Detonation in Gases

Joseph E Shepherd

Aeronautics and Mechanical Engineering California Institute of Technology Pasadena, CA 91125 USA

> Combustion Symposium McGill University August 2008

Marcelin Berthelot

Paul Vielle

Ernest Mallard

Henry Le Chatelier

1881

2006

Marcelin Berthelot

Paul Vielle

Ernest Mallard

Henry Le Chatelier

C₃H₈+5O₂ 20 kPa

Marcelin Berthelot

Paul Vielle

Donald Chapman

Ehrile Jouguet

1889-1905

Donald Chapman

Ehrile Jouguet

$$\rho_1 w_1 = \rho_2 w_2$$

$$P_1 + \rho_1 w_1^2 = P_2 + \rho_2 w_2^2$$

$$h_1 + \frac{w_1^2}{2} = h_2 + \frac{w_2^2}{2}$$

Donald Chapman

Ehrile Jouguet

or

$$w_{2,CJ} = a_2(T_{CJ}, P_{CJ}, \mathbf{Y}_{CJ})$$

Sonic flow relative to wave

9

"ZND" 1940-43

$$\rho_1 w_1 = \rho w$$

$$P_1 + \rho_1 w_1^2 = P + \rho w^2$$

$$h_1 + \frac{w_1^2}{2} = h(\mathbf{Y}, P, \rho) + \frac{w^2}{2}$$

$$\frac{DY_i}{Dt} = \Omega_i(\mathbf{Y}, P, \rho)$$

thermicity

 $dP = \pm r c du + r c^2 s$

$$u\frac{dr}{dx} = \frac{-r\mathscr{S}}{1-M^2} \qquad u\frac{dY_i}{dx} = W_i$$

$$u\frac{du}{dx} = \frac{u\mathscr{S}}{1-M^2} \qquad \text{where } \mathscr{S} = \bigotimes_{i=1}^N \frac{W_i}{rc^2} \frac{\P P}{\P Y_i} \overset{\ddot{\Theta}}{\underset{i=1}{\overset{i}{\Rightarrow}} \frac{W_i}{rc^2} \frac{\P P}{\P Y_i} \overset{\ddot{\Theta}}{\underset{i=1}{\overset{i}{\Rightarrow}} \frac{W_i}{rc^2} \frac{\Psi P}{\P Y_i} \overset{\dot{\Theta}}{\underset{i=1}{\overset{i}{\Rightarrow}} \frac{W_i}{rc^2} \frac{\Psi P}{\P P} \overset{\dot{\Theta}}{\underset{i=1}{\overset{i}{\Rightarrow}} \frac{W_i}{rc^2} \frac{W$$

"ZND" 1940-43

G. I. Taylor

detonation

HO TEOPUS BEPHAS! BUT THEORI IS RIGHT!

10:9

0

Erpenbeck 1964, Lee and Stewart 1990, Short, Sharpe, Kasimov, Tumin, ...

2H2-O2-85%Ar P_o=20kPa C3H8-5O2-60%N2 $P_0=20kPa$

Strehlow 1967 2H2+O2+7Ar

Gamezo et al 1999 E/RT = 7.4 DY/Dt = $-A(1-y) \exp(-E/RT)$

Pintgen et al 2003 23

2H2+O2+17Ar, 20kPa cellsize: 48 mm ZND-calculated Induction-zone-length at CJ-state: 1.6 mm

Ñr

[OH]

Austin 2003

2H2+O2+17Ar

C2H4-3O2-10.5N2

2H₂+O₂+ 8 N₂

C3H8-5O2-9N2

H2+ N2O +3 N2

C3H8-5O2-9N2

Daimon & Matsuo 2008

q – Reduced Effective Activation Energy

t_i – Induction Time

t_e – Energy Release Pulse Width

34

(low E_a/RT_s)

H₂-O₂ Chemistry: Explosion Limits

Extended Second Limit H_2O_2 Enables Explosion

H₂-O₂ Chemistry: Two Pathways

- Peroxide Straight-Chain Pathway
 - $H + O_2 + M ! HO_2 + M$
 - $HO_2 + HO_2 ! H_2O_2 + O_2$
 - $H_2O_2 + M ! 2 OH + M R1$

(Rate Limiting Step)

- Chain-Branching Pathway
- $H + O_2 ! OH + O$ R2

(Rate Limiting Step)

 $O + H_2 ! OH + H$

 $OH + H_2 ! H_2O + H$

Initial Conditions

T = 300 K, P = 0.7 atm

Browne, Liang, Shepherd 2005 40

Detonation limits?

Cross-over Temperature Cannot Predict Limits

41

Ratio of Time Scales (T_i/T_e)

Hydrocarbon Oxidation

Many Pathways

Additional Pathways Can Bypass Competition Effect

NO CROSS-OVER TEMPERATURE

- CO Oxidation
- $CO + O_2 ! CO_2 + O$
- CO + OH ! CO₂ + H
- CO + HO₂ ! CO₂ + OH

CH₄ Oxidation

- $CH_4 + X ! CH_3 + XH$
- $CH_3O + M ! H_2CO + H + M$
- H₂CO + X ! HCO + XH
- HCO + M ! H + CO + M

Modeling Competing Radicals

Chemistry Dold & Kapila <i>CF</i> 91, Short & Quirk 97 <i>JFM</i> Shepherd <i>PAA</i> 86		
	(1) $R^{\overset{K_1}{\otimes}}B$	$H_2 + O_2 \otimes HO_2 + H$
pathway	(2) $R + B^{K_2} 2B$	$ \begin{array}{c} \stackrel{\textbf{i}}{l}H+O_2 & \text{o}H+O\\ \stackrel{\textbf{i}}{l}O+H_2 & \text{o}H+H\\ \stackrel{\textbf{i}}{l}OH+H_2 & \text{o}H_2O+H \end{array} $
	$(3) R+B+M^{K_3} \mathbb{C}+M$	$H + O_2 + M \ll HO_2 + M$
	(4) $C^{\overset{K_4}{\textcircled{B}}}2B$	$ \begin{array}{c} \mathbf{\hat{j}} \ HO_2 + HO_2 \ \textcircled{B} \ H_2O_2 + O_2 \\ \mathbf{\hat{j}} \ H_2O_2 + M \ \ll \ 2OH + M \end{array} $
	(5) $B+B+M^{K_5}$ Pr+2M	$H + OH + M \ll H_2O + M$

Psuedo species: R (H_2 , O_2), B (OH, H, O), C (HO_2 , H_2O_2), Pr(H_2O)

ZND Structures

48

Species "B" (OH, H, or O)

 $Y_{B}(OH)$

 Y_B (OH)

Case 1

Inaba & Matsuo

2001

Gamezo et.al 2000

Fluctuations in Shock Velocity

PDF – Velocity, Acceleration

• Mean velocity $\overline{U} = U_{CJ}$ for both cases

- Most likely velocity $U < U_{CJ}$ for both, lower for irregular mixture
- Regular mixture: 0.8 U_{CJ} ~1.35 U_{CJ}
- Irregular mixture: 0.7 U_{CJ} ~1.5 U_{CJ}

Fluctuations in Reaction Length

PDF – Reaction thickness

Influence of Unsteadiness

Eckett, Quick, Shepherd JFM 2000 56

Quenching $t_d < t_{d,c}$.

Coupling, $t_d > t_{d,c}$.

Eckett et al 1999

Joint PDF (D, U)

challenge for experimental measurements and computations

Propagation limit in small tubes

Quenching in porous tubes

Radulescu and Lee Comb Flame 2002

Formation of unburned "pockets"

Radelescu et al 2005, Radelescu, Law, Sharpe 2005

heat release fraction before sonic surface

from N. Peters (2000) Turbulent Combustion ₆₆

2H2-O2-5.6N2

Massa, Austin, Jackson 2007

Large range of spatial & temporal scales

Stoichiometric hydrogen-oxygen mixture at an initial pressure of 20 kPa

Circular tube

N. Tsuboi & A. K. Hayashi 2007

Needs

- Scientific studies of turbulence
 - Experiments with quantitative data on statistics of flow field
 - Statistical analysis of high-fidelity numerical simulations
- Engineering models of turbulent fronts
 - Subgrid scale models for quantitative prediction and analysis

Thank You!

- Past students and postdoctoral scholars, particularly
 - Joanna Austin
 - Florian Pintgen
 - Rita Liang
- Financial and Institutional support
 - California Institute of Technology
 - US DOE
 - US NRC
 - ONR
 - GE Global Research
 - Sandia, Los Alamos, and Lawrence Livermore National Laboratories

