.10 Summary                                                                                                                                   | 20  |
|              | 3.2   | Cell Width and ZND Calculations                                                                                                                  | 20  |
|              | 3.3   | Correlations                                                                                                                                     | 21  |
| 4            | Sur   | mmary and Unresolved Issues                                                                                                                      | 23  |
| R            | efere | ences                                                                                                                                            | 27  |
| A            | Exp   | perimental Test Matrix                                                                                                                           | 31  |
| в            | Dri   | iver Calibration                                                                                                                                 | 35  |
| С            | Val   | lidation Figures                                                                                                                                 | 39  |
| D            | ZN    | D Calculation Results                                                                                                                            | 57  |
| $\mathbf{E}$ | Rea   | action Mechanisms                                                                                                                                | 63  |
|              | E.1   | Allen et al. (1995)                                                                                                                              | 63  |
|              | E.2   | Baulch et al. (1994a)                                                                                                                            | 67  |

| $\mathbf{G}$ | Pres | ssure Traces                                     | 93 |
|--------------|------|--------------------------------------------------|----|
| F            | Soo  | t Foil Photographs                               | 91 |
|              | E.5  | Miller et al. (1983)                             | 87 |
|              | E.4  | Modified Miller and Bowman (1989)                | 80 |
|              | E.3  | Frenklach et al. (1995) (GRI-Mech 2.11) $\ldots$ | 72 |

# **Executive Summary**

This report provides fundamental data and analyses needed to evaluate possible detonation hazards that may result from flammable gases within the waste storage tanks located at Hanford, WA. The emphasis is on the measurement and correlation of detonation cell widths. Cell-width information can be used through generally accepted correlations (Lee 1984) to predict more direct indicators of detonation hazards, such as critical-initiation energy or the critical-tube diameter for transmission of a detonation to an unconfined space. By measuring cell widths in some representative gas mixtures, a basis for one or more correlations is made. The cell-width data can be correlated to some other length scale, for instance the reaction-zone thickness, which can be computed directly.

Experiments have been performed in the GALCIT detonation tube for the following mixtures:

- Stoichiometric hydrogen and nitrous oxide diluted by nitrogen and air.
- Stoichiometric methane and oxygen diluted by nitrogen.
- Stoichiometric methane and nitrous oxide diluted by nitrogen and air.
- Stoichiometric ammonia and oxygen diluted by nitrogen.
- Stoichiometric ammonia and nitrous oxide diluted by nitrogen and air.
- Various model tank mixtures for tanks SY-101, AW-101, AN-105, AN-104, AN-103, and A-101 diluted by air.

Detonation velocities have also been measured and found in good agreement with equilibrium thermochemical calculations. Our measured cell widths agree with data from the literature where available, but most of the mixtures we have examined have not been studied before. The oxy-acetylene driver has been studied and found to be capable of providing 10-120 kJ of initiation energy in a repeatable fashion.

Reaction zone calculations have the advantage of being generally faster and cheaper than experiments and also of being capable of a larger range of conditions and mixtures. However, a number of difficulties prevent the calculations from being straightforward. The first problem is the lack of a comprehensive reaction mechanism for the most general mixtures. In an effort to find or create such a mechanism, we have collected several mechanisms from the literature, and a large amount of experimental data for validation.

The most successful mechanism for the model tank mixtures found so far is a modified version of the the mechanism of Miller and Bowman (1989), although it is not as successful at methane oxidation as the GRI-Mech 2.11 (Frenklach et al. 1995), which can not be used for ammonia oxidation. The mechanisms of Miller et al. (1983) and Miller and Bowman (1989) can be used for ammonia combustion but are not as useful for hydrocarbon combustion.

Two analysis tools are available for performing chemical kinetics calculations under constant-volume conditions or during steady, one-dimensional, compressible flow behind a shock. The constant-volume calculations are used for validation comparisons with shock tube induction time data, and the onedimensional dynamical calculations are used to compute the reaction zone thickness in idealized planar detonation waves.

Using the experimental data mentioned above and reaction-zone thickness calculations performed with appropriate mechanisms, cell-width correlations have been created for several mixtures. For limited conditions involving fixed fuel-oxidizer stoichiometry, with variations in initial pressure or dilution, a power law correlation between cell size and reaction zone thickness appears to be very useful. A more general correlation applicable to various fuel-oxidizer systems is more elusive but currently under development.

# 1 Introduction

Detonation hazards are typically characterized by several detonability parameters (critical energy, critical tube diameter, minimum tube diameter) that can each be related to the detonation cell width (Lee 1984), which provides a convenient measurable length scale. The novel mixtures encountered in the Hanford waste tanks provide a challenge because cell-width data are scarce and the mixtures are sensitive to small changes in some variables (e.g.  $N_2O$  and  $O_2$  concentrations). One approach to determining the detonability of the mixtures of interest is to measure cell widths under a range of possible conditions. Another, complementary approach, is to compute reaction zone thicknesses behind idealized detonation waves, derive a correlation between measured cell widths and these computed reaction zone thicknesses, and use the correlation to predict cell widths at untested conditions. Reaction zone calculations rely on detailed reaction rate mechanisms, so some effort is required to ensure that the calculations are meaningful. However, the empirical correlation to cell width masks some uncertainty in the reaction zone calculations. Following this combined approach, cell-width data of direct usefulness to hazard analysis are generated and a rational means of interpolating and extrapolating these data is developed.

# 2 Experiments

## 2.1 Apparatus and Procedure

The experimental apparatus used was the GALCIT Detonation Tube (Figs. 1, 2, and 3), first described in a previous report (Akbar and Shepherd 1996). The tube is constructed of three cast stainless steel (304) sections joined together by flanges and high-strength fasteners. The assembly is 7.3-m long and has a 280-mm inside diameter. A vacuum system is used to evacuate the tube to less than 50 mTorr before each test. A gas handling system can supply H<sub>2</sub>, N<sub>2</sub>O, N<sub>2</sub>, NH<sub>3</sub>, CH<sub>4</sub>, O<sub>2</sub>, Ar, and He from a cylinder farm located outside the building. Gas composition is controlled by the method of partial pressures using an electronic Heise 901a gauge, accurate to  $\pm$  0.18 kPa. Before a test, the test mixture is circulated through the tube volume with a bellows pump to ensure homogeneity.



Figure 1: Elevation schematic of GALCIT Detonation Tube.

An oxy-acetylene driver is used to reliably initiate mixtures with a wide range of sensitivities. The driver gas is injected through a distribution manifold (4 tubes, 150-mm long) located at one end of the tube, and is a slightly lean mixture of acetylene and oxygen. Partial pressure of the driver gas is about 2 kPa, and can be controlled by varying the injection time. Initiation of the driver is achieved by a capacitor discharge through an exploding copper wire (30-mm long). A study has been carried out to measure the equivalent energy of the driver (see Appendix B). The results of this study allow control of the detonation wave strength, and a close approximation of the Chapman-Jouguet condition at the downstream end of the tube.



Figure 2: Oblique schematic of GALCIT Detonation Tube.

Table 1 summarizes the mixtures tested so far. For all mixtures except mixture 1, air was made from bottled O<sub>2</sub> and N<sub>2</sub>. Tests with mixture 1 (H<sub>2</sub>+N<sub>2</sub>O+ $\beta$ (O<sub>2</sub>+3.76N<sub>2</sub>)) used atmospheric air. We use a simplified representation of air composition as O<sub>2</sub> + 3.76N<sub>2</sub>; the complete specification of all compositions used in this study are given in Table 1. Note that the mixture numbers do not correspond to the mixture numbers in the previous report (Ross and Shepherd 1996). To simplify the presentation, N<sub>2</sub> and air are treated as diluents even though air is an effective oxidizer. The amount of diluent was specified in terms of the fraction (percentage) in the figures rather than in terms of the parameter  $\beta$ given in Table 1 and Appendix A. For the case of nitrogen dilution, the fraction of diluent is  $\beta/N$  where N is the total number of moles in the mixture formula in Table 1 and in the case of air, the fraction is  $4.76\beta/N$ .

Mixtures 2 to 11 represent simple mixtures of one fuel and one oxidizer that have been used to characterize the behavior of each substance individually. Mixtures 12 through 17 are best estimates of the retained gas composition in the waste tank as determined by recent tests at Hanford. A small percentage of the gas sample was not identified in those cases and was simply stated as "unknown." In those cases, we have increased the amount of  $N_2$  to preserve the actual percentages of the other species. For instance, mixture 12 was originally specified with 2% unknown, so the original 33%  $N_2$  was replaced with 35%  $N_2$ . In each series, as the dilution was increased, the initial pressure was increased such that predicted detonation pressures were just below the tube design limit, up to 1 atm initial pressure. The purpose of this strategy was to acquire as much data at 1 atm initial pressure (field conditions) as possible while deviating as little as possible when required by structural limitations. The largest cell sizes possible are about 50% to 100% of the tube diameter (280 mm). Only one test was carried out for each mixture type 3 and 4 and no cell data were obtained.

Detonation cell widths are measured by the soot foil technique. The cell width is determined by physical measurements of the spacing, transverse to the detonation propagation direction, between triple point tracks inscribed on soot foils placed within the detonation tube. The foils are 61 cm x 91.4 cm x 0.5 mm aluminum sheets, rolled into cylinders to conform to the detonation tube inner diameter. Soot is deposited on the inside surface of each foil by burning a kerosene-soaked cloth strip inside a closed vertical tube containing the foil. Each foil is normally sooted twice, in both vertical orientations, to cancel convection-induced gradients. The upstream edge of the foil is riveted to an aluminum ring (3-mm thick by 51-mm wide) to secure it as the detonation passes. The downstream end (adjacent to the end flange) is clamped at two points to the tube wall. The cell widths are measured on flattened foils, as the transverse distance between triple point tracks. Since this distance can vary significantly over a foil,



Figure 3: GALCIT Detonation Tube facility. a) View along tube from driver end. b) Side view of driver end.

minimum and maximum values are reported. Note that for small cells (relative to the tube diameter), this is a unique measure of the cell width, but for cell widths on the order of the tube diameter, this measure may not be comparable to measurements in other facilities or by other techniques. In this case, the effect of the tube geometry on the cells should be considered. Currently, cell widths are measured manually. The inherent variation of cell size across the foil and the difficulty of identifying cell boundaries are significant sources of uncertainty and impose serious limitations on efforts to characterize and predict cell size. Typically, 10 cell-width measurements are made and representative minimum and maximum values are reported. In general, the uncertainty in cell-width measurements, reflected in the reported ranges, can be up to 50%.

### 2.2 Results

Appendix A summarizes the results of tests involving the mixtures listed in Table 1. The initial pressure listed for each shot includes the pressure added by the driver gas. Detonation initiation or failure of each shot is recorded under "Go". Chapman-Jouguet detonation speeds, as predicted by STANJAN (Reynolds 1986), are reported under  $D_{CJ}$  while the measured (average) wave speeds between pressure transducers 1 and 2, and 2 and 3 are reported under  $D_{1-2}$  and  $D_{2-3}$ , respectively.  $\lambda_{\min}$  and  $\lambda_{\max}$  represent the range of cell widths recorded by the soot foil technique for shots where cells were measurable. One conclusion to be reached from the data in Appendix A is that equilibrium predictions of detonation speed are quite

| Mixture | Composition                                                               | Initial Pressure   | Note         |
|---------|---------------------------------------------------------------------------|--------------------|--------------|
| 1       | $H_2+N_2O+\beta(O_2+3.76N_2)$                                             | 100 kPa            |              |
| 2       | $H_2+N_2O+\beta N_2$                                                      | 100 kPa            |              |
| 3       | $14H_2 + 14N_2O + 71N_2 + O_2$                                            | 100 kPa            |              |
| 4       | $H_2+4O_2$                                                                | 98  kPa            |              |
| 5       | $CH_4+2O_2+\beta N_2$                                                     | 72-102 kPa         |              |
| 6       | $CH_4+4N_2O+\beta N_2$                                                    | 57-102 kPa         |              |
| 7       | $CH_4 + 4N_2O + \beta(O_2 + 3.76N_2)$                                     | 86-97 kPa          |              |
| 8       | $NH_3 + 0.75O_2 + \beta N_2$                                              | 66-91 kPa          |              |
| 9       | $NH_3+1.5N_2O+\beta N_2$                                                  | 56-81 kPa          |              |
| 10      | $NH_3 + 1.5N_2O + \beta(O_2 + 3.76N_2)$                                   | 61-101 kPa         |              |
| 11      | $42H_2 + 21NH_3 + 36N_2O + CH_4 + \beta(O_2 + 3.76N_2)$                   | 76-101 kPa         | $SY-101^{1}$ |
| 12      | $29H_2 + 11NH_3 + 24N_2O + 35N_2 + CH_4 + \beta(O_2 + 3.76N_2)$           | 94-101 kPa         | SY-101       |
| 13      | $31H_2 + 0.02NH_3 + 4.3N_2O + 63.08N_2 + 1.6CH_4 + \beta(O_2 + 3.76N_2)$  | 101 kPa            | AW-101       |
| 14      | $63H_2 + 0.02NH_3 + 11N_2O + 25.28N_2 + 0.7CH_4 + \beta(O_2 + 3.76N_2)$   | 101 kPa            | AN-105       |
| 15      | $47H_2 + 0.02NH_3 + 19N_2O + 33.08N_2 + 0.9CH_4 + \beta(O_2 + 3.76N_2)$   | 101 kPa            | AN-104       |
| 16      | $61H_2 + 0.05NH_3 + 3.8N_2O + 35.14N_2 + 0.01CH_4 + \beta(O_2 + 3.76N_2)$ | 101 kPa            | AN-103       |
| 17      | $75H_2 + 2.4NH_3 + 5.6N_2O + 16.3N_2 + 0.7CH_4 + \beta(O_2 + 3.76N_2)$    | $101 \mathrm{kPa}$ | A-101        |

Table 1: Experimentally Studied Mixtures

<sup>1</sup>Mixture 26 from Ross and Shepherd (1996), see Appendix D

accurate. This relates to the performance of the driver (Section B) as well as the accuracy and relevance of equilibrium calculations. Of the shots with promptly initiated detonations, the apparent velocity between pressure transducers 1 and 2 was slightly above the CJ velocity (0.14% on average), and the apparent velocity between transducers 2 and 3 exhibited a slight velocity deficit (0.27% on average). The average drop in velocity was 7.92 m/s. Several photographic examples of soot foils are given in Appendix F and a number of pressure traces are provided in Appendix G.

Figures 4 through 11 show the cell-width measurements along with data from the literature. These data are also shown in different form in Section 3.3. Figure 4 shows cell-width measurements of H<sub>2</sub>-N<sub>2</sub>O-diluent mixtures from the present work and from a previous report (Akbar and Shepherd 1993). Cases with dilution by air and N<sub>2</sub> are presented together. Figure 5 shows cell-width measurements of CH<sub>4</sub>-O<sub>2</sub>-N<sub>2</sub> from the present work and a number of other publications (Moen et al. (1984), Manzhalei et al. (1974), Knystautas et al. (1984), Beeson et al. (1991)). Note that the data points around 0% N<sub>2</sub> have been artificially spread out so they are distinguishable, but they all represent the undiluted case. The data points at 71.5% N<sub>2</sub> also represent stoichiometric CH<sub>4</sub>-air. As described in Section 2.1, higher initial pressures were generally used at higher dilutions, but some data points at low pressure (70 kPa) are shown for both low and high dilution. Figure 6 shows cell-width measurements of CH<sub>4</sub>-N<sub>2</sub>O-diluent mixtures from the present work only. No comparable data have been found in the published literature. Five of the tests shown in Fig. 6 used air dilution and the rest were with N<sub>2</sub> dilution. Within the range of dilution studied experimentally, little difference is seen between N<sub>2</sub> and air dilution. Again, data from a number of initial pressures are shown together.

Some data were available from unpublished sources for cell widths in stoichiometric  $NH_3-O_2$  mixtures diluted by  $N_2$  (Bennett 1986) and these data are shown along with some from the current work in Fig. 7. Figure 8 shows data for stoichiometric  $NH_3-N_2O$  mixtures diluted with  $N_2$  and air. As seen in the  $CH_4-N_2O$  data (Fig. 6), little difference is apparent between  $N_2$  and air dilution at the levels tested.

A large number of tests were performed with two versions of SY-101 model tank mixtures with variable air dilution, and these results are shown in Fig. 9. At the lower dilution levels, the initial pressure varied below 1 atm. These data are interesting for the slow increase (and slight decrease for mixture 12) of cell width with increasing air concentration at low dilution. A selection of air dilution



Figure 4: Cell width vs. percent dilution for stoichiometric H<sub>2</sub>-N<sub>2</sub>O-diluent mixtures.



Figure 5: Cell width vs. percent  $\mathrm{N}_2$  for stoichiometric  $\mathrm{CH}_4\text{-}\mathrm{O}_2\text{-}\mathrm{N}_2$  mixtures.

cases were tested in other model tank mixtures, and these data are shown together in Fig. 10.



Figure 6: Cell width vs. percent dilution for stoichiometric  $CH_4$ -N<sub>2</sub>O-diluent mixtures.



Figure 7: Cell width vs. percent dilution for stoichiometric  $NH_3$ - $O_2$ - $N_2$  mixtures.



Figure 8: Cell width vs. percent dilution for stoichiometric  $NH_3-N_2O$ -Diluent mixtures.



Figure 9: Cell width vs. percent air dilution for model SY-101 mixtures.



Figure 10: Cell width vs. percent air dilution for model tank mixtures.



Figure 11: Cell width vs. percent CH<sub>4</sub> for mixture 12.

A notable feature of the model tank mixtures under study is the small concentrations of  $CH_4$  present. In all experiments and calculations performed so far, the  $CH_4$  has been included as specified. However, analysis of the mixtures would be greatly simplified if it were omitted, particularly for chemical kinetics calculations. The number of reactions to be considered could be dramatically reduced (79 reactions and 20 species vs 201 reactions and 45 species) for one standard mechanism. Possible strategies for omitting  $CH_4$  from the study include ignoring it, replacing it with a comparable species, or developing some correction scheme based on modeling results. Considering this, a set of experiments with one of the model tank mixtures were performed (without air) with various  $CH_4$  concentrations. These results are shown in Fig. 11 which shows a slight increase in cell width with methane concentration in the range of 0-2%  $CH_4$ .

Some of the model tank mixtures contain very small quantities of  $NH_3$ , which may be insignificant. However, since some mixtures do contain substantial concentrations of  $NH_3$ , any gains made by omitting it would be limited.

### 2.3 Summary of Experimental Data

Experimental data have been obtained on detonations for mixtures that have not been previously studied. For convenience, we summarize these data in Table 2. The diluent amount required to reach a cell width of 100 mm has been estimated by interpolating or extrapolating the experimental data.

| Mixture          | Diluent              | (%) | $\lambda$ |
|------------------|----------------------|-----|-----------|
|                  |                      |     | (mm)      |
| $H_2 + 1/2O_2$   | -                    | 0   | 1.3-2.0   |
|                  | $N_2$                | 55  | 10-15     |
| $H_2+N_2O$       | -                    | 0   | 1.5       |
|                  | $N_2$                | 62  | 36        |
|                  | $\operatorname{air}$ | 65  | 26        |
| $CH_4+2O_2$      | -                    | 0   | 3         |
|                  | $N_2$                | 72  | 300       |
| $CH_4 + 4N_2O$   | -                    | 0   | 3(*)      |
|                  | $N_2$                | 64  | 80        |
|                  | $\operatorname{air}$ | 60  | 50        |
| $NH_3 + 3/4O_2$  | -                    | 0   | 16-25     |
|                  | $N_2$                | 35  | 100       |
| $NH_3 + 3/2N_2O$ | -                    | 0   | 6(*)      |
|                  | $N_2$                | 38  | 34(*)     |
|                  | air                  | 53  | 64(*)     |

Table 2: Summary of measured cell width data (initial pressure of 100 kPa).

(\*) Extrapolated from lower pressure.

Comparison of results without dilution show that cell widths for  $H_2$  and  $CH_4$  are slightly smaller with  $O_2$  as the oxidizer than with  $N_2O$ . The situation is reversed in  $NH_3$ , which has a smaller cell width (24 mm vs 40 mm) with  $N_2O$  as an oxidizer than with  $O_2$ .

All of the mixtures with the exception of the model SY-101 composition demonstrate increasing cell widths with increasing diluent concentration. The SY-101 mixtures show a constant or slightly decreasing cell width with increasing air concentration up to about 40% dilution, then the cell width rises sharply with increasing dilution. This is a consequence of these mixtures being fuel rich.

Air dilution results in slightly smaller cell widths than  $N_2$  dilution for both  $H_2$  and  $CH_4$  mixtures. This effect is not discernible in the  $NH_3$ - $N_2O$  data. The amount of diluent required to obtain a cell width of 100 mm is about 60 to 70% in all cases except for the  $NH_3$ - $O_2$  mixture which only requires about 35% N<sub>2</sub>. The ammonia mixture has substantially (one order-of-magnitude) larger cell widths than either the H<sub>2</sub> or CH<sub>4</sub> mixtures. Using N<sub>2</sub>O instead of O<sub>2</sub> results in substantially smaller cell widths for NH<sub>3</sub>, suggesting a direct channel of reaction that is not present in either H<sub>2</sub> or CH<sub>4</sub>.

The original SY-101 mixture has a cell width of 100 mm at a dilution of about 75% air, however the revised composition only requires 60% dilution to reach a the same cell width.

# **3** Chemical Reaction Kinetics

Many parameters of interest for detonation and high pressure combustion (cell width, critical energy, etc.) can be measured experimentally. For the sake of detonation hazard analysis, cell width is the most convenient characteristic parameter, because it is easy to measure and can be related to the other dynamic parameters (Lee 1984). A limited predictive capability can be obtained by using computations based on detailed chemical reaction mechanisms to extrapolate and interpolate experimental data. In the context of the present study, we have explored the potential for using existing mechanisms for this purpose. The first task before using the reaction mechanisms is to benchmark the performance of these mechanisms and rate constant sets against standard shock-tube induction time measurements available in the literature.

Predicting cell size from chemical kinetics calculations is based on the concept of the finite reactionzone thickness of a detonation wave. Historically, the relationship between reaction zone thickness and cell size has often been taken to be a simple linear proportionality (Westbrook and Urtiew 1983), although this is valid only within limited ranges of conditions. An empirically based extension of this theory suggests that the ratio of cell size to reaction zone thickness is a function of equivalence ratio (Shepherd 1986). While this theory is more successful at describing observed trends, it is still limited to specific mixtures and conditions, and does not address the functional form of the relationship.

Two steps are critical in developing reliable predictions of cell size from chemical kinetics calculations: 1) developing a validated reaction mechanism for the compositions of interest, and 2) correlating the computed reaction zone lengths to the cell size. Our validation testing is described in Section 3.1 and the correlations are presented in Sections 3.2 and 3.3.

For this report, two classes of chemical kinetics calculations were performed: constant volume explosion, and one-dimensional steady flow. In addition, purely equilibrium calculations were performed with a thermochemical solver (STANJAN, Reynolds (1986)). Numerically, the kinetics calculations consist of integrating forward in time the appropriate ordinary differential equations. The initial conditions were obtained by using STANJAN to solve the frozen shock jump conditions.

Reaction rate and property calculations were performed with the Sandia gas phase chemical kinetics subroutine library (Kee et al. 1989). The primary limitation on the accuracy of these calculations is the reaction mechanism and rate constants. We tested several different published mechanisms as part of our study. Thermodynamic data for all kinetics calculations were taken from the thermodynamic database distributed with the Sandia chemical kinetics package. The thermodynamic database distributed with the GRI mechanism (Frenklach et al. 1995) was not used except where data were not available in the Sandia database.

Modeling of finite-rate chemical reactions is a standard practice, but compiling a list of the relevant elementary reactions and corresponding rate parameters is still a challenge for novel mixtures. Much published work in this area is aimed at finding the most important elementary reactions and parameters to allow stripped down or *reduced* (and therefore computationally faster) mechanisms to yield accurate solutions. This is generally successful only for simple reactions and within limited ranges of conditions. Since our mixtures of interest involve many reactants, we are focusing on comprehensive, rather than fast, mechanisms. The mechanisms listed in Appendix E have been selected to be as comprehensive as possible. For calculations that do not use some of the reactions in these mechanisms, the unnecessary reactions can be removed to reduce solution time. Furthermore, while there are mechanisms available containing all the elementary reactions we need, they are tuned for conditions quite different from ours. Namely, atmospheric flame modeling is more common than detonation modeling, and hydrocarbon combustion in air is far more studied than oxidation of  $NH_3$  or by  $N_2O$ .

The reactions of interest in this study involve the oxidation of  $H_2$ ,  $CH_4$ , and  $NH_3$  by  $N_2O$  and air. The chemistry of the individual fuel-oxidizer combinations have been studied and reported in some detail in the literature, but few studies are available with combinations of these fuels and oxidizers. The number of relevant studies is further reduced by the limited conditions considered in each. Generally, mechanisms can be built and expanded from the simpler and better understood reactions to the more complicated systems of interest. However, an assembly of simpler mechanisms may omit reactions that are not important in the constituent mechanisms but that become important in the mixture. Also, some reactions may proceed through various sequences of elementary reactions, and the importance of each path may vary with the addition of other reactants. A mechanism that successfully models a simple mixture while ignoring certain routes will perform poorly when those routes become important.

### 3.1 Validation of Reaction Mechanisms

Currently, no known published mechanism is capable of accurately modeling mixtures containing all of the chemical species of interest to this study. Computational requirements and limitations cause most mechanisms to be designed for a particular application, and they are of uncertain value under offdesign conditions. To evaluate the usefulness of the collected mechanisms under a variety of conditions, simulations using the mechanisms have been compared to experimental data from the literature. Data suitable for comparison with chemical kinetics computational results include shock tube induction times, flame induction distances, stirred reactor induction times, and flame species concentration profiles. To simplify the analysis, and because a large portion of the available data is in the form of shock tube induction time, we concentrated on comparisons with induction time measurements. For the sake of numerical analysis, the chemical reactions behind both incident and reflected shocks are modeled as constant-volume processes. This is a good approximation in most cases since the shocked mixtures are typically highly diluted with Argon and there is relatively weak coupling between the chemical reactions and the fluid motion.

In general, induction times are straightfoward to measure and there are abundant data in the published literature. However, there are a number of difficulties that we encountered:

- 1. Induction time can be defined in a number of different ways for the purposes of both experimental measurement and numerical modeling (see Section 3.1.1).
- 2. Data from different reactant concentrations are sometimes presented together without individual identification, making proper modeling difficult.
- 3. Most validated reaction mechanisms are most accurate at lower pressures and higher temperatures than those encountered in detonations (within the induction zone).
- 4. Each validation data set or each set of reaction rate parameters is useful for limited ranges of temperature, pressure, and species concentrations.
- 5. Many investigators plot induction time data in such a way as to remove the pressure dependence (i.e.  $\tau[X]$ ), and then plot data for a variety of pressures together. This makes it difficult to precisely compare experimental and computational results.

In Sections 3.1.3 to 3.1.9 below, a brief review of the validation effort is given for each simple fueloxidizer mixture. In some instances, different dilutions are examined separately. Each section consists of a list of references containing reaction mechanism or induction time data, discussion of these references, a description of the results of the validation study, and recommendations of appropriate conditions for use of the studied mechanisms. These recommendations are summarized in Table 11 and supporting figures are provided in Appendix C. These reviews are not exhaustive.

The thermodynamic condition within a fuel-air detonation typically varies from 1500 K and 40 atm (von Neumann state) to 3000 K and 20 atm (Chapman-Jouguet state). Since the conditions within the induction zone are approximately the von Neumann condition and primarily determine the length of the reaction zone, accurate modeling of this condition is most important.

#### 3.1.1 Experimental Data

Many experimental studies of reactions behind reflected shocks in shock tubes have been performed. In these experiments, the region near the shock-tube end wall is monitored, usually by pressure transducers or spectroscopically, and one or more thermodynamic or species variables is measured over time. The definition of induction time varies considerably throughout the literature, but most of the data are comparable. An advantage of shock-tube induction time data for validation of detonation chemistry mechanisms (over flame or flow reactor data) is that the postshock conditions more closely resemble the conditions within a detonation. Many shock tube studies obtain typical detonation temperatures (1500 - von Neumann, 3000 - Chapman-Jouguet), but pressures above 5 atm are rare. High argon dilution is frequently used to increase induction times, but unfortunately nitrogen dilution is uncommon.

Induction Time Definitions The concept of induction time presupposes that the shocked-heated reactants will have a well-defined period of nearly isothermal reaction followed by a very rapid exothermal event (explosion). The end of the induction period is typically marked by a very sharp increase in pressure, temperature, and product species. This supposition is reasonable for most cases because almost all combustion reactions initially consist of thermally-neutral, chain-branching processes that create the intermediate and radical species that ultimately combine to form products. Under some conditions, for instance at very high or very low temperature, an induction time does not exist. At low temperature, it may be effectively infinite. At high temperature, the equilibrium state may not contain significant quantities of product, but rather may be largely dissociated. At some intermediate conditions, the induction time may be weakly defined, because the transition from reactants to products may be smooth and continuous.

Supposing that an induction time can be used to characterize a combustion event, the question arises of exactly how to define it. The definition is unimportant if all variables (temperature, pressure, reactant, product, and species concentrations) change rapidly at the same time. This is not always the case for the mixtures of interest to the present study. We generally use the definition that the end of the induction zone is the point where the rate of increase of temperature is maximum. This is convenient because it does not involve arbitrary reactant consumption fractions (for instance when 50% of reactant A is consumed), and it coincides with the point of maximum heat release. Table 3 gives a list of measures used in the literature to indicate the end of the induction zone.

#### 3.1.2 Numerical Technique

The numerical model used to simulate the shock tube data is an adiabatic, constant-volume process with finite rate chemical kinetics. The initial conditions are the pre-shock chemical concentrations and the post-shock thermal conditions. This model isolates the chemical kinetics from fluid dynamical considerations. The appropriateness of the constant volume approximation is limited to reflected shock experiments and compositions with small heat release (effectively high dilution). Another limitation of the constant-volume analysis is that the fluid between the reflected shock and the endwall can be nonuniform due to shock-wave boundary layer interaction (Bradley 1962). Neither of these effects are considered in the present study.

Some published mechanisms specify pressure fall-off relations that are not standard within the Sandia package (Kee et al. 1989). In some cases, the published relation is found to be a special case of a Sandia

| A saba at al. $(1063)$      | Sudden and wall programs rise                                                         |
|-----------------------------|---------------------------------------------------------------------------------------|
| Asaba et al. $(1903)$       | Judden end wan pressure rise.                                                         |
| Bhaskaran et al. (1975)     | Large increase in optical emission (photomultiplier) and end wan                      |
|                             | pressure.                                                                             |
| Blumenthal et al. (1996)    | Multiple induction time definitions were used, and two events were                    |
|                             | sometimes observed: an initial small change ("first kernel") followed                 |
|                             | by a more rapid change (DDT). The "first kernel" was variably mea-                    |
|                             | sured by detection of a density gradient (shadowgraph), sudden OH                     |
|                             | emission, or a slight pressure rise. A sudden pressure jump defined                   |
|                             | the DDT. In cases where no detonation occurred, a first kernel was                    |
|                             | reported by the shadowgraph technique.                                                |
| Borisov et al. $(1977)$ and | In "static experiments", induction time was defined as the delay                      |
| Borisov et al. $(1978)$     | between stopping the flow and the observation of a sharp pressure                     |
|                             | increase. In shock tube experiments, absorption spectroscopy of $N_2O$                |
|                             | at 253.6 nm was used to detect a sudden decrease in $N_2O$ concen-                    |
|                             | tration.                                                                              |
| Bradley et al. (1968)       | Appearance of OH by absorption at $306.7 \text{ nm}$ and $\text{NH}_3$ emission at    |
|                             | 3000 nm.                                                                              |
| Burcat et al. (1971)        | Sudden level or slope change in pressure and heat flux.                               |
| Cheng and Oppenheim (1984)  | Extrapolated from reflected wave trajectories (pressure increase).                    |
| Craig (1966)                | Sudden pressure rise.                                                                 |
| Drummond (1969)             | Maximum OH absorption at 307 nm and end wall pressure rise.                           |
| Drummond (1972b)            | Absorption by OH at 307 nm, NH <sub>2</sub> at 570 nm, and NH at 336 nm.              |
| Hidaka et al. (1985b)       | $t_m$ was defined by the point of maximum OH emission intensity at                    |
|                             | 305.5 nm.                                                                             |
| Hidaka et al. (1985a)       | $t_{20}$ , $t_{50}$ , and $t_{80}$ are times to 20, 50, and 80 percent consumption of |
|                             | $N_2O$ measured by infrared emission at 4.68 $\mu m$ . $\tau$ indicates a rapid       |
|                             | decrease in $N_2O$ concentration.                                                     |
| Miyama and Endoh (1967a)    | Appearance of nitric oxide emission at 430.5 nm.                                      |
| Miyama and Endoh (1967b)    | Variation of $NH_3$ absorption at 224.5 nm.                                           |
| Miyama (1968b)              | Variation of $NH_3$ absorption at 224.5, 230, and 240 nm.                             |
| Miyama (1968a)              | Variation in nitric oxide emission at 430.5 nm.                                       |
| Pamidimukkala and Skinner   | Induction time was defined at maximum O concentration by atomic                       |
| (1982)                      | resonance absorption spectroscopy. Another time was reported as                       |
|                             | the point where the reaction was $65\%$ complete, by an unknown                       |
|                             | method.                                                                               |
| Petersen et al. (1996)      | Time of maximum rate of OH formation as indicated by absorption                       |
| × /                         | spectroscopy.                                                                         |
| Seery and Bowman (1970)     | Most rapid increase in pressure, OH absorption, and emission of OH                    |
|                             | (306.7 nm), CH (431.5 nm), CO (220.0 nm) and C <sub>2</sub> (516.5 nm).               |
| Skinner and Ringrose (1966) | Time of maximum OH emission.                                                          |
| Soloukhin (1971)            | Interferograms, emission of N <sub>2</sub> O at 4.5 $\mu$ , and of OH at around       |
| \``´                        | 300 nm were interpreted to derive induction times.                                    |
| Takeyama and Miyama (1967)  | Variation in $NH_3$ absorption at 224.5 nm.                                           |
| Takeyama and Miyama (1965)  | Variation in OH emission.                                                             |

Table 3: Induction time definitions used in the literature

relation, but in others, an approximation is the best that can be achieved. In the Sandia package, the rate constant for a reaction that includes fall-off effects is given by a function that blends a low pressure

limit to a high pressure limit:

$$k = k_{\infty} \left(\frac{P_r}{1 + P_r}\right) F$$

where

$$P_r = \frac{k_0[M]}{k_\infty}$$

The Lindemann form results when F is unity, and the code then requires 6 rate parameters - three for the low pressure limit and three for the high pressure limit. In the Troe form, F is a function of  $P_r$ and  $F_{cent}$ , where

$$F_{cent} = (1-a)\exp\left(-\frac{T}{T^{***}}\right) + a\exp\left(-\frac{T}{T^{*}}\right) + \exp\left(-\frac{T^{**}}{T}\right)$$

and the code then uses the four additional parameters  $a, T^{***}, T^*$ , and  $T^{**}$ , where  $T^{**}$  is optional. In the SRI form, F is a function of  $P_r$  and 5 additional parameters:

$$F = \left[a \exp\left(\frac{-b}{T}\right) + \exp\left(\frac{-T}{c}\right)\right]^X dT^e$$
$$X = \frac{1}{1 + \log^2 P_r}$$

Where fall-off relations are specified in a published mechanism but are not standard relations in the Sandia code, approximations have been made (see Appendix E).

### **3.1.3** $H_2 - O_2 - N_2$ (- Ar)

Table 4:  $H_2 - O_2 - N_2$  (- Ar) References

| Reaction Mechanism                                                                                                                                                                                                                                                                                                               | Experimental Data                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allen et al. (1995), Baulch et al. (1992), Baulch<br>et al. (1994a), Baulch et al. (1994b), Co-<br>bos et al. (1985), Dean et al. (1978) (with<br>CO), Frank and Just (1985), Miller and Bowman<br>(1989), Frenklach and Bornside (1984), Fren-<br>klach et al. (1995), Frenklach et al. (1992), Zuev<br>and Starikovskii (1992) | Blumenthal et al. (1996), Bollinger (1964),<br>Bollinger et al. (1961), Cheng and Oppenheim<br>(1984), Craig (1966), Dean et al. (1978), Frank<br>and Just (1985), Petersen et al. (1996), Schott<br>and Kinsey (1958), Skinner and Ringrose (1966),<br>White and Moore (1965) |

**Reaction Mechanisms** Mechanisms from four of the references listed above have been compared to the available shock tube data: Allen et al. (1995), Baulch et al. (1994a), Miller and Bowman (1989), and Frenklach et al. (1995). These were selected for evaluation because they are more comprehensive than the others. Baulch et al. (1994a) is a supplement to and includes all the data of Baulch et al. (1992), and is apparently identical to Baulch et al. (1994b). Cobos et al. (1985) contains some fall-off data. Dean et al. (1978) gives data on some important O<sub>2</sub> reactions involving H<sub>2</sub> and CO. Frank and Just (1985) provides a reduced mechanism for H<sub>2</sub>-O<sub>2</sub>-N<sub>2</sub>O reactions. Frenklach and Bornside (1984) and Frenklach et al. (1992) seem to be forerunners of Frenklach et al. (1995) and do not include nitrogen. Zuev and Starikovskii (1992) contains a mechanism for H<sub>2</sub>-N<sub>2</sub>O reactions. The modified form of the Miller and Bowman (1989) mechanism (see Section 3.1.7) was also evaluated. **Induction Time Data** Data from Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966) were used to evaluate  $H_2$ -O<sub>2</sub>-Ar data (high dilution). Data from Blumenthal et al. (1996), and Bhaskaran et al. (1973) were used to evaluate  $H_2$ -air data. Of the Blumenthal et al. (1996) data, only "first kernel" data was considered appropriate, and DDT times were discarded for the purpose of validation.

Induction distance data in Bollinger (1964) and Bollinger et al. (1961) are less directly useful. Cheng and Oppenheim (1984), Schott and Kinsey (1958), and White and Moore (1965) have good induction time data but were omitted because they were largely redundant. Frank and Just (1985) contains time history data but no tabulated induction times.

**Results** Results of  $H_2 - O_2$  - Ar constant volume simulations using the Allen et al. (1995), Baulch et al. (1994a), Frenklach et al. (1995) (GRI), Miller and Bowman (1989), and modified Miller and Bowman (1989) mechanisms, and data from Petersen et al. (1996) and Skinner and Ringrose (1966) are shown in Figs. 18, 19, 20, 21, and 22. Results of  $H_2$  - air constant volume simulations using the same mechanisms and, data from Bhaskaran et al. (1973) and Blumenthal et al. (1996) are shown in Figs. 23, 24, 25, 27, and 26. Reasonable comparison is achieved in all cases, although the  $H_2$ -air data exhibit quite a bit of scatter.

#### Recommendations

 $H_2$ - $O_2$ -Ar The temperature and pressure range of the validation study was 870-2000 K and 1-87 atm. The equivalence ratio was always near unity and the dilution was 90-97%. The Miller and Bowman (1989) mechanism performed marginally better than the others.

 $H_2$ -Air The temperature and pressure range of the validation study was 950-1330 K and 2.5-15.0 atm. The concentration of  $H_2$  in air was 15% and 30%. The Baulch et al. (1994a) mechanism matched the data best overall. More data are needed to support the existing data and extend the validation to higher pressures and temperatures.

**3.1.4**  $H_2 - N_2O$  (- Ar)

| Reaction Mechanism                                                                                                                                                                                                                                                                                                                                   | Experimental Data                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allen et al. (1995), Balakhnine et al. (1977),<br>Borisov et al. (1978), Dean et al. (1978)<br>(with CO), Drummond (1972a), Frank and Just<br>(1985), Frenklach et al. (1995), Hidaka et al.<br>(1985a), Miller et al. (1983), Miller and Bow-<br>man (1989), Pamidimukkala and Skinner (1982),<br>Sausa et al. (1993), Zuev and Starikovskii (1992) | Allen et al. (1995), Balakhnine et al. (1977),<br>Bollinger et al. (1962), Borisov et al. (1978),<br>Dean et al. (1978), Frank and Just (1985), Hi-<br>daka et al. (1985a), Hidaka et al. (1985b),<br>Pamidimukkala and Skinner (1982), Soloukhin<br>(1973) |

Table 5:  $H_2$  -  $N_2O$  (- Ar) References

**Reaction Mechanisms** All of the primary mechanisms used to model  $H_2-O_2-N_2$  are useful for oxidation by  $N_2O$  also except Baulch et al. (1994a). Balakhnine et al. (1977) contains rate constants for a few  $N_2O$  reactions. The reaction mechanism in Borisov et al. (1978) is strictly  $H_2-N_2O$ . Dean et al. (1978) provides rate constants for some important  $N_2O$  reactions (see Section 3.1.3). Drummond (1972a) reports rate constants for some  $N_2O$  reactions, among others, from other sources. Frank and Just (1985), Hidaka et al. (1985a), and Pamidimukkala and Skinner (1982) contain mechanisms for  $H_2$ - $O_2-N_2O$  reactions. Sausa et al. (1993) contains a mechanism for low pressure  $H_2-N_2O$ -Ar flames that includes  $N_2$  and  $O_2$ . Zuev and Starikovskii (1992) contains a mechanism for high temperature  $H_2-N_2O$ combustion.

Induction Time Data Data in Borisov et al. (1978), Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982), are accessible. Some of the Borisov et al. (1978) data are not shock tube data, but the shock tube data matches the other data. Soloukhin (1973) presents induction time data combined with molar concentrations, but does not provide enough information to reconstruct the mixtures. Allen et al. (1995), Balakhnine et al. (1977), and Frank and Just (1985) contain time history data but no tabulated induction time data. Bollinger et al. (1962) contains induction distance data. Dean et al. (1978) contains induction time data for diluted mixtures of  $H_2-N_2O-CO$ .

**Results** Results of  $H_2$  -  $N_2O$  - Ar simulations using the Allen et al. (1995), Frenklach et al. (1995), Miller and Bowman (1989), and modified Miller and Bowman (1989) mechanisms with comparisons to data from Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982) are shown in Figs. 28, 29, 30, and 31. All these mechanisms generate comparably decent results, except above about 2200 K. The divergence in this region may be a result of limited precision calculations. **Recommendations** The temperature and pressure range of the validation study was 1430-2860 K and 1.5-3.0 atm. The reactants were approximately stoichiometric with high and very high dilution (97-99.98%). More data are needed at higher pressures and temperatures, with lower dilution, and with different dilution (i.e.  $N_2$ ).

### **3.1.5** $CH_4 - O_2 - N_2$ (- Ar)

| Reaction Mechanism                                                                                                                                                                                                                                                                                                 | Experimental Data                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baulch et al. (1992), Baulch et al. (1994a),<br>Baulch et al. (1994b), Frenklach and Born-<br>side (1984), Frenklach et al. (1995), Fren-<br>klach et al. (1992), Hidaka et al. (1996),<br>Hunter et al. (1994), Miller and Bowman (1989),<br>Seery and Bowman (1970), Starikovskii (1994),<br>Starikovskii (1995) | Asaba et al. (1963), Bollinger et al. (1961), Bur-<br>cat et al. (1996), Burcat et al. (1971), Cheng<br>and Oppenheim (1984), Frenklach and Bornside<br>(1984), Frenklach et al. (1992), Miyama and<br>Takeyama (1965), Seery and Bowman (1970),<br>Spadaccini and Colket III (1994) |

Table 6:  $CH_4 - O_2 - N_2$  (- Ar) References

**Reaction Mechanisms** Baulch et al. (1994a) (see Section 3.1.3), Frenklach et al. (1995), and Miller and Bowman (1989) mechanisms contain appropriate hydrocarbon species to be applied to  $CH_4-O_2-N_2$ reactions. The Hunter et al. (1994) and Seery and Bowman (1970) mechanisms are only good for methane - oxygen reactions (no nitrogen), although Hunter et al. (1994) includes a large number of hydrocarbon reactions. Frenklach and Bornside (1984) and Frenklach et al. (1992) also have a large number of hydrocarbon reactions but no nitrogen chemistry.

**Induction Time Data** The sources of experimental induction time data listed in Table 6 contain much more data than have been utilized for this study so far. Burcat et al. (1996), Burcat et al. (1971), Cheng and Oppenheim (1984), and Seery and Bowman (1970) data have been used. Asaba et al. (1963) contains  $CH_4$ -air data, plus references to other authors. Bollinger et al. (1961) contains only induction distance data, not induction time. Frenklach and Bornside (1984) and Frenklach et al. (1992) contain  $CH_4$ - $O_2$  data but do not directly report the pressure used. Miyama and Takeyama (1965) and Spadaccini and Colket III (1994) contain relevant data, and the latter gives many references to related sources.

**Results** Results of  $CH_4 - O_2$  - Ar simulations using the Frenklach et al. (1995), Miller and Bowman (1989), and modified Miller and Bowman (1989) mechanisms with comparisons to data from Cheng and Oppenheim (1984), Burcat et al. (1971), and Seery and Bowman (1970) are shown in Figs. 34, 35, 36, 37, 38, and 39. Two figures are used for each mechanism to reduce the clutter on each. The Frenklach et al. (1995) mechanism produced significantly better results.

**Recommendations** The temperature and pressure range of the validation study was 1300-2100 K and 1.7-13 atm. The equivalence ratio was 0.2-5.0, and the dilution was about 50-90%. The Frenklach et al. (1995) mechanism performed best under these conditions. More data are needed at higher temperatures and pressures, and with other dilution (i.e.  $N_2$ ). Note that highly dilute methane-oxygen mixtures are difficult to ignite and have very long induction times that may be difficult to model.

## **3.1.6** $CH_4 - N_2O$ (- Ar)

**Reaction Mechanisms** The mechanisms of Frenklach et al. (1995), and Miller and Bowman (1989) were used for the validation study. Drummond (1972a) contains a few important rate parameters.

Table 7:  $CH_4 - N_2O$  (- Ar) References

| Reaction Mechanism                                                                                                                          | Experimental Data                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Drummond (1972a), Frenklach et al. (1995), Hi-<br>daka et al. (1996), Miller and Bowman (1989),<br>Starikovskii (1994), Starikovskii (1995) | Borisov et al. (1977), Drummond (1969),<br>Soloukhin (1971) |

Hidaka et al. (1996), Starikovskii (1994), and Starikovskii (1995) contain enough hydrocarbon and  $N_2O$  data to also be included in the validation study.

**Induction Time Data** Data from Drummond (1969) and Soloukhin (1971) was used in the validation study. Borisov et al. (1977) contains only flow reactor data that can not easily be used in this study.

**Results** Results of  $CH_4$  -  $N_2O$  - Ar simulations using the Frenklach et al. (1995), Miller and Bowman (1989), and modified Miller and Bowman (1989) mechanisms with comparisons to data from Soloukhin (1971) and Drummond (1969) are shown in Figs. 40, 41, and 42. The predictions of both mechanisms match the experimental data quite well.

**Recommendations** The temperature and pressure range of the validation study was 1470-2780 K and 1-3.5 atm. All mixtures evaluated were stoichiometric, with dilution of 70-95%. More data are needed at higher pressures and with different dilution (i.e.  $N_2$ ).

**3.1.7**  $NH_3 - O_2$  (- Ar)

| Reaction Mechanism                                                                                                             | Experimental Data                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fujii et al. (1981), Lindstedt et al. (1994),<br>Lindstedt and Selim (1994), Miller and Bowman<br>(1989), Miller et al. (1983) | Bradley et al. (1968), Bull (1968), Drummond<br>(1972b), Fujii et al. (1981), Miyama (1968a),<br>Miyama (1968b), Takeyama and Miyama (1965),<br>Takeyama and Miyama (1967) |

Table 8:  $NH_3 - O_2$  (- Ar) References

**Reaction Mechanisms** Only one of the mechanisms used for hydrocarbon oxidation could be used for ammonia oxidation without modification, Miller and Bowman (1989). Unfortunately, it did not perform as well as other ammonia mechanisms not capable of hydrocarbon modeling (e.g. Miller et al. (1983)). The mechanism of Fujii et al. (1981) has been tested against shock tube data already, so it was combined with the Miller and Bowman (1989) mechanism. This mechanism performed as well as the Miller et al. (1983) mechanism at ammonia oxidation and as well as the Miller and Bowman (1989) mechanism at hydrocarbon combustion.

**Induction Time Data** The most useful data for  $NH_3 - O_2$  - Ar validation came from Bull (1968), Drummond (1972b), and Fujii et al. (1981). A number of the other references have applicable data also, but the interesting case of no dilution (Miyama 1968a) currently can not be accurately modeled.

**Results** Results of the NH<sub>3</sub> -  $O_2$  - Ar simulations using the Miller and Bowman (1989), modified Miller and Bowman (1989), and Miller et al. (1983) mechanisms with comparisons to data from Bull (1968), Fujii et al. (1981), and Drummond (1972b) are shown in Figs. 43, 44, and 45.

Three mechanisms were found to hold promise: Lindstedt et al. (1994), Miller and Bowman (1989), and Miller et al. (1983). The Miller and Bowman (1989) mechanism is actually two mechanisms combined, one for hydrocarbons and one for ammonia oxidation. It was reported to have been validated against flame data, but the comparison with our compilation of shock tube data was found to be poor (Fig. 43). This poor performance is believed to be caused by the lack of a dissociation path for  $NH_3$ , which is especially important in high Ar dilution. The apparently earlier version of this ammonia oxidation mechanism, given in Miller et al. (1983), contained a dissociation reaction and performed similarly, and slightly better than, the mechanism given in Lindstedt et al. (1994). This mechanism compared well with the high Ar dilution data (Fig. 45) except for some divergence from the Bull (1968) data at low temperatures.

**Recommendations** The temperature and pressure range of the validation study was 1450-4000 K and 3.2-35.8 atm. The mixtures evaluated contained approximately equimolar  $NH_3$  and  $O_2$ , with 90-98% dilution. The best mechanisms for this reaction appear to be that of Miller et al. (1983) and the modified form of Miller and Bowman (1989).

**3.1.8** NH<sub>3</sub> - O<sub>2</sub> - N<sub>2</sub>

| Reaction Mechanism                                                                                                             | Experimental Data                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Fujii et al. (1981), Lindstedt et al. (1994),<br>Lindstedt and Selim (1994), Miller and Bowman<br>(1989), Miller et al. (1983) | Bull (1968), Drummond (1972b), Fujii et al.<br>(1981), Miyama (1968a), Miyama (1968b),<br>Miyama and Endoh (1967a), Miyama and En-<br>doh (1967b) |

Table 9:  $NH_3 - O_2 - N_2$  References

**Reaction Mechanisms** The mechanism discussion of Section 3.1.7 applies for NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub>.

**Induction Time Data** For the purpose of calculating post-shock conditions from measured shock parameters (shock speed, pressure), Miyama and Endoh (1967b) performed translational, rotational, and vibrational relaxation calculations. Their results show that relaxation effects are significant. Data from Miyama (1968a) and Miyama (1968b) were used for the validation study. In addition, data from Miyama and Endoh (1967a) and Miyama and Endoh (1967b) may be useful.

**Results** Results of the NH<sub>3</sub> -  $O_2$  -  $N_2$  simulations using the Miller and Bowman (1989), modified Miller and Bowman (1989), and Miller et al. (1983) mechanisms with comparisons to data from Miyama and Endoh (1967b) and Miyama and Endoh (1967a) are shown in Figs. 46, 47, and 48.

**Recommendations** The temperature and pressure range of the validation study was 1490-2330 K and about 0.95-3.5 atm. The mechanism of Miller et al. (1983) performed the best.

**3.1.9** NH<sub>3</sub> - N<sub>2</sub>O (- Ar)

**Reaction Mechanisms** The set of available mechanisms for  $NH_3$ - $N_2O$  reactions (see Table 10) is a subset of those listed for  $NH_3$ - $O_2$ - $N_2$  (Table 9).

Table 10:  $NH_3 - N_2O$  References

| Reaction Mechanism                            | Experimental Data                   |
|-----------------------------------------------|-------------------------------------|
| Drummond (1972a), Fujii et al. (1981), Miller | Drummond (1967) Soloukhin (1971)    |
| and Bowman $(1989)$ , Miller et al. $(1983)$  | Diaminolia (1901), Soloakimi (1911) |

**Induction Time Data** Data from Soloukhin (1971) are difficult to reproduce numerically because the experimental conditions are not clear. Initial pressures are only hinted at and initial concentrations are unclear. The  $NH_3-N_2O$  mixtures are said to be stoichiometric, but the meaning of "stoichiometric" is unclear because example figures suggest equimolar mixtures were used.

**Results** Results of the  $NH_3 - N_2O$  - Ar simulations using the Miller and Bowman (1989), modified Miller and Bowman (1989), and Miller et al. (1983) mechanisms with comparisons to data from Drummond (1967) and Soloukhin (1971) are shown in Figs. 49, 50, and 51. All mechanisms yield similarly good matches to the experimental data except at lower temperature.

**Recommendations** The temperature and pressure range of the validation study was 1540-3030 K and 1-3.9 atm. All mixtures evaluated consisted of "stoichiometric"  $NH_3-N_2O$  ratios and 90-95% dilution. More data are needed at higher pressure and with lower dilution.

#### 3.1.10 Summary

Table 11 lists the conditions and summarizes the results of the validation studies. For more detail, see Sections 3.1.3 through 3.1.9. The classifications listed under "Comments" are subjective judgements to be used as a rough guide only for the specific mixture tested. Reference should be made to the orginal citation for a mechanism to determine if it has been tested for other situations.

The most useful mechanisms were the GRI Mech-2.11 (Frenklach et al. 1995) and the modified form of Miller and Bowman (1989). The GRI Mech-2.11 was the most accurate with reactions involving methane, as can be expected since it was designed to model natural gas combustion. However, it could not be used for ammonia combustion. The original form of the Miller and Bowman (1989) mechanism (actually a combination of separate hydrocarbon and ammonia mechanisms) was nearly as accurate for methane combustion but could also nominally be used with ammonia. Unfortunately it was particularly inaccurate with most ammonia tests. The earlier mechanism of Miller et al. (1983) proved better with ammonia but did not incorporate hydrocarbons. Finally, some reactions from Fujii et al. (1981), which were originally tested against shock tube data, were added to the Miller and Bowman (1989) mechanism to produce an overall reasonably accurate mechanism.

# 3.2 Cell Width and ZND Calculations

The ZND (Zeldovich - von Neumann - Döring) model of a detonation wave decomposes the onedimensional steady wave into a non-reactive thin shock followed by an exothermic reaction zone (Zeldovich 1950) that terminates at the CJ state. The reaction zone typically consists of an induction zone where non-exothermic dissociation reactions cause radical species to accumulate, followed by a thin recombination zone where the reaction runs to completion and heat is released. The thickness of the reaction zone is determined by the reaction rates, primarily in the induction zone.

Numerically, the shock speed is computed from the Chapman-Jouguet model and equilibrium thermochemistry. The frozen postshock state is the initial condition for a marching solution of a system of ordinary differential equations for the thermal and chemical state. The distance from the shock to the point of maximum heat release normally defines the reaction zone thickness, analogously to the

| Mixture                                         | Mechanism                    | Temperature | Pressure   | Comments                            |
|-------------------------------------------------|------------------------------|-------------|------------|-------------------------------------|
|                                                 |                              | (K)         | (atm)      |                                     |
| H <sub>2</sub> -O <sub>2</sub> -Ar              | Allen et al. (1995)          | 870-2000    | 1-87       | Fair                                |
|                                                 | Baulch et al. (1994a)        |             |            | Good                                |
|                                                 | Frenklach et al. $(1995)$    |             |            | Good                                |
|                                                 | Miller and Bowman (1989)     |             |            | Best                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Same as above                       |
| H <sub>2</sub> -Air                             | Allen et al. (1995)          | 950-1330    | 2.5 - 15   | Poor above 2.5 atm                  |
|                                                 | Baulch et al. $(1994a)$      |             |            | Best, but poor at $2.5 \text{ atm}$ |
|                                                 | Frenklach et al. $(1995)$    |             |            | Poor above 2.5 atm                  |
|                                                 | Miller and Bowman $(1989)$   |             |            | Poor above 2.5 atm                  |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Same as above                       |
| H <sub>2</sub> -N <sub>2</sub> O-Ar             | Allen et al. (1995)          | 1430-2860   | 1.5 - 3.0  | Good below 2000 K                   |
|                                                 | Frenklach et al. $(1995)$    |             |            | Good below 2000 K, worst            |
|                                                 | Miller and Bowman $(1989)$   |             |            | Good below 2000 K, best             |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Good below 2000 K, best             |
| CH <sub>4</sub> -O <sub>2</sub> -Ar             | Baulch et al. (1994a)        | 1300-2100   | 1.7-13     | Poor above 3.4 atm                  |
|                                                 | Frenklach et al. $(1995)$    |             |            | Best                                |
|                                                 | Miller and Bowman $(1989)$   |             |            | Poor                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Same as above                       |
| CH <sub>4</sub> -N <sub>2</sub> O-Ar            | Frenklach et al. (1995)      | 1470-2780   | 1 - 3.5    | Good                                |
|                                                 | Miller and Bowman $(1989)$   |             |            | Good                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Same as above                       |
| NH <sub>3</sub> -O <sub>2</sub> -Ar             | Miller and Bowman $(1989)$   | 1450-4000   | 3.2 - 35.8 | Poor                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Good                                |
|                                                 | Miller et al. $(1983)$       |             |            | Good                                |
| NH <sub>3</sub> -O <sub>2</sub> -N <sub>2</sub> | Miller and Bowman $(1989)$   | 1490-2330   | 0.95 - 3.5 | Poor                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Fair                                |
|                                                 | Miller et al. $(1983)$       |             |            | Good                                |
| NH <sub>3</sub> -N <sub>2</sub> O-Ar            | Miller and Bowman (1989)     | 1540-3030   | 1-3.9      | Good                                |
|                                                 | Miller and Bowman $(1989)^1$ |             |            | Best                                |
|                                                 | Miller et al. $(1983)$       |             |            | Good                                |

Table 11: Summary of Validation Results and Recommendations

<sup>1</sup>Modified version including Fujii et al. (1981) rates.

constant volume induction time. In fact, reaction zone thicknesses have been estimated using a constant volume approximation (Westbrook 1982). Other definitions based on Mach number can be used, and the different definitions provide information about the shape of the reaction zone (Shepherd 1986).

Reaction zone thicknesses (vs percent mixture in air) computed by ZND analysis for mixtures 1-26 of Ross and Shepherd (1996) (see Table 13) and two additional mixtures are presented in Figs. 52-58 in Appendix D. Fig. 59 shows reaction zone thicknesses for mixtures 12-17 from Table 1. These calculations were performed with the modified reaction mechanism of Miller and Bowman (1989).

## 3.3 Correlations

Cell width can not currently be computed or predicted directly. Current hydrodynamic simulations that attempt to reproduce detonation cellular structure make large sacrifices, usually by using single step, irreversible reactions and constant properties, and are capable of exhibiting qualitatively correct phenomena, but can not be used as engineering predictive tools. Simulations that compute detailed chemical kinetics generally lack spatial resolution such that the reaction zone structure is meaningless.

Our analysis proceeds along dimensional analysis grounds. The ratio of cell width to reaction zone thickness  $(\lambda/\Delta)$  is a function of other nondimensional parameters of the flow. For a system characterized by a single reaction with activation energy  $E_a$ , energy release q, ratio of specific heats  $\gamma$ , and detonation Mach number  $M_{CJ}$ , we expect that

$$\frac{\lambda}{\Delta} \approx f\left(M_{\rm CJ}, \gamma, \frac{q}{RT_{vN}}, \frac{E_a}{RT_{vN}}\right)$$

In general, f may include a large number of other parameters, but these are believed to be the most influential. The activation energy and heat release normalization factors include the von Neumann temperature because it is most relevant to the reaction zone behavior. While the general form of this function has not been found, certain useful approximations are possible. For instance, for a given fuel - oxidizer - diluent system at constant equivalence ratio and initial pressure, the function f is generally constant with respect to variation in dilution ratio. A slightly more general approach is illustrated in Figs. 12, 13, 14, and 15. The cell width data from different test conditions are plotted together by using computed reaction zone thickness for each condition as the abscissa.



Figure 12: Correlation of cell width measurements with computed ZND reaction zone thicknesses using the modified Miller and Bowman (1989) mechanism for stoichiometric  $H_2$ - $N_2O$  mixtures in air and  $N_2$ 

For each fuel - oxidizer - diluent system, at constant equivalence ratio, cell width is found to obey a power law with respect to ZND reaction zone thickness. Note that while air is presented as a diluent along with N<sub>2</sub> in the H<sub>2</sub>-N<sub>2</sub>O and CH<sub>4</sub>-N<sub>2</sub>O mixtures, it acts as an oxidizer also and therefore mixtures with air are unique from N<sub>2</sub> systems. The undiluted H<sub>2</sub>-N<sub>2</sub>O data are considered to be a subset of the N<sub>2</sub> dilution data but not the air dilution data because O<sub>2</sub> is found to have a significant effect on N<sub>2</sub>O mixtures even at very small concentrations.

A power law has been least-squares fit to the available cell width - reaction zone thickness data for each mixture, as shown in Figs. 12, 13, and 14. The data for  $H_2-N_2O$ -Air do not correlate well to a



Figure 13: Correlation of cell width measurements with computed ZND reaction zone thicknesses using the modified Miller and Bowman (1989) mechanism for stoichiometric  $CH_4$ - $O_2$  mixtures in  $N_2$ 

power law. The correlations for  $CH_4-O_2-N_2$ ,  $CH_4-N_2O-N_2$ , and  $CH_4-N_2O$ -Air are good, although the number of data points is limited in the  $N_2O$  mixtures. A number of initial pressures are represented in the literature  $CH_4-O_2-N_2$  data along with various dilution ratios.

# 4 Summary and Unresolved Issues

Work reported here has followed two complementary approaches to characterizing the detonation parameters of certain mixtures of  $H_2$ -CH<sub>4</sub>-NH<sub>3</sub>-N<sub>2</sub>O-air. Experiments have been performed with mixtures of  $H_2$ -N<sub>2</sub>O-O<sub>2</sub>-N<sub>2</sub>, CH<sub>4</sub>-O<sub>2</sub>-N<sub>2</sub>, CH<sub>4</sub>-N<sub>2</sub>O-O<sub>2</sub>-N<sub>2</sub>, NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub>, NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub>, NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub>, and model tank mixtures of all these. Detonation velocities and cell widths have been measured and reported. Detonation velocities have been found to be very predictable by conventional thermochemical calculations.

Chemical kinetic models of the mixtures of interest have been compared to published experimental data and evaluated with respect to limits of validity. No mechanism has been shown to be valid for all the conditions necessary for detonation modeling, although a modified Miller and Bowman (1989) mechanism has been moderately successful. Some correlations between kinetic calculation results and detonation cell widths have been produced from the available cell width data.

Several issues remain unresolved and could benefit from additional attention:

- The performance of the current collection of reaction mechanisms is not as good as desired. More experimental data and validation effort to develop a mechanism specifically for detonation conditions with all the species of interest could make the modeling efforts more robust and reliable.
- The effort to correlate cell width and reaction zone thickness is in its infancy. The key missing element is a physical theory that would suggest a functional relationship between these quantities



Figure 14: Correlation of cell width measurements with computed ZND reaction zone thicknesses using the modified Miller and Bowman (1989) mechanism for stoichiometric  $CH_4$ -N<sub>2</sub>O mixtures in air and N<sub>2</sub>

and other properties of a mixture. In lieu of such a theory, more analysis of the compiled data may uncover further useful relationships.

• The possibility of omitting hydrocarbons or otherwise simplifying the chemical kinetics calculations would dramatically reduce the time necessary to perform these calculations. However, any simplification must be carefully tested before being trusted.



Figure 15: Correlation of cell width measurements with computed ZND reaction zone thicknesses using the modified Miller and Bowman (1989) mechanism for stoichiometric  $NH_3-O_2$  and  $NH_3-N_2O$  mixtures in  $N_2$  and air



Figure 16: Correlation of cell width measurements with computed ZND reaction zone thicknesses using the modified Miller and Bowman (1989) mechanism for model tank mixtures in air

# References

- Akbar, R. and J. Shepherd (1993, June). Detonations in N<sub>2</sub>O-H<sub>2</sub>-N<sub>2</sub>-Air mixtures. Prepared for the Los Alamos National Laboratory Under Consultant Agreement C-4836.
- Akbar, R. and J. Shepherd (1996, September). Detonations in N<sub>2</sub>O-H<sub>2</sub> mixtures diluted with N<sub>2</sub> or air. Prepared for the Los Alamos National Laboratory Under Contract 929Q0015-3A, DOE W-7405-ENG-36.
- Allen, M., R. Yetter, and F. Dryer (1995). The decomposition of nitrous oxide at 1.5≤P≤10.5 atm and 1103≤T≤1173 K. Int. J. Chem. Kinet. 27(9), 883–909.
- Asaba, T., K. Yoneda, N. Kakihara, and T. Hikita (1963). A shock tube study of ignition of methaneoxygen mixtures. In 9th Symp. Int. Combust. Proc., pp. 193–200.
- Balakhnine, V., J. Vandooren, and P. V. Tiggelen (1977). Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames. *Combust. Flame* 28(2), 165–173.
- Baulch, D., C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1992). Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21(3), 411–736.
- Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994a). Evaluated kinetic data for combustion modeling: Supplement I. J. Phys. Chem. Ref. Data 23(6), 847–1033.
- Baulch, D., C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, R. Walker, and J. Warnatz (1994b). Summary table of evaluated kinetic data for combustion modeling: Supplement I. Combust. Flame 98(1), 59–79.
- Beeson, H., R. McClenagan, C. Bishop, F. Benz, W. J. Pitz, C. Westbrook, and J. Lee (1991). Detonability of hydrocarbon fuels in air. In Prog. Astronaut. Aeronaut., Volume 133, pp. 19–36.
- Bennett, C. A. (1986, March). Personal communication. Detonation Test Results and Predictions for NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub> Mixtures.
- Bhaskaran, K., M. Gupta, and T. Just (1973). Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydroge-air mixtures. *Combust. Flame* 21, 45–48.
- Blumenthal, R., K. Fieweger, K. Komp, G. Adomeit, and B. Gelfand (1996). Self-ignition of H<sub>2</sub>-air mixtures at high pressure and low temperature. In 20th Symp. Int. Shock Waves, pp. 935–940.
- Bollinger, L. (1964). Experimental detonation velocities and induction distances in hydrogen-air mixtures. AIAA J. 2(1), 131–133.
- Bollinger, L., M. Fong, and R. Edse (1961). Experimental measurements and theoretical analysis of detonation induction distances. Am. Rocket Soc. Pap. 31, 588–595.
- Bollinger, L., J. Laughrey, and R. Edse (1962). Experimental detonation velocities and induction distances in hydrogen-nitrous oxide mixtures. Am. Rocket Soc. Pap. 32, 81–82.
- Borisov, A., V. Zamanskii, K. Potmishil, G. Skachkov, and V. Foteenkov (1977). The mechanism of methane oxidation with nitrous oxide. *Kinet. Katal.* 8, 307–315.
- Borisov, A., V. Zamanskii, and G. Skachkov (1978). Kinetics and mechanism of reaction of hydrogen with nitrous oxide. *Kinet. Katal.* 19(1), 26–32.
- Bradley, J. (1962). Shock Waves in Chemistry and Physics. Wiley.
- Bradley, J., R. Butlin, and D. Lewis (1968). Oxidation of ammonia in shock waves. Trans. Faraday Soc. 64, 71–77.
- Bull, D. (1968). A shock tube study of the oxidation of ammonia. Combust. Flame 12, 603–610.
- Burcat, A., M. Dvinyaninov, and A. Lifshitz (1996). The effect of halocarbons on methane ignition. In 20th Symp. Int. Shock Waves.
- Burcat, A., K. Scheller, and A. Lifshitz (1971). Shock-tube investigation of comparative ignition delay times for C<sub>1</sub> C<sub>5</sub> alkanes. *Combust. Flame* 16(1), 29–33.

- Cheng, R. and A. Oppenheim (1984). Autoignition in methane-hydrogen mixtures. Combust. Flame 58(2), 125–139.
- Cobos, C., H. Hippler, and J. Troe (1985). High pressure falloff curves and specific rate constants for the reactions H+O<sub>2</sub>=HO<sub>2</sub>=HO+O. J. Phys. Chem. 89(1), 342–349.
- Craig, R. (1966). A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit. Technical Report AFAPL-TR-66-74, Air Force Aero-Propulsion Lab, Wright-Patterson.
- Dean, A., D. Steiner, and E. Wang (1978). A shock tube study of the  $H_2/O_2/CO/Ar$  and  $H_2/N_2O/CO/Ar$  systems: Measurement of the rate constant for  $H+N_2O=N_2+OH$ . Combust. Flame 32(1), 73–83.
- Drummond, L. (1967). Shock-initiated exothermic reactions III. the oxidation of hydrogen. Aust. J. Chem. 20, 2331–2341.
- Drummond, L. (1969). Shock-induced reactions of methane with nitrous and nitric oxides. Bull. Chem. Soc. Japan 42, 285–289.
- Drummond, L. (1972a). Comments upon shock-initiated oxidations by nitrous oxide. Combust. Sci. Technol. 5, 183–185.
- Drummond, L. (1972b). High temperature oxidation of ammonia. Combust. Sci. Technol. 5, 175–182.
- Drummond, L. and S. Hiscock (1967). Shock-initiated exothermic reactions II. the oxidation of ammonia. Aust. J. Chem. 20, 825–836.
- Frank, P. and T. Just (1985). High temperature reaction rate for H+O<sub>2</sub>=OH+O and OH+H<sub>2</sub>=H<sub>2</sub>O+H. Ber. Bunsenges. Phys. Chem. 89(1), 181–187.
- Frenklach, M. and D. Bornside (1984). Shock-initiated ignition in methane-propane mixtures. Combust. Flame 56, 1–27.
- Frenklach, M., H. Wang, C. Bowman, R. Hanson, G. Smith, D. Golden, W. Gardiner, and V. Lissianski (1995). An optimized kinetics model for natural gas combustion. Technical report, Gas Research Institute. For more information, see HTTP://www.gri.org.
- Frenklach, M., H. Wang, and M. Rabinowitz (1992). Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - combustion of methane. Prog. Energy Combust. Sci. 18, 47–73.
- Fujii, N., H. Miyama, M. Koshi, and T. Asaba (1981). Kinetics of ammonia oxidation in shock waves. In 18th Symp. Int. Combust. Proc., pp. 873–883.
- Hidaka, Y., K. Kimura, K. Hattori, and T. Okuno (1996). Shock tube and modeling study of ketene oxidation. *Combust. Flame* 106(1), 155–167.
- Hidaka, Y., H. Takuma, and M. Suga (1985a). Shock-tube studies of N<sub>2</sub>O decomposition and N<sub>2</sub>O-H<sub>2</sub> reaction. *Bull. Chem. Soc. Japan.* 58(10), 2911–2916.
- Hidaka, Y., H. Takuma, and M. Suga (1985b). Shock-tube study of the rate constant for excited OH\*  $(^{2}\Sigma^{+})$  formation in the N<sub>2</sub>O-H<sub>2</sub> reaction. J. Phys. Chem. 89(23), 4903–4905.
- Hunter, T., H. Wang, T. Litzinger, and M. Frenklach (1994). The oxidation of methane at elevated pressures: Experiments and modeling. *Combust. Flame* 97(2), 201–224.
- Kee, R., F. Rupley, and J. Miller (1989). Chemkin-II: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND89-8009, Sandia National Laboratory.
- Knystautas, R., C. Guirao, J. Lee, and A. Sulmistras (1984). Measurement of cell size in hydrocarbonair mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits. In *Prog. Astronaut. Aeronaut.*, Volume 94, pp. 23–37.
- Lee, J. (1984). Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336.
- Lindstedt, R., F. Lockwood, and M. Selim (1994). Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation. *Combust. Sci. Technol.* 99(4-6), 253–276.
- Lindstedt, R. and M. Selim (1994). Reduced reaction mechanisms for ammonia oxidation in premixed laminar flames. Combust. Sci. Technol. 99(4-6), 277–298.
- Manzhalei, V., V. Mitrofanov, and V. Subbotin (1974). Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. *Combust. Explos. Shock Waves (USSR)* 10(1), 89–95.
- Miller, J. and C. Bowman (1989). Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15, 287–338.
- Miller, J., M. Smooke, R. Green, and R. Kee (1983). Kinetic modeling of the oxidation of ammonia in flames. *Combust. Sci. Technol.* 34, 149–176.
- Miyama, H. (1968a). Ignition of ammonia-oxygen mixtures by shock waves. J. Chem. Phys. 48, 1421– 1422.
- Miyama, H. (1968b). Kinetic studies of ammonia oxidation in shock waves. IV. comparison of induction periods for the ignition of NH<sub>3</sub>-O<sub>2</sub>-N<sub>2</sub> with thos for NH<sub>3</sub>-O<sub>2</sub>-Ar mixtures. Bull. Chem. Soc. Japan 41, 1761–1765.
- Miyama, H. and R. Endoh (1967a). Ignition of ammonia-air mixtures by reflected shock waves. Combust. Flame 11, 359–360.
- Miyama, H. and R. Endoh (1967b). Vibrational relaxation of nitrogen in shock-heated NH<sub>3</sub>- O<sub>2</sub>-N<sub>2</sub> mixtures. J. Chem. Phys. 46, 2011–2012.
- Miyama, H. and T. Takeyama (1965). Kinetics of methane oxidation in shock waves. Bull. Chem. Soc. Japan 38(1), 37–43.
- Moen, I., J. Funk, S. Ward, G. Rude, and P. Thibault (1984). Detonation length scales for fuel-air explosives. In *Prog. Astronaut. Aeronaut.*, Volume 94, pp. 55–79.
- Pamidimukkala, K. and G. Skinner (1982). Resonance absorption measurements of atom concentrations in reacting gas mixtures. VIII. rate constants for  $O+H_2=OH+H$  and  $O+D_2=OD+D$  from measurements of O atoms in oxidation of  $H_2$  and  $D_2$  by  $N_2O$ . J. Chem. Phys. 76(1), 311–315.
- Petersen, E., D. Davidson, M. Rohrig, and R. Hanson (1996). High-pressure shock-tube measurements of ignition times in stoichiometric H<sub>2</sub>/O<sub>2</sub>/Ar mixtures. In 20th Symp. Int. Shock Waves, pp. 941– 946.
- Reynolds, W. C. (1986, January). The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN (3rd ed.). Dept. of Mechanical Engineering, Stanford, CA: Stanford University.
- Ross, M. and J. Shepherd (1996). Lean combustion characteristics of hydrogen-nitrous oxide-ammonia mixtures in air. Technical Report FM96-4, Graduate Aeronautical Laboratories, California Institute of Technology.
- Sausa, R., W. Anderson, D. Dayton, C. Faust, and S. Howard (1993). Detailed structure study of a low pressure, stoichiometric H<sub>2</sub>/N<sub>2</sub>O/Ar flame. *Combust. Flame* 94(4), 407–425.
- Schott, G. and J. Kinsey (1958). Kinetic studies of hydroxyl radicals in shock waves. II. induction times in the hydrogen-oxygen reaction. J. Chem. Phys. 29(5), 1177–1182.
- Seery, D. and C. Bowman (1970). An experimental and analytical study of methane oxidation behind shock waves. *Combust. Flame* 14(1), 37–48.
- Shepherd, J. (1986). Chemical kinetics of hydrogen-air-diluent detonations. In Prog. Astronaut. Aeronaut., Volume 106, pp. 263–293.
- Skinner, G. and G. Ringrose (1966). Ignition delays of a hydrogen-oxygen-argon mixture at relatively low temperature. J. Chem. Phys. 42(6), 2190–2192.
- Soloukhin, R. (1971). High-temperature oxidation of ammonia, carbon monoxide and methane by nitrous oxide in shock waves. In 13th Symp. Int. Combust. Proc., pp. 121–128.
- Soloukhin, R. (1973). High-temperature oxidation of hydrogen by nitrous oxide in shock waves. In 14th Symp. Int. Combust. Proc., pp. 77–82.

- Spadaccini, L. and M. Colket III (1994). Ignition delay characteristics of methane fuels. Prog. Energy Combust. Sci. 20, 431–460.
- Starikovskii, A. (1994). Kinetics and mechanism of reaction in the  $N_2O$  CO system at high temperatures. *Chem. Phys. Reports* 13(1), 151–190.
- Starikovskii, A. (1995). Development of flows with exothermic reactions behind reflected shock waves. ignition and detonation in N<sub>2</sub>O - CO - H<sub>2</sub> - He mixtures at high temperatures. *Chem. Phys. Reports* 13(8-9), 1422–1474.
- Takeyama, T. and H. Miyama (1965). Kinetic studies of ammonia oxidation in shock waves. I. the reaction mechanism for the induction period. *Bull. Chem. Soc. Japan 38*, 1670–1674.
- Takeyama, T. and H. Miyama (1967). A shock-tube study of the ammonia-oxygen reaction. In 11th Symp. Int. Comb. Proc., pp. 845–852.
- Thibault, P., J. Shepherd, W. Benedick, and D. Ritzel (1987). Blast waves generated by planar detonations. In *Proc. 16th Int. Symp. Shock Tubes Waves*, pp. 765–771.
- Westbrook, C. (1982). Chemical kinetics of hydrocarbon oxidation in gaseous detonations. *Combust.* Flame 46(2), 191–210.
- Westbrook, C. and P. Urtiew (1983). Use of chemical kinetics to predict critical parameters of gaseous detonations. *Fiz. Goreniya Vzryva 19*(6), 65–76.
- White, D. and G. Moore (1965). Structure of gaseous detonation. IV. induction zone studies in H<sub>2</sub>-O<sub>2</sub> and CO-O<sub>2</sub> mixtures. In 18th Symp. Int. Combust. Proc., pp. 785–795.
- Zeldovich, Y. (1950). On the theory of the propagation of detonation in gaseous systems. Technical Memorandum 1261, National Advisory Committee for Aeronautics. Translated from "K Teorri Rasprostranenia Detonantsii v Gasoobraznykh Sistremakh", Zhurnal Experimentalnoi i Teoreticheskoi Fiziki, T. 10, 1940.
- Zuev, A. and A. Starikovskii (1992). Reactions in the N<sub>2</sub>O H<sub>2</sub> system at high temperatures. Sov. J. Chem. Phys. 10(3), 520–540.

# A Experimental Test Matrix

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test         | Mix     | $\beta$    | Press.      | $\operatorname{Go}$ | $\mathrm{D}_{\mathrm{CJ}}$ | $D_{1-2}$ | $D_{2-3}$      | $\lambda_{\min}$       | $\lambda_{ m max}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------|-------------|---------------------|----------------------------|-----------|----------------|------------------------|--------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |         |            | kPa         |                     | m/s                        | m/s       | m/s            | $\mathbf{m}\mathbf{m}$ | mm                 |
| 18       1       0.63       100       Yes       1806       1792       1787       11       18         20       1       0.68       100       Yes       1637       1618       1610       32       82         22       1       1.68       100       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17           | 1       | 0.42       | 100         | Yes                 | 1937                       | 1928      | 1923           | 6                      | 10                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18           | 1       | 0.63       | 100         | Yes                 | 1806                       | 1794      | 1787           | 9                      | 27                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19           | 1       | 0.63       | 100         | Yes                 | 1806                       | 1792      | 1787           | 11                     | 18                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20           | 1       | 0.98       | 100         | Yes                 | 1637                       | 1618      | 1610           | 32                     | 82                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22           | 1       | 1.68       | 100         | No                  |                            |           |                |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23           | 1       | 1.19       | 100         | Yes                 | 1554                       | 1546      | 1521           | 97                     | 190                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24           | 1       | 1.33       | 100         | DDT                 | 1521                       | 1807      | 1440           | 92                     | 122                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25           | 1       | 0.42       | 100         | Yes                 |                            |           |                | 5                      | 11                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26           | 2       | 2.0        | 100         | Yes                 | 1962                       | 1947      | 1947           | 10                     | 18                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27           | 2       | 3.0        | 100         | Yes                 | 1839                       | 1812      | 1814           | 26                     | 37                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29           | 2       | 3.6        | 100         | No                  |                            |           |                |                        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30           | 2       | 3.3        | 100         | Yes                 | 1810                       | 1780      | 1779           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31           | 2       | 3.3        | 100         | DDT                 | 1810                       |           |                |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32           | 2       | 3.3        | 100         | Yes                 | 1810                       | 1775      | 1778           |                        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33           | 2       | 3.3        | 100         | Yes                 | 1810                       | 1780      | 1777           | 22                     | 50                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34           | 2       | 3.9        | 100         | Yes                 | 1746                       | 1710      | 1713           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35           | 2       | 4.3        | 100         | Yes                 | 1711                       | 1668      | 1671           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36           | 2       | 4.7        | 100         | Yes                 | 1674                       | 1644      | 1621           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37           | 2       | 5.1        | 100         | No                  |                            |           |                |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38           | 3       |            | 100         | Yes                 | 1632                       | 1605      | 1608           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39           | 2       | 5.1        | 100         | Yes                 | 1633                       | 1605      | 1598           |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $44$ $4$ $98$ Yes $1593$ $1591$ $1595$ $45$ $2$ $4.7$ $100$ No $46$ $2$ $4.7$ $100$ Yes $1674$ $1649$ $1637$ $100$ $335$ $51$ $5$ $0.0$ $72.1$ Yes $2378$ $2815$ $2761$ $4.5$ $9$ $52$ $5^1$ $0.0$ $72.1$ Yes $2378$ $2440$ $2434$ $2.5$ $5$ $53$ $5$ $0.0$ $72.2$ Yes $2378$ $2240$ $2434$ $2.5$ $5$ $53$ $5$ $0.0$ $72.2$ Yes $2378$ $228$ $2387$ $4$ $10$ $54$ $5$ $2.0$ $89.2$ Yes $2109$ $2125$ $2117$ $10.5$ $23.5$ $55$ $5$ $4.0$ $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ $5$ $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ $5$ $6.0$ $72.16$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ $6$ $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ $6$ $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ $6$ $3.0$ $77.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $81$ $6$ $5.0$ $87.21$ Yes <td>43</td> <td>2</td> <td>4.7</td> <td>100</td> <td>No</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                            | 43           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $45$ 24.7100No $46$ 24.7100Yes167416491637100335 $51$ 50.072.1Yes2378281527614.59 $52$ $5^1$ 0.072.1Yes2378244024342.55 $53$ 50.072.2Yes237825282387410 $54$ 52.089.2Yes21092125211710.523.5 $55$ 54.0102.2Yes1969197819793055.5 $56$ 55.0102.19Yes19151918190957.584.5 $57$ 56.072.16Yes2178.92186.421793.58 $76$ 60.057.15Yes2178.92186.421793.58 $77$ 61.062.16Yes2114.42120.52119.17.514.5 $78$ 62.072.21Yes20632070.12064.71019 $79$ 63.077.21Yes1937.61940.61931.12442.5 $85$ 66.092.24Yes1903.21906.31901.32460 $86$ 67.097.23Yes1871.21873.1186339.580 $87$ 68.0102.23Yes1894.7                                                                                                                                                                                                                                                                                                                                                                                                                                | 44           | 4       |            | 98          | Yes                 | 1593                       | 1591      | 1595           |                        |                    |
| 4624.7100Yes1674164916371003355150.072.1Yes2378281527614.5952 $5^1$ 0.072.1Yes2378244024342.555350.072.2Yes2378252823874105452.089.2Yes21092125211710.523.55554.0102.2Yes1969197819793055.55655.0102.19Yes19151918190957.584.55756.072.16Yes1860186718561612957660.057.15Yes2178.92186.421793.587761.062.16Yes2114.42120.52119.17.514.57862.072.21Yes20632070.12064.710197963.077.21Yes2015.62019.92017.513.5208064.082.21Yes1974.91978.41976.516.5498165.087.21Yes1937.61940.61931.12442.58566.092.24Yes1871.21873.1186339.5808768.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45           | 2       | 4.7        | 100         | No                  |                            |           |                |                        |                    |
| $51$ $5$ $0.0$ $72.1$ Yes $2378$ $2815$ $2761$ $4.5$ $9$ $52$ $5^1$ $0.0$ $72.1$ Yes $2378$ $2440$ $2434$ $2.5$ $5$ $53$ $5$ $0.0$ $72.2$ Yes $2378$ $2528$ $2387$ $4$ $10$ $54$ $5$ $2.0$ $89.2$ Yes $2109$ $2125$ $2117$ $10.5$ $23.5$ $55$ $5$ $4.0$ $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ $5$ $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ $5$ $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ $6$ $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ $6$ $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ $6$ $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ $6$ $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ $6$ $4.0$ $82.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ $6$ $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ $6$ $7.0$ $97.23$ Yes $1$                                                                                                                                                      | 46           | 2       | 4.7        | 100         | Yes                 | 1674                       | 1649      | 1637           | 100                    | 335                |
| $52$ $5^1$ $0.0$ $72.1$ Yes $2378$ $2440$ $2434$ $2.5$ $5$ $53$ $5$ $0.0$ $72.2$ Yes $2378$ $2528$ $2387$ $4$ $10$ $54$ $5$ $2.0$ $89.2$ Yes $2109$ $2125$ $2117$ $10.5$ $23.5$ $55$ $5$ $4.0$ $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ $5$ $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ $5$ $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ $6$ $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ $6$ $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ $6$ $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ $6$ $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ $6$ $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ $6$ $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ $6$ $6.0$ $92.24$ Yes $1893.4$ $1841.1$ $1828.1$ $54$ $68$ $86$ $9.0$ $102.23$ Yes $189$                                                                                                                                              | 51           | 5       | 0.0        | 72.1        | Yes                 | 2378                       | 2815      | 2761           | 4.5                    | 9                  |
| 535 $0.0$ $72.2$ Yes $2378$ $2528$ $2387$ 4 $10$ $54$ 5 $2.0$ $89.2$ Yes $2109$ $2125$ $2117$ $10.5$ $23.5$ $55$ 5 $4.0$ $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ 5 $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ 5 $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ 6 $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ 6 $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ 6 $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ 6 $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ 6 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $86$ $9.0$ $102.23$ No $1811.5$ $528.3$ <td>52</td> <td><math>5^{1}</math></td> <td>0.0</td> <td>72.1</td> <td>Yes</td> <td>2378</td> <td>2440</td> <td>2434</td> <td>2.5</td> <td>5</td>           | 52           | $5^{1}$ | 0.0        | 72.1        | Yes                 | 2378                       | 2440      | 2434           | 2.5                    | 5                  |
| 54 $5$ $2.0$ $89.2$ Yes $2109$ $2125$ $2117$ $10.5$ $23.5$ $55$ $5$ $4.0$ $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ $5$ $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ $5$ $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ $6$ $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ $6$ $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ $6$ $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ $6$ $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ $6$ $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ $6$ $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ $6$ $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ $6$ $7.0$ $97.23$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ $6$ $8.0$ $102.23$ Yes $189.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ $6$ $9.0$ $102.23$                                                                                                                                         | 53           | 5       | 0.0        | 72.2        | Yes                 | 2378                       | 2528      | 2387           | 4                      | 10                 |
| 5554.0 $102.2$ Yes $1969$ $1978$ $1979$ $30$ $55.5$ $56$ 55.0 $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ 5 $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ 6 $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ 6 $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ 6 $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ 6 $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ 6 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1894.7$ $1784$ $61$ $96$ $90$ 6 $9.0$ $102.23$ No $1811.5$ $528.3$ $503.8$ $91$ 6 $8.5$ $102.22$ Yes $1826$ $1828.2$ $1$                                                                                                                                                                       | 54           | 5       | 2.0        | 89.2        | Yes                 | 2109                       | 2125      | 2117           | 10.5                   | 23.5               |
| 565 $5.0$ $102.19$ Yes $1915$ $1918$ $1909$ $57.5$ $84.5$ $57$ 5 $6.0$ $72.16$ Yes $1860$ $1867$ $1856$ $161$ $295$ $76$ 6 $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ 6 $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ 6 $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ 6 $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ 6 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ 6 $9.0$ $102.26$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1826$ $1828.2$ $1866.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 7 $2.5$ $999$ No                                                                                                                                                              | 55           | 5       | 4.0        | 102.2       | Yes                 | 1969                       | 1978      | 1979           | 30                     | 55.5               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56           | 5       | 5.0        | 102.19      | Yes                 | 1915                       | 1918      | 1909           | 57.5                   | 84.5               |
| 76 $6$ $0.0$ $57.15$ Yes $2178.9$ $2186.4$ $2179$ $3.5$ $8$ $77$ $6$ $1.0$ $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ $6$ $2.0$ $72.21$ Yes $2063$ $2070.1$ $2064.7$ $10$ $19$ $79$ $6$ $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ $6$ $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ $6$ $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ $6$ $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ $6$ $7.0$ $97.23$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ $6$ $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ $6$ $9.0$ $102.26$ Yes $1811.5$ $528.3$ $503.8$ $91$ $6$ $8.5$ $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ $7$ $1.0$ $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ $7$ $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ $7$ $2.5$ <td< td=""><td>57</td><td>5</td><td>6.0</td><td>72.16</td><td>Yes</td><td>1860</td><td>1867</td><td>1856</td><td>161</td><td>295</td></td<> | 57           | 5       | 6.0        | 72.16       | Yes                 | 1860                       | 1867      | 1856           | 161                    | 295                |
| 7761.0 $62.16$ Yes $2114.4$ $2120.5$ $2119.1$ $7.5$ $14.5$ $78$ 62.0 $72.21$ Yes $2063$ $2070.1$ $2064.7$ 1019 $79$ 6 $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ 6 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1871.2$ $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ 6 $9.0$ $102.26$ Yes $1811.5$ $528.3$ $503.8$ $90$ 6 $9.0$ $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ 7 $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 7 $2.5$ $999$ No $1711$ $515.9$ $489.9$ $489.9$                                                                                                                                                                                                         | 76           | 6       | 0.0        | 57.15       | Yes                 | 2178.9                     | 2186.4    | 2179           | 3.5                    | 8                  |
| 7862.0 $72.21$ Yes $2063$ $2070.1$ $2064.7$ 1019 $79$ 6 $3.0$ $77.21$ Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ $80$ 6 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ 6 $9.0$ $102.26$ Yes $1811.5$ $1804.7$ $1784$ $61$ $96$ $90$ 6 $9.0$ $102.23$ No $1811.5$ $528.3$ $503.8$ $91$ 6 $8.5$ $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ 7 $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 7 $2.5$ $999$ No $1711$ $515.9$ $489.9$ $489.9$                                                                                                                                                                                                                             | 77           | 6       | 1.0        | 62.16       | Yes                 | 2114.4                     | 2120.5    | 2119.1         | 7.5                    | 14.5               |
| 796 $3.0$ 77.21Yes $2015.6$ $2019.9$ $2017.5$ $13.5$ $20$ 806 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ 816 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ 6 $9.0$ $102.26$ Yes $1811.5$ $1804.7$ $1784$ $61$ $96$ $90$ 6 $9.0$ $102.23$ No $1811.5$ $528.3$ $503.8$ $91$ 6 $8.5$ $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ 7 $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 7 $2.5$ $999$ No $1711$ $515.9$ $489.9$ $489.9$                                                                                                                                                                                                                                                                                 | 78           | 6       | 2.0        | 72.21       | Yes                 | 2063                       | 2070.1    | 2064.7         | 10                     | 19                 |
| 806 $4.0$ $82.21$ Yes $1974.9$ $1978.4$ $1976.5$ $16.5$ $49$ $81$ 6 $5.0$ $87.21$ Yes $1937.6$ $1940.6$ $1931.1$ $24$ $42.5$ $85$ 6 $6.0$ $92.24$ Yes $1903.2$ $1906.3$ $1901.3$ $24$ $60$ $86$ 6 $7.0$ $97.23$ Yes $1873.1$ $1863$ $39.5$ $80$ $87$ 6 $8.0$ $102.23$ Yes $1899.4$ $1841.1$ $1828.1$ $54$ $68$ $88$ 6 $9.0$ $102.26$ Yes $1811.5$ $1804.7$ $1784$ $61$ $96$ $90$ 6 $9.0$ $102.23$ No $1811.5$ $528.3$ $503.8$ $91$ 6 $8.5$ $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ $92$ 7 $1.0$ $86.26$ Yes $1935.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ 7 $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 7 $2.5$ $999$ No $1711$ $515.9$ $489.9$ $489.9$                                                                                                                                                                                                                                                                                                                                        | 79           | 6       | 3.0        | 77.21       | Yes                 | 2015.6                     | 2019.9    | 2017.5         | 13.5                   | 20                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80           | 6       | 4.0        | 82.21       | Yes                 | 1974.9                     | 1978.4    | 1976.5         | 16.5                   | 49                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81           | 6       | 5.0        | 87.21       | Yes                 | 1937.6                     | 1940.6    | 1931.1         | 24                     | 42.5               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85           | 6       | 6.0        | 92.24       | Yes                 | 1903.2                     | 1906.3    | 1901.3         | 24                     | 60                 |
| 87       6       8.0       102.23       Yes       1899.4       1841.1       1828.1       54       68         88       6       9.0       102.26       Yes       1811.5       1804.7       1784       61       96         90       6       9.0       102.23       No       1811.5       528.3       503.8       -       -         91       6       8.5       102.22       Yes       1826       1828.2       1806.6       71       107         92       7       1.0       86.26       Yes       1936.5       1940.6       1933.1       21       44         93       7       1.5       97.08       Yes       1853.5       1852.2       1846.3       30       73.5         264       7       2.5       999       No       1711       515.9       489.9                                                                                                                                                                                                                                                                      | 86           | 6       | 7.0        | 97.23       | Yes                 | 1871.2                     | 1873.1    | 1863           | 39.5                   | 80                 |
| 88       6       9.0       102.26       Yes       1811.5       1804.7       1784       61       96         90       6       9.0       102.23       No       1811.5       528.3       503.8       -       -         91       6       8.5       102.22       Yes       1826       1828.2       1806.6       71       107         92       7       1.0       86.26       Yes       1936.5       1940.6       1933.1       21       44         93       7       1.5       97.08       Yes       1853.5       1852.2       1846.3       30       73.5         264       7       2.5       999       No       1711       515.9       489.9                                                                                                                                                                                                                                                                                                                                                                                   | 87           | 6       | 8.0        | 102.23      | Yes                 | 1899.4                     | 1841.1    | 1828.1         | 54                     | 68                 |
| 90       6       9.0       102.23       No       1811.5       528.3       503.8       -       -         91       6       8.5       102.22       Yes       1826       1828.2       1806.6       71       107         92       7       1.0       86.26       Yes       1936.5       1940.6       1933.1       21       44         93       7       1.5       97.08       Yes       1853.5       1852.2       1846.3       30       73.5         264       7       2.5       999       No       1711       515.9       489.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88           | 6       | 9.0        | 102.26      | Yes                 | 1811.5                     | 1804.7    | 1784           | 61                     | 96                 |
| 9168.5 $102.22$ Yes $1826$ $1828.2$ $1806.6$ $71$ $107$ 9271.0 $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ 9371.5 $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ 72.5 $999$ No $1711$ $515.9$ $489.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90           | 6       | 9.0        | 102.23      | NO                  | 1811.5                     | 528.3     | 503.8          | -                      | -                  |
| 92 $7$ $1.0$ $86.26$ Yes $1936.5$ $1940.6$ $1933.1$ $21$ $44$ $93$ $7$ $1.5$ $97.08$ Yes $1853.5$ $1852.2$ $1846.3$ $30$ $73.5$ $264$ $7$ $2.5$ $999$ No $1711$ $515.9$ $489.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91           | 0       | 8.5        | 102.22      | res                 | 1820                       | 1828.2    | 1806.6         | (1                     | 107                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92           | 7       | 1.0        | 86.26       | Yes                 | 1936.5                     | 1940.6    | 1933.1         | 21                     | 44                 |
| 204 ( 2.5 $999$ NO 1(11 515.9 489.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93           | (       | 1.5        | 97.08       | Yes                 | 1853.5                     | 1852.2    | 1840.3         | 30                     | (3.5               |
| 265 7 2.0 99.9 No 1779 538.4 511.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $204 \\ 265$ | (<br>7  | ⊿.ə<br>2.0 | 999<br>90 0 | No                  | 1711<br>1770               | 538 /     | 409.9<br>511 5 |                        |                    |

| Test              | Mix            | $\beta$      | Press.          | $\operatorname{Go}$ | $D_{CJ}$         | $D_{1-2}$        | $D_{2-3}$        | $\lambda_{ m min}$     | $\lambda_{ m max}$     |
|-------------------|----------------|--------------|-----------------|---------------------|------------------|------------------|------------------|------------------------|------------------------|
|                   |                |              | kPa             |                     | m/s              | m/s              | m/s              | $\mathbf{m}\mathbf{m}$ | $\mathbf{m}\mathbf{m}$ |
| 266               | 7              | 1.6          | 88.4            | Yes                 | 1838             | 1830             | 1824             | 26                     | 52                     |
| 267               | 7              | 1.8          | 91.2            | Yes                 | 1807             | 1808             | 1798             | 34                     | 87                     |
| 268               | 1              | 0.78         | 99.97           | Yes                 | 1727             | 1710             | 1705             | 15                     | 37                     |
| 269               | 1              | 1.08         | 99.99           | Yes                 | 1597             | 1578             | 1564             | 74                     | 105                    |
| 270               | 2              | 0.5          | 81              | Yes                 | 2228             | 2229             | 2224             | 3                      | 6                      |
| 271               | 2              | 1.33         | 91.2            | Yes                 | 2059             | 2058             | 2053             | 5                      | 12                     |
| 272               | 1              | 0.50         | 69.86           | Yes                 | 1884             | 1873             | 1869             | 6                      | 14                     |
| 273               | 1              | 0.105        | 75.98           | Yes                 | 2221.7           | 2218             | 2213             | 2                      | 5                      |
| 274               | 1              | 0.047        | 76              | Yes                 | 2301.8           | 2301.9           | 2298.1           | 2                      | 3                      |
| 275               | 2              | 0.0          | 72.9            | Yes                 | 2380.2           | 2382.8           | 2371.8           | 1                      | 3                      |
| 276               | 1              | 0.228        | 88.4            | Yes                 | 2091.7           | 2091.4           | 2083.3           | 3                      | 5                      |
| 277               | 5              | 0.75         | 69.96           | Yes                 | 2242.9           | 2264.9           | 2256.1           | 5                      | 12                     |
| 278               | 5              | 2.45         | 69.98           | Yes                 | 2063.2           | 2079.6           | 2071.7           | 14                     | 36                     |
| 279               | 5              | 2.45         | 82.05           | Yes                 | 2068.3           | 2077.2           | 2074             | 13                     | 27                     |
| 280               | 6              | 5.0          | 56.97           | Yes                 | 1928             | 1930             | 1919             | 27                     | 53                     |
| 281               | 7              | 0.117        | 56.09           | Yes                 | 2136.8           | 2147.9           | 2141.2           | 6                      | 9                      |
| 282               | 7              | 0.45         | 64.57           | Yes                 | 2046.4           | 2058.5           | 2046.5           | 8                      | 17                     |
| 283               | 7              | 1.96         | 96.45           | Yes                 | 1785.8           | 1778.4           | 1765.3           | 33                     | 67                     |
| 286               | 8              | 0.0          | 65.87           | Yes                 | 2441.2           | 2453             | 2450             | 17                     | 32                     |
| $\frac{200}{287}$ | 8              | 0.5          | 75.88           | No                  | 2260             | 773.8            | 696.8            | 11                     | 02                     |
| 288               | 8              | 0.2          | 70.99           | Ves                 | 2359             | 2379 7           | 2362.7           | 18                     | 42                     |
| 289               | 8              | 0.2          | 73 94           | Ves                 | 2000<br>2290 4   | 2304.8           | 2301             | 18                     | 55                     |
| 200               | 8              | 0.1          | 75.98           | Ves                 | 2230.1           | 2004.0<br>2237 2 | 2001<br>2239 7   | 50                     | 79                     |
| 200               | 8              | 1.0          | 81 13           | Ves                 | 2135             | 2137.9           | 2146.2           | 67                     | 135                    |
| 201               | 8              | 1.5          | 01.10<br>01.25  | No                  | 2100<br>2041 1   | 603.6            | 568.9            | 01                     | 100                    |
| 202               | 8              | 1.0          | 86.13           | No                  | 2011.1           | 621.2            | 500.0            |                        |                        |
| 200               | 9              | 0.0          | 55 73           | Ves                 | 2000.4           | 2230 0           | 2231.6           | 8                      | 14                     |
| 204               | a<br>a         | 0.0          | 63 70           | Ves                 | 2225.0<br>21/7.0 | 2255.5           | 2251.0<br>2151.2 | 8                      | 20                     |
| 295               | 9              | 1.0          | 71              | Ves                 | 2147.5           | 2102.9           | 2101.2           | 16                     | 20                     |
| 200               | 0              | 1.0          | 75.08           | Vos                 | 2013.1           | 2001.4           | 2001             | 33                     | 57                     |
| 291               | 9              | 2.0          | 80.08           | No                  | 1067.6           | 2020.0<br>577 1  | 2013.1<br>542.8  | 00                     | 51                     |
| 290               | 9              | 1.75         | 75.08           | No                  | 1002.5           | 570.7            | 551.0            |                        |                        |
| 299               | 10             | 0.50         | 86.02           | Vos                 | 1012.0           | 1010.2           | 1005 3           | 33                     | 60                     |
| 300               | 10             | 1.00         | 101 4           | No                  | 1706.0           | 1910.2<br>855 1  | 753.6            | 55                     | 00                     |
| 201               | 10             | 0.75         | 101.4<br>101.4  | No                  | 1901.9           | 556 4            | 700.0<br>540.1   |                        |                        |
| 302<br>202        | 10             | 0.75         | 70.02           | No                  | 2049.7           | 200.4<br>2051 6  | 040.1<br>2051    | 15                     | 26                     |
| 203               | 10             | 0.25         | 70.95           | Vec                 | 2040.7           | 2001.0           | 2001             | 10                     | 30<br>11               |
| 205               | $11 \\ 10^{2}$ | 0.0          | 04.24           | Vec                 | 2021.1           | 2020.7           | 2500.8           | 10                     | 11<br>91               |
| 200               | 14             | 0.0          | 94.04<br>01.17  | Vec                 | 2121.4           | 2120.5           | 2111.9           | 10                     | 10                     |
| 207               | 11             | 21.0<br>21.5 | 91.17<br>101.91 | Vec                 | 2004.9           | 2000.7<br>1057.2 | 1040.4           | 10                     | 10                     |
| 202               | 11             | 31.3<br>49.0 | 101.31          | Vec                 | 1909             | 1907.2           | 1949.4           | 14<br>99               | 20<br>40               |
| 308               | 11             | 42.0<br>52.5 | 101.54          | res<br>Vec          | 1041.2           | 1037.4           | 1040.0<br>1725 5 | 22<br>46               | 49                     |
| 309               | 11             | 52.5<br>C2.0 | 101.20          | res                 | 1/00./           | 1/30.2           | 1735.5           | 40                     | 90                     |
| 310<br>211        | 11             | 03.0         | 101.37          | Yes<br>Vee          | 1080.4           | 1077.4           | 1003.3           | ()<br>10               | 181                    |
| 311               | 12             | 14.5         | 101.42          | Yes<br>Vee          | 1939             | 1930.4           | 1933.1           | 10                     | 39                     |
| 312               | 12             | 29.0         | 101.20          | res                 | 1640.1           | 1/13.5<br>Foc 0  | 1/11.4           | 75                     | 110                    |
| 313<br>914        | 12             | 30.2         | 101.3           | INO<br>N -          | 1049.1           | 000.2<br>E40.9   | 004.4<br>500.2   |                        |                        |
| 314               | 10             | 0.75         | 101.44          | INO<br>V            | 1801.8           | 040.8            | 042.3            | C                      | 10                     |
| 315               | 11             | 5.0          | 75.96           | Yes                 | 2359             | 2358.3           | 2350.7           | 6                      | 12                     |
| 316               | 11             | 10.0         | 81.11           | Yes                 | 2251.7           | 2256.5           | 2245.2           | 9                      | 10                     |
| 317               | 11             | 47.2         | 101.3           | Yes                 | 1800.8           | 1778.4           | 1799.6           | 52                     | 82                     |
| 318               | 11             | 57.5         | 101.3           | Yes                 | 1719.4           | 1705.5           | 1700.4           | 88                     | 146                    |
| 319               | 11             | 15.0         | 86.19           | Yes                 | 2169.2           | 2165.7           | 2168.8           | 10                     | 16                     |
| 320               | 11             | 78.1         | 101.32          | No                  | 1578             | 892.7            | 801.6            |                        | a -                    |
| 321               | 12             | 5.4          | 96.3            | Yes                 | 2051.6           | 2044.7           | 2039.7           | 16                     | 33                     |

| Test | Mix      | $\beta$ | Press. | Go  | $\mathrm{D}_{\mathrm{CJ}}$ | $D_{1-2}$ | $D_{2-3}$ | $\lambda_{ m min}$     | $\lambda_{ m max}$     |
|------|----------|---------|--------|-----|----------------------------|-----------|-----------|------------------------|------------------------|
|      |          |         | kPa    |     | m/s                        | m/s       | m/s       | $\mathbf{m}\mathbf{m}$ | $\mathbf{m}\mathbf{m}$ |
| 322  | 12       | 20.5    | 101.28 | Yes | 1848.4                     | 1841.1    | 1840.5    | 30                     | 56                     |
| 323  | 12       | 0.0     | 96.29  | Yes | 2103.1                     | 2101      | 2095.1    | 19                     | 35                     |
| 324  | 12       | 2.3     | 96.16  | Yes | 2076.9                     | 2084.3    | 2067      | 18                     | 36                     |
| 325  | 12       | 9.0     | 96.24  | Yes | 2012.4                     | 2004.4    | 2000      | 19                     | 31                     |
| 326  | 12       | 31.5    | 101.31 | Yes | 1701.7                     | 1683.5    | 1680.3    | 92                     | 108                    |
| 327  | 10       | 0.10    | 60.74  | Yes | 2148.3                     | 2155.5    | 2151.2    | 9                      | 18                     |
| 328  | 10       | 0.60    | 91.28  | Yes | 1866.4                     | 1852.2    | 1859.3    | 32                     | 99                     |
| 329  | 8        | 0.5     | 75.87  | Yes | 2260.2                     | 2267.7    | 2264.4    | 40                     | 80                     |
| 330  | 8        | 1.1     | 86.1   | No  | 2115.5                     | 617       | 586.4     |                        |                        |
| 331  | $12^{3}$ | 0.0     | 96.27  | Yes | 2111.4                     | 2108.3    | 2099.9    | 17                     | 32                     |
| 332  | $12^{3}$ | 0.0     | 96.36  | Yes | 2092.1                     | 2093.8    | 2085.7    | 23                     | 43                     |
| 333  | 13       | 10.0    | 101.33 | No  | 1662                       | 915.5     | 817.5     |                        |                        |
| 334  | 13       | 15.0    | 101.28 | Yes | 1732.3                     | 1729.7    | 1708.2    | 68                     | 106                    |
| 335  | 14       | 25.0    | 101.32 | Yes | 1978.4                     | 1980.5    | 1970.2    | 7                      | 14                     |
| 336  | 14       | 30.0    | 101.31 | Yes | 1922.8                     | 1928.4    | 1919.1    | 7                      | 14                     |
| 337  | 15       | 14.0    | 101.21 | Yes | 1996.7                     | 1991.3    | 1985.0    | 8                      | 14                     |
| 338  | 15       | 25.0    | 101.33 | Yes | 1837.0                     | 1839.2    | 1831.7    | 9                      | 17                     |
| 339  | 16       | 28.5    | 101.32 | Yes | 1893.6                     | 1896.4    | 1891.6    | 5                      | 16                     |
| 340  | 16       | 38.5    | 101.19 | Yes | 1772.6                     | 1780.2    | 1773.7    | 19                     | 42                     |
| 341  | 17       | 35.0    | 101.31 | Yes | 1973.9                     | 1969.9    | 1965.9    | 8                      | 14                     |
| 342  | 17       | 45.0    | 101.31 | Yes | 1860.3                     | 1882.7    | 1874.4    | 7                      | 20                     |
|      |          |         |        |     |                            |           |           |                        |                        |

 $^1\mathrm{Contaminated}$  with about 2%  $\mathrm{C_2H_2}$   $^2\mathrm{Mixture}$  12 with 33  $\mathrm{N_2}$  instead of 35  $^3\mathrm{These}$  shots used a modified mixture 12. Test 331 contained 0 CH<sub>4</sub>, test 332 contained 2 CH<sub>4</sub>. See text (Section 2.2)

### **B** Driver Calibration

The driver of the GALCIT Detonation Tube is intended to reliably and controllably initiate detonations in any mixture that is detonable in the tube (Akbar and Shepherd 1996). It consists of acetylene and oxygen cylinders, regulators, flash arrestors, and valves, an injection valve, a digital control circuit, and an exploding wire circuit. The control circuit actuates the electropneumatic valves to control the driver injection duration and ignition delay, and triggers the exploding wire. It is interlocked to various gas supply valves and hydraulic closure devices for safety purposes.

A manual fire signal starts the driver sequence. The control circuit opens the acetylene and oxygen valves and the injection valve for a programmed time period and then waits for a programmed delay period. The ratio of acetylene to oxygen is controlled by adjusting the cylinder pressure regulators. A fire signal is then sent to a trigger module that sends a high voltage trigger to the exploding wire spark gap. The spark gap switches the 2  $\mu$ F capacitor bank (typically charged to 9 kV) through a small copper wire in the tube. The oxy-acetylene mixture is easily initiated by this discharge and transitions to a planar detonation wave which is transmitted to the test mixture.

Tests are periodically performed to verify the overall quantity of driver gas injected with each shot and to measure and adjust its equivalence ratio. To check the amount of gas injection, the driver is triggered several times without the exploding wire and the final pressure is measured after each injection. Measuring the detonation wave speed in this mixture and comparing it to equilibrium calculations (STANJAN) allow an estimate of the equivalence ratio. The driver is kept slightly lean to avoid formation of soot.

A number of tests with the driver transmitting blast waves into air have been performed to evaluate its equivalent energy. A summary of results from these shots is presented in Table 12.

| Shot     | Press. | Flow D | Juration | De     | lay   | $D_{1-2}$ | $D_{2-3}$ | $\Delta P_1$ | $\Delta P_2$ | $\Delta P_3$ |
|----------|--------|--------|----------|--------|-------|-----------|-----------|--------------|--------------|--------------|
|          | (kPa)  | (dial) | (s)      | (dial) | (s)   | (m/s)     | (m/s)     | (kPa)        | (kPa)        | (kPa)        |
| 48       | 100.0  | 560    | 4.442    | 200    | 1.025 | 712       | 658       | 430          | 330          | 270          |
| $58^{1}$ | 100.08 | 560    | 4.442    | 200    | 1.025 | -         | -         |              |              |              |
| 59       | 25.2   | 560    | 4.442    | 200    | 1.025 | -         | -         | 361          | 210          | 150          |
| 60       | 25.2   | 560    | 4.442    | 200    | 1.025 | 999.5     | 846.7     | 305          | 206          | 163          |
| 61       | 50.2   | 560    | 4.442    | 200    | 1.025 | 823.6     | 739.1     | 340          | 224          | 185          |
| 62       | 75.2   | 560    | 4.442    | 200    | 1.025 | -         | -         | 434          | 312          | 253          |
| 63       | 100.0  | 560    | 4.442    | 200    | 1.025 | 711.8     | 652.1     | 350          | 270          | 230          |
| $64^{2}$ | 98.9   | 69     | 0.440    | 200    | 1.025 | -         | -         |              |              |              |
| 65       | 99.69  | 260    | 1.997    | 200    | 1.025 | 453.5     | 450.7     | 95           | 90           | 80           |
| $66^{2}$ | 99.47  | 137.7  | 1.000    | 200    | 1.025 | -         | -         |              |              |              |
| 67       | 100.0  | 751    | 6.000    | 200    | 1.025 | 744.8     | 683.2     | 500          | 330          | 310          |
| 68       | 100.0  | 628.5  | 5.000    | 200    | 1.025 | 716.8     | 663.3     | 450          | 340          | 290          |
| 69       | 100.0  | 505.8  | 4.000    | 200    | 1.025 | 689.3     | 635.3     | 430          | 280          | 240          |
| 70       | 100.0  | 383.1  | 3.000    | 200    | 1.025 | 655.2     | 599.5     | 350          | 230          | 200          |
| 71       | 100.0  | 560    | 4.442    | 200    | 1.025 | 705.7     | 644.4     | 420          | 300          | 240          |
| 72       | 100.0  | 560    | 4.442    | 50     | 0.500 | 706.6     | 651.9     | 500          | 330          | 270          |
| 73       | 100.0  | 560    | 4.442    | 336    | 1.501 | 707.9     | 645.3     | 400          | 280          | 250          |
| 74       | 100.0  | 560    | 4.442    | 479    | 2.002 | 696.1     | 646.6     | 510          | 380          | 280          |
| 75       | 100.0  | 560    | 4.442    | 765.1  | 3.003 | 701.1     | 646.4     | 350          | 270          | 240          |

Table 12: Driver Characterization Shot List

<sup>1</sup>Pressure signals too small on CAMAC data; oscilloscope failed to trigger

<sup>2</sup>Driver did not detonate

The injection and delay periods are programmed through dial potentiometers. The relationship between the numerical values on these potentiometers and the actual injection and delay periods has been measured, and for reference are given below.

Injection Period = 
$$8.1513$$
(Dial Setting) -  $122.26$ 

and

Ignition Delay = 
$$3.5$$
(Dial Setting) +  $325$ 

where the injection period and ignition delay are in units of milliseconds.

According to the approximate analysis by Thibault et al. (1987), the far field overpressure in a tube subjected to a blast wave at X=0 is a function of  $\gamma$ , X,  $P_0$ , and  $E_c$ , where  $E_c$  is the equivalent energy of the source:

$$\frac{\Delta P}{P_0} = \frac{4\gamma/(\gamma+1)}{\sqrt{1+4\gamma/(\gamma^2-1)\cdot X/L_e} - 1}$$
$$L_e = \frac{E_c}{P_0}$$

where

Far field is considered to be  $X/L_e > 0.3$ .

Solving these relations for  $E_c$  in terms of  $\gamma$ ,  $\Delta P/P_0$ , and X allows the data in Table 12 to be used to plot equivalent energy vs injection time. These data, and a semilog curve fit are shown in Fig. 17.



Figure 17: Driver equivalent energy

Each point represents a shock pressure measured at one of the pressure transducers. The equivalent energy computed from the three transducers for each shot were averaged and used to calculate explosion lengths  $(L_e)$  and the nondimensional distance to each transducer. Since the nondimensional distance to each transducer was a function of the initial pressure and the injection time, the validity of the far field assumption was checked for each pressure trace and the data points were sorted and plotted accordingly. The "far field" data were found to lie along a linear curve in linear-log coordinates, so a semilog curve fit was made and plotted with the data. The applicability of this fit is limited to the range of injection times investigated. Below about 2 s injection time the driver slug itself will not initiate. Above 6 s, the equivalent energy begins to plateau and the length of the driver slug begins to become appreciable (especially at low initial pressures). However, the data are useful by demonstrating that the relationship between equivalent energy and injection time is not linear. The effect of varying the delay time has also been investigated but no trend with respect to equivalent energy has been found.

Note that the analysis illustrated here assumes that certain system variables are constant, namely oxygen and acetylene delivery pressures and flow rates. These can be affected by variations in cylinder pressure and in the detonation tube initial pressure. Acetylene delivery pressure depends strongly on the frequency of use since the gas is dissolved in acetone within the cylinder. Furthermore, the specific construction of each cylinder can affect its flow characteristics. Variations in the component flow rates can affect the equivalence ratio and the driver equivalent energy. Efforts have been made to compensate for these variations, and tests are performed periodically to correct them.

### C Validation Figures



Figure 18:  $H_2$ -O<sub>2</sub>-Ar Comparison of Allen et al. (1995) Mechanism with Data of Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966)



Figure 19:  $H_2$ -O<sub>2</sub>-Ar Comparison of Baulch et al. (1992) Mechanism with Data of Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966)



Figure 20:  $H_2$ -O<sub>2</sub>-Ar Comparison of Frenklach et al. (1995) (GRI) Mechanism with Data of Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966)



Figure 21:  $H_2$ -O<sub>2</sub>-Ar Comparison of Miller and Bowman (1989) Mechanism with Data of Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966)



Figure 22:  $H_2$ -O<sub>2</sub>-Ar Comparison of modified Miller and Bowman (1989) Mechanism with Data of Craig (1966), Petersen et al. (1996), and Skinner and Ringrose (1966)



Figure 23: H<sub>2</sub>-Air Comparison of Allen et al. (1995) Mechanism with Blumenthal et al. (1996) and Bhaskaran et al. (1973) Data



Figure 24:  $H_2$ -Air Comparison of Baulch et al. (1992) Mechanism with Blumenthal et al. (1996) and Bhaskaran et al. (1973) Data



Figure 25:  $H_2$ -Air Comparison of Frenklach et al. (1995) (GRI) Mechanism with Blumenthal et al. (1996) and Bhaskaran et al. (1973) Data



Figure 26:  $H_2$ -Air Comparison of Miller and Bowman (1989) Mechanism with Blumenthal et al. (1996) and Bhaskaran et al. (1973) Data



Figure 27:  $H_2$ -Air Comparison of modified Miller and Bowman (1989) Mechanism with Blumenthal et al. (1996) and Bhaskaran et al. (1973) Data



Figure 28:  $H_2$ -N<sub>2</sub>O-Ar Comparison of Allen et al. (1995) Mechanism with Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982) Data, at 1.5-3 atm



Figure 29:  $H_2$ -N<sub>2</sub>O-Ar Comparison of Frenklach et al. (1995) Mechanism with Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982) Data, at 1.5-3 atm



Figure 30:  $H_2$ -N<sub>2</sub>O-Ar Comparison of Miller and Bowman (1989) Mechanism with Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982) Data, at 1.5-3 atm



Figure 31:  $H_2-N_2O$ -Ar Comparison of modified Miller and Bowman (1989) Mechanism with Hidaka et al. (1985a), Hidaka et al. (1985b), and Pamidimukkala and Skinner (1982) Data, at 1.5-3 atm



Figure 32:  $CH_4$ -O<sub>2</sub>-Ar Comparison of Baulch et al. (1994a) Mechanism with Cheng and Oppenheim (1984), Burcat et al. (1971), and Burcat et al. (1996) Data, at 2-13 atm



Figure 33: CH<sub>4</sub>-O<sub>2</sub>-Ar Comparison of Baulch et al. (1994a) Mechanism with Seery and Bowman (1970) Data, at 1.7-3.4 atm



Figure 34:  $CH_4$ -O<sub>2</sub>-Ar Comparison of Frenklach et al. (1995) Mechanism with Cheng and Oppenheim (1984), Burcat et al. (1971), and Burcat et al. (1996) Data, at 2-13 atm



Figure 35:  $CH_4-O_2-Ar$  Comparison of Frenklach et al. (1995) Mechanism with Seery and Bowman (1970) Data, at 1.7-3.4 atm



Figure 36:  $CH_4-O_2$ -Ar Comparison of Miller and Bowman (1989) Mechanism with Cheng and Oppenheim (1984), Burcat et al. (1971), and Burcat et al. (1996) Data, at 2-13 atm



Figure 37:  $CH_4$ -O<sub>2</sub>-Ar Comparison of Miller and Bowman (1989) Mechanism with Seery and Bowman (1970) Data, at 1.7-3.4 atm



Figure 38:  $CH_4-O_2$ -Ar Comparison of modified Miller and Bowman (1989) Mechanism with Cheng and Oppenheim (1984), Burcat et al. (1971), and Burcat et al. (1996) Data, at 2-13 atm



Figure 39:  $CH_4$ -O<sub>2</sub>-Ar Comparison of modified Miller and Bowman (1989) Mechanism with Seery and Bowman (1970) Data, at 1.7-3.4 atm



Figure 40:  $CH_4$ -N<sub>2</sub>O-Ar Comparison of Frenklach et al. (1995) Mechanism with Soloukhin (1971) and Drummond (1969) Data



Figure 41:  $CH_4$ -N<sub>2</sub>O-Ar Comparison of Miller and Bowman (1989) Mechanism with Soloukhin (1971) and Drummond (1969) Data



Figure 42:  $CH_4-N_2O$ -Ar Comparison of modified Miller and Bowman (1989) Mechanism with Soloukhin (1971) and Drummond (1969) Data



Figure 43:  $NH_3-O_2$ -Ar Comparison of Miller and Bowman (1989) Mechanism with Data of Bull (1968), Drummond (1972b), and Fujii et al. (1981)



Figure 44: NH<sub>3</sub>-O<sub>2</sub>-Ar Comparison of modified Miller and Bowman (1989) Mechanism with Data of Bull (1968), Drummond (1972b), and Fujii et al. (1981)



Figure 45:  $NH_3-O_2$ -Ar Comparison of Miller et al. (1983) Mechanism with Data of Bull (1968), Drummond (1972b), and Fujii et al. (1981)



Figure 46:  $NH_3-O_2-N_2$  Comparison of Miller and Bowman (1989) Mechanism with Data of Miyama and Endoh (1967b) and Miyama and Endoh (1967a)



Figure 47:  $NH_3-O_2-N_2$  Comparison of modified Miller and Bowman (1989) Mechanism with Data of Miyama and Endoh (1967b) and Miyama and Endoh (1967a)



Figure 48:  $NH_3-O_2-N_2$  Comparison of Miller et al. (1983) Mechanism with Data of Miyama and Endoh (1967b) and Miyama and Endoh (1967a)



Figure 49:  $NH_3-N_2O$ -Ar Comparison of Miller and Bowman (1989) Mechanism with Data of Drummond and Hiscock (1967) and Soloukhin (1971)



Figure 50:  $NH_3-N_2O-Ar$  Comparison of modified Miller and Bowman (1989) Mechanism with Data of Drummond and Hiscock (1967) and Soloukhin (1971)



Figure 51:  $NH_3-N_2O-Ar$  Comparison of Miller et al. (1983) Mechanism with Data of Drummond and Hiscock (1967) and Soloukhin (1971)

## D ZND Calculation Results

| No. | $H_2$ | $N_2O$ | $NH_3$ | $CH_4$ |
|-----|-------|--------|--------|--------|
|     | (%)   | (%)    | (%)    | (%)    |
| 1   | 100   | 0      | 0      | 0      |
| 2   | 85    | 0      | 15     | 0      |
| 3   | 70    | 0      | 30     | 0      |
| 4   | 50    | 0      | 50     | 0      |
| 5   | 95    | 0      | 0      | 5      |
| 6   | 80    | 0      | 15     | 5      |
| 7   | 65    | 0      | 30     | 5      |
| 8   | 45    | 0      | 50     | 5      |
| 9   | 50    | 50     | 0      | 0      |
| 10  | 42.5  | 42.5   | 15     | 0      |
| 11  | 35    | 35     | 30     | 0      |
| 12  | 25    | 25     | 50     | 0      |
| 13  | 47.5  | 47.5   | 0      | 0      |
| 14  | 40    | 40     | 15     | 5      |
| 15  | 32.5  | 32.5   | 30     | 5      |
| 16  | 22.5  | 22.5   | 50     | 5      |
| 17  | 33.3  | 66.7   | 0      | 0      |
| 18  | 28.3  | 56.7   | 15     | 0      |
| 19  | 23.3  | 46.7   | 30     | 0      |
| 20  | 16.7  | 33.3   | 50     | 0      |
| 21  | 31.7  | 63.3   | 0      | 5      |
| 22  | 26.7  | 53.3   | 15     | 5      |
| 23  | 21.7  | 43.3   | 30     | 5      |
| 24  | 15    | 30     | 50     | 5      |
| 25  | 33    | 53     | 14     | 0      |
| 26  | 42    | 36     | 21     | 1      |
| 27  | 4     | 4      | 2      | 0      |
| 28  | 35    | 35     | 10     | 20     |

Table 13: Mixture list from Ross and Shepherd (1996), Table E.1, plus two additional mixtures (27 and 28)  $\,$ 



Figure 52: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 1, 2, 3, and 4



Figure 53: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 5, 6, 7, and 8



Figure 54: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 9, 10, 11, and 12



Figure 55: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 13, 14, 15, and 16



Figure 56: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 17, 18, 19, and 20  $\,$ 



Figure 57: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 21, 22, 23, and 24



Figure 58: ZND reaction zone thickness calculations for Ross and Shepherd (1996) mixtures 25, 26, 27, and 28



Figure 59: ZND reaction zone thickness calculations for Table 1 mixtures 12, 13, 14, 15, 16, and 17

#### E Reaction Mechanisms

The core of chemical kinetics calculations is the reaction mechanism, which specifies the set of elementary reactions to be considered and the rate parameters that describe the temperature dependency of the rates of these reactions. The rate equation used is the modified Arrhenius equation, which requires three parameters:

$$k = AT^n \exp(-E/RT)$$

The dimensions of k are  $\frac{1}{\text{concentration}^{m-1}\text{time}}$  where m is the order of the reaction. The temperature exponent n is dimensionless while temperature is understood to be in K. The activation energy E has dimensions of energy/mole, although sometimes the ratio E/R is provided instead, which has a dimension of temperature. In the tables of reaction mechanisms below, units have not been used consistently so the units of each table are provided in the header. Most elementary reactions described below are bidirectional, meaning that the rate parameters for one direction are provided, but the reverse rates can be computed through equilibrium considerations. Some reactions are specified as unidirectional (by  $\Rightarrow$ ), generally because rate data are directly available for the reverse reaction. Other annotations are consistent with conventions of the Sandia gas phase chemical kinetics package (Kee et al. 1989). In calculations performed with these mechanisms for this report, thermodynamic data were obtained from the Sandia thermodynamic database whenever possible. Where data were not available for this database, they were taken from the GRI thermodynamic database (Frenklach et al. 1995).

#### E.1 Allen et al. (1995)

Allen et al. (1995) uses a fall-off relation that is a special case of the SRI form available in the Sandia package, when  $F_c$  is constant. In this case, the package parameters are given by  $a = F_c$ , b = 0, c = 0, and d and e are not used. A couple of reactions specify temperature dependent  $F_c$  that can not be handled exactly by the SRI form. In these cases, any optimum approximate match will be appropriate over a certain temperature range. For lack of a better criteria, an exact match at 0 K has been applied to derive software parameters.

| Reaction                                                                              | A (cm-moles-sec-K)                                         | n     | E (cal/mole)  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------|-------|---------------|
|                                                                                       | 1.010E + 1.4                                               | 0.00  | 16440         |
| $H+O2 \leftarrow O+OH$                                                                | 1.910E + 14                                                | 0.00  | 10440         |
| $O + n_2 \leftarrow n_+ O n$                                                          | 3.000E + 04                                                | 2.07  | 0290          |
| $U_{n+n2} \leftarrow n_{2}U_{+n}$                                                     | $2.100E \pm 0.000$                                         | 1.01  | 0400<br>12400 |
| $H_2O+O \leftarrow OH+OH$                                                             | 2.970E+00                                                  | 2.02  | 10400         |
| Friend Collision Efficiencies                                                         | 4.570E+19                                                  | -1.40 | 104400        |
| Emanced Comston Emclencies                                                            | $H_{2} = 120 H_{2} = 25 M_{2} = 00$                        |       |               |
| $H_2 + \Lambda P \longrightarrow H + H + \Lambda P$                                   | 1120-12.0, 112-2.3, AR=0.0                                 | 1 10  | 104400        |
| $\Pi 2 + A \Pi + \Pi + \Pi + A \Pi$<br>$\Omega + \Omega + M \rightarrow \Omega 2 + M$ | $5.640E \pm 16$<br>6 170E $\pm 15$                         | -1.10 | 104400        |
| Enhanced Collision Efficiencies                                                       |                                                            | -0.50 | 0             |
| Emilanced Comston Emclencies                                                          | $H_{2}O_{-12}O_{12}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{$ |       |               |
| $O + O + AB \Longrightarrow O2 + AB$                                                  | 120-12.0, 112-2.0, Att=0.0<br>1 800E $\pm$ 13              | 0.00  | -1790         |
| $H + O + M \rightarrow OH + M$                                                        | $4.720E \pm 18$                                            | 1.00  | -1750         |
| Enhanced Collision Efficiencies                                                       | 4.72012+10                                                 | -1.00 | 0             |
| Emilanced Comston Emclencies                                                          | H2O-120 H2-25 AB-075                                       |       |               |
| $OH + H + M \rightarrow H2O + M$                                                      | 1120-12.0, 112-2.0, AR=0.75                                | 2.00  | 0             |
| Enhanced Collision Efficiencies                                                       |                                                            | -2.00 | 0             |
| Emilanced Comston Emclencies                                                          | $H_{2}O_{-12}O_{12}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{$ |       |               |
| $OH + H + AB \rightarrow H2O + AB$                                                    | 1120 = 12.0, 112 = 2.0, Att = 0.0<br>8 $410E \pm 21$       | -2.00 | 0             |
| $H_{\pm}O2(\pm M) \rightarrow HO2(\pm M)$                                             | 4520E+13                                                   | -2.00 | 0             |
| $11+02(+10) \leftarrow 1102(+10)$                                                     | 4.020E+13<br>6 70E+10                                      | 0.00  | 0             |
| SBI parameters: a=1.0 b=0.0                                                           | 0.70E+19                                                   | -1.42 | 0.0           |
| Enhanced Collision Efficiencies                                                       |                                                            |       |               |
| Emilanced Comston Emclencies                                                          | $H_{2}O_{-12}O_{12}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{$ |       |               |
| $H \perp O2(\perp AB) \rightarrow HO2(\perp AB)$                                      | 1120-12.0, 112-2.0, AR=0.0<br>$4.520E\pm13$                | 0.00  | 0             |
| $I_{+}O2(+AR) \leftarrow IIO2(+AR)$                                                   | 1.020E+15                                                  | 0.00  | -1000.0       |
| SBI parameters: a=1.0 b=0.0                                                           | c=0.0                                                      | 0.00  | -1000.0       |
| $HO2 + H \rightarrow H2 + O2$                                                         | 6 620F+13                                                  | 0.00  | 2130          |
| $HO2+H \Longrightarrow OH \pm OH$                                                     | $1.690E \pm 14$                                            | 0.00  | 874           |
| $HO2+D \Rightarrow O2+OH$                                                             | 1.050E + 14<br>1 750E+13                                   | 0.0   | -307          |
| $HO2+OH \Longrightarrow H2O+O2$                                                       | 1.750E + 15<br>1 900E + 16                                 | -1.0  | -597          |
| $HO2+HO2 \Longrightarrow H2O2+O2$                                                     | 4200E+14                                                   | -1.0  | 11980         |
| Duplicate Reaction                                                                    | 1.2001   11                                                | 0.0   | 11000         |
| $HO2+HO2 \Longrightarrow H2O2+O2$                                                     | 1.300E + 11                                                | 0.0   | -1629         |
| Duplicate Reaction                                                                    | 1.0001   11                                                | 0.0   | 1025          |
| $H_{2O2}(+M) \cong OH + OH(+M)$                                                       | 2.950E + 14                                                | 0.0   | 48400         |
| Low pressure limit                                                                    | 1.20E + 17                                                 | 0.0   | 45500         |
| SBI parameters: $a=0.5$ b=0.0                                                         | c=0.0                                                      | 0.0   | 10000         |
| Enhanced Collision Efficiencies                                                       |                                                            |       |               |
|                                                                                       | H2O=12.0, $H2=2.5$ , $AB=0.0$                              |       |               |
| $H2O2(+AR) \cong OH+OH(+AR)$                                                          | 2.950E+14                                                  | 0.0   | 48400         |
| Low pressure limit                                                                    | 1.90E + 16                                                 | 0.0   | 43000         |
| SRI parameters: $a=0.5$ , $b=0.0$ .                                                   | c=0.0                                                      | 010   | 10000         |
| H2O2+H≓H2O+OH                                                                         | 1.000E+13                                                  | 0.0   | 3590          |
| $H2O2+H \rightleftharpoons HO2+H2$                                                    | 4.820E+13                                                  | 0.0   | 7950          |
| $H_2O_2 + O \rightleftharpoons OH + HO_2$                                             | 9.640E+06                                                  | 2.0   | 3970          |
| $H2O2+OH \Longrightarrow H2O+HO2$                                                     | 1.000E+12                                                  | 0.0   | 0             |
| Duplicate Reaction                                                                    | 100012   12                                                | 010   | 0             |
| $H2O2+OH \rightleftharpoons H2O+HO2$                                                  | 5.800E + 14                                                | 0.0   | 9560          |
| Duplicate Reaction                                                                    |                                                            |       |               |
| NO+H2≓HNO+H                                                                           | 1.390E + 13                                                | 0.0   | 56530         |
| $NO+O(+M) \Rightarrow NO2(+M)$                                                        | 1.300E + 15                                                | -0.75 | 0             |
| Low pressure limit                                                                    | 4.720E + 24                                                | -2.87 | 1551          |
| SRI parameters: a=0.95 b=0.0                                                          | ). c=0.0                                                   | 2.01  | 1001          |
| Enhanced Collision Efficiencies                                                       |                                                            |       |               |
|                                                                                       | AB=0.0                                                     |       |               |
| $NO+O(+AR) \rightleftharpoons NO2(+AR)$                                               | 1.300E+15                                                  | -0.75 | 0             |
| Reaction                                     | A (cm-moles-sec-K)                   | n     | E (cal/mole) |
|----------------------------------------------|--------------------------------------|-------|--------------|
| Low process limit                            | $7.560 E \pm 10$                     | 1 /1  | 0            |
| SPI parameters: a=0.05 b=0.0 a=              | -0.0                                 | -1.41 | 0            |
| SGI parameters: $a=0.95$ , $b=0.0$ , $c=$    | =0.0<br>1 590E + 15                  | 0.41  | 0            |
| $NO+H(+M) \leftarrow HNO(+M)$                | 1.520E+15                            | -0.41 | U<br>725-0   |
| SDI percentare a 0.82 h 0.0 a                | 8.90E+19                             | -1.52 | 155.2        |
| Enhanced Collision Efficiencies:             | -0.0                                 |       |              |
| Enhanced Comsion Eniciencies:                | AD 0.75                              |       |              |
| $NO + OH(+M) \rightarrow HONO(+M)$           | AR = 0.75<br>1 000E + 12             | 0.05  | 791          |
| I = I = I = I = I = I = I = I = I = I =      | 5.08E+22                             | -0.05 | -121         |
| SPI parameters: a=0.62 b=0.0 a=              | -0.0                                 | -2.01 | -07.0        |
| Enhanced Collision Efficiencies:             | -0.0                                 |       |              |
|                                              | AR = 0.75                            |       |              |
| NO2+H2≓HONO+H                                | 3.210E + 12                          | 0.0   | 28810        |
| NO2+O≓O2+NO                                  | $3.910E{+}12$                        | 0.0   | -238         |
| $NO2+O(+M) \rightleftharpoons NO3(+M)$       | $1.330E{+}13$                        | 0.0   | 0            |
| Low pressure limit                           | $1.49E{+}28$                         | -4.08 | 2467         |
| SRI parameters: $a=0.79$ , $b=0.0$ , $c=$    | =0.0                                 |       |              |
| Enhanced Collision Efficiencies:             |                                      |       |              |
|                                              | AR = 0.75                            |       |              |
| NO2+H≓NO+OH                                  | 1.320E + 14                          | 0.0   | 362          |
| $NO2+OH(+M) \rightleftharpoons HNO3(+M)$     | 2.410E + 13                          | 0.0   | 0            |
| Low pressure limit                           | 6.42E + 32                           | -5.49 | 2350         |
| SRI parameters: $a=0.725$ , $b=0.0$ , c      | =0.0                                 |       |              |
| Enhanced Collision Efficiencies:             |                                      |       |              |
|                                              | AB=0.75                              |       |              |
| NO2+OH≓HO2+NO                                | 1.810E + 13                          | 0.0   | 6676         |
| NO2+NO2⇒NO3+NO                               | 9.640E + 09                          | 0.73  | 20920        |
| $NO2+NO2 \Rightarrow 2NO+O2$                 | 1.630E + 12                          | 0.0   | 26120        |
| $NH+O2 \Longrightarrow HNO+O$                | 3890E+13                             | 0.0   | 17890        |
| $NH+O2 \Rightarrow NO+OH$                    | 7.600E+10                            | 0.0   | 1530         |
| $NH+O \Rightarrow NO+H$                      | 5.500E+13                            | 0.0   | 1000         |
| $NH+OH \rightarrow HNO+H$                    | $2.000E \pm 13$                      | 0.0   | 0            |
| $NH + NO \rightarrow N2O + H$                | $2.000 \pm 13$<br>2.040 $\pm 14$     | 0.0   | 0            |
| Duplicate Position                           | 2.94012 + 14                         | -0.4  | 0            |
| $MU + NO \rightarrow N2O + U$                | $9.160 \pm 12$                       | 0.92  | 0            |
| Duplicate Position                           | -2.100E+13                           | -0.23 | 0            |
| $MU + NO \rightarrow NO + OU$                | $9.160 \pm 12$                       | 0.02  | 0            |
| $N\Pi + NO \leftarrow N2 + O\Pi$             | 2.100E + 13                          | -0.25 | 4000         |
| NH+NO2 = NO+HNO                              | 1.000E + 12                          | 0.5   | 4000         |
| NH+NH = N2+H+H                               | 3.100E + 13                          | 0.0   | 0            |
| HNO+O=OH+NO                                  | 1.810E + 13                          | 0.0   | 0            |
| HNO+OH = H2O+NO                              | 4.820E + 13                          | 0.0   | 993.5        |
| HNO+NO=N2O+OH                                | 2.000E+12                            | 0.0   | 26000        |
| HNO+NO2≓HONO+NO                              | 6.020E+11                            | 0.0   | 1987         |
| HNO+HNO≓H2O+N2O                              | 8.510E+08                            | 0.0   | 3080         |
| HONO+O≓OH+NO2                                | 1.200E+13                            | 0.0   | 5961         |
| HONO+OH≓H2O+NO2                              | 1.260E+10                            | 1.0   | 135.1        |
| $N2O(+M) \rightleftharpoons N2+O(+M)$        | 7.910E + 10                          | 0.0   | 56020        |
| Low pressure limit                           | 9.13E+14                             | 0.0   | 57690        |
| SRI parameters: a=1.0, b=0.0, c=0            | ).0                                  |       |              |
| Emaneed Compton Emelencies.                  | AB-0.63 H2O-7.5                      |       |              |
| $N_{2} \cap \rightarrow \cap_{2} \vee N_{2}$ | $1000F \pm 14$                       | 0.0   | 20000        |
| $N_2O + O \rightarrow O NO$                  | $1.000E \pm 1.4$<br>$1.000E \pm 1.4$ | 0.0   | 20000        |
| $N_2O + O \equiv 2NO$                        | 1.000E + 14                          | 0.0   | 28000        |
| N2O+H=N2+OH                                  | 2.530E + 10                          | 0.0   | 4550         |
| Duplicate Reaction                           | 0.0007.114                           | ~ ~   |              |
| N2O+H=N2+OH                                  | 2.230E + 14                          | 0.0   | 16750        |
| Duplicate Reaction                           |                                      |       |              |

| Reaction      | A (cm-moles-sec-K) | n   | E (cal/mole) |
|---------------|--------------------|-----|--------------|
| N2O+NO≓NO2+N2 | 1.000E + 14        | 0.0 | 50000        |

#### E.2 Baulch et al. (1994a)

The fall-off relation used (typically) in Baulch et al. (1994a) for constant  $F_c$  is a special case of the SRI form with  $a = F_c$ , b = 0, and c = 0. The data, as published, although intended as such, were not in a convenient form for use in modeling. Many of the rates were stated as unidirectional for consumption of the reactants, sometimes with a list of possible products, but often without detailed branching information. Naturally, a complete mechanism requires detailed accounting of all species. Where a choice of products was given without proportioning data, the overall rate was divided equally among the products. Unidirectional rates were used wherever reverse rates were independently provided. Only reactions considered pertinent to the current work have been included. More hydrocarbon rates (for molecules larger than CH<sub>4</sub>) are available from the original publication.

| Reaction                                           | A (cm-molecules-sec-K)                | n     | E (K) |
|----------------------------------------------------|---------------------------------------|-------|-------|
| O+H2⇒OH+H                                          | 8 500E-20                             | 2.67  | 3160  |
| $0+\Omega H \rightarrow \Omega 2+H$                | 2 400E-11                             | 0.00  | 353   |
| $O + HO2 \Longrightarrow OH + O2$                  | 5 300E-11                             | 0.00  | 0     |
| $O + H2O2 \Rightarrow OH + HO2$                    | 1.100E-12                             | 0.00  | 2000  |
| $O + NO \Rightarrow O2 + N$                        | 1.140E-15                             | 1.13  | 19200 |
| $O + N2 \Rightarrow N + NO$                        | 3.000E-10                             | 0.00  | 38300 |
| $O + NH \Rightarrow NO + H$                        | 0.750E-10                             | 0.00  | 0     |
| O+NH≓N+OH                                          | 0.750E-10                             | 0.00  | 0     |
| O+NH3⇒OH+NH2                                       | 1.600E-11                             | 0.00  | 3670  |
| O+CH≓CO+H                                          | 6.600 E-11                            | 0.00  | 0     |
| $O+CH2 \rightleftharpoons CO+2H$                   | 1.200E-10                             | 0.00  | 0     |
| $O+CH2 \rightleftharpoons CO+H2$                   | 0.800E-10                             | 0.00  | 0     |
| O+CH3≓CH2O+H                                       | 1.400E-10                             | 0.00  | 0     |
| $O+CH4 \rightleftharpoons OH+CH3$                  | 1.200E-15                             | 1.56  | 4270  |
| O+HCO≓OH+CO                                        | 5.000E-11                             | 0.00  | 0     |
| $O + HCO \rightleftharpoons CO2 + H$               | 5.000E-11                             | 0.00  | 0     |
| O+CH2O≓OH+HCO                                      | 6.900 E- 13                           | 0.57  | 1390  |
| $O+CH3O \Rightarrow O2+CH3$                        | 2.200E-11                             | 0.00  | 0     |
| $O+CH3O \rightleftharpoons OH+CH2O$                | 0.300E-11                             | 0.00  | 0     |
| $O+CN \Rightarrow CO+N$                            | 1.700E-11                             | 0.00  | 0     |
| $O + NCO \rightleftharpoons NO + CO$               | 3.500E-11                             | 0.00  | 0     |
| $O + NCO \Rightarrow O2 + CN$                      | 3.500E-11                             | 0.00  | 0     |
| $O+HCN \Rightarrow NCO+H$                          | $0.767 \text{E}{-}18$                 | 2.10  | 3075  |
| $O+HCN \rightleftharpoons CO+NH$                   | $0.767 \text{E}{-}18$                 | 2.10  | 3075  |
| $O+HCN \Rightarrow OH+CN$                          | 0.767 E- 18                           | 2.10  | 3075  |
| $O+C2H \rightleftharpoons CO+CH$                   | 0.360E-11                             | 0.00  | 0     |
| $O+C2H2 \rightleftharpoons CO+CH2$                 | 0.840 E- 17                           | 2.10  | 790   |
| $O+C2H2 \rightleftharpoons HCCO+H$                 | 1.200 E- 17                           | 2.10  | 790   |
| O+HCCO⇒2CO+H                                       | 1.600E-10                             | 0.00  | 0     |
| $O2+CH4 \rightleftharpoons HO2+CH3$                | $6.600 \pm 11$                        | 0.00  | 28630 |
| O2+CH2O≓HO2+HCO                                    | 1.000E-10                             | 0.00  | 20460 |
| H+O2⇒OH+O                                          | 1.620E-10                             | 0.00  | 7470  |
| H+O2+M≓HO2+M                                       | 1.700E-30                             | -0.80 | 0     |
| Enhanced Collision Efficiencies:                   |                                       |       |       |
|                                                    | H2=3.41, N2=2.29                      | 1.00  | 0     |
| $H+H+M \Rightarrow H2+M$                           | 1.800E-30                             | -1.00 | 0     |
| Enhanced Collision Efficiencies:                   | H9 0.00                               |       |       |
|                                                    | H2=0.00                               | 0.60  | 0     |
| $H+H+H2 \Rightarrow H2+H2$                         | 2.700E-31<br>2.200E-26                | -0.00 | 0     |
| II+OII+M→II2O+M<br>Enhanced Collision Efficiencies | 2.300E-20                             | -2.00 | 0     |
| Enhanced Comsion Eniciencies:                      | $H_{2}O_{-16}06$ N <sub>2</sub> -2.65 |       |       |
| $H \perp H \cap 2 \rightarrow H 2 \perp O 2$       | $7100 \pm 10.90$                      | 0.00  | 710   |
| $H+HO2 \Longrightarrow 2OH$                        | 2.800E-11                             | 0.00  | 440   |
| $H+HO2 \Longrightarrow H2O+O$                      | 5.000E-10                             | 0.00  | 866   |
| $H+H2O \rightarrow OH+H2$                          | 7 500E-16                             | 1.6   | 9270  |
| $H+H2O2 \Longrightarrow H2+HO2$                    | 2 800E-12                             | 0.00  | 1890  |
| $H+H2O2 \Rightarrow OH+H2O$                        | 1 700E-11                             | 0.00  | 1800  |
| $H+NO \Rightarrow OH+N$                            | 3.600E-10                             | 0.00  | 24910 |
| $H+NH \Longrightarrow H2+N$                        | 1.700E-11                             | 0.00  | 0     |
| H+NH2⇒H2+NH                                        | 1.000E-11                             | 0.00  | 0     |
| H+CO+M⇒HCO+M                                       | 5.300E-34                             | 0.00  | 370   |
| $H+CH2 \Rightarrow H2+CH$                          | 1.000E-11                             | 0.00  | -900  |
| $H+CH3 \Rightarrow H2+CH2(S)$                      | 1.000E-10                             | 0.00  | 7600  |
| $H+CH3(+M) \Rightarrow CH4(+M)$                    | $3.500 \text{E}{-10}$                 | 0.00  | 0     |
| Low pressure limit                                 | 1.700E-24                             | -1.80 | 0.0   |
| Troe parameters: $a=0.37$ , $T^{***}=3$            | $3315, T^*=61$                        |       |       |

| Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (cm-molecules-sec-K) | n     | E (K) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |       |       |
| $H+CH4 \Rightarrow H2+CH3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.200E-20              | 3.00  | 4045  |
| $H+HCO \Longrightarrow H2+CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.500E-10              | 0.00  | 0     |
| $H+CH2O \rightleftharpoons H2+HCO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.100E-16              | 1.62  | 1090  |
| $H+CH3O \rightleftharpoons H2+CH2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.000E-11              | 0.00  | 0     |
| $H+HNCO \Longrightarrow H2+NCO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.400 E- 10            | -0.27 | 10190 |
| $H+NCO \rightleftharpoons NH+CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.350E-11              | 0.00  | 0     |
| $H+NCO \Rightarrow HCN+O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.350E-11              | 0.00  | 0     |
| $H+C2H2 \Rightarrow H2+C2H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.100E-10              | 0.00  | 14000 |
| $H + HCCO \rightleftharpoons CH2 + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.833E-10              | 0.00  | 0     |
| $H+HCCO \rightleftharpoons H2+C2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.833E-10              | 0.00  | 0     |
| H+CH2CO≓CH3+CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.000E-11              | 0.00  | 1700  |
| $H2+M\Rightarrow 2H+M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.700E-10              | 0.00  | 48350 |
| Enhanced Collision Efficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2 = 4.05              |       |       |
| $OH+H2 \Rightarrow H2O+H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.700E-16              | 1.60  | 1660  |
| 2OH≓H2O+O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.500 \text{E}{-}15$  | 1.14  | 50    |
| $OH+OH(+M) \Rightarrow H2O2(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.200E-10              | -0.37 | 0     |
| Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1E-29                | -0.76 | 0.0   |
| SRI parameters: $a=0.5$ , $b=0.0$ , $c=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                    |       |       |
| Enhanced Collision Efficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2O = 0.0              |       |       |
| $OH+OH(+H2O) \Rightarrow H2O2(+H2O)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 200E-10              | -0.37 | 0     |
| Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 0E-30                | 0.0   | 0.0   |
| $OH \pm HO2 \Longrightarrow H2O \pm O2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 800E-11              | 0.00  | -250  |
| $OH+H2O2 \Rightarrow H2O+HO2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.300E-11              | 0.00  | 670   |
| $OH+NH \Rightarrow NO+H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.000E-11              | 0.00  | 0.0   |
| $OH + NH \rightarrow H2O + N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.000E-11              | 0.00  | 0     |
| $OH + NH2 \rightarrow O + NH2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.000E-11<br>2 200E 14 | 0.00  | 250   |
| $OH + CO \rightarrow H + CO2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.050E-17              | 1.50  | 250   |
| $OII+OO \leftarrow II+OO2$<br>$OII+OIO \leftarrow OI2(S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000E-17              | 1.50  | -230  |
| $OH+CH3 \leftarrow H2O+CH2(3)$<br>$OH+CH2(+M) \rightarrow CH2OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.200E-11<br>1.000E-10 | 0.00  | 1400  |
| $U_{\rm H} = U_{\rm H} = U_{\rm$ | 1.000E-10<br>4.40E-04  | 0.00  | 0     |
| Tree personators: a=0.82 T***=20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.40 $-04$             | -0.2  | 0.0   |
| 1100 parameters: $a=0.62$ , $1 = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10, 1 = 1450           | 1 09  | 1400  |
| $OH + UCO \rightarrow U2O + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.000E-17<br>1.700E-10 | 1.65  | 1400  |
| OH + HCO = H2O + UCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.700E-10              | 0.00  | 0     |
| OH+CH2O = H2O+HCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.700E-15              | 1.18  | -225  |
| $OH+CN \Rightarrow O+HCN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.500E-10              | 0.00  | 0     |
| OH+CN≡NCO+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.500E-10              | 0.00  | 0     |
| $OH+HCN \Rightarrow H2O+CN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.500E-11              | 0.00  | 5400  |
| OH+C2H2≓H2O+C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.500E-10              | 0.00  | 6500  |
| OH+C2H2≓H+CH2CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.500E-10              | 0.00  | 6500  |
| OH+CH2CO≓CH2OH+CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.850E-11              | 0.00  | 0     |
| OH+CH2CO≓CH2O+HCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.850E-11              | 0.00  | 0     |
| $H2O+M \Rightarrow H+OH+M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.800E-09              | 0.00  | 52920 |
| $HO2+HO2 \rightleftharpoons H2O2+O2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.000 E- 10            | 0.00  | 6030  |
| $HO2+NH2 \rightleftharpoons NH3+O2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.300E-11              | 0.00  | 0     |
| HO2+NH2≓HNO+H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.300E-11              | 0.00  | 0     |
| HO2+CH3≓OH+CH3O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.000E-11              | 0.00  | 0     |
| $HO2+CH4 \rightleftharpoons H2O2+CH3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.500E-11              | 0.00  | 12440 |
| $HO2+CH2O \rightleftharpoons H2O2+HCO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.000E-12              | 0.00  | 6580  |
| $H2O2(+M) \Rightarrow OH+OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.000E + 14            | 0.00  | 24400 |
| Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.000E-08              | 0.00  | 21600 |
| SRI parameters: $a=0.5$ , $b=0.0$ , $c=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                    |       |       |
| Enhanced Collision Efficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N2=0.00                |       |       |
| $H2O2(+N2) \Rightarrow OH+OH(+N2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.000E + 14            | 0.00  | 24400 |
| Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.000 E-07             | 0.00  | 22900 |

| Reaction                                  | A (cm-molecules-sec-K)  | n    | E (K) |
|-------------------------------------------|-------------------------|------|-------|
| SRI parameters: a=0.5, b=0.0, c=          | =0.0                    |      |       |
| N+O2⇒NO+O                                 | 1.500E-14               | 1.00 | 3270  |
| $N+OH \Rightarrow NO+H$                   | 4.700E-11               | 0.00 | 0     |
| $N+NO \Rightarrow N2+O$                   | 7.100 E- 11             | 0.00 | 790   |
| $N+CN \Rightarrow N2+C$                   | 3.000 E-10              | 0.00 | 0     |
| $N+NCO \Longrightarrow N2+CO$             | 3.300E-11               | 0.00 | 0     |
| $\rm NH+O2 \rightleftharpoons \rm NO+OH$  | 0.650E-13               | 0.00 | 770   |
| $\rm NH+O2 \rightleftharpoons NO2+H$      | 0.650 E- 13             | 0.00 | 770   |
| $\rm NH+O2 \rightleftharpoons HNO+O$      | 6.500 E-11              | 0.00 | 9000  |
| $\rm NH+NO \Longrightarrow N2O+H$         | 0.933E-10               | 0.00 | 6400  |
| $\rm NH+NO \rightleftharpoons NNH+O$      | 0.933E-10               | 0.00 | 6400  |
| NH+NO≓N2+OH                               | 0.933E-10               | 0.00 | 6400  |
| $NH2+NO \Longrightarrow N2+H2O$           | 0.792 E- 12             | 0.00 | -650  |
| $NH2+NO \rightleftharpoons N2+H+OH$       | 0.108E-12               | 0.00 | -650  |
| NH2+NO≓NNH+OH                             | 0.108E-12               | 0.00 | -650  |
| $NH2+NO \rightleftharpoons N2O+H2$        | 0.792 E- 12             | 0.00 | -650  |
| $NH3(+M) \rightleftharpoons NH2+H(+M)$    | $8.300E{+}15$           | 0.00 | 55170 |
| Low pressure limit                        | 7.400E-9                | 0.0  | 41560 |
| Troe parameters: $a=0.42$ , $T^{***}=4$   | $581, T^* = 102$        |      |       |
| $C+N2 \Rightarrow CN+N$                   | 8.700E-11               | 0.00 | 22600 |
| $C+NO \rightleftharpoons CN+O$            | 3.200E-11               | 0.00 | 0     |
| $C+NO \Rightarrow CO+N$                   | 4.800E-11               | 0.00 | 0     |
| CH+O2≓HCO+O                               | 2.750E-11               | 0.00 | 0     |
| CH+O2≓CO+OH                               | 2.750E-11               | 0.00 | 0     |
| $CH+H2 \Rightarrow CH2+H$                 | 2.400 E- 10             | 0.00 | 1760  |
| $CH+N2 \rightleftharpoons HCN+N$          | 2.600 E- 12             | 0.00 | 9030  |
| $CH+NO \rightleftharpoons CO+NH$          | 0.667 E- 10             | 0.00 | 0     |
| $CH+NO \rightleftharpoons CN+OH$          | 0.667 E- 10             | 0.00 | 0     |
| $CH+NO \rightleftharpoons HCN+O$          | 0.667 E-10              | 0.00 | 0     |
| $CH2+O2 \rightleftharpoons CO+H+OH$       | 0.820E-11               | 0.00 | 750   |
| $CH2+O2 \rightleftharpoons CO2+H+H$       | 0.820E-11               | 0.00 | 750   |
| $CH2+O2 \rightleftharpoons CO+H2O$        | 0.820E-11               | 0.00 | 750   |
| $CH2+O2 \rightleftharpoons CO2+H2$        | 0.820E-11               | 0.00 | 750   |
| CH2+O2≓CH2O+O                             | 0.820E-11               | 0.00 | 750   |
| $CH2+CH2 \rightleftharpoons C2H2+H2$      | 0.200 E-10              | 0.00 | 400   |
| $CH2+CH2 \rightleftharpoons C2H2+2H$      | 1.800E-10               | 0.00 | 400   |
| $CH2(S)+AR \rightleftharpoons CH2+AR$     | $6.000 \text{E}{-12}$   | 0.00 | 0     |
| $CH2(S)+N2 \rightleftharpoons CH2+N2$     | 1.000E-11               | 0.00 | 0     |
| $CH2(S)+CH4 \rightleftharpoons CH2+CH4$   | 1.200E-11               | 0.00 | 0     |
| $CH2(S)+C2H2 \rightleftharpoons CH2+C2H2$ | 8.000E-11               | 0.00 | 0     |
| $CH2(S)+O2 \equiv CO+H+OH$                | 1.300E-11               | 0.00 | 0     |
| $CH2(S)+O2 \approx CO2+H2$                | 1.300E-11               | 0.00 | 0     |
| $CH2(S)+O2 \rightleftharpoons CO+H2O$     | 1.300E-11               | 0.00 | 0     |
| $CH2(S)+O2 \rightleftharpoons CH2+O2$     | 1.300E-11               | 0.00 | 0     |
| $CH2(S)+H2\Rightarrow CH3+H$              | 1.200E-10               | 0.00 | 0     |
| CH3+M≓CH2+H+M                             | 1.700E-08               | 0.00 | 45600 |
| $CH3+O2 \Rightarrow CH3O+O$               | 2.200E-10               | 0.00 | 15800 |
| CH3+O2⇒CH2O+OH                            | 5.500E-13               | 0.00 | 4500  |
| $CH3+H2 \Rightarrow CH4+H$                | 1.140E-20               | 2.74 | 4740  |
| $CH3+CH2O \rightleftharpoons CH4+HCO$     | 1.300E-31               | 6.10 | 990   |
| $CH4(+M) \Rightarrow CH3+H(+M)$           | 2.400E+16               | 0.00 | 52800 |
| Low pressure limit                        | 7.8E+23                 | -8.2 | 59200 |
| Troe parameters: $a=1.0, 1^{+}=0.1$       | 0, 1 = 1350, 1 = 7830   |      |       |
| Emanced Compton Emclencies.               | CH4-0.0                 |      |       |
| $CH4(+CH4) \rightarrow CH3 + H(+CH4)$     | $2 400 \text{E} \pm 16$ | 0.00 | 59800 |
| Low pressure limit                        | 1 4F-06                 | 0.00 | 45700 |
| now prossure minu                         | 1.11-00                 | 0.0  | 00101 |

| Reaction                               | A (cm-molecules-sec-K) | n     | E (K) |
|----------------------------------------|------------------------|-------|-------|
|                                        | 5 00 TP* 0010          |       |       |
| Troe parameters: $a=0.69$ , $T^{aaa}$  | $=90, 1^{-2}=2210$     | 0.00  | -     |
| $HCO+M \Rightarrow H+CO+M$             | 2.600E-10              | 0.00  | 7930  |
| HCO+O2≡CO+HO2                          | 2.500E-12              | 0.00  | 0     |
| HCO+O2≓OH+CO2                          | 2.500E-12              | 0.00  | 0     |
| HCO+HCO≓CH2O+CO                        | 5.000 E-11             | 0.00  | 0     |
| $CH2O+M \rightleftharpoons H+HCO+M$    | $0.810E{+}12$          | -5.54 | 48660 |
| $CH2O+M \rightleftharpoons H2+CO+M$    | $1.890E{+}12$          | -5.54 | 48660 |
| $CH2OH+O2 \rightleftharpoons CH2O+HO2$ | 2.600 E- 09            | -1.00 | 0     |
| Duplicate Reaction                     |                        |       |       |
| $CH2OH+O2 \Longrightarrow CH2O+HO2$    | 1.200E-10              | 0.00  | 1800  |
| Duplicate Reaction                     |                        |       |       |
| $CH3O+M \rightleftharpoons CH2O+H+M$   | 9.000E-11              | 0.00  | 6790  |
| $CH3O+O2 \rightleftharpoons CH2O+HO2$  | 3.600 E- 14            | 0.00  | 880   |
| $CN+O2 \Rightarrow NCO+O$              | 1.200E-11              | 0.00  | -210  |
| $CN+H2 \rightleftharpoons HCN+H$       | 3.200E-20              | 2.87  | 820   |
| $CN+H2O \Rightarrow HCN+OH$            | 0.650E-11              | 0.00  | 3750  |
| CN+H2O≓HOCN+H                          | 0.650E-11              | 0.00  | 3750  |
| CN+CH4≓HCN+CH3                         | 1.500E-19              | 2.64  | -150  |
| NCO+M≓N+CO+M                           | 1.700E-09              | 0.00  | 23500 |
| NCO+NO⇒N2O+CO                          | 0.767 E-06             | -1.73 | 380   |
| $NCO+NO \Longrightarrow N2+CO2$        | 0.767 E-06             | -1.73 | 380   |
| NCO+NO⇒N2+CO+O                         | 0.767 E-06             | -1.73 | 380   |
| $C2H+O2 \rightleftharpoons CO2+CH$     | 0.750E-11              | 0.00  | 0     |
| $C2H+O2 \rightleftharpoons 2CO+H$      | 0.750E-11              | 0.00  | 0     |
| $C2H+O2 \rightleftharpoons CO+HCO$     | 0.750E-11              | 0.00  | Ő     |
| $C2H+H2 \Rightarrow C2H2+H$            | 1.800E-11              | 0.00  | 1090  |
| $HCCO+O2 \cong CO2+HCO$                | 0.675E-12              | 0.00  | 430   |
| $HCCO+O2 \rightleftharpoons 2CO+OH$    | 0.675E-12              | 0.00  | 430   |
| $HCCO+O2 \rightleftharpoons C2O+HO2$   | 0.675E-12              | 0.00  | 430   |
|                                        | ···· +=                | 0.00  | 200   |

## E.3 Frenklach et al. (1995) (GRI-Mech 2.11)

GRI-Mech 2.11 is the latest version of a mechanism created, validated, and maintained by the Gas Research Institute. It and other information are available in electronic form through the World Wide Web at http://www.gri.org and http://www.me.berkeley.edu/gri\_mech/.

| Reaction                                                        | A (cm-moles-sec- $K$ )                        | n                    | E (cal/mole)  |
|-----------------------------------------------------------------|-----------------------------------------------|----------------------|---------------|
|                                                                 |                                               |                      |               |
| $2O+M \rightleftharpoons O2+M$                                  | $1.200E{+}17$                                 | -1.000               | .00           |
| Enhanced Collision Efficiencies:                                |                                               |                      |               |
| H2=2.40, H2O=15.40, CH                                          | 4=2.00, CO=1.75, CO2=3.6                      | 0, C2H6=3.00, AF     | t=.83         |
| O+H+M≓OH+M                                                      | $5.000 \pm 17$                                | -1.000               | .00           |
| Enhanced Collision Efficiencies:                                |                                               |                      | 70            |
| H2=2.00, H2O=6.00, CH4                                          | 4=2.00, CO=1.50, CO2=2.00                     | 0, C2H6=3.00, AR     | =.70          |
| $O + HO2 \rightarrow OH + O2$                                   | 3.000E + 04                                   | 2.070                | 0290.00       |
| $O + HO2 \leftarrow OH + O2$<br>$O + H2O2 \rightarrow OH + HO2$ | 2.000E+13<br>9.630E+06                        | 2 000                | .00           |
| $O+CH\rightarrow H+CO$                                          | $5.000\pm00$<br>5.700E+13                     | 2.000                | 4000.00<br>00 |
| $O+CH2 \rightarrow H+HCO$                                       | 8 000E+13                                     | .000                 | .00           |
| $O+CH2(S) \Longrightarrow H2+CO$                                | 1.500E + 13                                   | .000                 | 00            |
| $O+CH2(S) \rightleftharpoons H+HCO$                             | 1.500E + 13<br>1 500E+13                      | .000                 | 00            |
| $O+CH3 \Longrightarrow H+CH2O$                                  | 8430E+13                                      | .000                 | 00            |
| $O+CH4 \Rightarrow OH+CH3$                                      | 1.020E+10                                     | 1 500                | 8600.00       |
| $O+CO+M \equiv CO2+M$                                           | 6.020E + 14                                   | .000                 | 3000.00       |
| Enhanced Collision Efficiencies:                                |                                               |                      | 0000100       |
| H2=2.00, O2=6.00, H2O=6.00                                      | , CH4=2.00, CO=1.50, CO2                      | =3.50, C2H6=3.00     | . AR=.50      |
| O+HCO≓OH+CO                                                     | 3.000E+13                                     | .000                 | .00           |
| $O+HCO \rightleftharpoons H+CO2$                                | 3.000E + 13                                   | .000                 | .00           |
| O+CH2O≓OH+HCO                                                   | $3.900E{+}13$                                 | .000                 | 3540.00       |
| O+CH2OH≓OH+CH2O                                                 | 1.000E + 13                                   | .000                 | .00           |
| O+CH3O≓OH+CH2O                                                  | $1.000E{+}13$                                 | .000                 | .00           |
| O+CH3OH≓OH+CH2OH                                                | 3.880E + 05                                   | 2.500                | 3100.00       |
| O+CH3OH≓OH+CH3O                                                 | $1.300E{+}05$                                 | 2.500                | 5000.00       |
| $O+C2H \rightleftharpoons CH+CO$                                | 5.000E + 13                                   | .000                 | .00           |
| O+C2H2≓H+HCCO                                                   | $1.020E{+}07$                                 | 2.000                | 1900.00       |
| $O+C2H2 \rightleftharpoons OH+C2H$                              | 4.600E + 19                                   | -1.410               | 28950.00      |
| $O+C2H2 \rightleftharpoons CO+CH2$                              | $1.020E{+}07$                                 | 2.000                | 1900.00       |
| $O+C2H3 \rightleftharpoons H+CH2CO$                             | $3.000E{+}13$                                 | .000                 | .00           |
| $O+C2H4 \rightleftharpoons CH3+HCO$                             | $1.920 \text{E}{+}07$                         | 1.830                | 220.00        |
| $O+C2H5 \rightleftharpoons CH3+CH2O$                            | $1.320E{+}14$                                 | .000                 | .00           |
| $O+C2H6 \rightleftharpoons OH+C2H5$                             | $8.980 \text{E}{+}07$                         | 1.920                | 5690.00       |
| $O+HCCO \rightleftharpoons H+2CO$                               | $1.000E{+}14$                                 | .000                 | .00           |
| $O+CH2CO \rightleftharpoons OH+HCCO$                            | $1.000E{+}13$                                 | .000                 | 8000.00       |
| $O+CH2CO \rightleftharpoons CH2+CO2$                            | $1.750E{+}12$                                 | .000                 | 1350.00       |
| $O2+CO \rightleftharpoons O+CO2$                                | $2.500E{+}12$                                 | .000                 | 47800.00      |
| $O2+CH2O \rightleftharpoons HO2+HCO$                            | 1.000E + 14                                   | .000                 | 40000.00      |
| $H+O2+M \rightleftharpoons HO2+M$                               | 2.800E + 18                                   | 860                  | .00           |
| Enhanced Collision Efficiencies:                                |                                               |                      |               |
| O2=.00, H2O=.00, CO                                             | D = .75, CO2 = 1.50, C2H6 = 1.5               | 0, N2 = .00, AR = .0 | 00            |
| $H+2O2 \rightleftharpoons HO2+O2$                               | 3.000E+20                                     | -1.720               | .00           |
| $H+O2+H2O \rightleftharpoons HO2+H2O$                           | 9.380E + 18                                   | 760                  | .00           |
| $H+O2+N2 \Longrightarrow HO2+N2$                                | 3.750E + 20                                   | -1.720               | .00           |
| H+O2+AR≓HO2+AR                                                  | 7.000E + 17                                   | 800                  | .00           |
| Н+О2≓О+ОН                                                       | 8.300E + 13                                   | .000                 | 14413.00      |
| 2H+M≓H2+M                                                       | 1.000E + 18                                   | -1.000               | .00           |
| Enhanced Collision Efficiencies:                                |                                               |                      |               |
| H2=.00, H2O=.00,                                                | CH4=2.00, CO2=.00, C2H6                       | 3=3.00, AR=.63       | 00            |
| $2H+H2 \rightleftharpoons 2H2$                                  | 9.000E+16                                     | 600                  | .00           |
| $2H+H2O \rightleftharpoons H2+H2O$                              | 6.000E+19                                     | -1.250               | .00           |
| $2H+CO2 \rightleftharpoons H2+CO2$                              | 5.500E+20                                     | -2.000               | .00           |
| n+On+M≂n2O+M<br>Enhanced Collision Efficient                    | 2.200E+22                                     | -2.000               | .00           |
| Enhanced Collision Efficiencies:                                | -2 65 CU4-2 00 COUC 20                        | 0 AD 20              |               |
| $H_1 H_{02} \rightarrow 0 + H_{20}$                             | $-3.00, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | 00, AR=.38           | 671.00        |
| $H + HO2 \rightarrow O2 + H2$                                   | 3.970E + 12                                   | .000                 | 0/1.00        |
| $11 \pm 1102 \pm 02 \pm 112$                                    | 2.00012+13                                    | .000                 | 1008.00       |

| E (cal/m                  | n                                                                                                                                                                                                | A (cm-moles-sec-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 63                        | 000                                                                                                                                                                                              | 1 340E±14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н+НО2≓2ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 520                       | 2.000                                                                                                                                                                                            | 1.010E + 11<br>1.210E + 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $H+H2O2 \Longrightarrow HO2+H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 360                       | 000                                                                                                                                                                                              | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H+H2O2 \Rightarrow OH+H2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000                       | 000                                                                                                                                                                                              | 1.000E + 10<br>1.100E + 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $H+CH \Rightarrow C+H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | - 800                                                                                                                                                                                            | 2500E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H+CH2(+M) \Longrightarrow CH3(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 193                       | -3 1/0                                                                                                                                                                                           | 2.000E + 10<br>3.200E + 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120                       | *-5590.00                                                                                                                                                                                        | ***-78 00 T*-1995 00 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Troe parameters: $a = 6800$ T <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | -0050.00                                                                                                                                                                                         | -10.00, 1 -1000.00, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB = 70                   | -2 00 C2H6-3 00                                                                                                                                                                                  | CH4 = 2.00 CO = 1.50 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $H_2 = 2 00 H_2 = 6 00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11110                     |                                                                                                                                                                                                  | 3000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $H_{\pm}CH_{2}(S) \rightarrow CH_{\pm}H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 38                        | .000                                                                                                                                                                                             | $1.270E \pm 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H+CH3(+M) \rightarrow CH4(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 244                       | 050                                                                                                                                                                                              | $2.477E \pm 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 211                       | *-6064.00                                                                                                                                                                                        | ***-74 00 T*-2041 00 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Troe parameters: $2 - 7830$ T <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | -0304.00                                                                                                                                                                                         | -74.00, 1 -2341.00, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Lambda R = 70$          | -2 00 C2H6-3 00                                                                                                                                                                                  | CH4 = 2.00 CO = 1.50 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $H_2 = 2.00$ $H_2 = 6.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1084                      | -2.00, C2110-3.00,<br>1.620                                                                                                                                                                      | $6600E \pm 08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $H + CH4 \rightarrow CH3 + H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1004                      | 1.020                                                                                                                                                                                            | 1.000E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H + HCO(+M) \rightarrow CHO(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -20                       | .400                                                                                                                                                                                             | $1.090E \pm 12$<br>1.250E ± 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $II + IICO(+M) \leftarrow CII2O(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142                       | -2.070                                                                                                                                                                                           | 1.500E+24<br>*** 971.00 T* 9755.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The pressure mint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | =0070.00                                                                                                                                                                                         | =271.00, 1 = 2755.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Troe parameters: $a=.7824$ , 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AD 70                     |                                                                                                                                                                                                  | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AR=.70                    | =2.00, C2H6=3.00,                                                                                                                                                                                | CH4=2.00, CO=1.50, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2=2.00, H2O=6.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.00                      | .000                                                                                                                                                                                             | 7.340E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H+HCO \rightleftharpoons H2+CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 360                       | .454                                                                                                                                                                                             | 5.400E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H+CH2O(+M) \rightleftharpoons CH2OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 653                       | -4.820                                                                                                                                                                                           | 1.270E+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | **=4160.00                                                                                                                                                                                       | $^{***}=103.00, 1^{*}=1291.00, 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Troe parameters: $a=.7187, T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | 000 000 00TTO                                                                                                                                                                                    | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.00                      | CO2=2.00, C2H6=3                                                                                                                                                                                 | 6.00, CH4=2.00, CO=1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H2=2.00, H2O=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 260                       | .454                                                                                                                                                                                             | 5.400E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H+CH2O(+M) \rightleftharpoons CH3O(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 556                       | -4.800                                                                                                                                                                                           | 2.200E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | *=4200.00                                                                                                                                                                                        | $^{***}=94.00, T^{*}=1555.00, T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Troe parameters: $a=.7580, T^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                  | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.00                      | CO2=2.00, C2H6=3                                                                                                                                                                                 | 6.00, CH4=2.00, CO=1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H2=2.00, H2O=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 327                       | 1.050                                                                                                                                                                                            | 2.300E + 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H+CH2O \rightleftharpoons HCO+H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | .000                                                                                                                                                                                             | 1.800E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H+CH2OH(+M) \rightleftharpoons CH3OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 330                       | -4.800                                                                                                                                                                                           | 3.000E + 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | **=5081.00                                                                                                                                                                                       | $^{***}=338.00, T^{*}=1812.00, T^{*$ | Troe parameters: $a=.7679$ , T <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           |                                                                                                                                                                                                  | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.00                      | CO2=2.00, C2H6=3                                                                                                                                                                                 | 6.00, CH4=2.00, CO=1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H2=2.00, H2O=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | .000                                                                                                                                                                                             | 2.000E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H+CH2OH \rightleftharpoons H2+CH2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           |                                                                                                                                                                                                  | $1.200E{+}13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $H+CH2OH \rightleftharpoons OH+CH3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | .000                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | .000<br>.000                                                                                                                                                                                     | 6.000E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H+CH2OH \equiv CH2(S)+H2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | .000<br>.000<br>.000                                                                                                                                                                             | 6.000E+12<br>5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $H+CH2OH \rightleftharpoons CH2(S)+H2O$<br>$H+CH3O(+M) \rightleftharpoons CH3OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 302                       | .000<br>.000<br>.000<br>-4.000                                                                                                                                                                   | 6.000E+12<br>5.000E+13<br>8.600E+28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H+CH2OH≡CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 302                       | .000<br>.000<br>.000<br>-4.000<br>**=45569.00                                                                                                                                                    | $\begin{array}{c} 6.000\mathrm{E}{+12} \\ 5.000\mathrm{E}{+13} \\ 8.600\mathrm{E}{+28} \\ ^{***}{=}144.00, \ \mathrm{T}^{*}{=}2838.00, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T <sup>*</sup>                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 302                       | .000<br>.000<br>.000<br>-4.000<br>**==45569.00                                                                                                                                                   | 6.000E+12<br>5.000E+13<br>8.600E+28<br>***=144.00, T*=2838.00, '<br>28:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T <sup>*</sup><br>Enhanced Collision Efficiencie                                                                                                                                                                                                                                                                                                                                                                                 |
| 302                       | .000<br>.000<br>.000<br>-4.000<br>**=45569.00<br>CO2=2.00, C2H6=3                                                                                                                                | 6.000E+12<br>5.000E+13<br>8.600E+28<br>***=144.00, T*=2838.00, '<br>es:<br>5.00, CH4=2.00, CO=1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=€                                                                                                                                                                                                                                                                                                                                                                            |
| 302<br>3.00               | $\begin{array}{r} .000\\ .000\\ .000\\ -4.000\\ ^{**}=45569.00\\ \\ \text{CO2}=2.00, \text{ C2H6}=\\ 1.600\\ \end{array}$                                                                        | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ^{***}{=}144.00,\ T^{*}{=}2838.00,\ ^{\prime\prime}\\ \text{es:}\\ 6.00,\ CH4{=}2.00,\ CO{=}1.50\\ 3.400E{+}06\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O≓H+CH2OH                                                                                                                                                                                                                                                                                                                                                         |
| 302<br>3.00               | .000<br>.000<br>.000<br>-4.000<br>**=45569.00<br>CO2=2.00, C2H6=3<br>1.600<br>.000                                                                                                               | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ^{***}{=}144.00,\ T^*{=}2838.00,\ ^{\prime\prime}\\ {}^{28:}\\ 6.00,\ CH4{=}2.00,\ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H+CH2OH≡CH2(S)+H2O<br>H+CH3O(+M)≕CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O≕H+CH2OH<br>H+CH3O≕H2+CH2O                                                                                                                                                                                                                                                                                                                                       |
| 302<br>3.00               | .000<br>.000<br>.000<br>-4.000<br>**=45569.00<br>CO2=2.00, C2H6=3<br>1.600<br>.000<br>.000                                                                                                       | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ^{***}{=}144.00, \ T^*{=}2838.00, \ ^{\prime\prime}\\ 28:\\ 6.00, \ CH4{=}2.00, \ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O≓H+CH2OH<br>H+CH3O≓H2+CH2O<br>H+CH3O≓OH+CH3                                                                                                                                                                                                                                                                                                                      |
| 302<br>3.00               | $\begin{array}{r} .000\\ .000\\ .000\\ -4.000\\ ^{**}=45569.00\\ \end{array}$                                                                                                                    | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ^{***}{=}144.00, \ T^*{=}2838.00, \ ^{\prime\prime}\\ es:\\ 6.00, \ CH4{=}2.00, \ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\\ 1.600E{+}13\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H+CH2OH=CH2(S)+H2O<br>H+CH3O(+M)=CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O=H+CH2OH<br>H+CH3O=H2+CH2O<br>H+CH3O=OH+CH3<br>H+CH3O=CH2(S)+H2O                                                                                                                                                                                                                                                                                                 |
| 302<br>3.00<br>487        | $\begin{array}{r} .000\\ .000\\ .000\\ -4.000\\ ^{**}=45569.00\\ \end{array}$                                                                                                                    | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ***{=}144.00, \ T^{*}{=}2838.00, \ \\ es:\\ 6.00, \ CH4{=}2.00, \ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\\ 1.600E{+}13\\ 1.700E{+}07\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O≓H+CH2OH<br>H+CH3O≓H+CH2O<br>H+CH3O≓OH+CH3<br>H+CH3O≓CH2(S)+H2O<br>H+CH3OH≓CH2OH+H2                                                                                                                                                                                                                                                                              |
| 302<br>3.00<br>487<br>487 | $\begin{array}{r} .000\\ .000\\ .000\\ -4.000\\ ^{**}=45569.00\\ \end{array}$                                                                                                                    | $\begin{array}{c} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ ***{=}144.00,\ T^{*}{=}2838.00,\ '\\ es:\\ 6.00,\ CH4{=}2.00,\ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\\ 1.600E{+}13\\ 1.700E{+}07\\ 4.200E{+}06\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H+CH2OH≂CH2(S)+H2O<br>H+CH3O(+M)≓CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O≓H+CH2OH<br>H+CH3O≓H+CH2OH<br>H+CH3O≓OH+CH3<br>H+CH3O≓CH2(S)+H2O<br>H+CH3OH≓CH2OH+H2<br>H+CH3OH≓CH2OH+H2                                                                                                                                                                                                                                                         |
| 302<br>3.00<br>487<br>487 | $\begin{array}{r} .000\\ .000\\ .000\\ -4.000\\ ^{**}=45569.00\\ \\ \\ CO2=2.00, \ C2H6=3\\ 1.600\\ .000\\ .000\\ .000\\ .000\\ 2.100\\ 2.100\\ 2.100\\ -1.000\\ \end{array}$                    | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ **{}^{**}{=}144.00, \ T^{*}{=}2838.00, \ \\ es:\\ 6.00, \ CH4{=}2.00, \ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\\ 1.600E{+}13\\ 1.700E{+}07\\ 4.200E{+}06\\ 1.000E{+}17\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H+CH2OH=CH2(S)+H2O<br>H+CH3O(+M)=CH3OH(+M)<br>Low pressure limit<br>Troe parameters: a=.8902, T'<br>Enhanced Collision Efficiencie<br>H2=2.00, H2O=6<br>H+CH3O=H+CH2OH<br>H+CH3O=H+CH2OH<br>H+CH3O=OH+CH3<br>H+CH3O=OH+CH3<br>H+CH3O=CH2(S)+H2O<br>H+CH3OH=CH2OH+H2<br>H+CH3OH=CH3O+H2<br>H+CCH(+M)=C2H2(+M)                                                                                                                                                                                                                   |
| 302<br>3.00<br>487<br>487 | $\begin{array}{r} .000\\ .000\\ .000\\ -000\\ -4.000\\ ^{**}=45569.00\\ \\ \text{CO2}=2.00, \text{ C2H6}=3\\ 1.600\\ .000\\ .000\\ .000\\ 2.000\\ 2.100\\ 2.100\\ -1.000\\ -4.800\\ \end{array}$ | $\begin{array}{r} 6.000E{+}12\\ 5.000E{+}13\\ 8.600E{+}28\\ **{}^{***}{=}144.00, \ T^{*}{=}2838.00, \ \end{array}$ es:<br>$\begin{array}{r} 6.00, \ CH4{=}2.00, \ CO{=}1.50\\ 3.400E{+}06\\ 2.000E{+}13\\ 3.200E{+}13\\ 1.600E{+}13\\ 1.700E{+}07\\ 4.200E{+}06\\ 1.000E{+}17\\ 3.750E{+}33\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} \text{H+CH2OH=CH2(S)+H2O} \\ \text{H+CH3O(+M)=CH3OH(+M)} \\ \text{Low pressure limit} \\ \text{Troe parameters: a=.8902, T'} \\ \text{Enhanced Collision Efficiencie} \\ \text{H2=2.00, H2O=0} \\ \text{H+CH3O=H+CH2OH} \\ \text{H+CH3O=H+CH2OH} \\ \text{H+CH3O=H2+CH2O} \\ \text{H+CH3O=OH+CH3} \\ \text{H+CH3O=OH+CH3} \\ \text{H+CH3O=CH2(S)+H2O} \\ \text{H+CH3OH=CH2OH+H2} \\ \text{H+CH3OH=CH2OH+H2} \\ \text{H+CH3OH=CH3O+H2} \\ \text{H+C2H(+M)=C2H2(+M)} \\ \text{Low pressure limit} \end{array}$ |

| Reaction                                                     | A (cm-moles-sec-K) $($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                            | E (cal/mole) |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |              |
| $H+C2H2(+M) \rightleftharpoons C2H3(+M)$                     | $5.600 \mathrm{E}{+12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000                         | 2400.00      |
| Low pressure limit                                           | $3.800 \text{E}{+40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -7.270                       | 7220.00      |
| Troe parameters: $a=.7507$ , T <sup>*</sup>                  | $T^{**}=98.50, T^{*}=1302.00, T^{**}=416$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.00                         |              |
| Enhanced Collision Efficiencie                               | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |              |
| H2=2.00, H2O=6.00,                                           | CH4=2.00, CO=1.50, CO2=2.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2H6=3.00, AR=               | =.70         |
| $H+C2H3(+M) \rightleftharpoons C2H4(+M)$                     | $6.080 \text{E}{+12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .270                         | 280.00       |
| Low pressure limit                                           | 1.400E + 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -3.860                       | 3320.00      |
| Troe parameters: $a=.7820$ , T <sup>*</sup>                  | $T^*=207.50, T^*=2663.00, T^{**}=609$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95.00                        |              |
| Enhanced Collision Efficiencie                               | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |              |
| H2=2.00, H2O=6.00,                                           | CH4=2.00, CO=1.50, CO2=2.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2H6=3.00, AR=               | =.70         |
| $H+C2H3 \rightleftharpoons H2+C2H2$                          | 3.000E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | .00          |
| $H+C2H4(+M) \rightleftharpoons C2H5(+M)$                     | 1.080E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .454                         | 1820.00      |
| Low pressure limit                                           | 1.200E+42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.620                       | 6970.00      |
| Troe parameters: $a=.9753, T^*$                              | $T^*=210.00, T^*=984.00, T^{**}=4374$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00                         |              |
| Enhanced Collision Efficiencie                               | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |              |
| H2=2.00, H2O=6.00,                                           | CH4=2.00, CO=1.50, CO2=2.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , C2H6=3.00, AR=             | =.70         |
| $H+C2H4 \rightleftharpoons C2H3+H2$                          | 1.325E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.530                        | 12240.00     |
| $H+C2H5(+M) \rightleftharpoons C2H6(+M)$                     | 5.210E+17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 990                          | 1580.00      |
| Low pressure limit                                           | 1.990E+41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -7.080                       | 6685.00      |
| Troe parameters: $a=.8422, T^{*}$                            | 1125.00, 1112219.00, 1111268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82.00                        |              |
| Enhanced Collision Efficiencie                               | S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Colla Doo AD                 | -            |
| H2=2.00, H2O=6.00,                                           | CH4=2.00, CO=1.50, CO2=2.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2H6=3.00, AR=               | =.70         |
| $H+C2H5 \rightleftharpoons H2+C2H4$                          | 2.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | .00          |
| $H+C2H6 \rightleftharpoons C2H5+H2$                          | 1.150E + 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.900                        | 7530.00      |
| $H+HCCO \rightleftharpoons CH2(S)+CO$                        | 1.000E + 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | .00          |
| $H+CH2CO \rightleftharpoons HCCO+H2$                         | 5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 8000.00      |
| H+CH2CO≡CH3+CO                                               | 1.130E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 3428.00      |
| $H+HCCOH \equiv H+CH2CO$                                     | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | .00          |
| $H2+CO(+M) \rightleftharpoons CH2O(+M)$                      | 4.300E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.500                        | 79600.00     |
| Low pressure limit                                           | 5.070E+27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.420                       | 84350.00     |
| Troe parameters: a=.9320, 1                                  | =197.00, 1 = 1540.00, 1 = 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300.00                       |              |
| Linanced Collision Efficiencie                               | S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COLLC 2 00 AD                | 70           |
| H2=2.00, H2O=0.00,                                           | CH4=2.00, CO=1.50, CO2=2.00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{2H0} = 3.00, AR = 1.510$ | =.70         |
| $On+n2 \leftarrow n+n2O$<br>$2OII(+M) \rightarrow II2O2(+M)$ | $2.100E \pm 0.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.310                        | 3430.00      |
| $2OH(+M) \leftarrow H2O2(+M)$                                | 7.400E + 15<br>2 200E + 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 370                          | .00          |
| The pressure limit                                           | 2.300E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900                          | -1700.00     |
| Free parameters: a=.7540, 1                                  | =94.00, 1 = 1750.00, 1 = 518.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                         |              |
| $H_2 = 2.00$ $H_2 = 6.00$                                    | ы.<br>СН4—2.00. СО—1.50. СО2—2.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2H6-3.00 AB-                | - 70         |
| $112 = 2.00, 1120 = 0.00, 20H \rightarrow 0 + H20$           | 0114=2.00, 00=1.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002=2.00, 002= | 2 400 2 10 - 5.00, AIL-      | 2110 00      |
| $OH + HO2 \rightarrow O2 + H2O$                              | $2.000E \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.400                        | -2110.00     |
| $OH + H2O2 \rightarrow HO2 + H2O$                            | $1.750 E \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .000                         | -300.00      |
| Duplicate Reaction                                           | $1.100E \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .000                         | 520.00       |
| $OH \pm H^2O^2 \equiv HO^2 \pm H^2O$                         | $5800\mathrm{E}{\pm}14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000                          | 9560 00      |
| Duplicate Reaction                                           | 3.800E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 3500.00      |
| $OH + C \rightarrow H + CO$                                  | $5.000 E \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000                          | 00           |
| $OH+CH \Rightarrow H+HCO$                                    | $3.000\pm13$<br>$3.000\pm13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .000                         | .00          |
| $OH+CH2 \rightarrow H+CH2O$                                  | 2.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | .00          |
| $OH+CH2 \Rightarrow CH+H2O$                                  | $1.130E \pm 07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 000                        | 3000.00      |
| $OH+CH2(S) \rightarrow H+CH2O$                               | $3.000E \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.000                        | 00           |
| $OH+CH3(\pm M) \Rightarrow CH3OH(\pm M)$                     | 6.300E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | .00          |
| Low pressure limit                                           | $2.700E \pm 38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -6 300                       | 3100.00      |
| Troe parameters: $a = 2105$ T <sup>*</sup>                   | $^{**}-83.50$ T*-5398.00 T**-8370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                        | 0100.00      |
| Enhanced Collision Efficiencie                               | -03.00, I -0330.00, I -0370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                         |              |
|                                                              | SOD CH4-2 00 CO-1 50 CO2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 C2H6-3.00               |              |
| OH+CH3⇒CH2+H2O                                               | $5600E\pm07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 600                        | 5420.00      |
| $OH+CH3 \rightleftharpoons CH2(S)+H2O$                       | 2.501E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 00           |
|                                                              | 2.00111   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .000                         | .00          |

| Reaction                                                                              | A (cm-moles-sec-K)                        | n                  | E (cal/mole) |
|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------|--------------|
| OH+CH4≓CH3+H2O                                                                        | $1.000E \pm 08$                           | 1 600              | 3120.00      |
| OH+CO≓H+CO2                                                                           | 4.760E+07                                 | 1.228              | 70.00        |
| OH+HCO≓H2O+CO                                                                         | 5.000E + 13                               | .000               | .00          |
| OH+CH2O≓HCO+H2O                                                                       | 3.430E + 09                               | 1.180              | -447.00      |
| OH+CH2OH≓H2O+CH2O                                                                     | $5.000E{+}12$                             | .000               | .00          |
| OH+CH3O≓H2O+CH2O                                                                      | $5.000 \text{E}{+12}$                     | .000               | .00          |
| OH+CH3OH≓CH2OH+H2O                                                                    | $1.440E{+}06$                             | 2.000              | -840.00      |
| OH+CH3OH≓CH3O+H2O                                                                     | $6.300 \text{E}{+}06$                     | 2.000              | 1500.00      |
| OH+C2H≓H+HCCO                                                                         | 2.000E + 13                               | .000               | .00          |
| OH+C2H2≓H+CH2CO                                                                       | 2.180E-04                                 | 4.500              | -1000.00     |
| OH+C2H2≓H+HCCOH                                                                       | 5.040E+05                                 | 2.300              | 13500.00     |
| $OH+C2H2 \rightleftharpoons C2H+H2O$                                                  | 3.370E+07                                 | 2.000              | 14000.00     |
| $OH+C2H2 \rightleftharpoons CH3+CO$                                                   | 4.830E-04                                 | 4.000              | -2000.00     |
| $OH+C2H3 \equiv H2O+C2H2$<br>$OH+C2H4 \Rightarrow C2H2 + H2O$                         | 5.000E + 12                               | .000               | .00          |
| $OH + C2H4 \leftarrow C2H5 + H2O$                                                     | 3.000E+00<br>3.540E+06                    | 2.000              | 2300.00      |
| $OH+CH2CO \rightarrow HCCO+H2O$                                                       | 7500E+00                                  | 2.120              | 2000.00      |
| $2HO2 \Rightarrow O2 + H2O2$                                                          | 1.300E + 12<br>1.300E+11                  | .000               | -1630.00     |
| Duplicate Reaction                                                                    | 1.0001   11                               | .000               | 1000.00      |
| $2HO2 \rightleftharpoons O2 + H2O2$                                                   | $4.200 \mathrm{E}{+14}$                   | .000               | 12000.00     |
| Duplicate Reaction                                                                    |                                           |                    |              |
| HO2+CH2≓OH+CH2O                                                                       | 2.000E + 13                               | .000               | .00          |
| $HO2+CH3 \rightleftharpoons O2+CH4$                                                   | 1.000E + 12                               | .000               | .00          |
| HO2+CH3≓OH+CH3O                                                                       | 2.000E + 13                               | .000               | .00          |
| $HO2+CO \rightleftharpoons OH+CO2$                                                    | $1.500E{+}14$                             | .000               | 23600.00     |
| $HO2+CH2O \rightleftharpoons HCO+H2O2$                                                | $1.000E{+}12$                             | .000               | 8000.00      |
| C+O2≓O+CO                                                                             | 5.800E + 13                               | .000               | 576.00       |
| $C+CH2 \rightleftharpoons H+C2H$                                                      | 5.000E + 13                               | .000               | .00          |
| C+CH3⇒H+C2H2                                                                          | 5.000E + 13                               | .000               | .00          |
| CH+O2≓O+HCO                                                                           | 3.300E+13                                 | .000               | .00          |
| $CH+H2 \rightleftharpoons H+CH2$                                                      | 1.107E+08<br>1.712E+12                    | 1.790              | 1670.00      |
| $CH+H2O \equiv H+CH2O$                                                                | 1.713E+13                                 | .000               | -755.00      |
| CH+CH2 = H+C2H2<br>CH+CH2 = H+C2H2                                                    | 4.000E + 13                               | .000               | .00          |
| $CH + CH4 \rightarrow H + C2H4$                                                       | 5.000E + 13                               | .000               | .00          |
| $CH+CO(+M) \cong HCCO(+M)$                                                            | $5.000E \pm 13$                           | .000               | .00          |
| $L_{ow}$ pressure limit                                                               | 2.690E+28                                 | -3 740             | 1936 00      |
| Troe parameters: $a = 5757$ T <sup>***</sup> =                                        | $=237\ 00\ T^{*}=1652\ 00\ T^{*}=5$       | 6069.00            | 1000.00      |
| Enhanced Collision Efficiencies:                                                      | 201100, 1 1002100, 1 0                    |                    |              |
| H2=2.00, H2O=6.00, CH                                                                 | 4=2.00, CO=1.50, CO2=2.0                  | 0, C2H6=3.00, AR=  | =.70         |
| CH+CO2≓HCO+CO                                                                         | 3.400E + 12                               | .000               | 690.00       |
| $CH+CH2O \rightleftharpoons H+CH2CO$                                                  | $9.460 \text{E}{+13}$                     | .000               | -515.00      |
| $CH+HCCO \rightleftharpoons CO+C2H2$                                                  | $5.000E{+}13$                             | .000               | .00          |
| $CH2+O2 \rightleftharpoons OH+HCO$                                                    | $1.320E{+}13$                             | .000               | 1500.00      |
| $CH2+H2 \rightleftharpoons H+CH3$                                                     | 5.000E + 05                               | 2.000              | 7230.00      |
| $2CH2 \rightleftharpoons H2 + C2H2$                                                   | $3.200E{+}13$                             | .000               | .00          |
| $CH2+CH3 \rightleftharpoons H+C2H4$                                                   | 4.000E+13                                 | .000               | .00          |
| CH2+CH4≓2CH3                                                                          | $2.460 \text{E}{+}06$                     | 2.000              | 8270.00      |
| $CH2+CO(+M) \rightleftharpoons CH2CO(+M)$                                             | 8.100E+11                                 | .500               | 4510.00      |
| Low pressure limit                                                                    | 2.690E+33                                 | -5.110             | 7095.00      |
| Enhanced Collision Efficiencies:                                                      | $=275.00, 1^{\circ}=1226.00, 1^{\circ}=5$ | 0185.00            | -            |
| H2=2.00, H2O=6.00, CH                                                                 | 4=2.00, CO=1.50, CO2=2.0                  | 10, C2H6=3.00, AR= | =.70         |
| $CH2+HCCO \rightleftharpoons C2H3+CO$                                                 | 3.000E+13                                 | .000               | .00          |
| CH2(S) + N2 = CH2 + N2                                                                | 1.500E + 13                               | .000               | 600.00       |
| $\Box \Pi 2(S) + AK = \Box \Pi 2 + AK$<br>$C \Pi 2(S) + O2 \rightarrow \Pi + OU + CO$ | 9.000E+12                                 | .000               | 600.00       |
| $OII2(3)+O2 - \Pi + O\Pi + OO$                                                        | 2.000E+13                                 | .000               | .00          |

| Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (cm-moles-sec-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                            | E (cal/mole                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------|
| $CII2(2) + O2 \rightarrow CO + II2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.000 \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                          | (                                                   |
| $CH_2(S) + U_2 \rightarrow CU_2 + U_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.200E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | .(                                                  |
| $CH2(S)+H2 \equiv CH3+H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | .(                                                  |
| $CH2(S)+H2O(+M) \equiv CH3OH(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.000E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | ).<br>2100 (                                        |
| Theorem and the second | 2.700E+38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.300                       | 3100.0                                              |
| Free parameters: a=.1507, 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =154.00, 1 = 2585.00, 1 = 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 205.00                       |                                                     |
| Enhanced Comsion Enciencies:<br>$H_{2} = 2.00$ $H_{2} = 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH4 = 2.00 CO = 1.50 CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -200 C2U6-20                 | n                                                   |
| 112 = 2.00, 1120 = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $, C114=2.00, CO=1.30, CO2-2.000E \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.00, C2110-3.00            | J                                                   |
| $CH2(S) + CH2 \rightarrow H + C2H4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.200 \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000                         | 570 (                                               |
| $CH2(S)+CH3 \rightarrow 2CH3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.200E + 13<br>1 600E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .000                         | -570.0                                              |
| $CH2(S) + CO \rightarrow CH2 + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.000 \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000                         | -510.0                                              |
| $CH2(S)+CO \rightarrow CH2+CO2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | ).                                                  |
| $CH2(S)+CO2 \cong CO+CH2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.000 \pm 12$<br>$1.400 \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .000                         | .(                                                  |
| $CH2(S)+C2H6 \rightarrow CH3+C2H5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | -550 (                                              |
| $CH3 \pm O2 \longrightarrow O \pm CH3 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.675E\pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000                         | -550.0                                              |
| $CH3+O2 \rightarrow OH+CH3O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.075 \pm 10$<br>3.600 E $\pm 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000                         | 28800.0                                             |
| $CH3+H2O2 \rightarrow HO2+CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.450E \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.470                        | 5180 (                                              |
| $2CH3(\pm M) \Rightarrow C2H6(\pm M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.430E + 04<br>2.120E + 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 970                        | 620 (                                               |
| $L_{ow}$ pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.770E+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -9.670                       | 6220.0                                              |
| Troo parameters: $a = 5225$ T***-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-151.00 \text{ T}^* - 1038.00 \text{ T}^* - 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.070                       | 0220.0                                              |
| Enhanced Colligion Efficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -101.00, 1 -1000.00, 1 -4000.00, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -4000.000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -4000, 1 -40000, 1 -40000, 1 -40000, 1 -40000, 1 -4000, 1 -4000 | 970.00                       |                                                     |
| $H_{2} = 2 00 H_{2} = 6 00 CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-200 CO-150 CO2-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2H6-300 AF                  | 2 - 70                                              |
| 112-2.00, 1120-0.00, C11<br>2CH2 $\rightarrow$ H + C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 0.2110 = 3.00, AI         | ι—.70<br>10600 (                                    |
| $CH3 + HCO \rightarrow CH4 + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.990 \pm 12$<br>$2.649 \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .100                         | 10000.0                                             |
| $CH3 + CH2O \rightarrow HCO + CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.040E + 13<br>2.320E + 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.810                        | 5860 (                                              |
| $CH3 + CH2O \leftarrow HCO + CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3.520E \pm 03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.810                        | 0040.0                                              |
| $CH3 + CH3OH \rightarrow CH3O + CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.000 \pm 07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.500                        | 9940.0                                              |
| $CH3 + C2H4 \rightarrow C2H3 + CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.270E \pm 05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.000                        | 9940.0                                              |
| $CH3+C2H4 \leftarrow C2H3+CH4$<br>$CH3+C2H6 \rightarrow C2H5+CH4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.270\pm0.05$<br>6 140E $\pm0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.000                        | 9200.0<br>10450.0                                   |
| $HCO + H2O \rightarrow H + CO + H2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2.244E \pm 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.740                        | 17000 (                                             |
| $HCO+H2O \leftarrow H+CO+H2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.244E + 10<br>1.870E + 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.000                       | 17000.0                                             |
| Enhanced Collision Efficiencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0101   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.000                       | 17000.0                                             |
| $H_2 = 2.00$ $H_2 = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH4 = 2.00 CO = 1.50 CO2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.00 C2H6-3.00              |                                                     |
| $HCO+O2 \cong HO2+CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7600E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.00, 02110-5.00            | 400 (                                               |
| $CH2OH+O2 \Longrightarrow HO2+CH2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.800E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | 900 (                                               |
| $CH_{2}OH_{1}O_{2} = HO_{2} + OH_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.280E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 600                        | -3530 (                                             |
| $C_{2H+O2} \rightarrow HCO+CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                          | -5550.0                                             |
| $C2H+H2 \rightarrow H+C2H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.070E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 400                        | 200.0                                               |
| $C2H3+O2 \Rightarrow HCO+CH2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.980E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.400                        | -240 (                                              |
| $C2H4(+M) \Longrightarrow H2 + C2H2(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 88770 (                                             |
| Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7000E+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9.310                       | 99860 (                                             |
| Troe parameters: $a = 7345$ T <sup>***</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =180.00 T*=1035.00 T**=54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 417.00                       | 00000.                                              |
| Enhanced Collision Efficiencies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -100.00, 1 -1000.00, 1 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.00                       |                                                     |
| H2=2.00 $H2O=6.00$ CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4=2.00 CO=1.50 CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2H6=3.00 AF                 | R = 70                                              |
| $C2H5+O2 \Longrightarrow HO2+C2H4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 400E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                          | 3875 (                                              |
| $HCCO+O2 \Rightarrow OH+2CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.600E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                          | 854 (                                               |
| $2HCCO \Rightarrow 2CO + C2H2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.000E + 12<br>1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                          | 001.0                                               |
| $N+NO \Rightarrow N2+O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000                          |                                                     |
| $N+\Omega^2 \Rightarrow N\Omega + \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.650E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                          | 6400 (                                              |
| $N+OH \Rightarrow NO+H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.333E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .000                         | 1120 (                                              |
| $N_2O + O \Longrightarrow N_2 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000E + 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000                         | 10810 (                                             |
| $N_{2}O + O \Rightarrow 2NO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .000                         | 10010.0                                             |
| $N_{2O} + H \Longrightarrow N_{2} + OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.400E + 12<br>2 900E ± 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000                          | 23150                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.400E+12<br>2.900E+13<br>$4.400E\pm14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000                         | 23150.0<br>18880.0                                  |
| $N_{2}O + OH \Rightarrow N_{2} + HO_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.400E+12<br>2.900E+13<br>4.400E+14<br>2.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .000<br>.000                 | 23150.0<br>18880.0<br>21060.0                       |
| $N2O+OH \rightleftharpoons N2+HO2$<br>$N2O(+M) \rightleftharpoons N2+O(+M)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.400E+12<br>2.900E+13<br>4.400E+14<br>2.000E+12<br>1.300E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .000<br>.000<br>.000         | 23150.(<br>18880.(<br>21060.(<br>59620.(            |
| $N2O+OH \rightleftharpoons N2+HO2$<br>$N2O(+M) \rightleftharpoons N2+O(+M)$<br>Low pressure limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.400E+12 $2.900E+13$ $4.400E+14$ $2.000E+12$ $1.300E+11$ $6.200E+14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000<br>.000<br>.000<br>.000 | 23150.(<br>18880.(<br>21060.(<br>59620.(<br>56100.( |

| Reaction                           | A (cm-moles-sec-K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n               | E (cal/mole) |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | <b>D</b>     |
| H2=2.00, H2O=6.00, C               | CH4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, C2H6=3.00, A | .R=.70       |
| HO2+NO≓NO2+OH                      | 2.110E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | -480.00      |
| NO+O+M≓NO2+M                       | 1.060E+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.410          | .00          |
| Enhanced Collision Efficiencies    | $\vdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | D 70         |
| H2=2.00, H2O=6.00, C               | H4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, C2H6=3.00, A | .R=.70       |
| NO2+O≡NO+O2                        | 3.900E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | -240.00      |
| NO2+H≓NO+OH                        | 1.320E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 360.00       |
| $NH+U \equiv NU+H2$                | 5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| NH+H = N+H2                        | 3.200E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 330.00       |
| $NH+OH \equiv HNO+H$               | 2.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NH+OH \equiv N+H2O$               | 2.000E+09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.200           | .00          |
| $NH+O2 \implies NO+OH$             | 4.610E + 05<br>1.280E + 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.000           | 6500.00      |
| NH+O2 = NO+OH                      | $1.280E \pm 00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.500           | 100.00       |
| $NH+N \equiv N2+H$                 | 1.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NH+H2O \equiv HNO+H2$             | 2.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 13850.00     |
| $NH+NO \equiv N2+OH$               | 2.160E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230             | .00          |
| NH+NO = N2O+H                      | 4.100E + 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 450             | .00          |
| NH2+O = OH+NH                      | 1.000E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000            | .00          |
| NH2+U = H+HNU                      | 4.000E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000            | .00          |
| $NH2+H \equiv NH+H2$               | 4.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 3650.00      |
| NH2+OH≓NH+H2O                      | 9.000E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.500           | -460.00      |
| NNH≓N2+H<br>NNH+M→N0+H+M           | 3.300E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NNH+M \equiv N2+H+M$              | 1.300E + 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110             | 4980.00      |
| Enhanced Collision Efficiencies    | $\vdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | D <b>5</b> 0 |
| H2=2.00, H2O=6.00, C               | H4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, C2H6=3.00, A | .R=.70       |
| $NNH+O2 \rightleftharpoons HO2+N2$ | 5.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NNH+O \Rightarrow OH+N2$          | 2.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| NNH+O=NH+NO                        | 7.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NNH+H \equiv H2+N2$               | 5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NNH+OH \approx H2O+N2$            | 2.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NNH+CH3 \equiv CH4+N2$            | 2.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| H+NO+M≡HNO+M                       | 8.950E+19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.320          | 740.00       |
| Enhanced Collision Efficiencies    | $\frac{1}{100}  \frac{1}{100}  \frac{1}$ |                 | D 70         |
| H2=2.00, H2O=6.00, C               | $2500 \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0, C2H6=3.00, A | .K=.70       |
| HNO+O = NO+OH                      | 2.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $HNO+H \rightarrow H2+HO$          | 4.300E + 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .720            | 000.00       |
| HNO+OH = NO+H2O                    | 1.300E + 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.900           | -950.00      |
| HNO+O2 = HO2+NO                    | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 13000.00     |
| CN+O = CO+N                        | 1.100E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $CN+OH \rightarrow HCO+H$          | 4.000E + 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000            | .00          |
| $CN+H2O \equiv HCN+OH$             | 8.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | (460.00      |
| $CN+O2 \equiv NCO+O$               | 6.140E + 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .000            | -440.00      |
| $CN+H2 \equiv HCN+H$               | 2.100E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 4710.00      |
| NCO+O = NO+CO                      | 2.350E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NCO+H \equiv NH+CO$               | 5.400E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| NCO+OH≓NO+H+CO                     | 2.500E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| $NCO+N \approx N2+CO$              | 2.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | .00          |
| NCO+O2≅NO+CO2                      | 2.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .000            | 20000.00     |
| NUU+M≓N+CU+M                       | 8.800E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500             | 48000.00     |
| Ennanced Collision Efficiencies    | $\vdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | D 70         |
| H2=2.00, H2O=6.00, C               | CH4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, C2H6=3.00, A | .K=.70       |
| NCO+NO≕N2O+CO                      | 2.850E+17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.520          | 740.00       |
| NCO+NO⇒N2+CO2                      | 5.700E+18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2.000          | 800.00       |
| HCN+M≓H+CN+M                       | 1.040E+29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.300          | 126600.00    |
| Enhanced Collision Efficiencies    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COTTA 2 22 1    | D <b>5</b> 0 |
| H2=2.00, H2O=6.00, C               | CH4=2.00, CO=1.50, CO2=2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0, C2H6=3.00, A | .K=.70       |
| HCN+O≓NCO+H                        | 1.107E + 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.640           | 4980.00      |

| Reaction                                                               | A (cm-moles-sec- $K$ )                   | n                | E (cal/mole) |
|------------------------------------------------------------------------|------------------------------------------|------------------|--------------|
|                                                                        |                                          |                  |              |
| HCN+O≓NH+CO                                                            | $2.767 \text{E}{+}03$                    | 2.640            | 4980.00      |
| $HCN+O \rightleftharpoons CN+OH$                                       | 2.134E + 09                              | 1.580            | 26600.00     |
| $HCN+OH \rightleftharpoons HOCN+H$                                     | $1.100 \text{E}{+}06$                    | 2.030            | 13370.00     |
| $\mathrm{HCN}+\mathrm{OH} \rightleftharpoons \mathrm{HNCO}+\mathrm{H}$ | $4.400 \text{E}{+}03$                    | 2.260            | 6400.00      |
| $HCN+OH \rightleftharpoons NH2+CO$                                     | $1.600E{+}02$                            | 2.560            | 9000.00      |
| $H+HCN+M \rightleftharpoons H2CN+M$                                    | 1.400E + 26                              | -3.400           | 1900.00      |
| Enhanced Collision Efficiencie                                         | s:                                       |                  |              |
| H2=2.00, H2O=6.00,                                                     | CH4=2.00, CO=1.50, CO2=2.00              | 0, C2H6=3.00, AR | l = .70      |
| $H2CN+N \rightleftharpoons N2+CH2$                                     | 6.000E + 13                              | .000             | 400.00       |
| $C+N2 \rightleftharpoons CN+N$                                         | $6.300E{+}13$                            | .000             | 46020.00     |
| $CH+N2 \rightleftharpoons HCN+N$                                       | $2.857E{+}08$                            | 1.100            | 20400.00     |
| $CH+N2(+M) \cong HCNN(+M)$                                             | $3.100E{+}12$                            | .150             | .00          |
| Low pressure limit                                                     | 1.300E + 25                              | -3.160           | 740.00       |
| Troe parameters: $a=.6670, T^*$                                        | $^{**}=235.00, T^{*}=2117.00, T^{**}=45$ | 536.00           |              |
| Enhanced Collision Efficiencie                                         | s:                                       |                  |              |
| H2=2.00, H2O=6.00,                                                     | CH4=2.00, CO=1.50, CO2=2.00              | 0, C2H6=3.00, AR | l = .70      |
| $CH2+N2 \rightleftharpoons HCN+NH$                                     | $1.000E{+}13$                            | .000             | 74000.00     |
| $CH2(S)+N2 \rightleftharpoons NH+HCN$                                  | $1.000E{+}11$                            | .000             | 65000.00     |
| $C+NO \rightleftharpoons CN+O$                                         | $1.900E{+}13$                            | .000             | .00          |
| $C+NO \rightleftharpoons CO+N$                                         | $2.900 \text{E}{+13}$                    | .000             | .00          |
| $CH+NO \rightleftharpoons HCN+O$                                       | $5.000 \text{E}{+13}$                    | .000             | .00          |
| $CH+NO \Longrightarrow H+NCO$                                          | $2.000E{+}13$                            | .000             | .00          |
| $CH+NO \rightleftharpoons N+HCO$                                       | $3.000E{+}13$                            | .000             | .00          |
| $CH2+NO \rightleftharpoons H+HNCO$                                     | $3.100 \text{E}{+}17$                    | -1.380           | 1270.00      |
| $CH2+NO \rightleftharpoons OH+HCN$                                     | $2.900 \text{E}{+}14$                    | 690              | 760.00       |
| $CH2+NO \rightleftharpoons H+HCNO$                                     | $3.800 \text{E}{+}13$                    | 360              | 580.00       |
| $CH2(S)+NO \Longrightarrow H+HNCO$                                     | $3.100 \text{E}{+}17$                    | -1.380           | 1270.00      |
| $CH2(S)+NO \rightleftharpoons OH+HCN$                                  | $2.900 \text{E}{+}14$                    | 690              | 760.00       |
| $CH2(S)+NO \Longrightarrow H+HCNO$                                     | $3.800 \text{E}{+13}$                    | 360              | 580.00       |
| $CH3+NO \rightleftharpoons HCN+H2O$                                    | $9.600 \mathrm{E}{+13}$                  | .000             | 28800.00     |
| $CH3+NO \rightleftharpoons H2CN+OH$                                    | $1.000E{+}12$                            | .000             | 21750.00     |
| $HCNN+O \rightleftharpoons CO+H+N2$                                    | $2.200 \text{E}{+13}$                    | .000             | .00          |
| $HCNN+O \rightleftharpoons HCN+NO$                                     | $2.000 \text{E}{+}12$                    | .000             | .00          |
| $HCNN+O2 \rightleftharpoons O+HCO+N2$                                  | $1.200E{+}13$                            | .000             | .00          |
| $HCNN+OH \rightleftharpoons H+HCO+N2$                                  | $1.200E{+}13$                            | .000             | .00          |
| $HCNN+H \rightleftharpoons CH2+N2$                                     | 1.000E + 14                              | .000             | .00          |
| $HNCO+O \rightleftharpoons NH+CO2$                                     | $9.800 \text{E}{+}07$                    | 1.410            | 8500.00      |
| HNCO+O≓HNO+CO                                                          | $1.500 \text{E}{+}08$                    | 1.570            | 44000.00     |
| HNCO+O≓NCO+OH                                                          | $2.200 \text{E}{+}06$                    | 2.110            | 11400.00     |
| HNCO+H≓NH2+CO                                                          | $2.250E{+}07$                            | 1.700            | 3800.00      |
| HNCO+H≓H2+NCO                                                          | $1.050E{+}05$                            | 2.500            | 13300.00     |
| HNCO+OH≓NCO+H2O                                                        | $4.650E{+}12$                            | .000             | 6850.00      |
| HNCO+OH≓NH2+CO2                                                        | $1.550E{+}12$                            | .000             | 6850.00      |
| HNCO+M≓NH+CO+M                                                         | $1.180E{+}16$                            | .000             | 84720.00     |
| Enhanced Collision Efficiencie                                         | s:                                       |                  |              |
| H2=2.00, H2O=6.00,                                                     | CH4=2.00, CO=1.50, CO2=2.00              | ), C2H6=3.00, AR | l = .70      |
| HCNO+H≓H+HNCO                                                          | $2.100 \mathrm{E}{+15}$                  | 690              | 2850.00      |
| HCNO+H≓OH+HCN                                                          | $2.700 \text{E}{+}11$                    | .180             | 2120.00      |
| HCNO+H≓NH2+CO                                                          | $1.700 \text{E}{+}14$                    | 750              | 2890.00      |
| HOCN+H≓H+HNCO                                                          | $2.000 \text{E}{+}07$                    | 2.000            | 2000.00      |
| HCCO+NO≓HCNO+CO                                                        | $2.350E{+}13$                            | .000             | .00          |
| $CH3+N \rightleftharpoons H2CN+H$                                      | $6.100 \mathrm{E}{+14}$                  | 310              | 290.00       |
| $CH3+N \rightleftharpoons HCN+H2$                                      | $3.700 \text{E}{+12}$                    | .150             | -90.00       |
| $NH3+H \rightleftharpoons NH2+H2$                                      | $5.400 \text{E}{+}05$                    | 2.400            | 9915.00      |
| NH3+OH≓NH2+H2O                                                         | 5.000E + 07                              | 1.600            | 955.00       |
| NH3+O≓NH2+OH                                                           | $9.400 \mathrm{E}{+06}$                  | 1.940            | 6460.00      |

### E.4 Modified Miller and Bowman (1989)

This mechanism is a modified version of the listing published by Miller and Bowman (1989). The separate mechanisms listed in Appendix A and Appendix B of that paper have been combined to handle hydrocarbon and ammonia combustion simultaneously. The original version was found to be deficient for ammonia combustion under highly dilute conditions where thermal dissocation of  $NH_3$  is important. To rectify this difficulty, the mechanism of Fujii et al. (1981) was blended into the Miller and Bowman (1989) mechanism. The Fujii et al. (1981) mechanism was tested against shock tube experiments.

| Reaction                                                    | A (cm-moles-sec-K)                            | n      | E (cal/mole) |
|-------------------------------------------------------------|-----------------------------------------------|--------|--------------|
| 2CH3(+M)≓C2H6(+M)                                           | 9.030E + 16                                   | -1 20  | 654          |
| Low pressure limit                                          | 3.180E+41                                     | -7.0   | 2762         |
| Troe parameters: $a=6.04\text{E-1}$ .                       | $T^{***} = 6927.0, T^* = 0.0, T^{**} = 132.0$ | )      | 2102         |
| Enhanced Collision Efficienci                               | es:                                           | ,<br>, |              |
| H                                                           | 2=2.0, CO=2.0, CO2=3.0, H2O=                  | 5.0    |              |
| $CH3+H(+M) \rightleftharpoons CH4(+M)$                      | 6.000E + 16                                   | -1.00  | 0            |
| Low pressure limit                                          | 8.000E + 26                                   | -3.0   | 0            |
| SRI parameters: $a=4.50E-1$ ,                               | b=797.0, c=979.0, d=1.0, e=0.0                |        |              |
| Enhanced Collision Efficiencie                              | es:                                           |        |              |
| H                                                           | 2=2.0, CO=2.0, CO2=3.0, H2O=3.0               | 5.0    |              |
| $CH4+O2 \rightleftharpoons CH3+HO2$                         | 7.900E + 13                                   | 0.00   | 56000        |
| $CH4+H \rightleftharpoons CH3+H2$                           | $2.200 \text{E}{+}04$                         | 3.00   | 8750         |
| $CH4+OH \rightleftharpoons CH3+H2O$                         | $1.600 \mathrm{E}{+06}$                       | 2.10   | 2460         |
| CH4+O≓CH3+OH                                                | 1.020E + 09                                   | 1.50   | 8604         |
| $CH4+HO2 \Longrightarrow CH3+H2O2$                          | 1.800E + 11                                   | 0.00   | 18700        |
| CH3+HO2⇒CH3O+OH                                             | $2.000E{+}13$                                 | 0.00   | 0            |
| CH3+O2⇒CH3O+O                                               | 2.050E + 19                                   | -1.57  | 29229        |
| CH3+O≓CH2O+H                                                | 8.000E + 13                                   | 0.00   | 0            |
| CH2OH+H≓CH3+OH                                              | 1.000E + 14                                   | 0.00   | 0            |
| CH3O+H≓CH3+OH                                               | 1.000E + 14                                   | 0.00   | 0            |
| $CH3+OH \rightleftharpoons CH2+H2O$                         | 7.500E + 06                                   | 2.00   | 5000         |
| $CH3+H \rightleftharpoons CH2+H2$                           | 9.000E + 13                                   | 0.00   | 15100        |
| CH3O+M≓CH2O+H+M                                             | 1.000E + 14                                   | 0.00   | 25000        |
| $CH2OH+M \rightleftharpoons CH2O+H+M$                       | 1.000E + 14                                   | 0.00   | 25000        |
| $CH3O+H \rightleftharpoons CH2O+H2$                         | 2.000E+13                                     | 0.00   | 0            |
| $CH2OH+H \rightleftharpoons CH2O+H2$                        | 2.000E+13                                     | 0.00   | 0            |
| CH3O+OH≓CH2O+H2O                                            | $1.000E{+}13$                                 | 0.00   | 0            |
| CH2OH+OH≓CH2O+H2O                                           | 1.000E+13                                     | 0.00   | 0            |
| CH3O+O≓CH2O+OH                                              | 1.000E + 13                                   | 0.00   | 0            |
| CH2OH+O≓CH2O+OH                                             | 1.000E + 13                                   | 0.00   | 0            |
| CH3O+O2⇒CH2O+HO2                                            | 6.300E + 10                                   | 0.00   | 2600         |
| CH2OH+O2≓CH2O+HO2                                           | 1.480E + 13                                   | 0.00   | 1500         |
| $CH2+H \rightleftharpoons CH+H2$                            | 1.000E + 18                                   | -1.56  | 0            |
| CH2+OH≓CH+H2O                                               | 1.130E + 07                                   | 2.00   | 3000         |
| CH2+OH≓CH2O+H                                               | 2.500E+13                                     | 0.00   | 0            |
| CH+O2≓HCO+O                                                 | 3.300E+13                                     | 0.00   | 0            |
| CH+O≓CO+H                                                   | 5.700E + 13                                   | 0.00   | 0            |
| CH+OH≓HCO+H                                                 | 3.000E+13                                     | 0.00   | 0            |
| CH+CO2≓HCO+CO                                               | 3.400E+12                                     | 0.00   | 690          |
| $CH+H \rightleftharpoons C+H2$                              | 1.500E+14                                     | 0.00   | 0            |
| $CH+H2O \rightleftharpoons CH2O+H$                          | 1.170E + 15                                   | -0.75  | 0            |
| $CH+CH2O \rightleftharpoons CH2CO+H$                        | 9.460E+13                                     | 0.00   | -515         |
| $CH+C2H2 \rightleftharpoons C3H2+H$                         | 1.000E + 14                                   | 0.00   | 0            |
| $CH+CH2 \rightleftharpoons C2H2+H$                          | 4.000E+13                                     | 0.00   | 0            |
| $H+CH3 \equiv C2H3+H$                                       | 3.000E+13                                     | 0.00   | 0            |
| $CH+CH4 \equiv C2H4+H$                                      | 6.000E+13                                     | 0.00   | 0            |
| $C+02 \equiv CO+O$                                          | 2.000E+13                                     | 0.00   | 0            |
| C + OH = CO + H                                             | 5.000E + 13                                   | 0.00   | 0            |
| $C+CH3 \rightleftharpoons C2H2+H$                           | 5.000E + 13                                   | 0.00   | 0            |
| $0 + 0 \pi 2 \equiv 0 2\pi + \pi$                           | 5.000E+13                                     | 0.00   | 1000         |
| UH2+UU2 = UH2U+UU                                           | 1.100E+11                                     | 0.00   | 1000         |
| $\cup HZ + U = UU + 2H$                                     | 5.000E+13                                     | 0.00   | 0            |
| $\bigcup H2 + U = \bigcup U + H2$                           | 3.000E+13                                     | 0.00   | 1000         |
| $\bigcup H2 + \bigcup 2 \rightleftharpoons \bigcup U2 + 2H$ | 1.600E+12                                     | 0.00   | 1000         |
| $\cup H_2 + O_2 = CH_2O + U_2$                              | 5.000E+13                                     | 0.00   | 9000         |
| $\cup$ H2+U2 $\equiv$ UU2+H2                                | 0.900E+11                                     | 0.00   | 500          |
| ∪n2+02≂00+H20                                               | 1.900E+10                                     | 0.00   | -1000        |

| Reaction                                    | A (cm-moles-sec-K)                            | n       | E (cal/mole)  |
|---------------------------------------------|-----------------------------------------------|---------|---------------|
|                                             | 0.0007.40                                     |         |               |
| CH2+O2≓CO+OH+H                              | 8.600E + 10                                   | 0.00    | -500          |
| CH2+O2⇒HCO+OH                               | 4.300E+10                                     | 0.00    | -500          |
| CH2O+OH≓HCO+H2O                             | 3.430E + 09                                   | 1.18    | -447          |
| CH2O+H≓HCO+H2                               | $2.190 \pm 0.08$                              | 1.77    | 3000          |
| CH2O+M≓HCO+H+M                              | 3.310E + 16                                   | 0.00    | 81000         |
| CH2O+O≓HCO+OH                               | 1.800E+13                                     | 0.00    | 3080          |
| HCO+OH≓H2O+CO                               | 1.000E + 14                                   | 0.00    | 0             |
| HCO+M≓H+CO+M                                | 2.500E + 14                                   | 0.00    | 16802         |
| Enhanced Collision Efficiencies: $CO-1.0$ H | 2-10 CH $4-28$ CO $2-30$ H                    | 20 - 50 |               |
| $HCO + H \rightarrow CO + H2$               | 2-1.9, 0.114-2.8, 0.02-3.0, 11<br>1 100F + 12 | 20-0.0  | 0             |
| $HCO + O \rightarrow CO + OH$               | $1.190 \pm 13$<br>$2.000 \pm 13$              | 0.25    | 0             |
| $HCO + O \rightarrow CO2 + H$               | $3.000 \pm 13$                                | 0.00    | 0             |
| $HCO+O2 \rightarrow HO2+CO$                 | $3.000\pm13$<br>$3.000\pm13$                  | 0.00    | 0             |
| $CO + O + M \rightarrow CO + M$             | $6.170E \pm 14$                               | -0.40   | 3000          |
| $CO+OH \rightarrow CO2+M$                   | $1.510E \pm 07$                               | 1.30    | 758           |
| $CO + OI \approx CO2 + OI$                  | 1.010E + 07<br>1 600E + 13                    | 0.00    | 41000         |
| $HO_2+CO \Rightarrow CO_2+OH$               | $5.800E \pm 13$                               | 0.00    | 22034         |
| $C2H6+CH3 \rightarrow C2H5+CH4$             | 5.500E+15                                     | 4.00    | 22304<br>8300 |
| $C_{2H6+H} \rightarrow C_{2H5+H2}$          | $5.000\pm01$                                  | 4.00    | 5210          |
| $C2H6+O \rightarrow C2H5+OH$                | $3.400 \pm 02$<br>$3.000 \pm 07$              | 2.00    | 5115          |
| $C2H6+OH \Rightarrow C2H5+H2O$              | $3.000 \pm 0.001$<br>8 700 $\pm 0.001$        | 2.00    | 1810          |
| $C2H4+H\rightarrow C2H3+H2$                 | $1.100 \pm 14$                                | 1.05    | 8500          |
| $C2H4+D \rightarrow CH3+HCO$                | 1.100E + 14<br>1 600E + 00                    | 1.20    | 746           |
| $C2H4+OH \rightarrow C2H3+H2O$              | $2.000 \pm 0.00$                              | 0.00    | 5055          |
| $CH2+CH3 \Rightarrow C2H4+H$                | $3.000E \pm 13$                               | 0.00    | 0300          |
| $H+C2H4(+M) \rightarrow C2H5(+M)$           | $2.000 \pm 13$                                | 0.00    | 2066          |
| $L_{ow}$ pressure limit                     | $6.37E \pm 27$                                | -2.8    | -54           |
| Enhanced Collision Efficiencies:            | 0.511   21                                    | -2.0    | -0-1          |
| H2=2                                        | 0. CO=2.0. CO2=3.0. H2O=5                     | 5.0     |               |
| C2H5+H≈2CH3                                 | 1.000E+14                                     | 0.00    | 0             |
| $C2H5+O2 \rightleftharpoons C2H4+HO2$       | 8.430E + 11                                   | 0.00    | 3875          |
| $C2H2+O \rightleftharpoons CH2+CO$          | 1.020E+07                                     | 2.00    | 1900          |
| $C2H2+O \rightleftharpoons HCCO+H$          | 1.020E+07                                     | 2.00    | 1900          |
| $H2+C2H \rightleftharpoons C2H2+H$          | 4.090E + 05                                   | 2.39    | 864           |
| $H+C2H2(+M) \rightleftharpoons C2H3(+M)$    | $5.540 \mathrm{E}{+12}$                       | 0.00    | 2410          |
| Low pressure limit                          | 2.67E + 27                                    | -3.5    | 2410          |
| Enhanced Collision Efficiencies:            |                                               |         |               |
| H2=2                                        | 0, CO=2.0, CO2=3.0, H2O=5                     | 5.0     |               |
| $C2H3+H \rightleftharpoons C2H2+H2$         | $4.000 \text{E}{+13}$                         | 0.00    | 0             |
| $C2H3+O \rightleftharpoons CH2CO+H$         | $3.000 \text{E}{+}13$                         | 0.00    | 0             |
| $C2H3+O2 \rightleftharpoons CH2O+HCO$       | 4.000E + 12                                   | 0.00    | -250          |
| $C2H3+OH \rightleftharpoons C2H2+H2O$       | $5.000E{+}12$                                 | 0.00    | 0             |
| $C2H3+CH2 \rightleftharpoons C2H2+CH3$      | $3.000E{+}13$                                 | 0.00    | 0             |
| $C2H3+C2H \rightleftharpoons 2C2H2$         | $3.000E{+}13$                                 | 0.00    | 0             |
| $C2H3+CH \rightleftharpoons CH2+C2H2$       | $5.000E{+}13$                                 | 0.00    | 0             |
| $OH+C2H2 \rightleftharpoons C2H+H2O$        | $3.370 \text{E}{+}07$                         | 2.00    | 14000         |
| $OH+C2H2 \rightleftharpoons HCCOH+H$        | $5.040 E{+}05$                                | 2.30    | 13500         |
| $OH+C2H2 \rightleftharpoons CH2CO+H$        | 2.180E-04                                     | 4.50    | -1000         |
| $OH+C2H2 \rightleftharpoons CH3+CO$         | 4.830E-04                                     | 4.00    | -2000         |
| $HCCOH+H \rightleftharpoons CH2CO+H$        | $1.000E{+}13$                                 | 0.00    | 0             |
| $C2H2+O \rightleftharpoons C2H+OH$          | $3.160E{+}15$                                 | -0.60   | 15000         |
| CH2CO+O≓CO2+CH2                             | $1.750E{+}12$                                 | 0.00    | 1350          |
| CH2CO+H≓CH3+CO                              | $1.130E{+}13$                                 | 0.00    | 3428          |
| $CH2CO+H \rightleftharpoons HCCO+H2$        | 5.000E + 13                                   | 0.00    | 8000          |
| CH2CO+O≓HCCO+OH                             | $1.000E{+}13$                                 | 0.00    | 8000          |
| CH2CO+OH≓HCCO+H2O                           | 7.500E + 12                                   | 0.00    | 2000          |

| Reaction                                                                              | A (cm-moles-sec-K)                | n      | E (cal/mole) |
|---------------------------------------------------------------------------------------|-----------------------------------|--------|--------------|
|                                                                                       |                                   |        |              |
| $CH2CO(+M) \rightleftharpoons CH2+CO(+M)$                                             | $3.000E{+}14$                     | 0.00   | 70980        |
| Low pressure limit                                                                    | $3.60 E{+}15$                     | 0.0    | 59270        |
| $C2H+O2 \rightleftharpoons 2CO+H$                                                     | $5.000E{+}13$                     | 0.00   | 1500         |
| $C2H+C2H2 \rightleftharpoons C4H2+H$                                                  | $3.000E{+}13$                     | 0.00   | 0            |
| $H+HCCO \rightleftharpoons CH2(S)+CO$                                                 | 1.000E + 14                       | 0.00   | 0            |
| O+HCCO≓H+2CO                                                                          | $1.000E{+}14$                     | 0.00   | 0            |
| HCCO+O2⇒2CO+OH                                                                        | $1.600E{+}12$                     | 0.00   | 854          |
| $CH+HCCO \rightleftharpoons C2H2+CO$                                                  | $5.000E{+}13$                     | 0.00   | 0            |
| $2HCCO \rightleftharpoons C2H2 + 2CO$                                                 | $1.000E{+}13$                     | 0.00   | 0            |
| $CH2(S)+M \rightleftharpoons CH2+M$                                                   | $1.000E{+}13$                     | 0.00   | 0            |
| Enhanced Collision Efficiencies:                                                      |                                   |        |              |
|                                                                                       | H=0.0                             |        |              |
| $CH2(S)+CH4\rightleftharpoons 2CH3$                                                   | $4.000E{+}13$                     | 0.00   | 0            |
| $CH2(S)+C2H6 \rightleftharpoons CH3+C2H5$                                             | $1.200E{+}14$                     | 0.00   | 0            |
| $CH2(S)+O2 \rightleftharpoons CO+OH+H$                                                | $3.000E{+}13$                     | 0.00   | 0            |
| $CH2(S)+H2 \rightleftharpoons CH3+H$                                                  | 7.000E + 13                       | 0.00   | 0            |
| $CH2(S)+H \rightleftharpoons CH2+H$                                                   | 2.000E + 14                       | 0.00   | 0            |
| $C2H+O \rightleftharpoons CH+CO$                                                      | $5.000E{+}13$                     | 0.00   | 0            |
| $C2H+OH \rightleftharpoons HCCO+H$                                                    | $2.000E{+}13$                     | 0.00   | 0            |
| $2CH2 \rightleftharpoons C2H2 + H2$                                                   | $4.000E{+}13$                     | 0.00   | 0            |
| $CH2+HCCO \rightleftharpoons C2H3+CO$                                                 | $3.000E{+}13$                     | 0.00   | 0            |
| $CH2+C2H2 \rightleftharpoons C3H3+H$                                                  | $1.200E{+}13$                     | 0.00   | 6600         |
| $C4H2+OH \rightleftharpoons C3H2+HCO$                                                 | $6.660 \mathrm{E}{+12}$           | 0.00   | -410         |
| $C3H2+O2 \rightleftharpoons HCO+HCCO$                                                 | $1.000E{+}13$                     | 0.00   | 0            |
| $C3H3+O2 \rightleftharpoons CH2CO+HCO$                                                | $3.000E{+}10$                     | 0.00   | 2868         |
| $C3H3+O \rightleftharpoons CH2O+C2H$                                                  | 2.000E + 13                       | 0.00   | 0            |
| $C3H3+OH \rightleftharpoons C3H2+H2O$                                                 | 2.000E + 13                       | 0.00   | 0            |
| $2C2H2 \rightleftharpoons C4H3 + H$                                                   | $2.000E{+}12$                     | 0.00   | 45900        |
| $C4H3+M \rightleftharpoons C4H2+H+M$                                                  | 1.000E + 16                       | 0.00   | 59700        |
| $CH2(S)+C2H2 \rightleftharpoons C3H3+H$                                               | 3.000E + 13                       | 0.00   | 0            |
| $C4H2+O \rightleftharpoons C3H2+CO$                                                   | 1.200E + 12                       | 0.00   | 0            |
| $C2H2+O2 \rightleftharpoons HCCO+OH$                                                  | 2.000E + 08                       | 1.50   | 30100        |
| $C2H2+M \rightleftharpoons C2H+H+M$                                                   | 4.200E + 16                       | 0.00   | 107000       |
| $C2H4+M \rightleftharpoons C2H2+H2+M$                                                 | 1.500E + 15                       | 0.00   | 55800        |
| $C2H4+M \rightleftharpoons C2H3+H+M$                                                  | 1.400E + 16                       | 0.00   | 82360        |
| H2+O2≓2OH                                                                             | 1.700E + 13                       | 0.00   | 47780        |
| ОН+Н2≓Н2О+Н                                                                           | 1.170E + 09                       | 1.30   | 3626         |
| О+ОН≓О2+Н                                                                             | 4.000E+14                         | -0.50  | 0            |
| O+H2≓OH+H                                                                             | 5.060E + 04                       | 2.67   | 6290         |
| H+O2+M≓HO2+M                                                                          | 3.61E + 17                        | -0.72  | 0            |
| Enhanced Collision Efficiencies:                                                      | 4 CO2 42 H2 24 CO 21              | NO 1.0 |              |
| H2O=18.                                                                               | 0, CO2=4.2, H2=2.9, CO=2.1,       | N2=1.3 | ~            |
| $OH+HO2 \Longrightarrow H2O+O2$                                                       | 7.500E+12                         | 0.00   | 0            |
| HHO2 = 2OH                                                                            | 1.400E + 14                       | 0.00   | 1073         |
| O+HO2≓O2+OH                                                                           | 1.400E+13                         | 0.00   | 1073         |
| $20H \rightleftharpoons 0+H20$                                                        | 6.000E + 08                       | 1.30   | 0            |
| 2H+M≓H2+M                                                                             | 1.000E+18                         | -1.00  | 0            |
| Enhanced Collision Efficiencies:                                                      |                                   |        |              |
| $011 + 110 \rightarrow 0110$                                                          | $n_2 = 0.0, n_2 = 0.0, CO2 = 0.0$ | 0.00   | 0            |
| $2\Pi + \Pi 2 \rightleftharpoons 2\Pi 2$                                              | 9.200E+16                         | -0.60  | 0            |
| $2\Pi + \Pi 2 \cup = \Pi 2 + \Pi 2 \cup$                                              | 5.000E+19                         | -1.25  | 0            |
| $2H+CO2 \Longrightarrow H2+CO2$                                                       | 5.490E+20                         | -2.00  | 0            |
| H+OH+M≓H2O+M                                                                          | 1.600E + 22                       | -2.00  | 0            |
| Ennanced Collision Efficiencies:                                                      |                                   |        |              |
| $\mathbf{H} + \mathbf{O} + \mathbf{M} \rightarrow \mathbf{O} \mathbf{H} + \mathbf{M}$ | H2U=5.0                           | 0.00   | 0            |
| n+O+M≂On+M<br>Enhanced Cellisier Effect                                               | 0.200E+10                         | -0.60  | 0            |
| Ennanced Collision Efficiencies:                                                      |                                   |        |              |

| Reaction                                                                                                       | A (cm-moles-sec-K)                 | n     | E (cal/mole) |
|----------------------------------------------------------------------------------------------------------------|------------------------------------|-------|--------------|
|                                                                                                                | <b>H</b> 2 <b>O</b> _5 0           |       |              |
| $2O + M \rightarrow O2 + M$                                                                                    | $H_2O=5.0$                         | 0.00  | 1700         |
| $20+M \leftarrow 02+M$<br>H + HO2 $\rightarrow$ H2 + O2                                                        | $1.090E \pm 13$<br>$1.250E \pm 13$ | 0.00  | -1788        |
| $\Pi + \Pi O_2 \leftarrow \Pi_2 + O_2$                                                                         | $1.250E \pm 15$                    | 0.00  | 0            |
| $H_{2}O_{2} + M_{2}O_{2} + M_{3}O_{3}O_{4} + M_{3}O_{4}O_{4}O_{5}O_{4}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5$ | $2.000E \pm 12$<br>1 300E ± 17     | 0.00  | 45500        |
| $H_2O_2 + H_2O_1 + H_2$                                                                                        | $1.500E \pm 12$                    | 0.00  | 4000         |
| $H_2O_2 + H_{\leftarrow}HO_2 + H_{O_2}$                                                                        | $1.000E \pm 12$<br>$1.000E \pm 13$ | 0.00  | 1800         |
| $H_2O_2 + OH \leftarrow H_2O_2 + HO_2$<br>$CH + N_2 \rightarrow HCN + N$                                       | 1.000E + 13<br>3.000E + 11         | 0.00  | 13600        |
| $CN+N \rightarrow C+N2$                                                                                        | $1.040E \pm 15$                    | 0.00  | 13000        |
| $CH2+N2 \rightarrow HCN+NH$                                                                                    | 1.0401+13<br>1.000E+13             | -0.50 | 74000        |
| $H_2CN+N \Longrightarrow N_2+CH_2$                                                                             | 2.000E + 13                        | 0.00  | 00011        |
| $H2CN+M \cong HCN+H+M$                                                                                         | 3.000E+14                          | 0.00  | 22000        |
| $C+NO \Rightarrow CN+O$                                                                                        | 6.600E+13                          | 0.00  | 22000        |
| $CH+NO \Rightarrow HCN+O$                                                                                      | 1.100E+14                          | 0.00  | 0            |
| $CH2+NO \Rightarrow HCNO+H$                                                                                    | 1.390E+12                          | 0.00  | -1100        |
| $CH3+NO \Rightarrow HCN+H2O$                                                                                   | 1.000E + 12<br>1.000E+11           | 0.00  | 15000        |
| $CH3+NO \Longrightarrow H2CN+OH$                                                                               | 1.000E + 11                        | 0.00  | 15000        |
| $HCCO+NO \cong HCNO+CO$                                                                                        | 2.000E+13                          | 0.00  | 0            |
| $CH2(S)+NO \cong HCN+OH$                                                                                       | 2.000E+13                          | 0.00  | ů<br>0       |
| $HCNO+H \Rightarrow HCN+OH$                                                                                    | 1.000E + 14                        | 0.00  | 12000        |
| $CH2+N \cong HCN+H$                                                                                            | 5000E+13                           | 0.00  | 12000        |
| CH+N⇒CN+H                                                                                                      | 1.300E+13                          | 0.00  | ů<br>0       |
| $CO2+N \cong NO+CO$                                                                                            | $1.900\pm11$                       | 0.00  | 3400         |
| $HCCO+N \cong HCN+CO$                                                                                          | 5.000E+13                          | 0.00  | 0            |
| CH3+N⇒H2CN+H                                                                                                   | 3.000E+13                          | 0.00  | ů<br>0       |
| $C2H3+N \Longrightarrow HCN+CH2$                                                                               | 2.000E+13                          | 0.00  | ů<br>0       |
| $C3H3+N \cong HCN+C2H2$                                                                                        | 1.000E+13                          | 0.00  | ů<br>0       |
| HCN+OH≓CN+H2O                                                                                                  | 1.450E+13                          | 0.00  | 10929        |
| OH+HCN≓HOCN+H                                                                                                  | 5.850E+04                          | 2.40  | 12500        |
| OH+HCN≓HNCO+H                                                                                                  | 1.980E-03                          | 4.00  | 1000         |
| OH+HCN⇒NH2+CO                                                                                                  | 7.830E-04                          | 4.00  | 4000         |
| HOCN+H≓HNCO+H                                                                                                  | $1.000E{+}13$                      | 0.00  | 0            |
| HCN+O≓NCO+H                                                                                                    | 1.380E + 04                        | 2.64  | 4980         |
| HCN+O≓NH+CO                                                                                                    | $3.450 \text{E}{+03}$              | 2.64  | 4980         |
| HCN+O≓CN+OH                                                                                                    | $2.700 \text{E}{+}09$              | 1.58  | 26600        |
| $CN+H2 \rightleftharpoons HCN+H$                                                                               | $2.950 \mathrm{E}{+}05$            | 2.45  | 2237         |
| CN+O≓CO+N                                                                                                      | $1.800E{+}13$                      | 0.00  | 0            |
| CN+O2≓NCO+O                                                                                                    | $5.600 \mathrm{E}{+12}$            | 0.00  | 0            |
| $CN+OH \rightleftharpoons NCO+H$                                                                               | $6.000 \mathrm{E}{+13}$            | 0.00  | 0            |
| $CN+HCN \rightleftharpoons C2N2+H$                                                                             | 2.000E + 13                        | 0.00  | 0            |
| CN+NO2≓NCO+NO                                                                                                  | 3.000E + 13                        | 0.00  | 0            |
| $CN+N2O \cong NCO+N2$                                                                                          | 1.000E + 13                        | 0.00  | 0            |
| $C2N2+O \rightleftharpoons NCO+CN$                                                                             | 4.570E + 12                        | 0.00  | 8880         |
| $C2N2+OH \rightleftharpoons HOCN+CN$                                                                           | $1.860E{+}11$                      | 0.00  | 2900         |
| $HO2+NO \Longrightarrow NO2+OH$                                                                                | $2.110E{+}12$                      | 0.00  | -479         |
| $NO2+H \rightleftharpoons NO+OH$                                                                               | $3.500 \mathrm{E}{+14}$            | 0.00  | 1500         |
| $NO2+O \rightleftharpoons NO+O2$                                                                               | $1.000E{+}13$                      | 0.00  | 600          |
| $NO2+M \rightleftharpoons NO+O+M$                                                                              | $1.100 \text{E}{+16}$              | 0.00  | 66000        |
| $\rm NCO+H \rightleftharpoons \rm NH+CO$                                                                       | $5.000E{+}13$                      | 0.00  | 0            |
| $NCO+O \rightleftharpoons NO+CO$                                                                               | 2.000E + 13                        | 0.00  | 0            |
| $NCO+N \rightleftharpoons N2+CO$                                                                               | $2.000E{+}13$                      | 0.00  | 0            |
| $\rm NCO+OH \rightleftharpoons NO+CO+H$                                                                        | 1.000E + 13                        | 0.00  | 0            |
| $NCO+M \rightleftharpoons N+CO+M$                                                                              | $3.100E{+}16$                      | -0.50 | 48000        |
| NCO+NO≓N2O+CO                                                                                                  | 1.000E + 13                        | 0.00  | -390         |
| $\rm NCO+H2 \rightleftharpoons \rm HNCO+H$                                                                     | 8.580E + 12                        | 0.00  | 9000         |
| HNCO+H≓NH2+CO                                                                                                  | 2.000E + 13                        | 0.00  | 3000         |
| NH+O2≓NO+OH                                                                                                    | $7.600 \mathrm{E}{+10}$            | 0.00  | 1530         |

| Reaction                               | A (cm-moles-sec-K)            | n     | E (cal/mole) |
|----------------------------------------|-------------------------------|-------|--------------|
|                                        |                               |       |              |
| NH+NO≓N2O+H                            | 2.400E+15                     | -0.80 | 0            |
| N2O+OH⇒N2+HO2                          | 2.000E+12                     | 0.00  | 10000        |
| N2O+H≓N2+OH                            | 7.600E+13                     | 0.00  | 15200        |
| N2O+M≈N2+O+M                           | 1.600E + 14                   | 0.00  | 51600        |
| $N2O+O \rightleftharpoons N2+O2$       | 1.000E + 14                   | 0.00  | 28200        |
| N2O+O≓2NO                              | 1.000E+14                     | 0.00  | 28200        |
| NH+OH≓HNO+H                            | 2.000E+13                     | 0.00  | 0            |
| NH+OH≓N+H2O                            | 5.000E + 11                   | 0.50  | 2000         |
| NH+N≓N2+H                              | 3.000E+13                     | 0.00  | 0            |
| NH+H≓N+H2                              | 1.000E + 14                   | 0.00  | 0            |
| NH2+O≓HNO+H                            | 6.630E + 14                   | -0.50 | 0            |
| NH2+O≓NH+OH                            | 6.750E + 12                   | 0.00  | 0            |
| NH2+OH⇒NH+H2O                          | $4.000 \pm +06$               | 2.00  | 1000         |
| NH2+H≓NH+H2                            | 6.920E + 13                   | 0.00  | 3650         |
| NH2+NO≓NNH+OH                          | $6.400 \pm 15$                | -1.25 | 0            |
| NH2+NO≓N2+H2O                          | $6.200 \text{E}{+}15$         | -1.25 | 0            |
| $NNH+M \rightleftharpoons N2+H+M$      | 1.000E + 04                   | 0.00  | 0            |
| NNH+NO⇔N2+HNO                          | 5.000E + 13                   | 0.00  | 0            |
| $NNH+H \rightleftharpoons N2+H2$       | 1.000E + 14                   | 0.00  | 0            |
| NNH+OH≓N2+H2O                          | $5.000 \text{E}{+13}$         | 0.00  | 0            |
| $NNH+NH2 \rightleftharpoons N2+NH3$    | $5.000 \text{E}{+13}$         | 0.00  | 0            |
| $NNH+NH \rightleftharpoons N2+NH2$     | $5.000 \text{E}{+13}$         | 0.00  | 0            |
| $NNH+O \rightleftharpoons N2O+H$       | $1.000E{+}14$                 | 0.00  | 0            |
| HNO+M≓H+NO+M                           | $1.500 \text{E}{+16}$         | 0.00  | 48680        |
| Enhanced Collision Efficiencie         | s:                            |       |              |
| H                                      | 2O=10.0, O2=2.0, N2=2.0, H2=2 | .0    |              |
| HNO+OH≓NO+H2O                          | $3.600 \mathrm{E}{+13}$       | 0.00  | 0            |
| $HNO+H \rightleftharpoons H2+NO$       | $5.000E{+}12$                 | 0.00  | 0            |
| HNO+NH2≓NH3+NO                         | $2.000E{+}13$                 | 0.0   | 1000         |
| $N+NO \rightleftharpoons N2+O$         | $3.270E{+}12$                 | 0.30  | 0            |
| N+O2≓NO+O                              | $6.400 \text{E}{+}09$         | 1.00  | 6280         |
| $N+OH \rightleftharpoons NO+H$         | $3.800 \text{E}{+13}$         | 0.00  | 0            |
| $\rm NH+O \rightleftharpoons \rm NO+H$ | $2.000 \text{E}{+13}$         | 0.00  | 0            |
| $HNO+HNO \rightleftharpoons N2O+H2O$   | $3.950 \text{E}{+}12$         | 0.00  | 5000         |
| $HNO+NO \rightleftharpoons N2O+OH$     | $2.000 \text{E}{+}12$         | 0.00  | 26000        |
| $NH2+NH \rightleftharpoons N2H2+H$     | $5.000E{+}13$                 | 0.00  | 0            |
| $2NH \rightleftharpoons N2 + 2H$       | 2.540E + 13                   | 0.00  | 0            |
| $NH2+N \rightleftharpoons N2+2H$       | 7.200E + 13                   | 0.00  | 0            |
| $N2H2+M \rightleftharpoons NNH+H+M$    | 5.000E + 16                   | 0.00  | 50000        |
| Enhanced Collision Efficiencie         | s:                            |       |              |
| H                                      | 2O=15.0, O2=2.0, N2=2.0, H2=2 | .0    |              |
| $N2H2+H \rightleftharpoons NNH+H2$     | 5.000E + 13                   | 0.00  | 1000         |
| $N2H2+O \rightleftharpoons NH2+NO$     | $1.000E{+}13$                 | 0.00  | 0            |
| N2H2+O≓NNH+OH                          | 2.000E + 13                   | 0.00  | 1000         |
| $N2H2+OH \Longrightarrow NNH+H2O$      | 1.000E + 13                   | 0.00  | 1000         |
| $N2H2+NO \Longrightarrow N2O+NH2$      | $3.000 \text{E}{+12}$         | 0.00  | 0            |
| $N2H2+NH \rightleftharpoons NNH+NH2$   | $1.000E{+}13$                 | 0.00  | 1000         |
| N2H2+NH2≓NH3+NNH                       | 1.000E + 13                   | 0.00  | 1000         |
| $2NH2 \rightleftharpoons N2H2 + H2$    | $5.000 \mathrm{E}{+11}$       | 0.00  | 0            |
| $NH3+M \rightleftharpoons NH2+H+M$     | 1.778E + 16                   | 0.00  | 92100        |
| $NH3+O2 \rightleftharpoons NH2+HO2$    | 1.000E + 12                   | 0.00  | 61500        |
| $NH3+H \rightleftharpoons NH2+H2$      | $1.259E{+}14$                 | 0.00  | 22000        |
| NH3+O≓NH2+OH                           | $1.514E{+}12$                 | 0.00  | 6000         |
| NH3+OH⇒NH2+H2O                         | $2.512E{+}12$                 | 0.00  | 2000         |
| NH2+O2≓HNO+OH                          | 1.5849E + 13                  | 0.00  | 28600        |
| HNO+O2⇒NO+HO2                          | 3.1623E+12                    | 0.00  | 3000         |
| NH2+O2≓NH+HO2                          | 1.0000E + 14                  | 0.00  | 50000        |

| Reaction    | A (cm-moles-sec-K) | n    | E (cal/mole) |
|-------------|--------------------|------|--------------|
| NH+O2≓O+HNO | $1.0000E{+}14$     | 0.00 | 1000         |

E.5 Miller et al. (1983)

| Reaction                                                    | A (cm-moles-sec-K)                 | n     | E (cal/mole)  |
|-------------------------------------------------------------|------------------------------------|-------|---------------|
|                                                             | 1.400E + 1.6                       | 0.00  | 00600         |
| $MH3+M \rightarrow MH2+H+M$                                 | 1.400E + 10                        | 0.00  | 90000         |
| $NH2 + O \rightarrow NH2 + OH$                              | 2.400E + 13                        | 0.00  | 17071<br>6040 |
| $NH2 + OH \rightarrow NH2 + H2O$                            | 1.500E + 12<br>2.250E + 12         | 0.00  | 0040          |
| $NH_{0}+OH \rightarrow NH_{1}H_{0}$                         | 5.200E + 12                        | 0.00  | 2120          |
| $\frac{11+1112}{11+112}$                                    | 0.920E + 13                        | 0.00  | 2000          |
| $M12+O11 \leftarrow M1+112O$<br>$M12+O2 \rightarrow HNO+OH$ | 4.500E + 12                        | 0.00  | 2200          |
| $M12+02 \rightarrow HNO+011$                                | $4.500E \pm 12$<br>6 630E ± 14     | 0.00  | 25000         |
| $O + NH2 \rightarrow NH + OH$                               | 0.050E + 14<br>6 750E + 12         | -0.30 | 0             |
| $H + NH \rightarrow N + H2$                                 | $0.750E \pm 12$<br>3.000E $\pm 13$ | 0.00  | 0             |
| M + N + M + M = M                                           | $3.000 \pm 13$                     | 0.00  | 0             |
| $NH + O \rightarrow N + OH$                                 | 2.000E + 13                        | 0.00  | 100           |
| $NH_OH \rightarrow N_H H_O$                                 | 1.000E + 12<br>5 000E + 11         | 0.50  | 2000          |
| $NH + OH \rightarrow H + HNO$                               | $2.000E \pm 13$                    | 0.00  | 2000          |
| $HNO+M \Rightarrow H+NO+M$                                  | 1.500E + 16                        | 0.00  | 48680         |
| Enhanced Collision Efficiencies:                            | 1.5001   10                        | 0.00  | 40000         |
| Harden Comston Emelencies.                                  | -60 H2 $-20$ $02-20$ N2 $-20$      | )     |               |
| HNO+O⇒OH+NO                                                 | 1 000E+11                          | 0.00  | 0             |
| $HNO+OH \Rightarrow NO+H2O$                                 | 3.600E+13                          | 0.00  | 0             |
| $HNO+H \rightarrow H2+NO$                                   | 5.000E + 12                        | 0.00  | 0             |
| $NH+NO \Rightarrow N2O+H$                                   | 4.330E+14                          | -0.50 | 0             |
| $N_{20+0} \approx 2N_{0}$                                   | 1.000E + 14                        | 0.00  | 28200         |
| $N2O+O \Rightarrow N2+O2$                                   | 1.000E + 14                        | 0.00  | 28200         |
| $N2O+M \Longrightarrow N2+O+M$                              | 1.620E + 14                        | 0.00  | 51600         |
| $N2O+H \Rightarrow N2+OH$                                   | 7.600E+13                          | 0.00  | 15200         |
| $N2O+NH \Rightarrow N2+HNO$                                 | 1.000E + 11                        | 0.50  | 3000          |
| $N2H3+O \Rightarrow N2H2+OH$                                | 5.000E+12                          | 0.00  | 5000          |
| $N2H3+O \rightleftharpoons NH2+HNO$                         | 1.000E+13                          | 0.00  | 0             |
| $N2H3+OH \Rightarrow N2H2+H2O$                              | 1.000E+13                          | 0.00  | 1000          |
| $N2H3+H \Rightarrow NH2+NH2$                                | 1.600E + 12                        | 0.00  | 0             |
| $N2H3+M \rightleftharpoons N2H2+H+M$                        | 3.500E+16                          | 0.00  | 46000         |
| N2H3+NH≓NH2+N2H2                                            | 2.000E+13                          | 0.00  | 0             |
| N2H2+M≓NNH+H+M                                              | 5.000E + 16                        | 0.00  | 50000         |
| N2H2+O≓NNH+OH                                               | $2.000 \text{E}{+13}$              | 0.00  | 1000          |
| $N2H2+O \rightleftharpoons NO+NH2$                          | 1.000E+13                          | 0.00  | 0             |
| N2H2+NO⇒N2O+NH2                                             | $3.000 \mathrm{E}{+12}$            | 0.00  | 0             |
| NH+NH2≓N2H2+H                                               | 5.000E + 13                        | 0.00  | 0             |
| N2H2+OH≓NNH+H2O                                             | 1.000E + 13                        | 0.00  | 1000          |
| $N2H2+H \rightleftharpoons NNH+H2$                          | $5.000 \mathrm{E}{+13}$            | 0.00  | 1000          |
| N2H2+NH≓NNH+NH2                                             | 1.000E + 13                        | 0.00  | 1000          |
| N2H2+NH2≓NH3+NNH                                            | 1.000E + 13                        | 0.00  | 1000          |
| $NH2+NH2 \Longrightarrow N2H2+H2$                           | 5.000E + 11                        | 0.00  | 0             |
| $NH2+NH2+M \rightleftharpoons N2H4+M$                       | 3.000E + 20                        | -1.00 | 0             |
| Enhanced Collision Efficiencies:                            |                                    |       |               |
|                                                             | H2O=10.0, N2=2.0                   |       |               |
| $H+N2H4 \rightleftharpoons H2+N2H3$                         | 1.300E + 13                        | 0.00  | 2500          |
| $NH2+N2H4 \rightleftharpoons NH3+N2H3$                      | $3.900E{+}12$                      | 0.00  | 1500          |
| $O+N2H4$ $\rightleftharpoons$ $N2H2+H2O$                    | $8.500 E{+}13$                     | 0.00  | 1200          |
| $OH+N2H4 \rightleftharpoons N2H3+H2O$                       | 5.000E + 12                        | 0.00  | 1000          |
| N2H3+OH≓NH3+HNO                                             | $1.000 E{+}12$                     | 0.00  | 15000         |
| $\rm NH{+}\rm NH{\rightleftharpoons}\rm N2{+}\rm H{+}\rm H$ | $2.540 \text{E}{+}13$              | 0.00  | 0             |
| NH2+HNO≓NH3+NO                                              | $2.000E{+}13$                      | 0.00  | 1000          |
| $\rm NH+H+M \rightleftharpoons \rm NH2+M$                   | $2.000 \text{E}{+16}$              | -0.50 | 0             |
| NO+NH2≓HNO+NH                                               | $1.000E{+}13$                      | 0.00  | 40000         |
| $\rm NH2+NO \Longrightarrow NNH+OH$                         | $8.820 E{+}15$                     | -1.25 | 0             |
| $NH2+NO \Longrightarrow N2+H2O$                             | $3.780 \text{E}{+}15$              | -1.25 | 0             |
| NH2+NO≓HNNO+H                                               | $8.000 E{+}13$                     | 0.00  | 28000         |

| Reaction                                                      | A (cm-moles-sec-K)                      | n      | E (cal/mole) |
|---------------------------------------------------------------|-----------------------------------------|--------|--------------|
|                                                               | 0.000E - 10                             | 0.00   | 0            |
| $HNNO+H \rightleftharpoons N2O+H2$                            | 2.000E+13                               | 0.00   | 0            |
| $HNNO+O \rightleftharpoons OH \rightarrow N2O$                | 2.000E+13                               | 0.00   | 0            |
| $HNNO+OH \equiv N2O+H2O$                                      | 2.000E + 13                             | 0.00   | 10000        |
| NH+O2 = HNO+O                                                 | 1.000E + 13                             | 0.00   | 12000        |
| $NH+O2 \equiv NO+OH$                                          | 1.400E+11                               | 0.00   | 2000         |
| $HNO+HNO \equiv N2O+H2O$                                      | 3.950E + 12                             | 0.00   | 5000         |
| HNO+NO=N2O+OH                                                 | 2.000E + 12                             | 0.00   | 26000        |
| HNNO+NO = HNO+N2O                                             | 2.000E + 12                             | 0.00   | 0006         |
| $NNH + H \rightarrow N2 + H2$                                 | 3.000E + 13<br>2 700E + 12              | 0.00   | 2000         |
| $NNII+II \leftarrow N2+II2$<br>$NNII + O \rightarrow N2 + OU$ | $3.700E \pm 13$                         | 0.00   | 5000         |
| $NNH + OH \rightarrow N2 + H2O$                               | 1.000E + 13<br>2 000E + 12              | 0.00   | 5000         |
| $NNH + OH \rightarrow N2O + H$                                | 3.000E + 13                             | 0.00   | 2000         |
| $MMI+O \rightarrow N2 + HO2$                                  | 1.000E + 13<br>1 000E + 12              | 0.00   | 1000         |
| $NNH + NH2 \rightarrow N2 + NH2$                              | 1.000E + 12<br>1 000E + 13              | 0.00   | 10000        |
| $NH2 + NH2 \rightarrow NH2 + NH$                              | $1.000E \pm 13$<br>5 000E ± 12          | 0.00   | 10000        |
| $NH_+M \rightarrow N2_+H_+M$                                  | $3.000E \pm 12$<br>2 000E \pm 14        | 0.00   | 20000        |
| $NNH + \Omega \rightarrow N2 + H\Omega2$                      | $2.000E \pm 12$                         | 0.00   | 20000        |
| $NO \pm HO2 \longrightarrow HNO \pm O2$                       | $5.000E \pm 11$                         | 0.00   | 15000        |
| $H \rightarrow NO2 \rightarrow NO \rightarrow OH$             | 3500E + 14                              | 0.00   | 1500         |
| HO2+NO=NO2+OH                                                 | $2.500 \pm 14$<br>$2.110 \pm 12$        | 0.00   | _479         |
| $O+NO2 \Rightarrow NO+O2$                                     | 1.000E+12                               | 0.00   | 600          |
| $NO2+M \Rightarrow NO+O+M$                                    | $1.000 \pm 10$<br>1 100 \mathbf{E} + 16 | 0.00   | 66000        |
| $H_{2+\Omega} \cong 2 \cap H$                                 | 1.700E + 13                             | 0.00   | 47780        |
| $OH+H2 \Longrightarrow H2O+H$                                 | 1.170E + 09                             | 1.30   | 3626         |
| $H+O2 \Rightarrow OH+O$                                       | 5.130E+16                               | -0.816 | 16507        |
| $O+H2 \Rightarrow OH+H$                                       | 1.800E + 10                             | 1.00   | 8826         |
| $H + \Omega^2 + M \Longrightarrow H \Omega^2 + M$             | 2.100E + 18                             | -1.00  | 00           |
| Enhanced Collision Efficiencies:                              | 2.1001   10                             | 1.00   | 0            |
|                                                               | H2O=21.0. H2=3.3                        |        |              |
| $H+O2+N2 \Longrightarrow HO2+N2$                              | 6.700E+19                               | -1.42  | 0            |
| $H+O2+O2 \Longrightarrow HO2+O2$                              | 6.700E + 19                             | -1.42  | 0            |
| $OH+HO2 \rightleftharpoons H2O+O2$                            | 5.000E+13                               | 0.00   | 1000         |
| H+HO2⇒2OH                                                     | 2.500E+14                               | 0.00   | 1900         |
| O+HO2≓O2+OH                                                   | $4.800 \text{E}{+13}$                   | 0.00   | 1000         |
| $2OH \rightleftharpoons O+H2O$                                | 6.000E + 08                             | 1.30   | 0            |
| $H2+M \rightleftharpoons H+H+M$                               | 2.230E + 12                             | 0.50   | 92600        |
| Enhanced Collision Efficiencies:                              |                                         |        |              |
|                                                               | H2O=6.0, H=20.0, H2=3.0                 |        |              |
| $O2+M \rightleftharpoons 2O+M$                                | 1.850E + 11                             | 0.50   | 95560        |
| $H+OH+M \rightleftharpoons H2O+M$                             | 7.500E + 23                             | -2.60  | 0            |
| Enhanced Collision Efficiencies:                              |                                         |        |              |
|                                                               | H2O=19.0                                |        |              |
| $H+HO2 \rightleftharpoons H2+O2$                              | $2.500 \text{E}{+13}$                   | 0.00   | 700          |
| $HO2+HO2 \rightleftharpoons H2O2+O2$                          | 2.000E + 12                             | 0.00   | 0            |
| $H2O2+M \rightleftharpoons OH+OH+M$                           | $1.300E{+}17$                           | 0.00   | 45500        |
| $H2O2+H \rightleftharpoons HO2+H2$                            | 1.600E + 12                             | 0.00   | 3800         |
| $H2O2+OH \rightleftharpoons H2O+HO2$                          | 1.000E + 13                             | 0.00   | 18000        |
| O+N2≓NO+N                                                     | 1.840E + 14                             | 0.00   | 76250        |
| N+O2≓NO+O                                                     | $6.400 \text{E}{+}09$                   | 1.00   | 6280         |
| $H+NO \rightleftharpoons N+OH$                                | 2.220E + 14                             | 0.00   | 50500        |

# F Soot Foil Photographs

In the soot foil photographs in this Appendix, the detonation wave propagated from top to bottom.



Figure 60: Shot 276: Typical small sized cells



Figure 61: Shot 321: Typical medium sized cells



Figure 62: Shot 312: Typical large sized cells



Figure 63: Shot 297: Typical irregular cells

## G Pressure Traces

This appendix contains selected pressure traces corresponding to the tests listed in Appendix A. Only traces containing useful information are included, and detailed discussion of each trace is not provided. These data are intended for reference only, and interpretation of them should be made with caution.












































































































































































































