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Disclaimer and Copyright The software tools described in this document are based on the Cantera
software library which was originally developed at Caltech. The software is offered under the following
licensing terms:

Copyright (c) 2001-2023, California Institute of Technology All rights reserved.

Redistribution and use of these programs in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

- Neither the name of the California Institute of Technology nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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Preface

These notes are a tutorial on the analysis and computation of shock and detonation waves in gases with
realistic thermochemistry. A library (SDToolbox) of Python and MATLAB routines is described for com-
putations of post-shock conditions and Chapman-Jouguet detonation velocity. Notes and demonstration
programs are provided for using this library to compute examples of normal and oblique shocks and det-
onations, shock and detonation tube operations, expansion waves, nozzle flows, ideal detonation and wave
structure, propulsion systems and selected wave interaction problems.

The toolbox modules, demonstration scripts and instructions for installation are available on the SD-
Toolbox website. In order to use these scripts, the reader must install the Cantera software and Python or
MATLAB. This revision of the document links to programs that are compatible with with the most recent
release of Cantera, V2.5; MATLAB, R2020; and Python 3.8. The programs were tested on earlier versions
(2.3 and 2.4) of Cantera, MATLAB (2017,2018 and Python (3.5,3.6). The documentation and software for
Cantera Goodwin et al. (2017) is open source and available at www.cantera.org.

1
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Chapter 1

Introduction

These notes are a tutorial on the analysis and computation of shock and
detonation waves with selected applications to explosion and propulsion.
Numerical solution methods are necessary for solving the conservation equa-
tions or jump conditions that determine the properties of shock and detona-
tion waves in a multi-component, reacting gas mixture. Only the idealized
situations of perfect (constant heat-capacity) gases with fixed chemical en-
ergy release can be treated analytically (Appendix A). Although widely used
for simple estimates and mathematical analysis, the results of perfect gas
models are not suitable for analysis of laboratory experiments and carrying
out numerical simulations based on realistic thermochemical properties.

The science of shock and detonation waves began in the 19th century and continues to be an ongoing
activity. Technological applications such as chemical propulsion (rockets, gas turbines and gaseous detonation
concepts) and high explosives motivated the development of numerical solution methods and software for
modeling chemical equilibrium in multi-species and multi-phase mixtures. These efforts began in the 1950s
and some of these software packages are still in use today, however there are issues with using the older
software including limited availability due to national security or proprietary concerns, lack of support
for legacy software, and challenges of integration into modern software environments. In response to this
situation, we have developed a library of software tools, the Shock and Detonation Toolbox, that we
are making openly available for academic research. The Toolbox and associated demonstration programs
are based on the Cantera software library to evaluate gas thermodynamic and transport properties, chemical
reaction rates and carry out chemical equilibrium computations.

This document is divided into four parts. These parts describe the underlying scientific principles, the
functionality of the Toolbox, numerical methods, applications to a variety of combustion problems with links
to the programs, graphical and tabular results of program outputs.

In Part I, the fundamentals of thermodynamics, the ideal gas mixture formalism, and the concepts
underlying chemical equilibrium are presented. In Part II of the report, we describe the algorithms used in the
toolbox for the numerical solution of shock and detonation jump conditions in ideal gas mixtures with realistic
thermochemical properties. An iterative technique based on a two-variable Newton’s method is selected as
being the most robust method for both reactive and nonreactive flows. A library of routines is described for
Python and MATLAB computations of post-shock conditions and Chapman-Jouguet detonation velocity.
Notes and demonstration programs are provided to illustrate how to use these routines to solve a range of
problems. In addition to numerical methods for realistic thermochemistry, perfect gas analytical solutions
are also provided.

In Part III of the report, we describe steady flows and some simple unsteady flows which not in equilibrium
or frozen and chemical reaction must be considered. The steady flows treated are the reaction zones behind
shock and detonation waves moving at constant speed, the reaction zone along the stagnation streamline in
supersonic blunt body flows, flow through a converging-diverging nozzle and quasi-one dimensional flows with
friction and heat transfer modeled as wall functions. The unsteady flows modeled include reaction occurring

3
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under constant temperature, pressure and volume conditions or with prescribed volume or pressure time
dependence.

In Part IV, the software components of the Toolbox and the application programs are described.

1.1 Overview and Quickstart

This overview describes situations that are commonly encountered and links to the associated toolbox rou-
tines and demonstration programs. For more details on the input and output parameters for these routines,
see Chapter 12. For a listing and links to demonstration programs that illustrate various applications of the
toolbox, see Chapter 13. In order to use these scripts, the reader must first install the Cantera software and
have previously installed Python or MATLAB. The toolbox modules, demonstration scripts and instructions
for installation are available on the SDToolbox website.

1. Non-reactive shock wave. If the chemical reactions occur sufficiently slowly compared to translational,
rotational, and vibrational equilibrium,1 then a short distance behind a shock wave flow can be consid-
ered to be in thermal equilibrium but chemical nonequilibrium. This is often referred to as a “frozen
shock” since the chemical composition is considered to be fixed through the shock wave. Computations
of post-shock conditions are used as initial conditions for the subsequent reaction zone and are there-
fore a necessary part of computing shock or detonation structure. Usually, these computations proceed
from specified upstream conditions and shock speed; the aim of the computation is to determine the
downstream thermodynamic state and fluid velocity. On occasion, we consider the inverse problem of
starting from a specified downstream state and computing the upstream state.
Function PostShock fr: Demos - MATLAB: demo PSfr.m Python: demo PSfr.py

2. Reactive shock wave. The region sufficiently far downstream from the shock wave is considered in
thermodynamic equilibrium. Thermodynamics can be used to determine the chemical composition,
but this is coupled to the conservation equation solutions since the entropy and enthalpy of each species
is a function of temperature. As a consequence, the solution of the conservation equations and chemical
equilibrium must be self-consistent, requiring an iterative solution for the general case. In the case
of endothermic reactions (i.e., dissociation of air behind the bow shock on re-entry vehicle), there are
no limits on the specified shock velocity and the computation of the downstream state for specified
upstream conditions is straightforward. For exothermic reactions, solutions are possible only for a
range of wave speeds separated by a forbidden region. The admissible solutions are detonation (high
velocity, i.e., supersonic) and deflagration (low velocity, i.e., subsonic) waves, and there are usually two
solutions possible for each case.
Function PostShock eq: Demos - MATLAB: demo PSeq.m Python: demo PSeq.py

3. Chapman-Jouguet (CJ) detonation. This is the limiting case of the minimum wave speed for the su-
personic solutions to the jump conditions with exothermic reactions. The Chapman-Jouguet solution
is often used to approximate the properties of an ideal steady detonation wave. In particular, detona-
tion waves are often observed to propagate at speeds within 5-10% of their theoretical CJ speeds in
experimental situations where the waves are far from failure.
Function CJSpeed: Demos - MATLAB: demo CJ.m Python: demo CJ.py

4. Reflected shock wave. When a detonation or shock wave is incident on a hard surface, the flow behind
the incident wave is suddenly stopped, creating a reflected shock wave that propagates in the opposite
direction of the original wave. If we approximate the reflecting surface as rigid, then we can compute
the speed of the reflected shock wave given the incident shock strength. This computation is frequently
carried out in connection with estimating structural loads from shock or detonation waves.
Function reflected eq and reflected fr:
Demos - MATLAB: demo reflected eq.m and demo reflected fr.m
Python: demo reflected eq.py and demo reflected fr.py

1The structure of shock waves with vibration non-equilibrium is discussed at length by Clarke and McChesney (1964) and
Vincenti and Kruger (1965)

http://shepherd.caltech.edu/EDL/PublicResources/sdt
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSfr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSfr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSeq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSeq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_fr.py
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5. ZND Model Detonation Structure Computation. The idealized reaction zone behind a steady shock
or detonation wave is one-dimensional reactive flow. The model equations and properties were first
explored by Zel’dovich (1940), von Neumann (1942), and Doering (1943). The solution method used
in the toolbox is to convert the differential-algebraic equations representing the conservation of mass,
momentum, energy and species evolution to a fully differential system of ODE and integrate these with
a method suitable for stiff equations.
Function ZND:
Demos - MATLAB: demo ZNDCJ.m, demo ZNDshk.m and demo ZND CJ cell.m
Python: demo ZNDCJ.py, demo ZNDshk.py and demo ZND CJ cell.py

6. CV Model Explosion Structure Computation. The time-evolution of a mass of fluid reacting at constant
volume is frequently used as a surrogate for the reaction process behind incident and reflected shock
waves, as well as detonations. The model equations are based on the first law of thermodynamics for
an adiabatic, constant-volume system. The ordinary differential equations for energy conservation and
species evolution are integrated with a stiff ODE solver.
Function CV:
Demos - MATLAB: demo cv.m, demo cv comp.m, demo cvCJ.m, demo cvshk.m
Python: demo cvCJ.py, demo cvshk.py

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND_CJ_cell.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZND_CJ_cell.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv_comp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvshk.py
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Part I

Thermodynamics
Shock waves and detonation computations for reacting gases are based on the fundamental concepts of

combining pure species properties to obtain mixture properties and the methods of chemical equilibrium to
compute composition. This part of the notes presents the essential background and a brief introduction to
chemical equilibrium computations.

7
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Chapter 2

Fundamentals

Thermodynamics is fundamental to all the computations and analysis in
this version of the SDT. The principles can be found in many textbooks,
for example, Kondepudi and Prigogine (1998). Classical references with a
emphasis on chemical reactions and chemical equilibrium include Denbigh
(1981) and Smith and Missen (1991). This chapter focuses on the definitions
and relationships between properties that are essential in the reacting flows
of gases.

2.1 General Principles

A fluid substance such as a gas can be subdivided into elements or volumes that are transported and deformed
during motion but retain their identity as a fixed quantity of material if we neglect diffusive transport. The
elements can be considered as thermodynamic systems with an internal energy E, temperature T , pressure
P , and volume V . The internal energy1 changes dE of the element are determined by the First Law of
Thermodynamics

dE = dQ+ dW (2.1)

and the energy added in the form of heat dQ, and the mechanical work dW . For reversible changes, we can
define an entropy function S related to the heat interaction

dS =
dQ

T
(2.2)

and the work interaction can be defined in terms of pressure and volume changes

dW = −PdV (2.3)

The evolution of an isolated (no heat or work interactions, fixed quantity of material) system is determined
by the Second Law of Thermodynamics

dS ≥ 0 (2.4)

If the element is made up of K distinct molecular species each in amounts N1, N2, . . . , NK that can react
with each other, the internal energy can be written as

E = E(S, V,N1, N2, . . . , NK) (2.5)

and the changes in energy for a fixed mass of reacting material can be computed as

dE = TdS − PdV +

K∑
i=1

µidNi (2.6)

1The internal energy is the thermodynamic contribution to the total energy of a moving parcel of fluid and is usually denoted
with the symbol U . Because we often use U for velocity in fluid mechanics, we use the symbol E instead. Equation (2.1) only
applies in the frame of reference of the moving fluid and in the absence of any external forces. In general, the left-hand side
should be the total energy of the system, U + kinetic energy + potential energy + . . .

9
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where µi is the chemical potential of the ith species. This equation and the analogs discussed below are
often referred to as the Fundamental Relations of Thermodynamics.

This relationship can be used to define an equation of state

E = E(S, V,N) (2.7)

treating S, V and N = N1, N2, . . . , NK as the natural independent variables. The quantities temperature,
pressure and chemical potential are then defined by the partial derivatives of E as follows:

T =

(
∂E

∂S

)
V,N

P = −
(
∂E

∂V

)
S,N

µi =

(
∂E

∂Ni

)
S,V,Nj ̸=i

. (2.8)

Away from phase boundaries, the function E is continuous and has continuous first and second derivatives.
The continuity of mixed second partials

∂2E

∂V ∂S
=

∂2E

∂S∂V
(2.9)

leads to a thermodynamic identity (
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

(2.10)

which is one of four Maxwell relations that are often needed to transform thermodynamic expressions.

Extensive and Intensive Properties

The properties E, S, V , and N are extensive properties; for a given thermodynamic state, the magnitude
of each property is linearly proportional to the amount of substance as measured by total mass M . The
properties T , P and µi are intensive properties which are independent of the amount of substance.

An important consequence of the extensive nature of all properties in (2.7) is that if we increase the size
of the system by a factor α, all properties increase in direct proportion.

αE(S, V,N) = E(αS, αV, αN) . (2.11)

Differentiating this equation with respect to α and setting α = 1, we obtain

E =

(
∂E

∂S

)
V,N

S +

(
∂E

∂V

)
S,N

V +

K∑
i=1

(
∂E

∂Ni

)
S,V,Nj ̸=i

Ni . (2.12)

Using (2.8) to replace each of the partial derivatives with the associated thermodynamic property, we obtain

E = TS − PV +

K∑
i=1

µiNi (2.13)

For fluid dynamics applications it is more convenient to work with mass specific quantities as the volume
of a fluid element is a fictional notion which does not have a definitive value. These are

e = E/M s = S/M v = V/M ni = Ni/M (2.14)

whereM is mass of substance. The equation of state terms of these variables is e(s, v,n) and the fundamental
relationship for a unit mass of substance in terms of specific properties is

de = Tds− Pdv +

K∑
i=1

µidni (2.15)

and energy can be defined as

e = Ts− Pv +

K∑
i=1

µini . (2.16)
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Thermodynamic Potentials

Internal energy E(S, V,N) is an example of a thermodynamic potential. We can use Legendre transformations
to transform the independent variables and create alternative versions of these potentials. The fundamental
idea for a generic function F of two variables (x, y) is that to transform to a new function C(x, z) where

z =

(
∂B

∂y

)
x

(2.17)

we define C as follows

C(x, z) = B(x, y)− y

(
∂B

∂y

)
x

. (2.18)

Applying this idea sucessively to the energy function, we can define three new functions.

enthalpy H ≡ E + PV = TS +

K∑
i=1

µiNi (2.19)

Helmholtz A ≡ E − TS = −PV +

K∑
i=1

µiNi (2.20)

Gibbs G ≡ E − TS + PV =

K∑
i=1

µiNi (2.21)

Each of these potentials has an associated differential form and a Maxwell relation as summarized in Table 2.1.

Table 2.1: Thermodynamic potentials and associated relationships.

energy:

E(S, V,N) = TS − PV +

K∑
i=1

µiNi dE = TdS − PdV +

K∑
i=1

µidNi

(
∂T

∂V

)
S,N

= −
(
∂P

∂S

)
V,N

(2.22)

enthalpy:

H(S, P,N) = TS +

K∑
i=1

µiNi dh = TdS + V dP +

K∑
i=1

µidNi

(
∂T

∂P

)
S,N

=

(
∂V

∂S

)
p,N

(2.23)

Helmholtz:

A(T, V,N) = −PV +

K∑
i=1

µiNi dA = −SdT − PdV +

K∑
i=1

µidNi

(
∂S

∂V

)
T,N

=

(
∂P

∂T

)
V,N

(2.24)

Gibbs:

G(T, P,N) =

K∑
i=1

µidNi dG = −SdT + V dP +

K∑
i=1

µidNi

(
∂S

∂P

)
T,N

= −
(
∂V

∂T

)
P,N

(2.25)

Provide an example of how to use Cantera to evaluate the potentials.
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Partial Molar Properties

For the thermodynamic treatment of mixtures, we need to consider how the properties depending on the
amount of each species making up the substance.

For any property B, define the partial molar property as

Bi ≡
∂B

∂Ni

∣∣∣∣
T,P,Nk ̸=i

(2.26)

The significance of this to computing mixture properties is due to Euler’s theorem for homogeneous functions,
which states that for a function F (N1, N2, . . . , Nk) which is homogeneous

F (αN1, αN2, . . . , αNk) = αF (N1, N2, . . . , Nk) (2.27)

then we can always write F as

F (N1, N2, . . . , Nk) =

k∑
i=1

Ni

(
∂F

∂Ni

)
Nk ̸=i

(2.28)

This is a generalization of the idea used previously in discussing extensive properties and can be demonstrated
by differentiating (2.27) with respect to α and set α = 1 to obtain (2.28).

Thermodynamic potentials as well as S and V are all extensive properties and therefore satisfy the
conditions of (2.27) and can be written in the form of (2.28).

S =

k∑
i=1

NiSi Si =

(
∂S

∂Ni

)
T,P,Nj ̸=i

(2.29)

V =

k∑
i=1

NiV i V i =

(
∂V

∂Ni

)
T,P,Nj ̸=i

(2.30)

E =

k∑
i=1

NiEi Ei =

(
∂E

∂Ni

)
T,P,Nj ̸=i

(2.31)

H =

k∑
i=1

NiHi Hi =

(
∂H

∂Ni

)
T,P,Nj ̸=i

(2.32)

A =

k∑
i=1

NiAi Ai =

(
∂A

∂Ni

)
T,P,Nj ̸=i

(2.33)

G =

k∑
i=1

NiGi Gi =

(
∂G

∂Ni

)
T,P,Nj ̸=i

(2.34)

Partial molar properties play a particulary important role in the theory of solutions and multicomponent
equilibria (Van Ness and Abbott, 1982, Smith et al., 1996). The definition of partial molar properties is
motivated by the importance of the partial molar Gibbs energy to the computation of equilibrium at constant
temperature and pressure.

Gi =

(
∂G

∂Ni

)
T,P,Nj ̸=i

(2.35)

The fundamental relation for Gibbs energy (2.25) identifies the partial molar Gibbs energy to be the chemical
potential

Gi = µi(T, P,N) . (2.36)
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From the definition of the thermodynamic potentials and the corresponding fundamental relations we can
also define the chemical potential as

µi =

(
∂A

∂Ni

)
T,V,Nj ̸=i

=

(
∂H

∂Ni

)
S,P,Nj ̸=i

=

(
∂E

∂Ni

)
S,V,Nj ̸=i

. (2.37)

Using the definition of G from (2.25), we obtain the Gibbs-Duhem relation

K∑
i=1

Nidµi = −SdT + V dP (2.38)

Using the equality of mixed second partials we can compute the derivatives of Gi with respect to temperature
and pressure to obtain(

∂Gi

∂T

)
P,N

= −
(

∂S

∂Ni

)
T,P,Nj ̸=i

= −Si (2.39)(
∂Gi

∂P

)
T,N

=

(
∂V

∂Ni

)
T,P,Nj ̸=i

= V i (2.40)

which enables the determination of dependence of Gi on (T, P ) at fixed composition

dGi = −SidT + V idP for fixed N. (2.41)

The value of these relationships is that for fluids, the thermodynamic properties that can be determined
most readily from experiments or theoretical considerations is a form of a P (V, T,N) relationship. Analytical
formulas fit to empirical data can be differentiated to obtain the partial molar properties and used to compute
departures of the thermodynamic potentials from reference values. This is the strategy that is used to model
chemical reactions in gases or fluids that have such significant molecular interactions that the ideal gas model
is inappropriate (Melius et al., 1991, Schmitt and Butler, 1995a,b).

Provide an example of how to use Cantera to evaluate partial molar properties using the Redlich-Kwong
equation.

2.2 Ideal Gas

An ideal gas is a model of a gas in which the molecules2 have negligible interactions aside from very brief
collisions that serve to equilibrate the distribution of energy among the molecules and atoms. This is a
useful approximation for real gases over a wide range of temperature and pressure; applying both to pure
substances (a gas composed of a single species) and to homogeneous mixtures of multiple species. Collisions
result in a common temperature for all species but otherwise there is no influence of one species on another.
The size of the molecules or atoms is also small in comparison to the average distance between the molecules,
so that the volume that the molecules occupy is negligible compared to the total volume occupied by the
gas.

The mathematical basis of ideal gases can be expressed in terms of the following ideas which are often pre-
sented as physical laws or theorems. Although these are reliable guides to gas behavior under the conditions
described in the previous paragraph, these ideas are not universal truths like the laws of thermodynamics.

1. Ideal Gas Law A quantity of N kmols of gas at pressure P and temperature T in volume V obeys
the following relationship

PV = NRT , (2.42)

where R is the universal gas constant, 8314.5 J·kmol−1·K−1. R = kBNA where kB is the Boltzmann
constant (1.381×10−23 J·K−1) and NA is Avogadro’s number (6.022×1026 molecules·kmol−1).

2We use the term molecules in this section but in general this can also include atoms, ions or even electrons as well as
multi-atom molecules.
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2. Dalton Law of Partial Pressures The total pressure P in a gas is the sum of the individual partial
pressures Pi of each of the i components

P =

K∑
i=1

Pi , (2.43)

and each component individually obeys the ideal gas law

PiV = NiRT . (2.44)

3. Gibbs’s Theorem “A partial molar property (other than volume) of a constituent species in an ideal-
gas mixture is equal to the corresponding molar property of the species as pure ideal gas at the mixture
temperature but at a pressure equal to its partial pressure in the mixture. ” (see Smith et al., 1996,
p. 330)

B
i.g.

i = Bi(T, Pi) (2.45)

Where B is any thermodynamic property (other than volume) and Bi is the specific molar property of
an ideal gas component i. For example, the specific thermodynamic potentials of a species i will have
units J·kmol−1.

Single Component Properties

This subsection needs to have some examples added of how to evaluate these quantities using Cantera.

According to Gibbs’s Theorem the molar properties of a single component determines the partial molar
properties of that component in an ideal gas mixture. In this section we begin by considering a gas composed
of a single component and then subsequently extend the treatment to a mixture of ideal gases using Gibb’s
Theorem.

Internal energy

The Ideal Gas Law has significant implications for the dependence of molar internal energy E on the ther-
modynamic state. Consider E(V, T ) and use (2.10) and (2.6) to compute the dependence of E on volume(

∂E

∂V

)
T

= T

(
∂P

∂T

)
V

− P . (2.46)

Upon substituting (2.42) for the P (V, T ) relationship, the right-hand side is found to be identically zero, so
we conclude that (

∂E

∂V

)
T

= 0 for an ideal gas. (2.47)

Unlike real gases and liquids, the internal energy of an ideal gas does not depend on either pressure or volume
but only temperature and the amount of substance. For pure substances, the dependence on the amount
of substance can be eliminated for extensive properties by dividing by the amount of substance to define
specific properties. In analogy to the definition of partial molar properties, the molar specific properties are
defined by the overline notation, e.g., the molar specific internal energy is

E =
E

N
. (2.48)

and

E = E(T ) only. (2.49)
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Enthalpy

The specific enthalpy is also only a function of temperature since by definition

H ≡ E + PV (2.50)

and using the Ideal Gas Law

H = E +NRT , (2.51)

we conclude

H = H(T ) . (2.52)

The specific enthalpy of an ideal gas does not depend on either pressure or volume but only temperature.

Heat Capacity

The specific heat capacity at constant volume is defined as

CV =

(
∂E

∂T

)
V

, (2.53)

and from the previous considerations about energy, is a function of temperature only

CV = CV (T ) . (2.54)

The specific heat capacity at constant pressure is defined as

CP =

(
∂H

∂T

)
P

, (2.55)

and from the previous considerations about enthalpy, is a function of temperature only

CP = CP (T ) . (2.56)

The relationship between energy and enthalpy implies that these two heat capacities differ by the universal
gas constant

CP = CV +R . (2.57)

The heat capacities can be integrated to give an alternate expression for internal energy and enthalpy

E = E
◦
+

∫ T

T◦
CV (T

′) dT ′ , (2.58)

H = H
◦
+

∫ T

T◦
CP (T

′) dT ′ . (2.59)

These expressions are employed to compute the realistic thermodynamic properties using specific heat capaci-
ties determined from statistical mechanics and thermochemical measurements to find the reference properties
E

◦
= E(T ◦) and H

◦
= H(T ◦). Only one of the reference properties needs to be specified, usually H◦, as

they are related by

E
◦
= H

◦ −RT ◦ . (2.60)
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Entropy

The molar entropy of an ideal gas component can be computed from the fundamental relation for energy

dE = T dS − P dV (2.61)

from the definition of specific heat capacity and the Ideal Gas Law

CV dT = TdS − RT
V

dV , (2.62)

which we can rearrange to obtain

dS = CV (T )
dT

T
+R dV

V
. (2.63)

Integrating both sides of this equation

S = S
◦
+

∫ T

T◦
CV (T

′)
dT ′

T ′ +R ln(V /V
◦
) , (2.64)

where (T ◦, V
◦
) are reference states and S

◦
= S(T ◦, V

◦
) is the entropy evaluated at the reference state.

Alternatively, we can start from the fundamental relation for enthalpy and definition of specific heat at
constant pressure to obtain the equivalent expression

S = S
◦
+

∫ T

T◦
CP (T

′)
dT ′

T ′ −R ln(P/P ◦) . (2.65)

We can separate the temperature and pressure dependence and defining the terms with temperature depen-
dence as S

◦
(T ) we obtain

S = S
◦
(T )−R ln(P/P ◦) , (2.66)

where

S
◦
(T ) = S

◦
+

∫ T

T◦
CP (T

′)
dT ′

T ′ . (2.67)

The constant S
◦
has to be determined from thermodynamic and statistical mechanical considerations.

Helmholtz energy

The Helmholtz energy A can be computed from the energy and entropy

A = E − TS , (2.68)

and the specific molar value is given by

A(T, P ) = E(T )− TS
◦
(T ) +RT ln(P/P ◦) (2.69)

Gibbs Energy and Chemical Potential

The Gibbs energy can be computed from enthalpy and entropy

G = H − TS . (2.70)
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Substituting the expressions for specific enthalpy and entropy, we obtain

G = H
◦
+

∫ T

T◦
CP (T

′)− T

(
S
◦
+

∫ T

T◦
CP (T

′)
dT ′

T ′

)
︸ ︷︷ ︸

temperature dependence

+ RT ln(P/P ◦)︸ ︷︷ ︸
pressure dependence

. (2.71)

We can separate the temperature and pressure dependence and defining the terms with temperature depen-
dence as G

◦
(T ) we obtain

G = G
◦
(T ) +RT ln(P/P ◦) , (2.72)

where the temperature dependence is all contained in

G
◦
(T ) = H(T )− TS

◦
(T ) . (2.73)

The chemical potential of an ideal gas is the molar Gibbs energy G

µ(T, P ) ≡ G(T, P ) , (2.74)

µ = µ◦(T ) +RT ln(P/P ◦) , (2.75)

where µ◦(T ) = G
◦
(T ) and it is common to simplify this relationship by measuring P in units of P ◦

µ(T, P ) = µ◦(T ) +RT lnP . (2.76)

This relationship is fundamental to the computation of chemical equilibrium in gases and through the
principle of detailed balance, is used in computing consistent forward and reverse reaction rates.

Provide examples of evaluating the properties of individual species using Cantera.

Ideal Gas Mixtures

The composition of a mixture has so far been specified by the amounts of each species i = 1, 2, . . . K.
These amounts can be specified as masses Mi of each species or moles Ni of each species. An alternative,
non-dimensional method to specify composition is by mole or mass fraction. The mole fraction Xi = Ni/N
where N is the total number of moles of gas

N =

K∑
i=1

Ni . (2.77)

The mass fraction Yi = Mi/M where M is the total mass of gas

M =

K∑
i=1

Mi , (2.78)

where Mi = WiNi where Wi is the molar mass of species i. The partial pressures can be expressed in terms
of total pressure and mole fractions.

Pi = XiP . (2.79)

The average molar mass of a mixture is

W =
M

N
=

K∑
i=1

XiWi . (2.80)
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The gas constant for a mixture can be written as

R =
R
W

. (2.81)

The ideal gas law can then be written in terms of the average mass density.

ρ =
M

V
P = ρRT . (2.82)

Note that the average molar mass can also be written as

1

W
=

K∑
i=1

Yi

Wi
, (2.83)

and the mole (Xi) and mass (Yi) fractions are related by

Xi =
W
Wi

Yi . (2.84)

When considering a unit mass or mol of material, it is most convenient to define the thermodynamic state
of a mixture by two thermodynamic properties, e.g. (T, P ), and the gas composition, which can be either
the array of mass fractions Y = (Y1, Y2, . . . , Yk) or mole fractions X = (X1, X2, . . . , Xk).

Partial Molar Properties

From the properties of the single component ideal gas and Gibbs’s Theorem, we can define the partial molar
properties of each component i in a mixture in terms of the thermochemical constants H

◦
i and S

◦
i for each

species and the molar specific heat capacity CP,i. Representation of these three quantities for each species
is the basis for realistic computations of thermochemistry and is discussed at length in Sections 3.3 and 5.
When referring to the specific properties of the individual species in a mixture, it is conventional to drop
the overline notation to simplify the presentation as follows:

Ei =Ei(T ) = E◦
i +

∫ T

T◦
CV,i(T

′)dT ′ . (2.85)

Hi =Hi(T ) = H◦
i +

∫ T

T◦
CP,i(T

′)dT ′ , (2.86)

where individual species specific heat capacities are related by

CP,i =CP,i = CV,i +R . (2.87)

The enthalpy and energy reference values are related by

H◦
i = E◦

i +RT ◦ . (2.88)

The specific molar entropy is

Si =Si(T, Pi) = S◦
i (T )−R ln(Pi/P

◦) , (2.89)

S◦
i (T ) = S◦

i +

∫ T

T◦
CP,i(T

′)
dT ′

T ′ . (2.90)

S◦
i =Si(T

◦, P ◦) (2.91)

The specifc molar Helmholtz energy is

Ai =Ai(T, Pi) = A◦
i (T ) +RT ln(Pi/P

◦) , (2.92)

A◦
i (T ) = E◦

i − TS◦
i (T ) , (2.93)
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The specific molar Gibbs energy is

Gi =Gi(T, Pi) = µi(T, P ) = µ◦
i (T ) +RT ln(Pi/P

◦) , (2.94)

µ◦
i (T ) = Hi(T )− TS◦

i (T ) . (2.95)

The partial molar volumes of an ideal gas are all identical and from the Ideal Gas Law can be computed to
be

V i =
RT
P

=
V

N
= V (2.96)

The specific properties of a species can also be expressed on a mass basis using the molar mass Wi for
that species. Mass specific properties are used in formulating the equations of motion and are indicated by
lower case letters and related to the molar specific properties as follows:

ei =
Ei

Wi
, cv,i =

CV,i

Wi
, si =

Si

Wi
, . . . (2.97)

Mixture Average Properties

The total value of property can be computed from the definition of partial molar properties and Euler’s
theorem. For example

E =

K∑
i=1

Miei(T ) =

K∑
i=1

NiEi(T ) (2.98)

The mixture average mass specific properties are obtained by dividing by the total mass, e.g.

e =
E

M
, (2.99)

and can be most conveniently written in term of the mass fractions, e.g.,

e =

K∑
i=1

Yiei(T ) (2.100)

h =

K∑
i=1

Yihi(T ) (2.101)

s =

K∑
i=1

Yisi(T, Pi) (2.102)

cv =

K∑
i=1

Yicv,i(T ) (2.103)

cp =

K∑
i=1

Yicp,i(T ) (2.104)

cp = cv +R (2.105)

The Gibbs energy is most conveniently written in terms of the composition in specific moles, ni = Ni/M
and the chemical potential.

g =

K∑
i=1

niµi(T, Pi) (2.106)

Provide examples of evaluating the properties of mixtures for ideal and real gases using Cantera.
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2.3 Perfect Gases

A perfect gas has a heat capacity that is constant (independent of temperature). In mass units, the key
properties of a single component perfect gas are

de

dT
= cv , (2.107)

e = e◦ + cv(T − T ◦) , (2.108)

dh

dT
= cp , (2.109)

h = h◦ + cp(T − T ◦) , (2.110)

s = s◦ + cv ln

(
T

T ◦

)
+R ln

(
v

v◦

)
, (2.111)

s = s◦ + cp ln

(
T

T ◦

)
−R ln

(
P

P ◦

)
, (2.112)

(2.113)

The ratio of constant pressure to constant volume heat capacity of a perfect gas is a constant known as
the ratio of specific heats

γ =
cp
cv

. (2.114)

In terms of γ, the specific heat capacities are

cv =
R

γ − 1
cp =

γR

γ − 1
. (2.115)

2.4 Thermochemistry

This section needs to have some examples added of how to evaluate these quantities using Cantera using
specific examples of mixtures, discuss how heats of reaction depend on temperature.

The determination of the thermochemical properties relies on a combination of laboratory measurements,
thermodynamics and statistical mechanical computations.

Heat of Reaction

A key thermodynamic concept in determining thermochemical properties is enthalpy change associated with
a constant pressure reaction

Reactants
P=const−→ Products

The First Law of Thermodynamics for a reaction process at constant pressure is

Q =
∑

Products

NiHi(TP ) −
∑

Reactants

NjHj(TR) , (2.116)

where Q is the thermal energy added (Q > 0) or removed (Q < 0) during the reaction process. If reactants
and products are at the same temperature TR = TP = T , the thermal energy added or removed to maintain
the reactor at a constant temperature is defined as the heat of reaction

∆rH(T ) =
∑

Products

NiHi(T ) −
∑

Reactants

NjHj(T ) . (2.117)

For exothermic reactions ∆rH < 0, for endothermic reactions ∆rH > 0.
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Standard heat of formation

The standard heat of formation ∆fH
◦ is the heat of reaction for the formation of one mole of the species of

interest from the elements in their most stable state at standard thermodynamic conditions, 298.15 K and
either 1 atm (101.325 kPa) for older tabulations or 1 bar (100 kPa) for new tabulations

∆fH
◦
i = ∆rH(T ◦) = Hi(T

◦)−
∑

Reactants

NjHj(T
◦) . (2.118)

where the reactants are the elements in the most stable state at T ◦, P ◦. For example, the heat of formation
of gaseous water can determined to be -241.81 MJ·kmol−1 from the reaction

H2(g) + 1/2 O2(g) −→ H2O(g)

using calorimetry McGlashan (1979) and combusting hydrogen with oxygen.
The standard heat of formation is by definition, the enthalpy at the standard state T = T ◦ = 298.15 K.

∆fH
o
i ≡ Hi(T

◦) = H◦
i (2.119)

because for the elements in their most stable state, the standard heat of formation is, by definition, zero.

∆fH
o
i (stable elements) ≡ 0 (2.120)

Thermodynamic properties of various species have to be defined in a self-consistent fashion to reproduce
the known experimental relationships for enthalpy and chemical equilibrium; see Chase et al. (1998) for a
complete exposition of the methods used to do this. For example, suppose we need the enthalpy of formation
of a species A and no measurement is available. The heat of formation can be computed using Hess’s law
which is simply a form of the conservation of energy. Given the heat of formation values for the compounds
B-C and A-B-C and the heat of reaction for

A + B-C −→A-B-C

at standard conditions, then the enthalpy of formation of A can be determined using conservation of energy

∆rH = ∆fH
◦
A +∆fH

◦
BC −∆fH

◦
ABC (2.121)

Therefore, solving for the heat of formation of species A yields

∆fH
◦
A = ∆rH −∆fH

◦
BC +∆fH

◦
ABC (2.122)

Note that we have carried out the computation using themolar enthalpy which is consistent with the standard
chemical practice and can be simply related to the stoichiometry of the reaction. The relationship to mass-
specific enthalpy is simply hi = Hi/Wi. Consistent values for the standard state enthalpy and entropy
have been evaluated from experimental data for a number of substances and are available in the JANAF
compilation (Chase et al., 1998). However, in some cases experimentally-based values are not available, and
the standard state enthalpy and entropy must be estimated using theoretical or empirical methods. The
most common empirical method is known as the group additivity method, which is discussed in detail by
Benson (1976).

A section on equilibrium constants for ideal and real gas mixtures is needed here.
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Chapter 3

Statistical Mechanics and Thermodynamics

The thermodynamic data provided with Cantera and used in the Shock and Detonation Toolbox come from
many sources. As discussed above, the standard state enthalpy and entropy are determined from experimental
data or semi-empirical data. However, the temperature dependence of the specific heat (and by implication,
the enthalpy and entropy) are usually based on statistical mechanics. A sketch of the methodology is given
below and the full details are found in numerous textbooks, a simple one is Maczek (2004), and detailed
presentations are given in McQuarrie (1976) and specifically for combustion in Chapter 8 of Kee et al. (2003).

The key concept in statistical mechanics is that there exists a partition function that contains all the
information needed to determine the properties of a system consisting of a large number of molecules in
thermodynamic equilibrium. The thermodynamic properties of the system, such as the internal energy,
pressure, entropy, and enthalpy, can all be expressed in terms of functions of the partition function or its
derivatives. The partition function can be constructed by finding the quantum states and energy levels for
the system of molecules.

The fundamental relation between thermodynamics and statistical mechanics connects the Helmholtz
energy A and the system partition function, Q.

A−A0 = −kBT lnQ (3.1)

The constant A0 and similar constants for the other thermodynamic potentials are introduced to make the
statistical mechanics results consistent with the thermodynamic standard state. Statistical mechanics and
the computational methods of quantum mechanics used to estimate energy levels in molecules consider the
zero energy state to be nuclei and electrons separated by an infinite distance (Irikura and Frurip, 1998).
However, the ground state (lowest energy) of the molecules where the electrons are bound most tightly
to the nuclei corresponds to the thermodynamically stable state. The zero level of the heat of formation
is chosen (arbitrarily) to be that of the reference elements at the standard state. In order to obtain the
constants A0 for each species that will agree with the thermochemical convention for heat of formation, a
formation reaction has to be selected and the heat of reaction determined with ab initio computations of
electronic structure of the other species and Hess’ Law. Using the experimental standard state enthalpies
of the other species in the reaction, Hess’ Law and the ab initio heat of reaction can be used to define the
standard state heat of formation of the species of interest and by further computation, the constant A0.
Entropy is computed in a different fashion, using the Third Law of Thermodynamics to define the entropy at
absolute zero and integrating all contributions from T = 0 to T ◦ as described in Irikura and Frurip (1998).

For combustion and high-temperature gas dynamics applications, additional simplifications are possible.
For a system consisting of N independent and indistinguishable molecules (Maxwell-Boltzmann statistics)
at high temperatures, the partition function can be defined in terms of the products of the partition function
q for each molecule

Q =
qN

N !
(3.2)

and is a function of the independent variables (N,V, T ). The molecular partition function q is determined
from the geometry and fundamental properties of a molecule, such as the geometrical configuration (bond

23
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length and angles), mass of the atoms, moments of inertia, vibrational modes and frequencies, and electronic
energy levels. Atoms are just a special case of molecules and the partition function for an atom is constructed
in a similar fashion to that of a molecule but only translation and electronic energy states are considered.

These molecular partition functions are computed as the sum over the Boltzmann factors for all possible
quantum states of the molecule.

q =
∑

states j

exp

(
− ϵj
kBT

)
(3.3)

where ϵj is the energy of state j relative to the energy of the ground state of the molecule. If the sum is done
in terms of energy levels instead of quantum states then the sum is written in terms of gi, the degeneracy
(multiplicity) of each molecular energy level

q =
∑

energies j

gj exp

(
− ϵj
kBT

)
. (3.4)

The simplifying assumption usually made in computing the energies is to assume that interactions between
translational (t), rotational (r), vibrational (v), electronic (e), and nuclear (n) motions can be neglected and
the total energy computed as the sum of indepedently computed energy levels for each type of motion

ϵ = ϵt + ϵr + ϵv + ϵe + ϵn . (3.5)

In that case the molecular partition function will be composed of a product of partition functions corre-
sponding to each separable (independent) motions and the net molecular partition function can be expressed
as the product

q = qtqrqvqeqn . (3.6)

The conventional assumption is that qn = constant and for most purposes can be taken to be one. A less
restrictive assumption that enables accounting for the known coupling between the internal modes (rotation,
vibration, electronic, and nuclear) is to only separate the motion into external (translation) and internal
models

q = qtqi . (3.7)

This assumption (known as the Born-Oppenheimer approximation) is justified by the vastly different time
scales for the motion of the molecules relative to each other as compared to the motions of the electrons and
the nuclei within a molecule. The relative molecular motion is mediated by the relatively weak intermolecular
potential as compared to the strong electrostatic forces and quantum exchange effects that determine the
intramolecular potentials. The most common example of the intramolecular coupling is between vibration
and rotation. The higher the vibration or rotational state, the larger the mean separation of the nuclei
which increases the rotational moment of inertia and decreases the vibrational frequency. The nuclear
spin also has to be accounted for when computing the finer details of the rotational energy levels and the
partition functions, and is particularly important at low temperature or for high accuracy computations. For
homonuclear molecules such as N2, O2 or H2, considerations about nuclear spin and the symmetric properties
of the wavefunction place additional restrictions on the rotational states in comparison to heteronuclear
molecules like NO, CH, or OH; see McQuarrie (1976, Ch. 6.5).

3.1 Molecular Partition Functions and RRHO model

The computation of the individual partition functions relies on solving for the quantum energy levels based
on models of the molecular structure and dynamics (McQuarrie, 1976). The translational partition function
is a special case and the sum can be converted to an integral since there are such large number of states
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available in typical macroscopic volumes and the energy levels are closely spaced together. After carrying
out the integration, the result can be simply expressed as

qt =

(
2πmkBT

h2

)3

2
V (3.8)

where V is the system volume, m is the atom or molecule mass in kg, and h is Planck’s constant.
For the rotational modes, the basic model is that of the rigid rotator in each independent axis of rotation.

The energy levels are quantized and there are multiple quantum states for each energy level with the details
depending on the shape of the molecule and symmetry properties. The fundamental idea is that rotation is
quantized and the total angular momentum can only have discrete values that are multiples of h̄ = h/2π.
For a linear molecule, there is an infinite set of angular momentum energy levels labeled by the index J ,
each with energy

ϵJ = J(J + 1)
h̄2

2I
J = 0, 1, 2, . . . (3.9)

where I is the moment of inertia. A diatomic molecule with masses m1 and m2 and internuclear spacing re
has I = µr2e , µ = m1m2/(m1+m2). The rotational energy levels are often expressed in terms of spectroscopic
constant B

ϵJ = J(J + 1)hcB , B =
h

8π2Ic
. (3.10)

For simple heteronuclear molecules, each rotational energy level is degenerate with gJ = 2J +1 quantum
states with energy ϵJ and the allowed radiative transitions (emission or absorption of photons) between
energy levels are ∆J = ±1. This is only true for diatomic molecules with distinct nuclei, molecules with
multiple indistinguishable nuclei have more complex degeneracy and radiative transition rules. The spacing
between energy levels is

∆ϵ = ϵJ+1 − ϵJ (3.11)

= (J + 1)
h̄

I
(3.12)

Defining the characteristic rotational temperature as

Θr =
h̄2

2IkB
(3.13)

and evaluating this numerically we find that Θr ≤ 10 K except for molecules that contain light atoms,
especially hydrogen. For cases where T > 10Θr, the partition function sum can be approximated as an
integral

qr =
T

σΘr
(3.14)

where the symmetry factor σ = 1 for unsymmetrical molecules like CO, NO and OH, and σ = 2 for sym-
metrical molecules like O2, N2, and CO2. In general, the symmetry factor is equal to the number of
indistinguishable configurations that can be generated by rotation. The case of nonlinear molecules is more
complex and depends on the rotational symmetry class (Ch. 8 McQuarrie, 1976) of the molecule. For
a nonlinear molecule that is asymmetric, there will be three principal moments of inertia I1, I2, I3 and
three corresponding characteristic rotational temperatures Θr1, Θr2, Θr3. The high-temperature limit of the
partition function is

qr =

√
π

σ

(
T 3

Θr1Θr2Θr3

)1/2

(3.15)



D
RA
FT

26 CHAPTER 3. STATISTICAL MECHANICS AND THERMODYNAMICS

For the vibrational modes, the simplest model is that each mode is represented as a simple harmonic
oscillator with a single vibrational frequency ωi and there is one quantum state per energy level. The
harmonic oscillator model has quantized energy levels labeled by index n

ϵn = (n+ 1
2 )h̄ω n = 0, 1, 2, . . . (3.16)

with allowed radiative transitions ∆n = ± 1. For a diatomic molecule, ω corresponds to the classical
frequency of the harmonic motion in a potential

V (r) = 1
2k(r − re)

2 (3.17)

where re is the equilibrium distance between the nuclei and the characteristic oscillator frequency is

ω =
1

2π

(
k

µ

)1/2

. (3.18)

The partition function can be computed exactly for this model

qv =
e−Θv/2T

1− e−Θv/T
(3.19)

where the characteristic vibrational temperature is

Θv =
h̄ω

kB
. (3.20)

For multi-atom (greater than two) molecules, the characteristics frequencies and modes of oscillations have
to be determined by finding the normal modes that correspond to small oscillations of the nuclei about
equilibrium positions in a specified molecular electronic state. If there are na atoms in the molecule, there
are nv = 3na − 5 vibrational modes for linear molecules and nv = 3na − 6 modes for nonlinear molecules,
each mode has a characteristic vibrational frequency ωi and corresponding temperature Θvi. The vibrational
partition function is the product

qv = qv1qv2 . . . qvnv
(3.21)

=

nv∏
i=1

e−Θvi/2T

1− e−Θvi/T
(3.22)

The electronic contributions are represented by qe and for most combustion problems it is usually possible
to consider only the ground or first excited state but multiple electronic states are needed to model the ther-
modynamics of high-temperature gas dynamics, plasma physics or astrophysical situations. The electronic
quantum states consist of a set of discrete levels with energy ϵek with degeneracy gek. The partition function
is

qe = ge1e
−εe1/kBT + ge2e

−εe2/kBT + . . . . (3.23)

The electronic energy levels depend on the choice of a reference state for zero energy datum. For atoms, the
reference state is chosen as the neutral atom ground state at zero temperature, i.e., no electronic excitation
and εe1 = 0 and the higher energy levels are measured as differences from the ground state εek = ∆εk−1. For
ionized atoms, the energy levels are all higher than the neutral species by an amount equal to the ionization
energy εI and the partition function for the ionized atom is

qe,I = e−εI/kBT
(
ge1,I + ge2,Ie

−∆εe2,I/kBT + . . .
)
. (3.24)

For molecules, the ground state energy is less than the separated atoms due to the energy of bonds between
the constituents as discussed in the next section.
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Energy Level Conventions

The datum from which energy is measured is a matter of convenience and consistency with thermodynamic
convention. The convention in molecular modeling is to take the zero of energy corresponding to the config-
uration of widely separated atoms in their ground state. For that convention, ϵ1 = −De, the minimum of the
potential energy function relative to the separated atoms, De = V (r →∞)−Vmin. The energy De is slightly
larger than the energy D0 that is needed to dissociate the molecule starting from the lowest vibrational state
due to the zero-point energy 1

2 h̄ω of the lowest vibrational state. For a multi-vibrational mode molecule,
there are zero-point energies associated with each mode so that

D0 = De −
nv∑
i=1

1
2 h̄ωi (3.25)

The convention in spectroscopy is to measure the minimum of the potential energy for each electronic state
from the minimum of the ground state, which corresponds to ϵe1 = 0. To make computed energies consistent
with the conventions of chemical thermodynamics (discussed in the previous section), an additive constant
E0 has to be determined and used to adjust the statistical mechanical result for energy as described below.
The linkage between dissociation energy and thermodynamic values of enthalpy is that the heat of reaction
for dissociation computed from the enthalpies of formation extrapolated to absolute zero (McBride et al.,
2002) is equal to the dissociation energy. For example, consider the dissociation of N2

N2 −→ N + N . (R1)

At T = 0 K, the heat of reaction is identical the energy of reaction because H = E +RT implies H(0) =
E(0). The heat of reaction for dissociation is

∆RH = HN(0 K) +HN(0 K)−HN2(0 K) (3.26)

using the values in Table B1 of McBride et al. (2002), we find that

∆RH = 466.483 + 466.483− (−8.670) (3.27)

= 941.636 kJ ·mol−1 (3.28)

The energy of dissociation determined from spectroscopic measurements (see Barklem and Collet, 2016, Table
2) is D0 = 9.75394 eV or 941.112 kJ·mol−1, which is very reasonable agreement. In general, evaluating the
internal energy with (3.57) and extrapolating to T = 0 K, we find that

E(0 K) = Eo +Na

(
nv∑
i=1

1
2 h̄ωi + ϵe1

)
. (3.29)

This relationship and the thermodynamic value of the E(0 K) will determine the constant E0 for a particular
choice of electronic energy reference state that determines ϵe1.

The energy difference between isolated atoms and a molecule with energy −De relative to the isolated
atoms can be accounted for by multiplying the vibrational partition by the factor

exp

De

kBT (3.30)

With this convention, the vibrational energies are measured relative to the potential energy minimum which
can be computed from the dissociation energy D◦ using (3.25). Molecules with multiple excited electronic
states will have distinct sets of vibrational-rotational modes for each electronic level that have to be accounted
for in constructing the internal partition function. For thermodynamic conditions where these excited states
make a significant contribution to the partition functions, the sum over quantum states must correctly
account for the electronic levels. If the electronic energy levels are widely spaced, each electronic state can be
considered individually and the internal partition function will be the product of factors corresponding to each
electronic level. At typical combustion temperatures, it is typical to only consider the ground electronic state
when computing the thermodynamic properties although the first electronic state is important spectroscopic
applications.
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3.2 Spectroscopic Approach for Diatomic Molecules

The rigid-rotator harmonic oscillator model with decoupling of all internal states is often a useful approxima-
tion. However, for some cases, and to have the highest accuracy, it is essential to include coupling between
the states. There are a number of physical processes that can be significant in computing energy levels and
partition functions including rotational stretching, low-temperature rigid rotation, Fermi resonance, anhar-
monicity, vibration-rotation interactions and coupling of spin (electronic and nuclear) with orbital angular
momentum as well as symmetry considerations that restrict the admissible quantum states. Including these
effects requires numerical solution of the quantum molecular structure at the appropriate level of approxi-
mation to treat these processes or by semi-empirical methods based on corrections to the RRHO model and
precision spectroscopic data. The methodology for computing partition functions is described in McBride
and Gordon (1992), Gordon and McBride (1999).

The spectroscopy and statistical mechanics of diatomic molecules and atoms has been extensively studied
and there is a substantial literature on computing partition functions using spectroscopic data. The molecular
electronic, vibrational and rotational states for many diatomic molecules are tabulated in two NIST data
bases: diatomic spectra and chemistry webbook. See p. 73-83 and Eq. 2.97 of Boyd and Schwartzentruber
(2017) to translate the spectroscopic symbols for molecular states into degeneracy factors. States for all of
these atoms and molecules (including NO and NO+) are tabulated in Park (1990), at the end of Chapter
1. Chapter 9 and 10 of Hanson et al. (2016) and Bernath (2016) give a more in depth discussion of the
fundamentals of electronic structure of atoms and molecules. Another source of data is the astrophysics
community, Barklem and Collet (2016) have critically evaluated and made available for download data on a
large number of diatomic molecules.

The energy levels derived from spectroscopic measurement for diatomic molecules are given in term of
expansions in integer powers of the vibrational and rotational quantum numbers (n, J). One way of doing
this is to use the Dunham coefficients Yk,l and the formula

E(n, J) =
∑
k,l

Yk,l(n+ 1
2 )

k[J(J + 1)]l . (3.31)

Many papers and some databases, particularly the multivolume compilations of Herzberg and Huber Molec-
ular Spectra and Molecular Structure, use a different nomenclature and a translational table between
conventional and Dunham notation is given below.

k \ l 0 1 2 3 4
0 Be −De He Le

1 ωe −αe −βe

2 −ωexe γe
3 ωeye
4 ωeze

The spectroscopically determined energy levels or terms are fit to empirical functions of the quantum
levels in order to account for anharmonicity and vibrational-rotational coupling. The spectroscopic levels
are conventionally given in terms of wavenumber units (cm−1) and have to be converted to standard energy
units (J). In the following formulas for the rotational and vibrational term functions F and G, the coefficients
are specific to the particular electronic state k being considered but have not been explicitly labeled as such.
The total energy for a state labeled with electronic, vibrational and rotational quantum levels (k, n, J) is

E(k, n, J) = Er(k, n, J) + Ev(k, n) + Ee(k) . (3.32)

The rotational contribution to the energy is

Er = hcFn(J) , (3.33)

Fn(J) = BnJ(J + 1)−DnJ
2(J + 1)2 , (3.34)

https://www.nist.gov/pml/diatomic-spectral-database
http://webbook.nist.gov/chemistry/
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where the first term represents the rigid rotor contribution to the energy with corrections for the effect of
vibration on the mean distance between atoms in the molecule

Bn = Be − αe(n+ 1
2 ) + γe(n+ 1

2 )
2 , (3.35)

and the second term represents the effect of the rotation on increasing the mean distance between atoms in
the molecule. The term Dn is the centrifugal distortion constant and contains a small correction associated
with the effect of vibration on the mean distance between atoms

Dn = De + βe(n+ 1
2 ) . (3.36)

The vibrational contribution is

Ev = hcG(n) (3.37)

and contains a series of terms, the first of which can be associated with the simple harmonic motion and the
higher powers represent the corrections for the anharmonic nature of realistic potential energy interactions
between the atoms in the molecule

G(n) = ωe(n+ 1
2 )− ωexe(n+ 1

2 )
2 + ωeye(n+ 1

2 )
3 ++ωeze(n+ 1

2 )
4 . (3.38)

The electronic contribution is

Ee = hcTe,k . (3.39)

The internal energy partition function is computed with a triple sum over the states

qi =

kmax∑
k=1

nmax∑
n=0

Jmax∑
J=Λ

gΛ(2S + 1)(2J + 1) exp

(
−E(k, n, J)

kBT

)
(3.40)

The factor 2S + 1 accounts for the degeneracy associated with the electron spin, 2J + 1 is the degeneracy
associated with rotation of the nuclei about the center of mass, Λ is the total orbital angular momentum of
the electronic state (Λ = 0, 1, 2 for Σ, Π and ∆ states). The factor gΛ represents the effects of Λ-doubling
and nuclear hyperfine structure. Π and ∆ states have degeneracy of 2 and Σ is nondegenerate. For a
heteronuclear molecule, i.e., two distinct nuclei, the gΛ = 1 for a Σ electronic state or gΛ = 2 for any other
state (Π, ∆, etc). For a homonuclear molecule, i.e., two indistinguishable nuclei, the value of gΛ depends on
the value of J , the nuclear spin I, and the symmetry properties of the electronic wavefunction as shown in
Table 3 of Irwin (1987).

The upper limits nmax and Jmax on the sums for vibrational and rotational states are determined by
requiring that the combined effects of vibration and rotation do not cause dissociation of the molecule. One
simple way of implementing this is to find the largest values of (n, J) for each electronic state k such that
the combined vibrational and rotational energy do not exceed the dissociation energy of the molecule.

Ev(k, n, J) + Er(k, n, J) ≤ De(k) . (3.41)

The highest vibration state possible nmax is the vibration level (J = 0) which has the highest energy but
does not exceed the potential well depth De.

G(nmax + 1) > De and G(nmax) < De . (3.42)

For a given vibrational level n, the highest value of J = Jmax(n) that is possible is bounded by same
considerations. Other bounds can be generated by considering the dependence of the functions G(n) and
Fn(J) on the states Irwin (1987). Physically reasonable energy levels should be non-decreasing with quantum
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number. If the spectroscopic constants are sufficiently reliable then this requirement limits values of n by
the following inequalities

G(n+ 1)−G(n) > 0 for n < nmax , (3.43)

and the limiting value of J is determined by

Fn(J + 1)− Fn(J) > 0 for J < Jmax(n) . (3.44)

For conventional two-term expansions of the vibrational and rotational constants and neglecting the cen-
trifugal distortion, these inequalities provide the following bounds, interpreting the right-hand side as the
greatest integer

nmax =
ωe

2ωexe
− 1

2
, (3.45)

n′
max =

Be

αe
− 1

2
. (3.46)

The limit (3.41) usually results in the smallest values of nmax and Jmax.
Considering the effect of rotation on the effective intramolecular potential energy curve Khachkuruzov

(1966, 1967, 1971) provides a more sophisticated approach to determining upper bounds on the rotational
quantum number for diatomic molecules. The approach is to consider the effect of molecular rotation to
construct an effective potential energy function that includes the energy associated with rotational state J .
The effective potential is a function of both the relative distance R and J

VJ(R) = Vo(r) +
h̄2

2µ

J(J + 1)

r2
(3.47)

where Vo is the potential energy function for the non-rotating molecule. The key idea is that as J increases,
the potential well depth becomes smaller and ultimately disappears as shown in Fig. 3.1. The highest
possible value of J for a stable molecule is obtained when the effective potential well is just deep enough
to accommodate a single vibrational state n = 0, the ground state. If the energy of this ground state is
small compared to the well depth of the nonrotating molecule potential, then we can approximate Jmax(0)
by Jlim, the value of J for which the effective potential has an inflection point at ro. This requires solving
the two simultaneous equations

dVJlim

dr

∣∣∣∣
ro

= 0 , (3.48)

d2VJlim

dr2

∣∣∣∣
ro

= 0 . (3.49)

The result can be simplified by introducing the reduced distance R = r/re, measuring energies in terms of
spectroscopic values (cm−1) and using the definition of the rotational constant (3.10). The value of Ro =
ro/re is found from the solution of the nonlinear equation

RoVo
′′(Ro) + 3V ′

o(Ro) = 0 . (3.50)

The value of the limiting rotational quantum number can then be computed as (assuming Jlim ≫ 1) from
(3.49)

Jlim ≈ R2
o

√
V ′′
o (R0)

6Be
(3.51)

To proceed further, a representative form for the non-rotating potential has to be selected. A simple and
widely used model is the Morse potential

Vo(R) = De [1− exp(−a(R− 1))]
2

(3.52)
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Figure 3.1: Effective potential energy as a function of radial distance r and rotational quantum number J .
This example uses the Morse potential and parameters of the NO ground state.

where the parameter a can be determined from the spectroscopic constants

a =
ωe

2
√
BeDe

(3.53)

The details of computation of Jlim with this potential are discussed by Khachkuruzov (1967), Khachkuruzov
claims that for each electronic state, the maximum rotational quantum number is approximately a linear
function of the vibrational quantum number

Jmax(n) = Jmax(0)

(
1− n

nmax

)
. (3.54)

Using the ground state NO spectroscopic data to calibrate the Morse potential, we compute Ro = 1.435 from
(3.50), Jlim = 234 from (3.51) and direct computation of the stationary energy eigenstates of the effective
potential (3.47) using numerical solution of the Schrödinger equation yields Jmax(0) = 178, the spectroscopic
condition (3.41) also give Jmax(0) = 178. For J = 0, the maximum number of vibrational levels possible
is nmax = 39 from the spectroscopic condition (3.42), 67 by (3.45), and 52 from numerical solution of the
Schrödinger equation for the Morse potential.

3.3 Thermodynamic Properties from Partition Functions

The internal energy, E relative to that of the ground state E0, can be calculated for a system of N molecules
by summing over all states and weighting the energy of each state by the expected number of molecules in
that state.

E − E0 =
∑
j

Njϵj (3.55)
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Nj is the number of molecules in state j with an energy of ϵj relative to the ground state. This equation
can be expressed in terms of the molecular partition function by using the Boltzmann distribution to define
the expected fraction of the molecules in that state for a system that is in thermodynamic equilibrium

Ni

N
=

exp

(
− ϵi
kBT

)
∑

k exp

(
− ϵk
kBT

) (3.56)

Substituting this into (3.55), we can write the internal energy in terms of the molecular partition function
as

E − E0 = NkBT
2

(
∂ ln q

∂T

)
V

(3.57)

Since q(T, V ), the number of molecules N does not enter in to the computation of the partial derivative.
The enthalpy, specific heats, and entropy can be computed using thermodynamic relationships and the

relationship (3.1). To express the results in terms of the molecular partition function we will first observe
that for a large number of molecules, Stirlings’ approximation for the factorial can be used to simply the
expressions.

lim
N→∞

lnN ! ≈ N lnN −N (3.58)

The Helmholtz energy can be approximated as

A−A0 = NkBT (ln q − lnN + 1) (3.59)

The fundamental relation of thermodynamics for a fixed number of molecules can be written

dA = −SdT − PdV (3.60)

which leads directly to the following expressions

S = −
(
∂A

∂T

)
V

(3.61)

= NkB

[(
∂(T ln q)

∂T

)
V

− lnN + 1

]
(3.62)

P = −
(
∂A

∂V

)
T

(3.63)

= NkBT

(
∂ ln q

∂V

)
T

(3.64)

Enthalpy is defined as

H = E + PV (3.65)

= A− TS + PV (3.66)

and for ideal gases

PV = NkBT (3.67)

so that

H −H0 = NkBT

[
T

(
∂ ln q

∂T

)
V

+ 1

]
(3.68)
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The definition for specific heat at constant pressure is

CP =

(
∂H

∂T

)
P

(3.69)

=NkB

[
T

(
∂2

∂T 2
(T ln q)

)
V

+ 1

]
(3.70)

We can further simplify the result by using the splitting of the molecular partition function into translation
and internal modes (3.7) and use (3.8) to compute the contribution of translation explicitly. The contribution
of translation states to the thermodynamic function is equivalent to the thermodynamic properties of a
monoatomic gas. The final results for the nondimensional temperature-dependent properties are found by
considering one mole of substance (N = NA) and expressing the properties in the same nondimensional form
as used in the NASA polynomial representations:

cP (T )

R
=

5

2
+ T

d2(T ln qi)

dT 2
, (3.71)

h(T )− h0

RT
=

5

2
+ T

d(ln qi)

dT
, (3.72)

s(T )

R
=

5

2
+

3

2
ln

(
2πm

h2

)
+

5

2
ln(kBT )− lnP +

d

dT
(T ln qi) . (3.73)

The last term on the right-hand side of each of these expressions contains the contribution of all the internal
degrees of freedom. The derivatives involving ln qi can be expanded as follows:

T
d(ln qi)

dT
=

T

qi

dqi
dT

, (3.74)

d(T ln qi)

dT
=

T

qi

dqi
dT

+ ln qi , (3.75)

T
∂2

∂T 2
(T ln qi) =

2T

qi

dqi
dT
−
(
T

qi

dqi
dT

)2

+
T 2

qi

d2qi
dT 2

. (3.76)

The first and second temperature derivatives of the internal partition function are:

dqi
dT

=
1

T

kmax∑
k=1

nmax∑
n=0

Jmax∑
J=Λ

gΛ(2S + 1)(2J + 1)
E(k, n, J)

kBT
exp

(
−E(k, n, J)

kBT

)
, (3.77)

d2qi
dT 2

= − 2

T

dqi
dT

+
1

T 2

kmax∑
k=1

nmax∑
n=0

Jmax∑
J=Λ

gΛ(2S + 1)(2J + 1)

(
E(k, n, J)

kBT

)2

exp

(
−E(k, n, J)

kBT

)
.

(3.78)

To derive the pressure-independent portion of the entropy, use the definition

s◦(T )

R
=

s(T, P )

R
+ ln

(
P

P ◦

)
(3.79)

to obtain

s◦(T )

R
=

5

2
+

3

2
ln

(
2πm

h2

)
+

5

2
ln(kBT )− lnP ◦ +

d

dT
(T ln qi) (3.80)

For a monoatomic gas with a mass of 1 amu (a hydrogen atom), the value of nondimensional entropy at a
reference temperature of 1 K is known as the Sackur-Tetrode constant

s◦(T = 1 K)

R
= −1.1517047 P ◦ = 100 kPa qi = 1 m = 1 amu (3.81)
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For a discussion of the evaluation of the contributions of the internal partition function, see the JANAF table
documentation (Chase, 1998) or the documentation for the NASA fitting program (McBride and Gordon,
1992). The JANAF data are accessible online from the NIST kinetics website.

The evaluation of the partition function for heteronuclear molecules and the resulting thermodynamics
properties has been implemented in a SDT MATLAB script partition rotvib.m. The spectroscopic data
needed to compute the energy levels is provided in files for three molecules NO NO rotvib.m, OH OH rotvib.m
and CH CH rotvib.m. The calculated nondimensional heat capacities Cp/R are given in Figs. 3.2, 3.4 and 3.3
for the ground state (X), the first electronic state (A), a full set of energy levels and compared to the NASA
fits from McBride et al. (2002). For a single energy level such as the A or X state, the heat capacity at low
temperature has the classical value (for a linear rigid rotor) of Cp/R = 3.5. With increasing temperature,
the heat capacity approaches the classical value (for a harmonic oscillator and rigid rotor) of Cp/R = 4.5
at 4000 K and then decreases with increasing temperature. The decrease is due to the finite number of
rotational and vibrational states associated with the finite depth potential well that characterizes actual
electronic states as opposed to the infinite number of states that are available in the rigid-rotator harmonic-
oscillator approximation. With increasing temperature, the quantum states up to the dissociation level are
increasing populated and eventually the internal energy approaches a constant value so that subsequent
increases in temperature only result in changes to the translational temperature. More realistically, at high
temperatures, a substantial fraction of the molecules become dissociated into atoms and the atoms are
ionized so that the high temperature limit of the specific heat of the molecule is no longer meaningful. The
differences between the NASA fits and the partition function results at high temperature is due to different
choices of spectroscopic constants and number of energy levels included in the partition function summation.

2000 4000 6000 8000 10000 12000 14000
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Figure 3.2: NO (nitric oxide) Heat capacity computed from partition function and spectroscopic data for
the ground state (X), the first electronic state (A), the first 15 electronic energy levels and compared to the
NASA fits from McBride et al. (2002)

http://srd.nist.gov/JCPRD/jpcrdM9.pdf
http://shepherd.caltech.edu/EDL/PublicResources/sdt/refs/NASA-RP-1271.pdf
http://shepherd.caltech.edu/EDL/PublicResources/sdt/refs/NASA-RP-1271.pdf
http://kinetics.nist.gov/janaf/
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/partition_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/NO_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/OH_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/CH_rotvib.m
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Figure 3.3: CH (methylidyne) Heat capacity computed from partition function and spectroscopic data for
the ground state (X), the first electronic state (A), the first six electronic energy levels and compared to the
NASA fits from McBride et al. (2002)
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Figure 3.4: OH (hydroxyl) Heat capacity computed from partition function and spectroscopic data for the
ground state (X), the first electronic state (A), the first four electronic energy levels and compared to the
NASA fits from McBride et al. (2002)
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3.4 Estimating Heat Capacities

Some basic heuristics apply for estimating both the low and high temperature limits of the specific heats.
These are useful for extending each species’ properties to higher temperatures or for visually evaluating the
success or failure of a least squares fit.

The heuristic models presented come from the classical result known as the equipartition of energy. The
rule is that at sufficiently high temperatures that quantum effects can be ignored, each degree of freedom

(DOF) of a molecule contributes
1

2
kBT to the internal energy. If the total number of degrees of freedom are

f , then the internal energy per molecule can be written as

ε = f
1

2
kBT (3.82)

and the internal energy per unit mass is

e = f
1

2
RT (3.83)

The number of degrees of freedom f depends on the particular molecule. The effect of quantum mechanics
is that the energy levels are discrete and for thermal energies (kBT ) that are comparable to or smaller than
the energy level differences, the effective number of degrees of freedom will be a function of the temperature.
Fewer degrees of freedom are excited at low temperatures and more are excited at higher temperatures.
There are always three degrees of translational freedom for an atom, and similarly, there are three from the
translation of the center of mass of a molecule. Equation 3.83 implies that the specific heat at constant
volume is

cv =
f

2
R (3.84)

This is related to the specific heat at constant pressure through

cP = cv +R (3.85)

(3.86)

At low temperatures, the only contributions to a molecule’s energy are the rotational and translational
degrees of freedom. Therefore, with each atom fixed in the molecule (no vibrational energy), there are
three degrees of translational freedom and two or three degrees of rotational freedom for the molecule as a
whole. If the molecule is treated as a rotating rigid body, the total rotational degrees of freedom are two
for linear molecules (e.g., O2 or N2) or 3 for non-linear molecules (e.g., H2O or NH3). The net result at low
temperature but still high enough that rotation is fully excited is that

cP →
7

2
R linear , (3.87)

cP → 4R nonlinear . (3.88)
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At high temperatures, all the vibrational modes of oscillation are excited in additional to rotation and
vibration. Contributions from electronic excitation are usually small in the 3000 to 6000 K range and we
will neglect these. The number of vibration modes can be computed by considering the atoms to move
independently at high temperatures. There are a total of 3na independent motions per molecule with na

atoms and if we subtract center of mass translation and rotation, then we expect that at high temperatures
there are 3na − 5 vibrational modes for linear molecules and 3na − 6 modes for nonlinear molecules. Each
vibrational mode contributes two degrees of freedom, one for kinetic energy and one for potential energy. The
total number of degrees of freedom for the high temperature limit is obtained by summing the translational,
rotational, and vibrational degrees of freedom. The final result can be used to express the high temperature
specific heat limits as

lim
T→∞

cP =
6na − 3

2
R linear (3.89)

lim
T→∞

cP =
6na − 4

2
R nonlinear (3.90)

Note that if we neglect the electronic excitation of monatomic species, the specific heat is independent of
temperature

(cP )monatomic =
5

2
R . (3.91)

This is a good approximation for the temperatures of interest in ordinary combustion.
The utility of the limits for heat capacity are that these are a convenient way to check the validity of

thermodynamic data and also provide limiting values that can be used for extrapolating data originally given
over a limited range of temperature. It is preferred but not always possible to recompute the thermodynamic
functions using statistical mechanics if the polynomial fits are not valid to sufficiently high temperatures. It
is possible in some cases to extrapolate the data from the fits to higher temperatures. The idea behind the
extrapolation is that given a specific heat function cp(T ) defined on Tmin ≤ T ≤ Tmax, the specific heat can
be extrapolated using

1

cp
=

1

cp(∞)
− Tmax

T

(
1

cp(∞)
− 1

cp(Tmax)

)
for T ≥ Tmax (3.92)

This method is simpler but less accurate than the more general extrapolation method developed by Wilhoit
and implemented in the NASA code PAC91 (McBride and Gordon, 1992, see p. 7). It will work only if
there are no low-lying electronic states that contribute significantly to the specific heat. Above 5000 K, these
states almost always have to be taken into consideration.

3.5 RRHO Model Thermodynamics

The thermodynamics of a model gas described by the RRHO approximation (neglecting electronic excitation)
can be computed using the statistical thermodynamics prescription (Section 3.3) and the model partition
functions of Section 3.1. The starting point for computing the thermodynamic energy is (3.57) which can
be written for a single molecule as

ε = kBT
2

(
∂ ln q

∂T

)
V

. (3.93)

Consistent with the RRHO approximation, assume that all the modes of the molecular excitation are inde-
pendent. This means that the quantum states for translation, rotation, vibration can be separately computed
and the total molecular partition function can be written as a product of the partition function for each
mode. Omitting the nuclear partition function, we have

q = qtqrqv (3.94)
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With this approximation, the energy of a molecule can be written as the sum of the energies for each mode

ε = kBT
2
∑
t,r,v

1

qj

(
∂qj
∂T

)
V

, (3.95)

ε =
∑
t,r,v

εj , (3.96)

where the energy of mode j is

εj = kBT
T

qj

(
∂qj
∂T

)
V

. (3.97)

Using the partition functions computed in Section 3.1, we obtain the contributions to energy for a single
molecule:

translation εt =
3

2
kBT ; (3.98)

rotation εr = kBT linear molecule T ≫ Θr ; (3.99)

rotation εr =
3

2
kBT nonlinear molecule T ≫ Θr ; (3.100)

vibration εv =

nv∑
i=1

kBΘv,i

(
1

2
+

1

eΘv,i/T − 1

)
sum over all nv modes . (3.101)

The specific heat at constant volume can be obtained by differentiation of the energy with respect to tem-
perature

cv =
dε

dT
. (3.102)

The individual contributions of each mode to the specific heat are:

translation cv,t =
3

2
kB ; (3.103)

rotation cv,r = kB linear molecule T ≫ Θr ; (3.104)

rotation cv,r =
3

2
kB nonlinear molecule T ≫ Θr ; (3.105)

vibration cv,v = kB

nv∑
i=1

(
Θv,i

T

)2
eΘv,i/T

(eΘv,i/T − 1)2
sum over all nv modes . (3.106)

High-Temperature Limit

In the limit as the temperature becomes sufficiently high, but not so high that electronic excitation is
significant, the vibrational contribution to the energy is

ε→ nvkBT as T →∞ , (3.107)

and the contribution to the heat capacity is

cv,v → nvkB as T →∞ . (3.108)

In the high-temperature limit, the nuclear and rotational partition function are decoupled and the contribu-
tion of rotation motion to specific heat is a constant and only depends on the symmetry of the molecule.
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Using the high-temperature limits of the partition function for the RRHO model, we obtain the contri-
bution of each mode of molecular motion to the energy at high temperature to be fi × 1/2kBT where fi is
the number of degrees of freedom for that mode.

fi = lim
T→∞

2
T

qi

(
∂qi
∂T

)
V

. (3.109)

For each mode, we have:

translation ft = 3 ; (3.110)

rotation fr = 2 linear molecule T ≫ Θr ; (3.111)

rotation fr = 3 nonlinear molecule T ≫ Θr ; (3.112)

vibration fv = 2nv . (3.113)

As discussed in the previous section, the number of vibrational modes can be computed by subtracting the
translation and rotational degrees of freedom from the total degrees of freedom 3na of na atoms free to move
in three dimensions

nv = 3na − 5 linear molecule , (3.114)

nv = 3na − 6 nonlinear molecule . (3.115)

The high-temperature limit value for total number of degrees of freedom for a molecule of na atoms is the
sum of the values for all three modes:

f = 6na − 5 linear molecule ; (3.116)

f = 6na − 6 nonlinear molecule ; (3.117)

in agreement with the estimates given previously. Instead of using the degrees of freedom to characterize
the specific heat, the ratio of specific heats

γ =
cp
cv

= 1 +
2

f
(3.118)

is often employed. Note that the value of γ = 1.4 = 7/5 used for engineering computations with low-
temperature air corresponds to f = 5 so that the vibration modes of N2 and O2 are not contributing to the
heat capacity in this model, which is reasonable as long as T is sufficiently small compared to Θv (3393 K
for N2, 2273 K for O2).

Low-Temperature Limit

At very low temperatures, T ≤ 5Θr, the quantization of rotational levels and rotational-nuclear spin coupling
requires a more sophisticated approach (Ch. 6 McQuarrie, 1976) to computing partition functions. This
is not only relevant to spectroscopy of molecules in cold interstellar clouds or laboratory experiments at
cryogenic conditions but also to the IR spectra as the nuclear symmetry of the molecule will determine
the weighting factors of the populations of rotational levels (Ch 5 Hanson et al., 2016). Aside from the
important implications for spectroscopy, the rotational contribution to thermodynamics is most important
at temperatures comparable to the effective rotational energy level separation, for example hydrogen, with
a value of Θr = 87.5 K. We will only consider the computation of the rotational partition for diatomic
molecules in the rigid rotator approximation. For linear heteronuclear molecules like NO, OH, CH, and CO,
the nuclear-rotational partition function is just

qn,r = (2I1 + 1)(2I2 + 1)

∞∑
j=0

(2J + 1)e−J(J+1)Θr/T . (3.119)
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Figure 3.5: Low-temperature heat capacity of CO computed using the RRHO partition function (3.120) and
compared to the standard NASA-9 fit.

where I1 and and I2 are the values of nuclei spins. The high temperature limit, T ≥ 5Θr, of the sum is just

qn,r ≈ (2I1 + 1)(2I2 + 1)
T

Θr
. (3.120)

This gives a contribution of precisely R to the specific heat capacity at high temperature, in agreement with
the considerations about degrees of freedom of linear rotators. This is true for all of the diatomic rotors. An
example of the low temperature specific heat capacity in CO is shown in Fig. 3.5.

For homonuclear molecules like N2, O2, H2, the rotational partition function depends on the symmetry
characteristics of the nuclear wavefunction, which depends on the value of nuclear spin I. The total wave-
function of the molecule has to be symmetric under exchange of the identical nuclei for integer spin nuclei
and antisymmetric for half-integer spin. The most common electronic ground state Σ+

g , is symmetric and
this means that the symmetry of the total wavefunction is controlled by the rotational component. For
integral nuclear spin (I = 0, 1, 2, . . . ) the rotational-nuclear partition is

qn,r = (I + 1)(2I + 1)

∞∑
j=0,2,4,...

(2J + 1)e−J(J+1)Θr/T + I(2I + 1)

∞∑
j=1,3,5,...

(2J + 1)e−J(J+1)Θr/T . (3.121)

The high temperature limit of the sum is

qn,r ≈
(2I1 + 1)2

2

T

Θr
(3.122)

The factor of 2 in the denominator is due to the symmetry a the molecule with identical nuclei, otherwise
the number of independent quantum states will be over counted. The approximate partition function (3.122)
is valid for all of the homonuclear diatomic cases and as in the heteronuclear case, results in a contribution
of R in the high temperature limit. The computation of specific heat with this model is illustrated for N2,
I = 1 for 14N nuclei, in Fig. 3.6.
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Figure 3.6: Low-temperature heat capacity of CO computed using the RRHO partition function (3.121) and
compared to the standard NASA-9 fit.

For half-integral values of the nuclear spin (I = 1/2, 3/2, . . . ) the rotational partition function is

qn,r = I(2I + 1)

∞∑
j=0,2,4,...

(2J + 1)e−J(J+1)Θr/T + (I + 1)(2I + 1)

∞∑
j=1,3,5,...

(2J + 1)e−J(J+1)Θr/T . (3.123)

(3.124)

This case is appropriate for H2 (I = 1/2) and the resulting specific heat capacity dependence on temperature
is shown in Fig. 3.7. The pronounced peak and slow approach to the high temperature limit is a special
feature of hydrogen that is a consequence of the large value of Θr and the two possible states of the alignment
of the nuclei. Ortho-hydrogen has a symmetric nuclear state with parallel nuclei spins, para-hydrogen has
an anti-symmetric nuclear state with opposite alignment nuclei spins. There are 3 possible para-states and
only one possible ortho-state, the equilibrium between the states determines the average heat capacity, see
the discussion in Ch. 6 of McQuarrie (1976).

The case of O2 (16O nuclei) is special, I = 0 but the ground electronic state X3Σ−
g is antisymmetric.

The rotational states have to be antiysmmetric for the total wavefunction to be symmetric so only the odd
rotational states are allowed and the partition function is

qn,r = (I + 1)(2I + 1)

∞∑
j=1,3,...

(2J + 1)e−J(J+1)Θr/T . (3.125)

The computation of specific heat capacity for O2 with this model is illustrated in Fig. 3.8.

Add a discussion of how to extend NASA9 fits to low temperature using the RRHO partition function.
Discuss problems with some current fits not being properly constrained at low temperature which makes
it challenging to properly join RRHO fits at the matching temperature of 200 K.
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Figure 3.7: Low-temperature heat capacity of H2 computed using the RRHO partition function (3.123)
assuming equilibrium between ortho and para states with comparison to the standard NASA-9 fit.
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Figure 3.8: Low-temperature heat capacity of CO computed using the RRHO partition function (3.125) and
compared to the standard NASA-9 fit.
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Chapter 4

Equilibrium

This chapter describes the fundamental basis of chemical equilibrium and
outlines methods for computing equilibrium composition. All discussions
of equilibrium are based on the First and Second Law of thermodynamics.
The Second Law can be interpreted as an optimization problem which can
be solved numerically to determine the thermodynamic state. The opti-
mization is constrained by both the physical and thermal conditions under
which equilibrium is achieved and for chemical equilibrium, the conserva-
tion of atoms. The thermodynamic and chemical considerations underlying
chemical equilibrium are presented with examples of how these are imple-
mented in Cantera.

The fundamentals principles of chemical equilibrium analysis, applications to gaseous combustion, and
numerical methods are discussed in depth in a number of monographs (Denbigh, 1981, van Zeggeren and
Storey, 1970, Smith and Missen, 1991, Powers, 2016), reports (Huff et al., 1951, Gordon and McBride,
1976, Reynolds, 1981, 1986, McBride and Gordon, 1996) and journal papers (Brinkley, 1946, 1947, White
et al., 1958, Zeleznik and Gordon, 1960) as well as textbooks on thermodynamics and combustion. Chemical
equilibrium computations are also discussed in monographs on detonation (Fickett and Davis, 1979, Mader,
1979) that have an emphasis on high explosives, a specialized topic that requires considerable extension
of gas phase methods to treat non-ideal multi-phase mixtures at high pressure using complex equations of
state. Computation of gaseous chemical equilibrium at high temperature remains an important topic in
planetary re-entry (Bottin, 2000), chemical engineering (Smith et al., 1996), geologic and environmental
applications (Fegley, 2013) motivate explorations of new formulations and numerical methods, particularly
for multi-component, multi-phase mixtures (Tsanas et al., 2017) that contain solids, gaseous or liquids or
involve supercritical fluids.

4.1 Second Law of Thermodynamics

The basis of chemical equilibrium is the Second Law of Thermodynamics. For a fixed mass of material
(considered as a thermodynamic system) which can exchange work and heat with its surroundings but is
otherwise isolated, the Second Law is:

The total entropy of the universe consisting of a system and its surroundings either remains
constant or increases.

In mathematical terms, this is an extremum principle:

dSuniverse = dSsystem + dSsurroundings ≥ 0 . (4.1)

The inequality holds for all irreversible processes, at equilibrium, this is an equality.
The changes in entropy of the surroundings is determined by the thermal interactions with the surround-

ings. An isolated system has no heat or work interactions with the surroundings, therefore from the First

43



D
RA
FT

44 CHAPTER 4. EQUILIBRIUM

Law of Thermodynamics, we conclude that the internal energy E is a constant and for a P -V -T system, if
there is no work interaction, the volume V of the system is constant. We conclude that at constant energy
and volume, the extremum principle implied by the Second Law of Thermodynamics is that entropy tends
towards a maximum as the system approaches equilibrium.

dSsystem ≥ 0 for (E, V ) constant (4.2)

If the surroundings are considered as a thermal bath with a fixed temperature T◦, the change in entropy
of the surroundings is equal in magnitude and opposite in sign to the thermal energy Q transferred into the
system.

dSsurroundings = −
dQ

T
(4.3)

The work dW done on the system by expansion into an atmosphere of constant pressure P◦ is

dW = −P◦dV (4.4)

The Second Law of Thermodynamics implies that

dSsystem = dS ≥ dQ

T◦
(4.5)

The First Law of Thermodynamics can be used to write this as a inequality

dQ = dE − dW ≤ T◦dS (4.6)

or

0 ≥ dE + P◦dV − T◦dS (4.7)

This is the key extremum principle for equilibrium and by making different choices for the constraints on
heat and work interactions, the principle can be interpreted in terms of the thermodynamic potentials as
shown in Table 4.1.

Table 4.1: Optimization problems for equilibrium processes Kondepudi and Prigogine (1998).

Constraints Optimization
E, V constant S maximum
S, V constant E minimum
S, P constant H minimum
H,P constant S maximum
T, V constant A minimum
T, P constant G minimum

4.2 Equilibrium at Constant Temperature and Pressure

The most common approach to computing chemical and phase equilibrium is to consider a constant temper-
ature and pressure equilibrium process. This is particularly convenient for ideal gases due to the separation
of temperature and pressure dependence of the chemical potential.

The total Gibbs energy of a single-phase mixture of K species is

G(T, P,N) =

K∑
k=1

Nkµk(T, P,N) , (4.8)
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The use of this relationship requires a expression for the chemical potential µi(T, P,N), which depends on the
mixture equation of state for the phase, see Section 9.8. The ideal gas is the simplext model and applicable
to many combustion problems, the chemical potential of species k in an ideal gas mixture is

µk(T, Pk) = µo
k(T ) +RT ln(Pk/P

◦) , (4.9)

= µo
k(T ) +RT ln(P/P ◦) +RT ln(Nk/N) , (4.10)

and the total number of moles N is

N =

K∑
k=1

Nk . (4.11)

For a closed system of fixed mass M , we will specify the composition by K composition variables nk =
Nk/M . Chemical equilibrium is defined by the set of values n∗ = (n∗

1, n
∗
2, . . . , n

∗
K) that minimize g = G/M

at constant (T, P ) subject to the constraints of conservation of atoms. This is valid for any single phase
mixture and the ideal gas is just a special case. From the fundamental relation for Gibbs energy, a necessary
condition is that g is stationary for variations in composition about the equilibrium value

δg =

K∑
k=1

µk(T, P,n
∗) δnk = 0 . (4.12)

The variations in composition δnk are constrained by the conservation of atomic composition for a closed
system. The Gibbs-Duhem relation (2.38) constrains the variations in µk at constant (T, P )

0 =

K∑
k=1

δµk nk . (4.13)

These results are useful in simplifying the equations used for numerical simulation of chemical equilibrium
at constant pressure and temperature.

4.3 Composition Constraints

At the outset of any chemical equilibrium problem, the researcher has to choose an appropriate set of K
distinct chemical species {C1, C2, . . . , CK} which are made up of J distinct atomic elements {E1, E2, . . . , EJ},
K ≥ J . For a given set of species, the researcher also needs to choose a reference composition n◦ that can be
used to fix the elemental (atomic) composition. While the composition of the species can change substantially
in the course of the chemical reaction, the number of atoms of each element cannot change as long as we
are considering ordinary combustion conditions and an isolated mass of material, e.g., a closed system.
Mathematically, the conservation of atoms can be expressed as a set of linear equations

bj =

K∑
k=1

ajknk j = 1, 2, . . . , J , (4.14)

where ajk is the number of atoms of type j in species k and bj is the total number (moles) of elements of
type j. The total number of elements is determined by the composition n◦

k used to initialize the equilibrium
computation

bj =

K∑
k=1

ajkn
◦
k . (4.15)

In addition, the amount of each species has to be nonnegative,

nk ≥ 0 i = 1, 2, . . . ,K . (4.16)
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For a given mixture, the bj are constants and the variations δn in the species composition are constrained
by the linear equations

0 =

K∑
k=1

ajkδnk j = 1, 2, . . . , J (4.17)

The set of coefficients {aij} are positive integers that depend only on the elemental composition of each
species in the mixture. The set of values can be represented by a J × K matrix A with components (A)ji
= aji and the contraint on composition variations can be expressed as the matrix relation

0 = A δn (4.18)

The number M of independent constraints is given by the rank of the constraint matrix

M = rank(A) . (4.19)

Usually, but not always M = J ; in certain cases (e.g., when one or more of the elements is also a species
that is nonreactive or inert), M < J . The constraints on composition for a closed system means that the
number of independent composition variables or reaction coordinates will be less than the number of species

Number of independent reaction coordinates = K −M ≥ 1 (4.20)

for a nontrivial solution to the equilibrium composition.

4.4 Equilibrium as Constrained Minimization

The equilibrium solution at constant temperature and pressure for a closed system can be concisely formu-
lated as finding the solution to the minimum of g subject to constraints.

Minimize g =

K∑
k=1

µknk (4.21)

subject to

bj =

K∑
k=1

ajknk j = 1, 2, . . . , J . (4.22)

(4.23)

where we have implicitly assumed that rank(A) = J and also require nk ≥ 0 for all k. A subtle point in
formulating equilibrium algorithms is that we only need consider the chemically active species and species
that are chemically inert (e.g., argon and other rare gases) are not included in the Gibbs energy or constraint
equations. This reduces the total species count and in some cases, the number of constraint equations.

The classical method of solving constrained minimization problems is the method of Lagrange multi-
pliers which enforces the J constraints by introducing J additional variables (multipliers) λj to create an
unconstrained optimization problem for the objective function L.

L =

K∑
k=1

µknk +

J∑
j=1

λj

(
bj −

K∑
k=1

ajknk

)
. (4.24)

This function has been constructed so that δL = 0 at equilibrium for arbitrary variations δNk and δλk.
The solution to the unconstrained optimization problem must therefore satisfy the following condition at
equilbrium

δL =

K∑
k=1

(
∂L
∂nk

)
ni̸=k,λ

δnk +

J∑
j=1

(
∂L
∂λj

)
n,λi ̸=j

δλj = 0 (4.25)
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Because the variations δnk and δλj are arbitrary (but bounded), this can only be satisfied if each of the
partial derivatives of L must individually vanish at equilibrium. Carrying out the differentiation, we obtain
the following K +J equations in K + J unknowns (n, λ)(

∂L
∂nk

)
ni̸=k,λ

= µk −
J∑

j=1

ajkλj = 0 i = 1, 2, . . . ,K , (4.26)

requiring that nk ≥ 0 for all k and(
∂L
∂λj

)
n,λi ̸=j

= bj −
K∑

k=1

ajknk = 0 j = 1, 2, . . . , J . (4.27)

This is a set of K + J nonlinear equations in K + J unknowns. The nonlinearity arises because of the
dependence of chemical potential on composition. For an ideal gas

µi = µ◦
i (T ) +RT [ln(P/P ◦) + ln(ni/n)] , (4.28)

where the total number of moles (kmol/kg) are

n =

K∑
k=1

nk . (4.29)

For a nonideal gas, one typical approach is to modify this by including an activity coefficient ϕi(T, P,n) that
must be computed from the P (V, T,n) equation of state,

µi = µ◦
i (T ) +RT [ln(P/P ◦) + ln(ni/n) + lnϕi] . (4.30)

The numerical solution of these equations requires the development of a robust algorithm to perform an
iterative procedure to deal with the nonlinearity. An algorithm developed for an ideal mixture can be
adopted for this purpose by method of successive approximation assuming ϕ = constant at each step m with
ϕm+1 = ϕ(P, T,nm), ϕ1 = 1.

The Lagrange multiplier method is one of many techniques for solving chemical equilibrium problems.
Thorough expositions of this and the other solution techniques (with extensions to multi-phase systems)
are given in van Zeggeren and Storey (1970), Smith and Missen (1991). Cantera has several methods that
can be invoked for equilibrium solutions using the Cantera equilibrate function. The documentation
at the Cantera website describes the three solvers that this implements. Solver 0 is based on the element
potential method (Reynolds, 1981, 1986)- fast but not robust; Solver 1 is based on Gibbs energy minimization
(described above), slower than element potentials but very robust; Solver 2 is based on the VCS algorithm
described in Smith and Missen (1991) and is based on transformation to reaction coordinates that is discussed
in the next section.

Numerical Solution of Equilibrium One approach (other than the approaches available in Cantera) to
numerical solution is to use a generic optimization method to minimize the Gibbs energy applying the element
and positivity constraints. For example this can be implemented through sequential quadratic programming
using a package such as sqp in MATLAB. This works acceptably when there are a small number of components
and the mole amounts are not too disparate in size.

At high pressures or low temperature, the solution by sqp requires very small step sizes and even then,
will have difficulty getting accurate results for minor species. There will be large differences between the
magnitude of the constraint coefficients λi in comparison to the mole numbers ni of minor species. This will
cause significant convergence issues and the minor species present in less than some minimum amount will
not be converged to equilibrium values.

For a modest number of species it is possible to refine an sqp solution by performing a Newton-Raphson
iteration starting from preliminary result nsqp. One way to resolve the issues of difference in magnitude in the
variables is to eliminate the constraints by switching to reaction coordinates ξ and carry out unconstrained
minimization.

https://cantera.org/
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4.5 Reaction Coordinates

An alternative to the method of Lagrange multipliers, which increases the dimensionality of the system of
equations to be solved, is to use reaction coordinates, which decreases the dimensionality. The number of
independent reaction coordinates is R = K − J in the most straightforward situations and the reaction
coordinates ξi, i = (1, 2, . . . , R) are bounded but otherwise independent, i.e., unconstrained. If for some
reason the matrix is rank deficient, that is, if rank(A) < min(J,K), then R can be less than K − J .

The key idea is that there is a set of linearly independent R vectors νi that span the subspace of solutions
that satisfy the element constraints. Possible compositions can be specified by forming linear combinations
of these vectors in the proportion ξi.

n = n◦ +

R∑
i

νiξi . (4.31)

Applying the element constraint equations and simplifying, we obtain

Aνi = 0 for i = 1, 2, . . . R (4.32)

which can be written in matrix form

AN = 0 (4.33)

where the columns of the stoichmetric matrix N are the vectors νi

N =
[
ν1 ν2 . . . νR

]
(4.34)

The procedure for computing the elements of N is described in (Smith and Missen, 1991, pp. 23-25). In
MATLAB, this can be accomplished by determining the basis that spans the null space of the matrix A, N
= null(A).

4.6 Equilibrium as Unconstrained Minimization

The reaction coordinates provide a different route to computing chemical equilibrium. The variation in
species can be related to the (independent) variations in reaction coordinates by the stoichiometric coefficients

δn = Nδξ =

R∑
i=1

νiδξi , or δnk =

R∑
i=1

νkiδξi k = 1, 2, . . . ,K νki = (N)k,i . (4.35)

Substituting this into the differential for the Gibbs energy

δg =

R∑
i=1

(
K∑

k=1

µkνki

)
δξi . (4.36)

Because the variations δξk in reaction coordinates are independent and arbitrary, the minimization condition
δg = 0 implies the terms in parentheses must all vanish identically.

∂g

∂ξ
= 0 or

∂g

∂ξi
= 0 i = 1, 2, . . . , R . (4.37)

One possible numerical solution strategy is to apply the Newton-Raphson method to compute updates δξ
to a trial solution for ξ. The algorithm to advance from trial m to m+ 1 is

ξm+1 = ξm + δξm (4.38)

δξm = −
(
∂2g

∂ξ2

)−1

nm

(
∂g

∂ξ

)
nm

(4.39)
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where

nm = n◦ + Nξm . (4.40)

To carry out this computation, we will need to compute the Hessian matrix of g(
∂2g

∂ξ2

)
i,j

=
∂2g

∂ξiξj
, (4.41)

and the gradient of g w.r.t. reaction coordinates(
∂g

∂ξ

)
i

=
∂g

∂ξi
. (4.42)

From the definition of ξ, µi and g, these can be computed explicitly for an ideal solution. An ideal solution
is defined by having a chemical potential with the form

µk = µ∗
k(T, P ) +RT ln(nk/n) (4.43)

An ideal gas is particular case of an ideal solution. The derivatives of the chemical potential needed for the
Hessian and gradient can be computed analytically by first carrying out the differentiation w.r.t. nk

∂g

∂nk
= µ∗

k +RT ln(nk/n) (4.44)

∂2g

∂ni∂nk
=

δik
nk
− 1

n
(4.45)

and then transform to the reaction coordinates

∂

∂ξi
=
∑
k

∂nk

∂ξi

∂

∂nk
(4.46)

=
∑
k

νki
∂

∂nk
(4.47)

∂g

∂ξi
=
∑
k

νki
∂g

∂nk
(4.48)

=

K∑
k=1

νkiµk (4.49)

∂2g

∂ξiξj
= RT

K∑
k=1

K∑
l=1

νkiνlj

(
δkl
nk
− 1

n

)
, (4.50)

(4.51)

where δkl = 1 if k = l and = 0 for k ̸= l. The Hessian is a symmetric, square (dimension R×R) matrix

∂2g

∂ξiξj
=

∂2g

∂ξjξi
(4.52)

with rank R and it can be shown (see Smith and Missen (1991) and the discussion and references in Powers
and Paolucci (2008)) that it has the property of being positive definite which is defined by∑

i

∑
j

∂2g

∂ξiξj
xixj ≥ 0 (4.53)



D
RA
FT

50 CHAPTER 4. EQUILIBRIUM

for any arbitrary vector x = (x1, x2, . . . , xR). In particular this means that a potential equilibrium com-
position point ξ0 where the gradient vanishes, the Gibbs potential Taylor expansion up to second order
is

g(ξ)− g(ξ0) =
∑
i

∑
j

∂2g

∂ξiξj
dξidξj ≥ 0 . (4.54)

This guarantees the Gibbs potential is a minimum at these points and with a bit more effort (Powers and
Paolucci, 2008), that this point is the unique, physically realizable solution. This is true not only for the
case of minimizing the Gibbs potential but is true in general for chemical equilibrium of ideal solutions under
more general constraint conditions other than constant (T, P ). The positive definite property of the Hessian
has implications for the relationship between frozen and equilibrium sound speeds Fickett and Davis (1979).

There are some subtleties to the iteration procedure (see Smith and Missen, 1991, Section 6.4) when
using reaction coordinates and unconstrained optimization.

1. The number of species and elements should be reduced by eliminating inert species. These are species
that do not participate in any reactions but have fixed amounts that affect the total molar concentra-
tion. This will decrease the number of species and reactions coordinates and increase the efficiency of
the computation.

2. A procedure like sqp should be used to get good initial estimates to initialize the Newton-Raphson
iteration, which will only converge reliably if started in the neighborhood of the correct solution.

3. The Newton-Raphson iteration has to be modified to include a damping factor Λ to prevent any species
amounts from ever becoming negative. The modified iteration is

δξm = −Λm

(
∂2g

∂ξ2

)−1

nm

(
∂g

∂ξ

)
nm

, (4.55)

where the value of Λm is selected to be the maximum value less than one such that

nm
k > 0 for all k . (4.56)

Well-behaved equilibrium problems for which the Newton-Raphson method converges will typically
start with values of Λ < 1 which increase with increasing m. The Newton-Raphson algorithm converges
quadratically if Λ = 1 and is often poorly behaved for Λ > 1 so the goal should be to set convergence
criteria so that some specified tolerance on δg to achieve quadratic convergence with a minimum number
of total iterations. Cantera uses a default tolerance of max |δg| < ×10−9 for the standard equilibrate

function.

4. The Hessian will be difficult to invert for systems with a large number of species that have values that
vary over a large range, i.e., problems with a combination of major (O(10−3) or larger) and minor
species present in much smaller amounts (O(10−8) or less. The difficulty is signaled by the Hessian
having a reciprocal condition number that is too small, i.e., typically less than 10−15. The reciprocal
condition number needs to be larger than the smallest change that can be represented by the floating
point arithmetic in order for standard inversion methods to be reliable. For double precision with
64-bit representation, the smallest change for O(1) numbers is on the order of 10−15.

A solution to this is to limit the application of the Newton-Raphson iteration to a set of species larger
than some threshold value. This can be accomplished by sorting the starting guess in decreasing
order of concentration and partitioning the species accordingly. This idea is also a key step in the VCS
procedure. After sorting the species and constructing a proper set of basis vectors for the stoichiometric
coefficient matrix N, the inverse Hessian is approximated analytically assuming that it is diagonal in
this basis. This approximation is sketched out in Smith and Missen (1991) who give references to the
original papers which contain the details.

https://cantera.org/
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For mixtures that have exceptionally disparate values of composition variables, a continuation method has
been developed by Pope (2004). This technique is also applicable when additional constraints on composition
are employed. The method has been extended to multiphase mixtures by Scoggins and Magin (2015) and
applied to ionized gases and re-entry situations.

Provide code example using Cantera of how to carry out equilibrium computation using the methods
described above.

4.7 Element Potentials

A technique popularized by Reynolds and used in the STANJAN program (Reynolds, 1981, 1986) then later
incorporated into CHEMKIN (Lutz et al., 1996), starts from the observation that at equilibrium (4.26) can
be interpreted as a method for computing the chemical potentials of each species as a weighted sum of
element potentials which are equal to the Lagrange multipliers λj

µk =

J∑
j=1

ajkλj . (4.57)

If the element potentials are known, then the molar concentrations of each species can be computed as

nk = n exp
(
− µ∗

k +

J∑
j=1

ajkλj

)
(4.58)

where from (4.28) we have defined

µ∗
k = µ◦

k(T ) +RT ln(P/P ◦) . (4.59)

The composition constraints (4.27) becomes

bj = n

K∑
k=1

ajk exp
(
− µ∗

k +

J∑
j=1

ajkλj

)
, (4.60)

and the computation (4.29) of n requires

1 =

K∑
k=1

exp
(
− µ∗

k +

J∑
j=1

ajkλj

)
. (4.61)

The solution method developed by Reynolds is to formulate an initial guess for the composition and element
potentials, then to use the method of steepest descents followed by Newton-Raphson iteration to solve for
the equilibrium values of the element potentials. His solution method treats a mixture of ideal gases and
solid phases, treating the solid phases as incompressible and with negligible volume.

4.8 Equilibrium Constants

The equilibrium condition (4.37) leads to the following set of equations that must be satisfied at equilibrium

0 =

K∑
k=1

µiνki for i = 1, 2, . . . , R . (4.62)
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As discussed above, the numbers νki are the stoichiometric coefficients for the ith reaction coordinate. In
terms of the stoichiometric coefficients corresponding a reaction coordinate i and suppressing the reaction
coordinate index, the equilibrium condition can be written

0 =

K∑
k=1

νk (µ
◦
k(T ) +RT lnPk) (4.63)

and this can be simplified to separate the pressure and temperature dependence as follows

P ν1
1 P ν2

2 . . . P νK

K ≡
K∏

k=1

P νk

k = exp

(
−∆G◦

RT

)
∆G◦ =

K∑
k=1

νkµ
◦
k(T ) . (4.64)

The expression on the right hand side is known as the equilibrium constant and is a function only of
temperature

Kp(T ) = exp

(
−∆G◦

RT

)
. (4.65)

In order to apply these equations to solve for the equilibrium composition, the J element conservation
constraints still need to be employed in order compute the species mole fractions (and partial pressures Pk

= XkP ) from the reaction coordinates.

Xk =
nk

n
(4.66)

nk = n◦
k +

R∑
i=1

νkiξi (4.67)

n =

K∑
k=1

nk =

K∑
k=1

n◦
k +

K∑
k=1

R∑
i=1

νkiξi (4.68)

The idea of reaction coordinates applies equally to individual reactions or a set of reaction for which the
stoichiometric coefficients are determined by balanced reaction equations. For a single reaction, the com-
putation of equilibrium constants is particularly straighforward and is used to relate forward and reverse
reaction rates as discussed in Section 10.
Add an example using Cantera for a realistic equilibrium reaction such as water-gas shift, dissociation-
recombination of diatomic and polyatomic species. Discuss van’t Hoff equation and L’Chatelier’s rule to
equilibrium constants.

4.9 Partition Function Method

The statistical treatment of an ideal gas mixture is a straightforward extension of the statistical treatment
of single molecules. The molecules are non-interacting so the system partition function for a mixture of
K distinct molecules is simply the product of the molecular partition functions qk for the Nk molecules of
species k in the volume V

Q =

K∏
k=1

qNk

k

Nk!
. (4.69)

Using the definition of Helmholtz energy (3.1) and chemical potential (2.37) and applying Stirling’s approx-
imation lnN ! ∼ N lnN −N we obtain

µk = −kbT ln

(
qk
Nk

)
. (4.70)
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For a single equilibrium relation, the equilibrium condition∑
k

νkµk = 0 , (4.71)

is equivalent to ∏
k

qvkk =
∏
k

Nνk

k (4.72)

Each molecular partition function has the form of the product of the translational function qtr and the
internal function qint. The translational functions all have the form

qtr,k = V

(
2πmkkBT

h2

)3/2

(4.73)

and the internal function qint,k depends on the specific molecular or atomic structure as discussed previously.

Example A particularly simple case is the ionization of an atom, for example argon

Ar −→←− Ar+ + e− (E1)

The dissociation and subsequent recombination of Ar behind strong shock waves has been extensively in-
vestigated and used as a light source in high explosive experimentation (Davis et al., 2006). If we disregard
the electronic excitation states of Ar and Ar+, the internal partition functions are qint,Ar = gAr, qint,Ar+

= gAr+ exp(−εI/kBT ), and qint,e− = ge− ; where εI is the ionization energy, The conservation of charge
implies that Ne− = NAr+ and expressing the concentrations in terms of partial pressures, the equilibrium
relationship can be written as

PAr+Pe−

PAr
= kBT

(
2πmekBT

h2

)3/2
gAr+ge−

gAr
exp(−εI/kBT ) = Kp(T ) , (4.74)

where Kp is equilibrium constant for this reaction. Using the classical thermodynamic approach, this is
equivalent to the equilibrium constant computed as

Kp = exp

(
−
∑

i νiµ
◦
i

RT

)
(4.75)

Alternatively, in terms of the fraction ϕ of ionized atoms and the total pressure P , the partition function
solution is

ϕ2

1− ϕ2
=

kBT

P

(
2πmekBT

h2

)3/2
gAr+ge−

gAr
exp(−εI/kBT ) . (4.76)

The numerical values for the degeneracy factors can be obtained by evaluating the symmetry of the
electronic states gAr = 1, gAr+ = 6, ge− = 2. The ionization energy is 15.76 eV, equivalent to 182,879 K.
These formulas are a specific case of the Saha relation for ionization equilibrium. Similar expressions can
be derived for molecular reactions by using the appropriate internal partition functions and degeneracies,
examples are given in McQuarrie (1976).
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Chapter 5

Thermodynamic Property Representation

“Thermodynamics is useless without data or correlations intended to ap-
proximate data.” - Van Ness and Abbott (1982)

This chapter describes how the ideal gas thermodynamic properties are rep-
resented as a function of temperature in the Cantera program and procedures
for deriving polynomial fits from tabulated data.

For ideal gas mixtures, the thermodynamic properties are determined by the mixture composition and
the molar properties of each species (E,H, S,A,G)i. These properties can be derived from the molar specific
heat CP,i(T ) as a function of temperature, the enthalpy standard state value H◦

i and the entropy standard
state value S◦

i . The mass specific properties are computed from the molar properties by dividing by the
molar mass W⟩. As discussed in the section on ideal gas thermodynamics, the construction of the thermo-
dynamic properties can be accomplished by using the First Law of Thermodynamics and the definitions of
the thermodynamic potentials. By basing all the properties on a minimal set of independent information,
we ensure that the results are thermodynamically consistent.

The Cantera software allows several methods of specifying the thermodynamic properties. The most
commonly used technique for high-temperature gases is a piecewise polynomial representation for the specific
heat at constant pressure supplemented by values of enthalpy and entropy at the reference condition. The
most common form of the polynomials are a pair of 4th-order polynomials that cover two temperature ranges.
In non-dimensional form, the molar specific heat at constant pressure is represented by

CP

R
=


∑4

n=0 anT
n Tmin ≤ T ≤ Tmid∑4

n=0 bnT
n Tmid ≤ T ≤ Tmax

(5.1)

for each species. The constants an and bn have to be determined by fitting the polynomial representation to
tabular data that is either determined by experiment or computed from statistical mechanics. The values of
the coefficients also have to be adjusted so that the specific heat is continuous at the midpoint temperature
Tmid.

This polynomial representation of the specific heat dependence on temperature and the method used
to derive the other properties was widely used in developing the database used with the NASA chemical
equilibrium computer program (Gordon and McBride, 1976, McBride et al., 1993, Gordon and McBride,
1994, McBride and Gordon, 1996) and subsequently in the CHEMKIN software Kee et al. (1980, 1987) and
adopted by many other researchers (e.g., the Burcat database at DLR) for representing ideal gas thermo-
dynamic properties. For this reason, these are usually known as NASA-style polynomial representations of
thermodynamic data. There are two versions, the original version (5.1) requires 7-coefficients per tempera-
ture interval and only allow 2 two intervals to cover the range from 200 or 300 to 5000-6000 K. A more flexible
version was developed McBride et al. (2002) by NASA to enable fitting over a wider temperature range. This
version is known as the NASA-9 format and uses 9 coefficients, 7 for the polynomial representation of specific
heat and two for the reference data.

CP

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4 (5.2)
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The inclusion of negative exponents in the polynomial enables a higher quality of fit in some cases. For the
9-coefficient fits, any number of temperature ranges are allowed although usually three are sufficient to cover
the range from 200 to 20000 K.

The ideal gas enthalpy can be found by integrating the specific heat since dH = CP dT for an ideal gas.

H(T ) =

∫ T

T◦
CP (T

′) dT ′ +∆fH
◦ (5.3)

where the constant of integration is the heat of formation ∆fH
◦ at the standard thermochemical state of

T ◦ = 298.15 K, P ◦ = 1 bar (one atm in older data sets) for the ith species. Inserting the functional form of
(5.1) and integrating the polynomial term-by-term, the nondimensional enthalpy is

H

RT
=


∑4

n=0

anT
n

n+ 1
+

a5
T

Tmin ≤ T ≤ Tmid

∑4
n=0

bnT
n

n+ 1
+

b5
T

Tmid ≤ T ≤ Tmax

(5.4)

The constant ai5 is determined by evaluating the enthalpy at the standard state to obtain

∆fH
◦ = H(T ◦) (5.5)

so that

a5 =
∆fH

◦

R
−

4∑
n=0

an
n+ 1

(T ◦)
n+1

(5.6)

The constant b5 is determined by requiring continuity of the two representations at the midpoint temperature.
The entropy can be determined by using the fundamental relation of thermodynamics

dH = T dS − V dP (5.7)

This be written for an ideal gas as

dS =
CP dT

T
−RdP

P
(5.8)

For a single species in a gas mixture, the pressure is interpreted as the partial pressure of that species Pi =
XiP , and the entropy differential is integrated to obtain

S(T, Pi) = S◦(T )−R ln

(
Pi

P ◦

)
(5.9)

The pressure-independent portion of the entropy is

S◦ =

∫ T

T◦

CP (T
′)

T ′ dT ′ + S◦(T ◦) (5.10)

Using the polynomial representation of the specific heats and integrating term by term, we have

S◦

R
=


a0 ln(T ) +

∑4
n=1

anT
n

n
+ a6 Tmin ≤ T ≤ Tmid

b0 ln(T ) +
∑4

n=1

bnT
n

n
+ b6 Tmid ≤ T ≤ Tmax

(5.11)
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where a6 is determined from the species entropy evaluated at the standard state.

S(T ◦, P ◦) = S◦(T ◦) (5.12)

a6 =
S◦(T ◦)

R
−

(
a0 ln(T

◦) +

4∑
n=1

an(T
◦)n

n

)
(5.13)

The constant b6 is determined by requiring continuity at the midpoint temperature. The preceding results
illustrate the procedure for using the NASA-7 fits, the procedure for the NASA-9 fits is analogous.

Using the definitions of the thermodynamic potentials, all other properties and potentials can be found.
Specific heat at constant volume:

CV = CP −R (5.14)

Internal energy:

E = H −RT (5.15)

Gibbs energy:

G = H − TS (5.16)

Helmholtz energy:

A = E − TS (5.17)

5.1 Specification for Cantera input

The thermodynamic properties CP /R, H/RT , and S/R for each species are specified in the Cantera mech-
anism (.cti file). For each species in the .cti file that uses the NASA-style polynomials, Cantera requires
14 coefficients and three temperatures (Tmin, Tmid, Tmax). The NASA-7 format of the data in the Cantera
.cti file is

thermo = (NASA( [Tmin, Tmid], [a0, a1, a2, a3, a4, a5, a6]),

NASA( [Tmid, Tmax], [b0, b1, b2, b3, b4i, b5, b6]) )

As an example, a set of NASA-7 coefficients for CH3CHCHCHO (2-Butenal) is shown in Figure 5.1. The

species( name = "CH3CHCHCHO",

atoms = " C:4 H:6 O:1 ",

thermo = (

NASA( [ 200.00, 2500.00], [ -2.696365560E-01, 4.341252850E-02,

-3.073846170E-05, 1.115698570E-08, -1.581997240E-12,

-1.483378370E+04, 2.817336550E+01] ),

NASA( [ 2500.00, 5000.00], [ 8.318851910E+01, -6.599805600E-02,

2.896794850E-05, -5.456349720E-09, 3.760599270E-13,

-6.854568290E+04, -4.704570180E+02] )

),

note = "CIT/08" )

Figure 5.1: Example usage of NASA-7 thermodynamic coefficients with Cantera for 2-Butenal.

coefficients given in this example were obtained by performing a least-squares fit to tabulated data generated
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by evaluating at fixed temperature intervals the statistical mechanical functions with inputs from a semi-
empirical model of the molecular structure. The methodology behind the computation and fitting is described
in the subsequent sections.

The NASA-9 format is similar to NASA-7 with two additional coefficients per temperature range and
multiple ranges. The coefficients a7, b7, . . . are used for the enthalpy expression and a8, b8, . . . are for the
entropy expression. These are determined as in the NASA-7 cases by using a combination of standard state
values and enforcing continuity at the common boundaries of the temperature ranges.

thermo = (NASA9( [T1, T2],

[a0, a1, a2,

a3, a4, a5,

a6, a7, a8]),

NASA9( [T2, T3],

[b0, b1, b2,

b3, b4i, b5,

b6, b7, b8]) ,

. . .

As an example, a set of NASA-9 coefficients for O2 is shown in Figure 5.2. These coefficients were obtained

thermo=(NASA9([200.00, 1000.00],

[-3.425563420E+04, 4.847000970E+02, 1.119010961E+00,

4.293889240E-03, -6.836300520E-07, -2.023372700E-09,

1.039040018E-12, -3.391454870E+03, 1.849699470E+01]),

NASA9([1000.00, 6000.00],

[-1.037939022E+06, 2.344830282E+03, 1.819732036E+00,

1.267847582E-03, -2.188067988E-07, 2.053719572E-11,

-8.193467050E-16, -1.689010929E+04, 1.738716506E+01]),

NASA9([6000.00, 20000.00],

[ 4.975294300E+08, -2.866106874E+05, 6.690352250E+01,

-6.169959020E-03, 3.016396027E-07, -7.421416600E-12,

7.278175770E-17, 2.293554027E+06, -5.530621610E+02]))

Figure 5.2: Example usage of NASA-9 thermodynamic coefficients with Cantera for O2.

from the compilation in McBride et al. (2002) and find use in computing high temperature equilibrium for
high-speed flow, planetary re-entry, shock tube and shock tunnel applications.

In the reaction mechanisms distributed with the Toolbox, most species have NASA-7 fits with typical
values of Tmin = 200 K, Tmid = 1000 K, and Tmax = 5000 to 6000 K. This temperature range is necessary for
many shock and detonation problems, particularly in high-enthalpy flow. One of the motivations behind the
present section is the need to create data sets that extend to the higher temperatures that occur in typical
shock and detonation problems. There are two NASA-9 data sets provided as part of the SDT website,
airNASA9noions.cti which includes all species for high-temperature air except ions and airNASA9ions.cti

which includes the ions.

Cantera 2.5 YAML Format

The new standard format for input files introduced for Cantera 2.5 is based on the YAML syntax. Files based
on the Chemkin legacy format or .cti format can be converted using the Cantera supplied utilities described
in https://cantera.org/tutorials/legacy2yaml.html. The YAML format is more flexible than the .cti
file format but input data for the NASA7 or NASA9 polynomials is identical to that used in the legacy
formats. For example, the NASA7 thermo data for the CH3CHCHCHO (2-Butenal) example is represented
as

http://shepherd.caltech.edu/EDL/PublicResources/sdt/cti_mech.html
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/airNASA9noions.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/airNASA9ions.cti
https://cantera.org/tutorials/legacy2yaml.html
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species:

- name: CH3CHCHCHO

composition: {C: 4, H: 6, O: 1}

thermo:

model: NASA7

temperature-ranges: [200.0, 1000.0, 5000.0]

data:

- [4.81128032, 5.04043764e-03, 4.54497545e-05, -5.04331802e-08, 1.6700052e-11,

1.12352054e+04, 9.54134078]

- [1.11829874, 0.0317936187, -1.38771283e-05, 2.7330487e-09, -1.99493623e-13,

1.14155759e+04, 24.4646241]

note: Fit by JES 14-Jul-2018 12:06:24

The NASA9 thermo data for the O2 (2-Butenal) example is represented as

species:

- name: O2

composition: {O: 2}

thermo:

model: NASA9

temperature-ranges: [200.0, 1000.0, 6000.0, 2.0e+04]

data:

- [-3.42556342e+04, 484.700097, 1.119010961, 4.29388924e-03, -6.83630052e-07,

-2.0233727e-09, 1.039040018e-12, -3391.45487, 18.4969947]

- [-1.037939022e+06, 2344.830282, 1.819732036, 1.267847582e-03, -2.188067988e-07,

2.053719572e-11, -8.19346705e-16, -1.689010929e+04, 17.38716506]

- [4.9752943e+08, -2.866106874e+05, 66.9035225, -6.16995902e-03, 3.016396027e-07,

-7.4214166e-12, 7.27817577e-17, 2.293554027e+06, -553.062161]

note: Ref-Elm. Gurvich,1989 pt1 p94 pt2 p9. [tpis89]

5.2 Resources for Thermodynamic Data

The thermodynamic parameters for each species are specified in the Cantera mechanism file and based on
the NASA format (McBride and Gordon, 1992, McBride et al., 1993, 2002). Compilations of this data have
been made for many species through the JANAF-NIST project (Chase et al., 1998) and are available on-
line as PDF file. Coefficients of fits are available from NASA, NIST, BURCAT1, enthalpies of formation
for many species relevant to combustion are available at ANL. Cantera provides a utility (ck2cti.py) to
convert legacy data sets to its .cti file format. The original NASA format only used two temperature ranges
for the polynomial fits and seven coefficients for each temperature range. The newer versions of the NASA
polynomials use a larger number of terms (there are 9 coefficients per temperature interval instead of 7) and
multiple temperature ranges. Cantera 2.3 and 2.4 can support both specifications.

The SDToolbox thermodynamic resource webpage has links to sources of data, documentation on com-
putation of polynomial coefficients, multiple versions of the NASA databases and programs for checking,
fitting, and updating databases of polynomial fits. The following programs are provided on the SDToolbox
website.

thermo check.py This Python script scans a Cantera .cti mechanism file to determine the size of jumps
in thermodynamic properties and derivatives. Identifies species with largest Cp/R jump. Provides
routines for finding all jumps and plotting thermodynamic properties of individual species. Only
works for NASA-7 polynomials with the current version of Cantera 2.3 and 2.4

thermo refit.m Refits thermodynamic data to eliminate jumps in properties at midpoint temperature.
Works with a list of species created by thermo check.py or individual species specified by user. Creates

1This database is now maintained by Dr. Elke Goos of the DLR Stuttgart

https://srd.nist.gov/JPCRD/jpcrdM9.pdf
https://srd.nist.gov/JPCRD/jpcrdM9.pdf
https://www1.grc.nasa.gov/research-and-engineering/ceaweb/
https://webbook.nist.gov/
http://www.dlr.de/vt/en/desktopdefault.aspx/tabid-7603/12862_read-32379/
https://atct.anl.gov
http://shepherd.caltech.edu/EDL/PublicResources/sdt/thermo.html
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_check.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_refit.m
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a new NASA-7 fit and data structure for polynomial coefficients, writes output files in three formats
(cti, NASA-7 and NASA-9).

thermo replace.m Reads new thermodynamic data fits generated by thermo refit.m and batch processes
replaces the data in the NASA format data file using the list generated by check thermo.py. Currently
only works for NASA-7 polynomials.

thermo fit.m fit tabular thermodynamic data to generate NASA-7 polynomial fits and writes files in three
formats. An example input file is provided for 2-butenal

The .cti files provided on the SDToolbox reaction mechanism webpage were all checked and in some cases,
selected species were refit to eliminate midpoint temperature discontinuities.

5.3 Least Squares Fit for Piecewise Thermodynamic Representation

Using the partition function definitions of thermodynamic properties, (3.71)-(3.73), we can calculate the
specific heat, the enthalpy, and the pressure-independent portion of the entropy as functions of temperature.
Since a large number of transcendental functions and sums have to be computed for each temperature, it is
computationally expensive to evaluate the partition functions and derivatives each time a thermodynamic
property is needed in a numerical computation. To circumvent this, the thermodynamic properties are eval-
uated ahead of time at fixed temperature increments over the range of interest and fit to an approximating
polynomial that is computationally inexpensive to evaluate. For example, the tables in the JANAF compi-
lation are generated directly from evaluating the partition function expressions and the NASA polynomial
coefficients are obtained by fitting these data. In order to obtain reasonable fits of polynomials to specific
heats over a wide temperature range, the temperature range is divided into segments and data on each
segment fit separately. The method developed by NASA in the 1960s, which is still widely used today, is to
divide the temperature range into two segments that share a common mid-point temperature Tmid.

Of the many ways of computing the polynomial fit coefficients, the most suitable method is to simul-
taneously optimize the fit to all three properties in the least-squares sense with the additional constraints
of continuity at the matching temperature, Tmid. Other constraints, such as continuity of derivatives and
high and low temperature limit boundary conditions, can also be considered. A common past practice has
been to evaluate the properties from the partition function expressions at at 100 K intervals from 200 K to
3000-6000 K and match the two temperature ranges at 1000 K.

An example of the statistical thermodynamic data and the fit for cP /R with Tmin = 200 K, Tmid = 2500
K, and Tmax = 5000 K is shown in Figure 5.3. This figure was constructed using the coefficients from
the 2-Butenal (CH3CHCHCHO) example shown in Figure 5.1. The piecewise function was fitted using
a constrained least-squares method in MATLAB. All three piecewise functions for the non-dimensional
properties, cPi(T )/R, hi(T )/RT , and s◦i (T )/R, were simultaneously optimized and constrained for the best
overall fit. The constraints include continuity for hi(T )/RT and s◦i (T )/R and continuity for both cPi(T )/R
and its derivatives. Also, the boundary point constraints for cPi(T )/R and hi(T )/RT are included. There are
a number of different possible combinations of constraints; however, care must be taken not to over-constrain
the system of equations to be optimized.

The constrained optimization problem for a piecewise fit is formulated in matrix form with two non-square
systems of equations, one for the least squares minimization

Ax = b (5.18)

and one for the constraint equations

Aeqx = beq (5.19)

where x is the 14 × 1 vector of coefficients

x = [a0i, a1i, ..., a6i, b0i, b1i, ..., b6i]
T (5.20)

with [.]T representing the transpose. After constructing the matrices A, Aeq b, and beq, MATLAB’s lsqlin(),
iterative constrained least-squares optimization function is used to find the best fit for the coefficient vector

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_replace.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_fit.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/twobutenal.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/cti_mech.html
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Figure 5.3: Comparison of cP /R for 2-Butenal (CH3CHCHCHO) calculated from the statistical mechanics
representation (points) to the piecewise polynomial fit (solid lines).

x. The constraints are handled by the method of Lagrange multipliers and the solution is iterated until
user-specified convergence criterion are met.

The general form of the linear least-squares problem without constraints can be written as the matrix
equation

Ax = b (5.21)

where A is dimension m × n, x is dimension n × 1, and b is dimension m × 1. The dimension m depends
on the number of temperature intervals that are used to evaluate the partition function expressions. The
standard solution method is to construct a square (n × m) linear system by augmenting the matrix A and
using a standard numerical linear algebra routine to find the unknown vector x.

(ATA)x = (AT b) (5.22)

However, for the constrained problem, additional steps are required, which MATLAB conveniently handles
through the function lsqlin().

The user-defined input for the fitting program includes the temperature ranges, the standard state en-
thalpy of formation and standard state entropy, the species name, and the species molecular composition.

The program is only available as a MATLAB script thermo fit.m, which uses a routine poly cp.m to carry
out the constrained optimization to fit the specific heat polynomial coefficients (NASA-7 form only). Input for
the program is tabular thermodynamic data2 and molecular constants in a MATLAB script. The thermody-
namic input data for the example molecule 2-Butenal is in the script twobutenal.m. The output from the pro-
gram fitting program includes the coefficients ani and bni, optimization diagnostics, and goodness of fit mea-
sures. The output files for the example are CH3CHCHCHO NASA7.dat and CH3CHCHCHO NASA9.dat,
in the NASA formats and CH3CHCHCHO.cti in the Cantera .cti file format.

All of these files can be found at the Shock and Detonation Toolbox website. By independently obtaining
thermodynamic data from tables, molecular modeling and statistical mechanics software such as LINGRAF,
one may easily adapt this MATLAB program for constructing fits for any desired species.

2We thank Siddharth Dasgupta of Caltech for computing this data using the Lingraf program developed by the Goddard
group.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_fit.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/poly_cp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/twobutenal.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/2-Butenal/CH3CHCHCHO_NASA7.dat
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/2-Butenal/CH3CHCHCHO_NASA9.dat
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/2-Butenal/CH3CHCHCHO.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/index.html
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Part II

Equilibrium and Frozen Flows
This part of these notes describes numerical methods and applications for flows that can be treated using

the approximation of either complete chemical equilibrium or fixed (frozen) chemical composition. These
are situations that can be modeled using mass, momentum and energy conservation without considering
chemical kinetics or transfer of energy between molecular and translation motions. The methods can be used
to model shock waves and detonation waves as jumps or discontinuities. Expansion waves can be modeled
when the flow either remains in chemical equilibrium through shifting composition or else the composition
remains fixed. These basic wave processes can be combined to create approximate but very useful models
for many applications such as shock tubes, shock tunnels, propulsion systems based on detonation waves,
rocket motors, and various wave configurations that can be analyzed using either steady flows or simple wave
matching methods.
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Chapter 6

Jump Conditions

We present a brief summary of the shock jump conditions and the standard
formulation of the graphical solutions. As discussed in classical texts on
gas dynamics, Courant and Friedrichs (1948), Shapiro (1953), Liepmann
and Roshko (1957), Becker (1968), Thompson (1972), Zel’dovich and Raizer
(1966), an ideal shock or detonation wave has no volume and locally can be
considered a planar wave if we ignore the structure of the reaction zone.

6.1 Introduction

A wave propagating with speed U into gas at state 1 moving with velocity u1 is shown in Fig. 6.1a. This
can be transformed into a stationary wave with upstream flow speed w1 and downstream flow speed w2,
Fig. 6.1b.

w1 = Us − u1 (6.1)

w2 = Us − u2 (6.2)

Using a control volume surrounding the wave and any reaction region that we would like to include in our

lab frame     wave frame

U s

11 22

u2
w1 w2

u1

Figure 6.1: Cartoon depiction of the transformation from the laboratory to the wave fixed reference frame.

computation, the integral versions of the conservation relations can be used to derive the jump conditions
relating properties at the upstream and downstream ends of the control volume. The simplest way to carry
out this computation is in a wave-fixed coordinate system considering only the velocity components normal
to the wave front. The resulting relationships are the conservation of mass

ρ1w1 = ρ2w2 , (6.3)

momentum

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 , (6.4)
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and energy

h1 +
w2

1

2
= h2 +

w2
2

2
. (6.5)

These equations apply equally to moving and stationary waves as well as to oblique waves as long as the
appropriate transformations are made to the wave-fixed coordinate system. In addition to the conservation
equations (6.3-6.5), an entropy condition must also be satisfied.

s2 ≥ s1 (6.6)

For reacting flows in ideal gases, the entropy condition is usually automatically satisfied and no additional
constraint on the solution of (6.3-6.5) is imposed by this requirement. Considerations about entropy variation
as a function of wave speed do enter into the analysis of detonation waves and these are discussed in the
subsequent section on detonation analysis.

In general, an equation of state in the form h = h(P, ρ) is required in order to complete the equation set.
We will consider the specific case of an ideal gas. The equation of state for this case is given by combining
the usual P (ρ, T ) relationship with a representation of the enthalpy. The usual P (ρ, T ) relationship is

P = ρRT (6.7)

where the gas constant is

R =
R
W

(6.8)

and the average molar mass is

W =

(
K∑
i=1

Yi

Wi

)−1

(6.9)

with the gas compositions specified by the mass fractions Yi. The enthalpy of an ideal gas can be expressed
as

h =

K∑
i=1

Yihi(T ) (6.10)

The enthalpy of each species can be expressed as

hi = ∆fhi +

∫ T

T◦
cP,i(T

′) dT ′ (6.11)

where ∆fhi is the heat of formation, cp,i is the specific heat capacity, and T ◦ is a reference temperature,
usually taken to be 298.15 K. The thermodynamic parameters for each species are specified in the Cantera
data input file. The methodology and software for the generation of thermodynamic data and polynomial
fits is described in detail in Section 5.

Formulation of Jump Conditions in Terms of Density Ratio

An alternate way to look at the jump conditions is to write them as a set of equations for pressure and
enthalpy at state 2 in terms of the density ratio ρ2/ρ1 and the normal shock speed w1

P2 = P1 + ρ1w
2
1

(
1− ρ1

ρ2

)
(6.12)

h2 = h1 +
1

2
w2

1

[
1−

(
ρ1
ρ2

)2
]

(6.13)

The equation of state h(P, T ) (6.10) provides another expression for h2. This naturally leads to the idea of
using functional iteration or implicit solution methods to solve for the downstream state 2. A method based
on solving these equations for a given value of w1 and state 1 is discussed in Section 8.1.
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6.2 Chemical Composition

In order to completely determine the state of the gas and solve the jump conditions, we need to know the
composition of the gas (Y1, Y2, . . . , Yk). In the context of jump condition analysis, we only consider two
possible cases, either a nonreactive shock wave or complete reaction to an equilibrium state. (The more
general problem of finite rate chemical reaction rates and reaction zone structure is considered in Section 9.)
Although this assumption may seem quite restrictive, these two cases are actually very useful in analyzing
many situations. Frozen composition is usually presumed to correspond to the conditions just behind any
shock front prior to chemical reaction taking place. Equilibrium composition is usually presumed to occur
if the reactions are fast and the reaction zone is thin in comparison with the other lengths of interest in the
problem.

The two possibilities for the downstream state 2 are:

1. Nonreactive or frozen composition

Y2i = Y1i

The frozen composition case assumes that the composition does not change across the shock, which is
appropriate for nonreactive flows (moderately strong shocks in inert gases or gas mixtures like air) or
the conditions just downstream of a shock that is followed by a reaction zone. In this case, from the
equation for enthalpy (6.10), the state 2 enthalpy will just be a function of temperature

h2 = h(T2) =

K∑
i=1

Y1ihi(T2) (6.14)

2. Completely reacted, equilibrium composition.

Y2i = Y eq
i (P, T )

The case of a completely reacted state 2, the equilibrium mixture is used to treat ideal detonation waves
or other reactive waves like bow shocks on re-entry vehicles. In order to determine the equilibrium
composition, an iterative technique must be used to solve the system of equations that define chemical
equilibrium of a multi-component system. In the present software package, we use the algorithms built
into Cantera to determine the equilibrium composition. In this case, the state 2 enthalpy will be a
function of both temperature and pressure

h2 = h(T2, P2) =

K∑
i=1

Y eq
2i (P2, T2)hi(T2) (6.15)

6.3 Rayleigh Line and Hugoniot

The jump conditions are often transformed so that they can be represented in P -v thermodynamic coordi-
nates. The Rayleigh line is a consequence of combining the mass and momentum conservation relations

P2 = P1 − ρ21w
2
1 (v2 − v1) (6.16)

The slope of the Rayleigh line is

P2 − P1

v2 − v1
=

∆P

∆v
= −

(
w1

v1

)2

= −
(
w2

v2

)2

(6.17)

where v = 1/ρ and ∆P = P2 − P1, etc. The slope of the Rayleigh line is proportional to the square of the
shock velocity w1 for a fixed upstream state 1. The Rayleigh line must pass through both the initial state 1
and final state 2.



D
RA
FT

68 CHAPTER 6. JUMP CONDITIONS

If we eliminate the post-shock velocity, energy conservation can be rewritten as a purely thermodynamic
relation known as the Hugoniot or shock adiabat.

h2 − h1 = (P2 − P1)
(v2 + v1)

2
(6.18)

or

e2 − e1 =
(P2 + P1)

2
(v1 − v2) (6.19)

From the previous discussion on chemical composition, we can write the enthalpy as a function of volume
and pressure h2(v2, P2) since temperature is related to pressure and volume by

v2 =
R2T2

P2
(6.20)

From the definition of internal energy e = h− Pv, so e2 = e2(P2, v2). In principle, this means we can solve

v

P

1

Shock

v

P

1

detonation

nonphysical

deflagration

(a) (b)

Figure 6.2: Hugoniots (a) Shock wave propagating in a non-exothermic mixture or a mixture with frozen
composition. (b) Shock wave propagating in an exothermic mixture.

either (6.18) or (6.19) to obtain the locus of all possible downstream states P2(v2) for a fixed upstream state.
The result P (v) is referred to as the Hugoniot curve or simply Hugoniot. For a frozen composition or an
equilibrium composition in a non-exothermic mixture like air, Fig. 6.2a, the Hugoniot curve passes through
the initial state. For an equilibrium composition in an exothermic mixture like hydrogen-air, Fig. 6.2b, the
chemical energy release displaces the Hugoniot curve from the initial state. The Rayleigh line slope (6.17)
is always negative and dictates that the portion of the Hugoniot curve between the dashed vertical and
horizontal lines (Fig. 6.2b) is nonphysical. The nonphysical region divides the Hugoniot into two branches:
the upper branch represents supersonic combustion waves or detonations, and the lower branch represents
subsonic combustion waves or deflagrations. The properties of the detonation and deflagration branches are
discussed in more detail in Section 6.5.

The advantage of using the Rayleigh line and Hugoniot formulation is that solutions of the jump con-
ditions for a given shock speed can be graphically interpreted in P -v diagram as the intersection of the
Hugoniot and a particular Rayleigh line. This is discussed in the next sections for shock and detonation
waves.

See the following examples of Rayleigh and Hugoniot lines:
MATLAB Demos:
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demo RH.m, demo RH air.m, demo RH air eq.m, demo RH air isentropes.m, and demo RH CJ isentropes.m
Python Demos:
demo RH.py, demo RH air.py, demo RH air eq.py, demo RH air isentropes.py

6.4 Shock Waves - Frozen and Equilibrium

Examples of the use of the Shock and Detonation Toolbox to find downstream states for shock waves in air
are shown in Figure 6.3. The Rayleigh line and the Hugoniots are shown for two ranges of shock speed.
For shock speeds less1 than 1000 m/s (the Rayleigh line shown in Fig. 6.3a), the frozen and equilibrium
Hugoniots are indistinguishable. At these shock speeds, only a small amount of dissociation occurs behind
the shock front so that the composition is effectively frozen. Under these conditions, solutions to the shock
jump conditions are only slightly different from the analytical results for constant specific heat ratio (perfect
gas approximation) given in Appendix A.1. Fig. 6.3a was obtained using the MATLAB script demo RH air.

For shock speeds between 1000 m/s and 3500 m/s, Fig. 6.3b, the differences between frozen and equi-
librium Hugoniot curves becomes increasing apparently with increasing pressure at state 2 corresponding to
increasing shock speeds. Fig. 6.3b was obtained using the MATLAB script demo RH air eq.m.
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Figure 6.3: The Rayleigh line and Hugoniot for air with initial pressure of 1 atm and initial temperature
of 300 K. demo RH air.m (a) Frozen composition Hugoniot and Rayleigh line for a shock propagating at
1000 m/s. (b) Comparison of frozen and equilibrium composition Hugoniots and Rayleigh line for a shock
propagating at 3500 m/s. demo RH air eq.m

Entropy and Sound Speeds

According to (6.6), the entropy downstream of the shock wave must be greater than or equal to the entropy
upstream. For nonreactive flow, this can be verified by computing the isentrope

s(P, v, Y) = constant (6.21)

with either fixed (frozen) composition Y2 = Y1 or shifting (equilibrium) composition Y2 = Yeq(P, v).
The slope of the isentrope can be interpreted in terms of the sound speed a

∂P

∂v

∣∣∣∣
s

= −
(a
v

)2
(6.22)

1There is no strict rule about when dissociation begins to be significant. The extent of dissociation changes continuously
with shock strength and is also dependent on pressure. The choice of 1000 m/s is arbitrary and chosen for convenience for this
specific example.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air_isentropes.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_eq.m
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Both the frozen (see MATLAB function soundspeed fr)

a2f = −v2 ∂P

∂v

∣∣∣∣
s, Y

(6.23)

and equilibrium (see MATLAB function soundspeed eq)

a2e = −v2 ∂P

∂v

∣∣∣∣
s, Yeq

(6.24)

sound speeds are relevant for reacting flow computations. Frozen sound speeds are always slightly higher
than equilibrium sound speeds in chemically reacting mixtures. Acoustic waves in chemically reacting flows
are dispersive with the highest frequency waves traveling at the frozen sound speed and the lowest frequency
waves traveling at the equilibrium sound speed (Vincenti and Kruger, 1965). The Python versions of the
algorithms are defined as functions in thermo.py.

At low temperatures (<1000 K), there is little dissociation, and the difference between frozen and equi-
librium isentropes or sound speeds is negligible. Further, the equilibrium algorithms used in Cantera have
difficulty converging when a large number of species have very small mole fractions. This means that at
low temperatures, it is often possible and necessary to only compute the frozen isentropes. Examples of the
frozen isentropes (see the MATLAB script demo RH air isentropes.m)

P = P (v, s)| Y (6.25)

are plotted on the P -v plane together with Hugoniot in Fig 6.4. The entropy for each isentrope is fixed at the
value corresponding to the intersection of the isentrope and the Hugoniot. The isentrope labeled s1 passes
through the initial point 1 and the isentrope labeled s4 passes through the shock state 2. The isentrope
entropies are ordered as s4 > s3 > s2 > s1 in agreement with (6.6). Entropy increases along the Hugoniot.
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Figure 6.4: Frozen isentropes, Hugoniot, and a Rayleigh line for a 1000 m/s shock wave in air.
demo RH air isentropes.m

The graphical results for the relationship between Rayleigh lines and the isentropes illustrate a general
principle for shock waves: the flow upstream is supersonic, the flow downstream is subsonic. At the initial
state 1, the Rayleigh line is steeper than the isentrope

∂P

∂v

∣∣∣∣
s, Y

>
∆P

∆v
(6.26)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_isentropes.m
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which from the definition of the slopes of the Rayleigh line (6.16) and isentrope (6.23) implies that the flow
upstream of the wave is supersonic

w1 > a1 (6.27)

At the final state 2, the isentrope is steeper than the Rayleigh line

∂P

∂v

∣∣∣∣
s, Y

<
∆P

∆v
(6.28)

which implies that the flow downstream of the shock is subsonic (in the wave-fixed frame)

w2 < a2 (6.29)

The isentrope is tangent to the Hugoniot at state 1 and also has the same curvature at this point so that
weak shock waves are very close to acoustic waves (Thompson, 1972), with the entropy increasing like the
cube of the volume change

∆s ∝ |∆v|3 (6.30)

along the Hugoniot near point 1. The isentropes shown in Fig. 6.4 are frozen isentropes; in general, the
correct choice of conditions (frozen vs equilibrium) for evaluating the isentropes depends on the end use.

See the following demos for frozen and equilibrium post shock states:
MATLAB: demo PSfr.m and demo PSeq.m
Python: demo PSfr.py and demo PSeq.py

6.5 Detonation Waves and the Chapman-Jouguet Condition

The Hugoniot for a stoichiometric hydrogen-air mixture and two example Rayleigh lines are shown in Fig-
ure 6.5. The possible solutions to the jump conditions are shown graphically as the intersection points of
the Rayleigh lines and Hugoniot. On the upper (U) or detonation branch, the wave speed must be above
some minimum value, the upper Chapman-Jouguet (CJU ) velocity in order for there to be an intersection of
the Rayleigh line and the detonation branch of the Hugoniot. On the lower (L) or deflagration branch, the
wave speed must be less than some minimum value, the lower Chapman-Jouguet (CJL) velocity in order for
there to be an intersection of the Rayleigh line and the detonation branch of the Hugoniot. If the perfect
gas approximation is used, then it is possible to find analytic solutions (see Appendix A.3) for the Hugoniot
and CJ states. For more general equations of state and realistic thermochemistry, it is necessary to use
the numerical methods described in the subsequent sections. The purpose of this section is to present the
theoretical background for the CJ state conditions used in those numerical methods.

The minimum pressure point on the detonation branch (CV ) corresponds to the final state of a constant
volume explosion. The maximum pressure point on the deflagration branch (CP ) corresponds to the final
state of a constant pressure explosion. Like shock waves, detonation waves are supersonic (w1 > a1) and
a propagating wave will not induce flow upstream but only downstream. However, deflagration waves are
subsonic (w1 < a1) and a propagating wave causes flow both upstream and downstream of the deflagration
wave. Examples of deflagration waves in gases are low-speed flames. Since the flow upstream of the flame
is subsonic, the flame propagation rate is strongly coupled to the fluid mechanics of the surrounding flow as
well as the structure of the flame itself. This makes the deflagration solutions to the jump conditions much
less useful than the detonation solutions since flame speeds cannot be determined uniquely by the jump
conditions.

In general, there are two solutions (U1, U2) possible on the detonation branch for a given wave speed,
∞ > U > UCJU

and two solutions (L1, L2) possible on the lower (L) or deflagration branch for for a given
wave speed, 0 < U < UCJL

. Only one of the two solutions is considered to be physically acceptable. These
are the solution (U1) for the detonation branch and the solution (L2) for the deflagration branch. According

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSfr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSeq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSfr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSeq.py
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Figure 6.5: Equilibrium Hugoniot and two Rayleigh lines illustrating detonation and deflagration branches.

to Jouguet’s rule (see Appendix C and Fickett and Davis (1979)), these solutions have subsonic flow behind
the wave w2 < a2 and satisfy the condition of causality, which is that disturbances behind the wave can
catch up to the wave and influence its propagation.

As first recognized by Chapman (1899), the geometry (Fig. 6.6) of the Hugoniot and Rayleigh line impose
restrictions on the possible values of the detonation velocity. Below a minimum wave speed, w1 < wCJ, the
Rayleigh line and equilibrium Hugoniot do not intersect and there are no steady solutions. For a wave
traveling at the minimum wave speed w1 = UCJ, there is a single intersection with the equilibrium Hugoniot.
Above this minimum wave speed w1 > UCJ, the Rayleigh line and equilibrium Hugoniot intersect at two
points, usually known as the strong (S) and weak (W) solutions. Based on these observations, Chapman
proposed that the measured speed of detonation waves corresponds to that of the minimum wave speed
solution, which is unique. A more detailed description for determining the minimum wave speed is given in
Appendix B. This leads to the following definition:

Definition I: The Chapman-Jouguet detonation velocity is the minimum wave speed for which there
exists a solution to the jump conditions from reactants to equilibrium products traveling at supersonic velocity.

From the geometry (Fig. 6.6), it is clear that the minimum wave speed condition occurs when the Rayleigh
line is tangent to the Hugoniot. The point of tangency is the solution for the equilibrium downstream state
and is referred to as the CJ state, as indicated on Fig. 6.6. Jouguet (1905) showed that at the CJ point,
the entropy is an extreme value and that as a consequence, the isentrope passing through the CJ point is
tangent to the Hugoniot and therefore also tangent to the Rayleigh line as indicated in Figure 6.7 (see the
MATLAB script demo RH CJ isentropes.m). There are various ways to demonstrate this, e.g. differentiate
(6.19) for a fixed initial state to obtain (dropping the subscript from state 2)

de = −1

2
[∆v dP + (P + P1) dv] (6.31)

and combine this with the fundamental relation of thermodynamics

de = Tds− Pdv (6.32)

to obtain

T
∂s

∂v

∣∣∣∣
H

= −∆v

2

[
∂P

∂v

∣∣∣∣
H
− ∆P

∆v

]
(6.33)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
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Figure 6.6: Hugoniot and three representative Rayleigh lines illustrating w1 = UCJ as the minimum wave
speed and tangency of Rayleigh line and Hugoniot at the CJ point.

where H indicates a derivative evaluated on the Hugoniot. At the point of tangency between Rayleigh line
and Hugoniot, the right hand side will vanish so that the entropy is an extremum at the CJ point.

∂s

∂v

∣∣∣∣
H,CJ

= 0 (6.34)

This implies that the isentrope passing through the CJ point must be tangent to the Rayleigh line and
also the Hugoniot. The nature of the extremum can be determined by either algebraic computation of the
curvature of the isentrope or geometric considerations. The entropy variation along the Hugoniot can be
determined by inspecting the geometry of the isentropes and the Rayliegh lines. From the slopes shown in
Fig. 6.7, we see that

∂s

∂v

∣∣∣∣
H

< 0 for v < vCJ (6.35)

and

∂s

∂v

∣∣∣∣
H

> 0 for v > vCJ (6.36)

so that the entropy is a local minimum at the CJ point.

∂2s

∂v2

∣∣∣∣
H,CJ

> 0 (6.37)

The tangency of the isentrope to the Rayleigh lines at the CJ point

∆P

∆v
= −

(
w2

v2

)2

=
∂P

∂v

∣∣∣∣
s

= −
(
a2
v2

)2

(6.38)

implies that

w2 = a2 at the CJ point. (6.39)
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We conclude that at the CJ point, the flow in the products is moving at the speed of sound (termed sonic
flow) relative to the wave. This leads to the alternative formulation (due to Jouguet) of the definition of the
CJ condition.

Definition II: The Chapman-Jouguet detonation velocity occurs when the flow in the products is sonic
relative to the wave. This is equivalent to the tangency of the Rayleigh line, Hugoniot, and equilibrium
isentrope at the CJ point.
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Figure 6.7: Hugoniot, Rayleigh line, and three representative isentropes (equilibrium) illustrating the tan-
gency conditions at the CJ point. demo RH CJ isentropes.m

The equilibrium isentrope and equilibrium sound speed appear in this formulation because the problem
has been approached in a purely thermodynamic fashion with no consideration of time-dependence or det-
onation structure. In early studies, there was some controversy (see the discussion in Wood and Kirkwood
(1959)) about the proper choice of sound speed, equilibrium vs. frozen. However, after careful examination
of the equations of time-dependent reacting flow, see papers in Kirkwood (1967) and discussion in Fickett
and Davis (1979), it became clear that a truly steady solution to the full reacting flow equations does not
exist for most realistic models of reaction that include reversible steps. As a consequence, it is not possible to
formulate a truly steady theory of detonation. A consistent thermodynamic theory will use the equilibrium
sound speed to define the CJ point and this is what is used in our computations.

See the Following Examples - MATLAB: demo CJ.m Python: demo CJ.py

Physical Meaning of the CJ condition

The following heuristic argument is due to Jouguet (1905) and a mathematical version was first presented
by Brinkley and Kirkwood (1949): Consider a detonation wave traveling faster than the CJ velocity such
that the state behind the wave is the upper intersection (S – the strong solution) and the flow behind the
wave is subsonic relative to the wave front. In this situation, perturbations from behind the detonation
wave can propagate through the flow and interact with the leading shock. In particular, if the perturbations
are expansion waves, these perturbations will eventually slow the lead shock to the CJ speed. Once the
detonation is propagating at the CJ speed, the flow behind becomes sonic and acoustic perturbations can
no longer affect the wave. Thus the CJ condition corresponds a self-sustained wave that is isolated from
disturbances from the rear and can propagate indefinitely at the CJ speed. This is why detonation waves
that have propagated over sufficiently long distances in tubes are observed to be close to the CJ velocity.

A similar argument cannot be made for the lower (W) or weak solution which has supersonic flow behind
the wave relative to the wave front. From a theoretical viewpoint, for steady, planar wave the weak solution

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ.py
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is only accessible under very special circumstances that require a specific form of the reaction rate (see Chap.
5 of Fickett and Davis, 1979).

From an experimental viewpoint, the equilibrium CJ model gives reasonable values (within 1-2%) for
detonation velocity under ideal conditions of initiation and confinement. However, this does not mean that
the actual thermodynamic state corresponds to the CJ point (see Chap. 3 of Fickett and Davis, 1979) since
the tangency conditions mean that the thermodynamic state is extremely sensitive to small variations in
wave speed. Further, detonations in gases are unstable which leads to a three-dimensional front structure
that cannot be eliminated in experimental measurements (see Chap. 7 of Fickett and Davis, 1979).

6.6 Reflected Waves

Assuming a known incident wave speed and upstream state, we can find the gas properties resulting from wave
reflection at normal incidence on a rigid surface. We apply the normal shock jump conditions (Section 6.1)
across both the incident and reflected waves to find the analog of the Rayleigh and Hugoniot equations. We
use a frame of reference where the initial velocity of the reflecting surface has zero velocity. The upstream
(1), post-incident-shock region (2), and post-reflected-shock region (3) are as shown in Fig. 6.8.

UI

u2 u1 = 0

Shock or
 Detonation

Wall

(a)

UR

u2 u3 = 0

Shock Wall

(b)

312 2

Figure 6.8: Diagrams showing the incident shock or detonation wave before (a) and after (b) reflection with
a wall. States 1, 2, and 3 are shown.

Using the velocities in the wave fixed frame relative to the reflected shock for states 2 and 3 as shown in
Fig. 6.8, we obtain the following wave-frame velocities for the reflected wave

w2 = UR + u2 (6.40)

w3 = UR (6.41)

Substituting these into the usual shock jump conditions yields the following relationships across the reflected
shock

(UR + u2)ρ2 = UR ρ3 (6.42)

P2 + ρ2(UR + u2)
2 = P3 + ρ3U

2
R (6.43)

h2 +
1

2
(UR + u2)

2 = h3 +
1

2
U2
R (6.44)

h3 = h3(P3, ρ3) (6.45)
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We combine these relationships in a manner similar to that used for incident shock waves to obtain equations
for the shock speed

UR =
u2

ρ3
ρ2
− 1

, (6.46)

the pressure P3 behind reflected shock

P3 = P2 +
ρ3u

2
2

ρ3
ρ2
− 1

, (6.47)

and the enthalpy h3 behind reflected shock

h3 = h2 +
u22
2

ρ3
ρ2

+ 1

ρ3
ρ2
− 1

. (6.48)

For substances with realistic equations of state, these equations must be solved using an iterative numerical
procedure. The numerical solution methods for reflected shock waves can be taken directly from those used
for incident shock waves, which are described in subsequent sections. The post-incident-shock state (2) must
be determined before the post-reflected-shock state (3) is found. If the perfect gas approximation is used,
then it is possible to find analytic solutions (see Appendix A.2) for the conditions in the reflected region for
a specified incident shock wave speed and initial state.

For the detonation wave case, the same procedure is repeated, but instead of an incident shock wave, the
incident wave is a detonation and therefore reactive. The post-reflected-shock thermodynamic state (3) can
either be considered in chemical equilibrium or frozen. Experimental, numerical, and approximate analytical
solution methods for reflected detonations are compared in Shepherd et al. (1991).

See the following examples for equilibrium and frozen reflected post-shock states:
MATLAB: demo reflected eq.m and demo reflected fr.m Python: demo reflected eq.py and demo reflected fr.py

6.7 Relationship of Ideal Model parameters to Real Gas Properties

The two-γ model (Section A.3) contains six parameters (R1, γ1, R2, γ2, q, UCJ or MCJ) that have to be deter-
mined from computations with a realistic thermochemical model and chemical equilibrium in the combustion
products. This can be done with the programs described in the previous sections of this document.

The parameters are computed as follows:

R1 =
R
W1

(6.49)

The universal gas constant (SI units) is

R = 8314. J · kmol−1 ·K−1 (6.50)

The mean molar mass is computed from the composition of the gas and the mixture formula

W =

K∑
i−1

XiWi (6.51)

where Xi is the mole fraction of species i and Wi is the molar mass of species i. The value of γ for the
reactants can be interpreted as the ratio of the specific heats

γ1 =
Cp,1

Cv,1
(6.52)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_fr.py
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This is identical to the logarithmic slope of the frozen isentrope

γfr = − v

P

(
∂P

∂v

)
s,fr

=
a2fr
Pv

(6.53)

where the subscript fr indicates that the composition is held fixed or frozen. In order to compute the
downstream state 2, we need to first find the CJ velocity which requires using software like the minimum
velocity CJ algorithm CJspeed as in demo CJ.py or demo CJ.m.

Once the CJ conditions have been computed, the CJ state must be evaluated. This can be done using
the jump condition solution algorithm postshock eq with the computed CJ speed. This is implemented in
the programs demo CJstate.py and demo CJstate.m. The CJ state includes the mean molar mass W2 and
the value of the parameter γ2 can be obtained from the logarithmic slope of the equilibrium isentrope.

γeq = − v

P

(
∂P

∂v

)
s,eq

(6.54)

where the subscript eq implies that the derivative is carried out with shifting composition to maintain
equilibrium. The value of the equilibrium sound speed can be used to find the numerical value of γeq.

γeq =
a2eq
Pv

(6.55)

(6.56)

Once these parameters have been defined, the value of the parameter q can be obtained by solving the
two-γ relationships (A.52), (A.53), and (A.54) to eliminate pressure, volume and temperature.

q = a21

[
(1 + γ1M

2
1 )

2

2(γ2
2 − 1)

(
γ2
γ1

)2
1

M2
1

− 1

γ1 − 1
− M2

1

2

]
(6.57)

If the one-γ model is used, then this expression simplifies to

q =
a21

2(γ2 − 1)

(
MCJ −

1

MCJ

)2

(6.58)

Example: Ethylene-Oxygen Detonation

A stoichiometric mixture of ethylene and oxygen has the composition

C2H4 + 3O2

so that XC2H4 = 0.25 and XO2 = 0.75. The results of using the Cantera program CJstate isentrope to
compute the CJ velocity and state for initial conditions of 295 K and 1 bar are:

Initial pressure 100000 (Pa)

Initial temperature 295 (K)

Initial density 1.2645 (kg/m3)

a1 (frozen) 325.7368 (m/s)

gamma1 (frozen) 1.3417 (m/s)

Computing CJ state and isentrope for C2H4:1 O2:3.01 using gri30_highT.cti

CJ speed 2372.1595 (m/s)

CJ pressure 3369478.0035 (Pa)

CJ temperature 3932.4868 (K)

CJ density 2.3394 (kg/m3)

CJ entropy 11700.9779 (J/kg-K)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJstate.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate_isentrope.m
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w2 (wave frame) 1282.1785 (m/s)

u2 (lab frame) 1089.9809 (m/s)

a2 (frozen) 1334.5233 (m/s)

a2 (equilibrium) 1280.6792 (m/s)

gamma2 (frozen) 1.2365 (m/s)

gamma2 (equilibrium) 1.1388 (m/s)

From the program output and gas objects computed by Cantera, we find the following parameters in
Table 6.1

Table 6.1: Parameters for CJ detonation in stoichiometric ethylene-oxygen computed by the Shock and
Detonation Toolbox.

W1 (kg/kmol) 31.0
a1 (m/s) 325.7
γ1 1.342
W2 (kg/kmol) 23.45
a2 (m/s) 1280.
γ2 1.139
UCJ (m/s) 2372.
MCJ 7.28
q (MJ/kg) 9.519
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Applications

The functions in the toolbox can be combined and used together with other
Cantera functions to solve a number of problems in shock and detonation
physics. Notes and demonstration programs are provided for using this li-
brary to compute examples of normal and oblique shocks and detonations,
shock and detonation tube operations, expansion waves, nozzle flows, ideal
detonation and wave structure, propulsion systems and selected wave inter-
action problems. The demonstration programs are available in both MAT-
LAB and Python versions.

7.1 Detonations in Tubes

The Chapman-Jouguet (CJ) model of an ideal detonation can be combined with the Taylor-Zeldovich (TZ)
similarity solution (Taylor, 1950, Zel’dovich and Kompaneets, 1960) to obtain an analytic solution to the
flow field behind a steadily-propagating detonation in a tube. The most common situation in laboratory
experiments is that the detonation wave starts at the closed end of the tube and the gas in the tube is
initially stationary, with flow velocity u1 = 0. This solution can be constructed piecewise by considering the
four regions shown on Figure 7.1; the stationary reactants ahead of the detonation mixture (state 1); the
detonation wave between states 1 and 2; the expansion wave behind the detonation (between states 2 and
3); and the stationary products next to the closed end of the tube, state 3.

In this model, the detonation travels down the tube at a constant speed U , equal to the Chapman-Jouguet
velocity UCJ. The corresponding peak pressure, P2, is the Chapman-Jouguet pressure PCJ. The structure
of the reaction zone and the associated property variations such as the Von Neumann pressure spike are
neglected in this model. The detonation wave instantaneously accelerates the flow and sets it into motion
u2 > 0, then the expansion wave gradually brings the flow back to rest, u3 = 0. As an ideal detonation
wave propagates through the tube, the expansion wave increases in width proportionally so that the flow
always appears as shown in Fig. 7.1 with just a change in the scale of the coordinates. This is true only if
we neglect non-ideal processes like friction and heat transfer that occur within the expansion wave. If the
tube is sufficiently slender (length/diameter ratio sufficiently large), friction and heat transfer will limit the
growth of the expansion wave.

Taylor-Zeldovich Expansion Wave

The properties within the expansion wave can be calculated by assuming a similarity solution with all
properties a function f(x/Ut). For a planar flow, the simplest method of finding explicit solutions is with
the method of characteristics . There are two sets of characteristics, C+ and C− defined by

C+ dx

dt
= u+ a (7.1)

C− dx

dt
= u− a (7.2)

(7.3)

79
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Figure 7.1: Detonation propagation in tube with a closed end.

On the characteristics the Riemann invariants J± are defined and are constants in the smooth portions of
the flow. In an ideal gas, the invariants are:

on C+ J+ = u+ F (7.4)

on C− J+ = u− F (7.5)

(7.6)

The Riemann function F is defined as

F =

∫ P

P◦

dP ′

ρa
(7.7)

where P◦ is a reference pressure and the integrand is computed along the isentrope s◦ passing through states
2 and 3. For an ideal gas, the integral can be carried out and the indefinite integral is equal to

F =
2a

γ − 1
(7.8)

In this section, the value of γ is everywhere taken to be the equilibrium value in the detonation products.
The solution proceeds by recognizing that within the expansion fan, a3 ≥ x/t ≥ UCJ, the C+ character-

istics are simply rays emanating from the origin of the x-t coordinate system and between the end of the
expansion fan and the wall, 0 ≥ x/t ≥ a3, the characteristics are straight lines.

dx

dt
= u+ a =

x

t
for a3 <

x

t
< UCJ (7.9)

dx

dt
= a3 for 0 <

x

t
< a3 .

The characteristics C− span the region between the detonation and the stationary gas and on these char-
acteristics the Riemann invariant is constant. Evaluating the value at states 2 and 3 yields the value of the
sound speed in region 3 given the state 2, the CJ condition.

J− = u− 2

γ − 1
a = − 2

γ − 1
a3 = u2 −

2

γ − 1
a2 . (7.10)
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From the CJ condition we have
u2 = UCJ − aCJ . (7.11)

and the sound speed in region 3 is

a3 =
γ + 1

2
aCJ −

γ − 1

2
UCJ . (7.12)

The variation of properties within the expansion wave can be determined using the similarity properties of the
C+ characteristics and the relationship between velocity and sound speed on the C− characteristics within
the expansion wave. The expansion fan is bounded by the C+ characteristic at the tail of the expansion fan

C+
tail :

dx

dt
= a3 , (7.13)

and the detonation location which coincides with the head of the expansion fan

Detonation:
dx

dt
= UCJ , (7.14)

C+
head :

dx

dt
= u2 + a2 = UCJ , (7.15)

so that the expansion is within the region

a3t ≤x ≤ UCJt . (7.16)

The sound speed and velocity vary linearly with distance between the plateau region (state 3) and the
detonation

a

a3
= 1− γ − 1

γ + 1

(
1− x

a3t

)
a3t ≤ x ≤ UCJt (7.17)

u = u2 −
2

γ − 1
(a2 − a) a3t ≤ x ≤ UCJt (7.18)

and are constant in the plateau region

a = a3 0 ≤ x ≤ a3t (7.19)

u = 0 0 ≤ x ≤ a3t (7.20)

The other properties within the expansion fan can be found using the fact that the flow is isentropic in this
region.

a

a3
=

(
T

T3

)1

2
;

P

P3
=

(
ρ

ρ3

)γ

;
T

T3
=

(
ρ

ρ3

)γ−1

(7.21)

where T is the temperature, ρ is the density and P is the pressure. The state 3 can be computed from the
CJ state values once a3 is determined.

P3 = PCJ

(
a3
aCJ

) 2γ

γ − 1
(7.22)

T3 = TCJ

(
a3
aCJ

)1/2

(7.23)

ρ3 = ρCJ

(
a3
aCJ

) 2

γ − 1
(7.24)

This finally gives for the pressure in the expansion wave

P = P3

(
1−

(
γ − 1

γ + 1

)[
1− x

a3t

]) 2γ

γ − 1
a3t ≤ x ≤ UCJt . (7.25)
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Determining Realistic TZ parameters

The states on the product isentrope need to be determined numerically, starting at the CJ point and extending
to state 3. This is carried out in the program demo CJstate isentrope (MATLAB, Python) to numerically
determine the value of thermodynamic properties such as density, sound speed, and temperature

ρ = ρ(P, s = sCJ) (7.26)

a = a(P, s = sCJ) (7.27)

T = T (P, s = sCJ) (7.28)

and also velocity in the TZ wave

u = u2 +

∫ P

PCJ

dP ′

(ρa)s=sCJ

(7.29)

parametrically as a function of pressure. The state 3 can be found by numerically solving the integral
equation

u2 =

∫ P3

PCJ

dP

(ρa)s=sCJ

(7.30)

obtained by equating the Riemann invariant on the characteristic connecting states 2 and 3. In the program,
the integral is carried out by using the trapezoidal rule with on the order of 100-200 increments on the
isentrope. Interpolation is used to find state 3.

For the stoichiometric mixture of ethylene and oxygen discussed previously, the computation of state 3
using the Shock and Detonation Toolbox gives the following values.

Generating points on isentrope and computing Taylor wave velocity

State 3 pressure 1225686.0898 (Pa)

State 3 temperature 3608.3006 (K)

State 3 volume 1.0434 (m3/kg)

State 3 sound speed (frozen) 1253.7408 (m/s)

State 3 sound speed (equilibrium) 1201.0748 (m/s)

State 3 gamma frozen) 1.2291 (m/s)

State 3 gamma (equilibrium) 1.128 (m/s)

We note that there is a small change in γ2 with the change in pressure on the isentrope and the pressure at
state 3 is approximately 0.36PCJ.

7.2 Approximating the TZ Wave

The property variations within the ideal detonation wave are now completely specified. For example, the
exact solution for the pressure profile is

P (x, t) =


P1 UCJ < x/t <∞

P3

(
1−

(
γ − 1

γ + 1

)[
1− x

a3t

]) 2γ

γ − 1
a3 < x/t < UCJ

P3 0 < x/t < a3

(7.31)

In analytical studies, it is useful to approximate the dependence of the pressure within the expansion wave
with a simpler function. Experimenting with several functional forms (Beltman and Shepherd, 2002) shows
that an exponential can be used to represent this variation. At a fixed point in space, the variation of
pressure with time can be represented by

P (x, t) =

{
P1 0 < t < tCJ

(P2 − P3) exp (−(t− tCJ)/T ) + P3 tCJ < t <∞ (7.32)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJstate_isentrope.py
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Where tCJ = x/UCJ is the time it takes for a detonation to travel from the origin to the measurement location
x. The time constant T can be determined by fitting the exponential relationship to the exact expression.
The exact expression for pressure in the expansion wave can be rewritten as

P (x, t) = P3

[
1− γ − 1

γ + 1

(
UCJ/c3 − 1− τ/tCJ

1 + τ/tCJ

)] 2γ

γ − 1
(7.33)

where τ = t - tCJ. By inspection of the argument in the exact expression, we see that the time constant
should have the form

T = αT tCJ (7.34)

The constant αT is a function of the ratio of specific heats γ and the parameter UCJ/a3. Computations of
these parameters using the one-γ model shows that 1.9 < a3/UCJ < 2 for a wide range of values of γ and
detonation Mach numbers 5 < MCJ < 10. Fitting the exponential function to the pressure variation in the
expansion wave for this range of parameters yields a 0.31 < αT < 0.34. A useful approximation is

T ≈ tCJ

3
(7.35)

In actual practice, if we are trying to represent the variation of pressure over a limited portion of a detonation
tube, it is sufficient to take T to be a constant and this can be evaluated at some intermediate location within
the portion of the tube that is of interest. For example, the middle of the center section of the Caltech 280-
mm diameter detonation tube is about 4 m from the initiator. A detonation traveling 1500 m/s takes
approximately 2.7 ms to reach this point and the characteristic decay time T ≈ 0.9 ms.

Comparison of Two-Gamma and Real gas models

For the stoichiometric ethylene-oxygen example discussed in the text, the two-γ and real gas results are
compared in detail in Table 7.1.

Table 7.1: Comparison of real gas and two-γ results for a CJ detonation in stoichiometric ethylene-oxygen.

Parameter SD Toolbox Value 2-γ Model

MCJ 7.282 7.287
P2/P1 33.69 33.78
ρ2/ρ1 1.850 1.852
T2/T1 13.33 13.80

a3 (m/s) 1201.1 1206.2
P3 (MPa) 1.225 1.242
T3 (K) 3608.3 3603.0
ρ3 0.9584 0.9726

7.3 Oblique Waves

An oblique shock or detonation wave can be treated using the methods developed for planar one-dimensional
waves with a geometrical transformation and recognizing that only the component of velocity normal to the
wave changes and the velocity component tangential to the wave is unchanged across a shock or detonation
wave. This is equivalent to transforming to a coordinate system with an orthogonal set of axes in the which
the wave lies along one of the axes. Only the component of velocity perpendicular or normal to the wave plays
a role in the solution to the jump conditions. From the geometry of Fig. 7.2, the equations for the upstream
and downstream normal velocity components are related to the net velocities u =

√
w2 + v2 upstream and
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u1

b

q

Figure 7.2: Geometry of oblique shock or detonation illustrating normal and perpendicular components

downstream of the wave by:

w1 = u1 sinβ (7.36)

w2 = u2 sin(β − θ) (7.37)

Where β is the detonation wave angle, and θ is the flow deflection angle. For shock waves, the upstream
normal velocity component w1 is always supersonic so that w1 ≥ a1 and for detonation waves, the upstream
normal velocity component has to be equal to or greater than or equal to the CJ value, w1 ≥ wCJ. The
tangential components of velocity,

v1 = u1 cosβ (7.38)

v2 = u2 cos(β − θ) (7.39)

are constant across the wave, v1 = v2 which implies that:

w2 = u1 cosβ tan(β − θ)

Combining this last relation with the geometric transformations and the solutions to the normal shock or
detonation wave jump conditions, the wave angle β and the flow deflection angle θ can be determined for a
given upstream velocity u1 and normal velocity w1 by using elementary trigonometric function relationships:

β = sin−1(w1/u1) (7.40)

θ = β − tan−1

(
w2√

u21 − w2
1

)
(7.41)

The velocity w2 required for finding θ is determined by the solution of the jump conditions for the specified
upstream conditions and normal velocity w1,

ρ1w1 = ρ2w2 (7.42)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 (7.43)

h1 +
1

2
w2

1 = h2 +
1

2
w2

2 (7.44)
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The other thermodynamic properties downstream of the wave (state 2) are also given by the solution to
these jump conditions. In terms of the angles β and θ, the downstream states can be expressed as:

ρ2
ρ1

=
tanβ

tan(β − θ)
(7.45)

[w]

a1
= − M2

1 sin2 θ

cosβ(1 + tanβ tan θ)
(7.46)

[P ]

ρ1a21
=

M2
1 tan θ

cosβ + tan θ
(7.47)

In the case of perfect gases (constant specific heat), these equations can be solved analytically for rela-
tionships between the thermodynamic property changes , β and θ as discussed in Appendix A.9. The normal
velocity component has to be selected from within the physically possible range of values:

Shock waves: u1 ≥ w1 ≥ a1 (7.48)

Detonation waves: u1 ≥ w1 ≥ UCJ (7.49)

where UCJ is the Chapman-Jouguet velocity computed for the upstream state 1. These limits and the
trigonometry of the velocity components imply that the wave angles are also limited in range:

Shock waves:
π

2
≥ β ≥ sin−1 1

M1
(7.50)

Detonation waves:
π

2
≥ β ≥ sin−1 1

MCJ
(7.51)

where M1 = u1/a1 and MCJ = UCJ/a1. The flow deflection angle is a multi-valued function of the wave
angle or downstream thermodynamic state. This has significant implications for the shock and detonation
wave configurations and interactions. The deflection angle θ has a maximum value for both detonations and
shock waves. There is no minimum deflection angle for oblique shock waves, θmin = 0 at both β = βmin

and π/2. For oblique detonation wave, θ has a nonzero value at βCJ and is zero at β = π/2. The maximum
flow deflection angle must in general be computed numerically. One way to go about this is by computing
the analytical expression for the derivative of the flow deflection angle with respect to the upstream normal
velocity. A numerical root-solver can then be used to solve for the value of the upstream normal velocity
which makes this derivative zero.
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Figure 7.3: Examples of shock polars for air computed with frozen composition using demo oblique.m.

The results of either numerical or analytic computations can be usefully represented as polar curves, for
example post-shock pressure vs flow deflection P (θ) or wave angle as a function of flow deflection β(θ), see

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_oblique.m
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Fig. 7.3. Shock or detonation polars can be used in conjunction with polar representations of other wave
processes to illustrate the graphical solution of numerous two-dimensional wave interaction problems.

This procedure enables the use of our computational tools discussed in Section 8 for normal waves but
any method (such as Reynolds (1986) or Gordon and McBride (1976)) to solve the jump equations can
be used to generate solutions for oblique waves without having to make any assumptions regarding the
specific heats, energy release or equilibrium compositions. As long as the material can be treated as a fluid
(for example, solids at sufficiently high pressure), this technique can be used. Once a shock adiabat is
determined in the form w2 = f(w1), solutions for any upstream velocity can be obtained readily by these
simple transformations. This procedure is not restricted to ideal gases and can be used on any substance for
which the hydrodynamic model of shock waves applies, for example, strong shocks in solids or liquids.

7.4 Prandtl-Meyer Expansion

In steady supersonic flow with a uniform upstream state, an expansion wave turns the flow and is accompanied
by an isentropic expansion. The amount of turning dθ and the change in flow speed du are related by
Liepmann and Roshko (1957), Thompson (1972)

dθ = ±
√
M2 − 1

du

u
, (7.52)

where the flow Mach number M = u/a and in an expansion turn du > 0. The two signs correspond to the
two possible changes in direction as measured from the incoming flow direction. For example, in Figure 7.4,
the minus sign is appropriate. The expansion wave in this situation is bounded by the characteristics or
Mach lines which are at angle µ = sin−1(1/M) to the flow; this angle always decreases across the expansion
wave as M increases. The quantity on the right-hand side of (7.52) defines the Prandtl-Meyer function ω by

Figure 7.4: Illustration of an expansion fan between two uniform states, 1 and 2, deflecting the flow downward
dθ < 0 and increasing the speed du > 0

the differential expression

dω =
√

M2 − 1
du

u
(7.53)

An analytic expression for ω(M) can be computed for perfect gases, see Appendix A.10, and can be deter-
mined numerically for real gases through integration following appropriate transformation of the right-hand
side, presented next.

Along a streamline in adiabatic flow, the total enthalpy is constant

ht = h+
1

2
u2 . (7.54)
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For streamlines passing through an isentropic expansion wave and originating in a uniform state, the en-
tropy s will also be constant s◦ so that the enthalpy and therefore the velocity are a function of only one
thermodynamic variable, for example, mass density ρ.

u =
√
2(ht − h(s◦, ρ)) . (7.55)

The sound speed is defined by

a2 =

(
∂P

∂ρ

)
s

(7.56)

and is also a function only of density in isentropic flow, a = a(s◦, ρ). The Mach number can then be computed
as a function of density

M =
u

a
=

√
2(ht − h(s◦, ρ))

a(s◦, ρ)
. (7.57)

The change in flow velocity itself can be expressed in terms of the thermodynamic changes by using the
momentum equation for the flow on the streamline

ρudu = −dP . (7.58)

Using the definitions of sound speed and Mach number, for isentropic flow along a streamline, this is equiv-
alent to

du

u
= − 1

M2

dρ

ρ
(7.59)

Finally, we obtain an expression suitable for numerical integration of dω

dω = −
√
M2 − 1

M2

dρ

ρ
where M2 =

2(ht − h(s◦, ρ))

a2(s◦, ρ)
(7.60)

An example of using this procedure for the equilibrium expansion of hot air (3000 K and 1 atm initial
conditions) is implemented in demo PrandtlMeyer.m. and some representative results are shown in Fig 7.5.
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Figure 7.5: Example results from numerical evaluation of Prandtl-Meyer function for equilibrium expansion
of hot air (3000 K and 1 atm initial conditions). (a) Prandtl-Meyer function ω(M). (b) Pressure-deflection
P (θ) relationship within expansion fan.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyer.m
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7.5 Isentropic Expansion Following Shock Wave

The interaction of shock waves with material interfaces can generate a reflected expansion wave (Meyers,
1994, Glass and Sislian, 1994). In order to calculate the strength of this wave, it is necessary to find the states
on the isentrope passing through the post-shock state and values of the Riemann function. The program
shock state isentrope.m computes the shock state for a specified shock speed and calculates states on the
isentrope. The output is a file shock isentrope.txt containing the v, T , P , aeq, u evaluated at fixed
intervals on the isentrope. The example is for a shock wave in air with a speed of 1633 m/s. The initial
conditions are:

# Shock State Isentrope

# Calculation run on 29-Jan-2008 05:47:49

# Initial conditions

# Shock speed (m/s) 1633.0

# Temperature (K) 295.0

# Pressure (Pa) 100000.0

# Density (kg/m^3) 1.1763e+000

# Initial species mole fractions: N2:3.76 O2:1.0

# Reaction mechanism: gri30_highT.cti

and the results are shown in Fig. 7.6.
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Figure 7.6: Property variation on an isentrope (frozen) passing through the postshock state of a 1633 m/s
shock wave in air.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_state_isentrope.m
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7.6 Reflection of overdriven detonation waves

Detonation waves emerging from a deflagration-to-detonation transition event (Ciccarelli and Dorofeev, 2008,
Breitung et al., 2000) are often observed to have a velocity in excess of the Chapman-Jouguet speed for that
mixture, U > UCJ. Such waves are referred to as overdriven and the peak pressure produced by wave
reflection from a closed end is of interest in estimating structural loads. The estimation of peak pressure
behind both incident and reflected waves is straightforward using the programs described in Section 6.4
and 6.6. An example program in MATLAB is given in demo overdriven.m which computes the states
behind incident and reflected waves in H2-N2O mixtures as a function of wave speed and prints a summary
overdriven reflection.txt output file. A plot of the incident and reflected pressures from the output file
is shown in Fig. 7.7. The ratio of reflected-to-incident pressure (Fig. 7.8) varies from about 2.4 for the CJ
detonation up to 6.5 for a highly overdriven wave. The increase in pressure ratio with wave speed shows that
as the wave speed increases, the combustion energy release becomes less important than the kinetic energy
in the flow
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Figure 7.7: Incident and reflected pressures for a detonation in H2-N2O (31% H2, 1 bar , 300 K) mixtures.

7.7 Detonation in a compressed gas region and subsequent reflection

Detonation in a closed vessel or pipe can occur after a deflagration (flame) is ignited, then accelerates to
high speed and transitions to detonation near the vessel surface or the closed end of the pipe (Shepherd,
1992). The initial deflagration propagates quite slowly and results in the compression of the unburned gas
ahead of the wave as the pressure increases inside the vessel. As a consequence, the detonation occurs in a
compressed gas region which has higher pressure and temperature than the initial gas within the vessel. In
addition, the detonation may emerge from the transition region with a much higher velocity and pressure
than the CJ values. This results in much higher detonation pressures behind the reflected shock wave created
when the detonation reaches the vessel wall or pipe end. The MATLAB script precompression detonation.m.
computes the conditions behind a CJ detonation wave and associated reflected shocks in an isentropically

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_overdriven.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_precompression_detonation.m
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Figure 7.8: Ratio of reflected-to-incident pressures for data in Fig. 7.7.

compressed gas for a range of compression ratios. The pressures behind overdriven detonation waves and
associated reflected shocks is then computed for each isentropic compression condition. The results are given
in an precompressed detonation reflection.txt output file.

7.8 Pressure-velocity relationship behind a detonation

Interaction of a detonation wave or a shock with a contact surface will result in reflected and transmitted
waves (Meyers, 1994, Glass and Sislian, 1994). The computation of these wave amplitudes (for a one-
dimensional interaction) requires matching pressure and velocity at the contact surface. This requires com-
puting the locus of shock and expansion wave states “centered” on the state behind the incident detonation
wave or shock. This can be carried out by combining the methods that have been previously developed to
compute the conditions behind the incident shock and then the subsequent shock or expansion moving into
that state. A MATLAB script detonation pu.m. computes the conditions behind a CJ detonation wave
and the pressure-velocity relationship for a shock wave moving back into the detonation products. The
output from the script is in a cj-pu.txt file that can be used to construct a pressure-velocity diagram. An
example for a detonation in H2-N2O is shown in Fig. 7.9a. The case of a shock wave is appropriate for a
reflection from “hard” material, that is, one that has a higher acoustic impedance than the material in the
post-shock or post-detonation state. The solution to the interface matching condition requires constructing
the pressure-velocity relationship for the “hard” material and finding the intersection. An example for a
detonation wave incident on water is shown in Fig. 7.9b. Water is quite stiff and dense in comparison to the
detonation products so that the interface pressure is very close to that found for rigid reflection (u = 0) and
only a small velocity (4 m/s) is induced.

7.9 Ideal Rocket Motor Performance

The performance of an ideal rocket motor can be described by the quasi-one dimensional steady flow rela-
tionships. In general, accurate estimates of performance require consideration of the kinetics of the reactions
in the gases in order to predict the extent of recombination and exhaust velocity at the exit of the nozzle. In
realistic engineering design we need to also consider two- and three-dimensional flow, boundary layers, heat
transfer, and most importantly, off-design operation with shock waves inside the nozzle that result in flow
separation and recirculation. These effects are all outside the scope of quasi-one dimensional flow and the
present discussion is only considered with ideal nozzle performance, which can be bounded by considering

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_detonation_pu.m
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Figure 7.9: a) CJ state and pressure velocity-relationship on reflected shock wave for H2-N2O mixtures
initially at 300 K and 1 bar. b) Matching pressure and velocity for transmitting a shock wave into water.

the simple limiting cases of either frozen or equilibrium isentropic expansion within an inviscid stream tube
of specified area.

The conditions inside the combustion chamber are estimated by carrying out a constant-pressure equi-
librium computation using the specified inlet conditions and mixture of fuel and oxidizer to determine the
initial enthalpy. Neglecting the velocity of the bulk flow within the chamber, the enthalpy of the combustion
products is taken to be the total (ideal stagnation) enthalpy and the chamber pressure is the total pressure.
With these as initial conditions, the flow in the nozzle is computed using the ideal quasi-one dimensional
model.

In steady, quasi-one dimensional flow, the mass flow rate is constant

ρuA = Ṁ (7.61)

= constant , (7.62)

and equal to the values at the sonic point which is the location of the ideal throat in the converging-diverging
nozzle downstream of the combustion chamber.

= ρ∗u∗A∗ where u∗ = a . (7.63)

The total enthalpy is constant

ht = h+
u2

2
(7.64)

so that the velocity can be computed from the thermodynamic state as

u =
√

2(ht − h) . (7.65)

The enthalpy is considered to be a function of pressure, entropy, and composition

h = h(P, s, Y) (7.66)

The entropy is fixed at the value of the products in the combustion chamber and the composition is either
specified to be the state in the combustion chamber (frozen flow)

Yi,fr = Yi combustion products in chamber (7.67)
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or computed to be the equilibrium state consistent with the given pressure at fixed entropy

Yi,eq = Yi(P, s = schamber) equilibrium at specified P , s . (7.68)

The ideal thrust for expansion to a given area, velocity, and pressure is

F = Ṁu+A(P − Pa) (7.69)

which is traditionally expressed as the specific impulse, defined as

Isp =
F

Ṁge
(7.70)

=
u

ge
+

P − Pa

ρuge
(7.71)

where Pa is the ambient pressure and ge = 9.81 m·s−2 is the acceleration of gravity on the earth’s surface.
The vacuum performance is obtained when Pa → 0. In practice, the lowest pressure that can be used in the
computation is limited by the temperature range of the thermodynamic fitting polynomials (usually valid
only to 200 K) and the convergence of the numerical solution to the isentrope.

An example of the computation of flow in a nozzle is given in the MATLAB program demo quasi 1d.m
for a hydrogen-oxygen-helium mixture with varying amounts of helium. This program uses interpolation
to find the throat conditions and recalculates the streamtube area as the nondimensional value A/A∗. A
modification of this program rocket impulse.m computes and plots (Fig. 7.10) an estimate of the vacuum
Isp for both frozen and equilibrium conditions.
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Figure 7.10: Vacuum specific impulse for an ideal hydrogen-oxygen-helium rocket motor

7.10 Equilibrium and Frozen Isentrope Properties

Computation of compressible reactive flows is often simplified by considering portions of the flow to satisfy
equilibrium or frozen conditions and approximating the equation of state by simple analytical forms based

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_quasi1d_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_rocket_impulse.m
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on perfect gases. In regions that are free from shock waves, inviscid adiabatic flow is treated as isentropic
although the entropy may differ on adjacent streamlines. The variation of properties on isentropes such as
sound speed, Grüneisen parameter, ratio of specific heats and logarithmic slopes requires the computation of
derivatives. These derivatives can be found analytically for ideal gases frozen composition but for equilibrium
compositions, the derivatives must be computed numerically.

The computation of the isentropes and derivatives is described in this appendix. The demonstration
program demo g.m shows how to implement the methods for numerical evaluation described in the following
sections. Graphical results are shown for a simple example of isentropic expansion along an isentrope (frozen
and equilibrium) from the constant volume explosion state of a stoichiometric H2-O2 mixture initially at
conditions of 1 atm and 300 K.

Isentropes

The computations of the isentropes is straightforward, requiring the specification of the entropy and one other
thermodynamic variable such as temperature, pressure or specific volume. Either the frozen or equilibrium
state is evaluated at this condition, using the appropriate gas composition. Once the state is determined,
then all thermodynamic properties can be evaluated.

Given an entropy value S2, a composition X2 and a specific volume V , the computation of equilibrium
and frozen isentropes proceeds as follows:

% equilibrium state

set(gas,’V’,V,’S’,S2);

equilibrate(gas,’SV’);

P(i) = pressure(gas);

T(i) = temperature(gas);

% frozen state

set(gas,’S’,S2,’V’,V,’X’,X2);

P_f(i) = pressure(gas);

T_f(i) = temperature(gas);
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Figure 7.11: (a) Frozen vs. equilibrium isentrope in P -V coordinates. (b) Frozen vs. equilibrium isentrope
in P -V coordinates. Values are for isentropic expansion of combustion products of a stoichiometric H2-O2

constant volume explosion with initial state of 1 atm and 300 K.

From these plots it is clear that one of the key differences between frozen and equilibrium isentropes is that
at the same volume, the temperature of the equilibrium isentrope is much higher than the frozen isentrope.
This is due to the thermal energy released by recombination of the dissociated combustion products with

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_g.m
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decreasing temperature (increasing volume). On the other hand, the frozen and equilibrium pressures show
much smaller differences than temperatures at a given volume. Another key difference is that the slope of
equilibrium sound speed in P − V coordinates is less negative than the slope of the frozen sound speed.
While it is not obvious, it is possible to show on general thermodynamic grounds that this is always true.
This has implications for the sound speed as discussed in the next section. For both equilibrium and frozen
states, the curvature of the temperature-volume relation in log-log coordinates indicates that a power-law
(polytropic) fit will be inaccurate over a large range of volumes. This curvature is due to the combined
effects of specific heat and in the case of equilibrium, composition, dependence on thermodynamic state.
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Figure 7.12: Species equilibrium composition on the isentrope for the case described in Fig. 7.11.

For a limited range of states, a standard engineering representation of the isentropes is a polytropic
approximation:

Pvk = P1v
k
1 = constant ; (7.72)

Tvk
′−1 = T1v

k′−1
1 = constant ; (7.73)

where the constants k and k′ are determined by fitting the exact results shown in Fig. 7.11. The range of
the volumes has to be limited in order to get reasonable bounds for the exponents. Limiting the fits to v ≤
1000v1, the following values of the exponents are obtained (see demo g.m):

kfr = 1.2597 ; (7.74)

keq = 1.1075 ; (7.75)

k′fr = 0.2597 ; (7.76)

k′eq = 0.08016 ; (7.77)

For a perfect gas with a constant ratio of specific heats

γ = cp/cv , (7.78)

the exponents are given by

k = γ , (7.79)

k′ = γ − 1 . (7.80)

The relationship k′ = k− 1 is numerically satisfied to four significant figures in the frozen case but the value
of k′eq in the equilibrium case is 20% lower than keq − 1. The fit-derived value of kfr − 1 obtained for the
frozen case is about 18% higher than the average of the frozen thermodynamic values of γ ≈ 1.2119 in the
range of fitted volumes. The discrepancy in numerical values between kfr and γfr is due to fitting the data
in log-log coordinates with a linear model over a large range of specific volume.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_g.m
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Sound Speed

The starting point for our computation of equilibrium sound speed is the expression that is usually taken to
define sound speed in terms of its squared value:

a2 =

(
∂P

∂ρ

)
s

. (7.81)

If the thermodynamic state is constrained to be equilibrium then the derivative is interpreted as being the
slope of the equilibrium isentrope in P -ρ coordinates

a2eq =

(
∂P

∂ρ

)
s, Yeq

. (7.82)

An alternative expression for sound speed that is used in compressible flow is in terms of derivatives of
enthalpy h(P, ρ, Y).

dh =

(
∂h

∂P

)
ρ,Y

dP +

(
∂h

∂ρ

)
P, Y

dρ+

k∑
i=1

(
∂h

∂Yi

)
P,ρ,Yj ̸=i

dYi (7.83)

For equilibrium flow Y = Yeq(P, ρ) and

dY eq
i =

(
∂Y eq

i

∂P

)
ρ,Yj ̸=i

dP +

(
∂Y eq

i

∂ρ

)
P,Yj ̸=i

dρ . (7.84)

The fundamental relation of thermodynamics can be written

dh = T ds+
dP

ρ
+

k∑
i=1

µi dni (7.85)

The last term vanishes for either frozen or equilibrium processes. Eliminating dh between these two expres-
sions we have for frozen flow

a2fr =

(
∂h

∂ρ

)
P, Y

1

ρ
−
(
∂h

∂P

)
ρ, Y

. (7.86)

and for equilibrium flow

a2eq =

(
∂h

∂ρ

)
P, Y

+

k∑
i=1

(
∂h

∂Yi

)
P,ρ,Yj ̸=i

(
∂Y eq

i

∂ρ

)
P,Yj ̸=i

1

ρ
−
(
∂h

∂P

)
ρ, Y

−
k∑

i=1

(
∂h

∂Yi

)
P,ρ,Yj ̸=i

(
∂Y eq

i

∂P

)
ρ,Yj ̸=i

, (7.87)

which can be written as

a2eq =

(
∂heq

∂ρ

)
P

1

ρ
−
(
∂heq

∂P

)
ρ

. (7.88)
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where (
∂heq

∂ρ

)
P

=

(
∂h(P, ρ,Yeq(P, ρ))

∂ρ

)
P

(7.89)

and (
∂heq

∂P

)
ρ

=

(
∂h(P, ρ,Yeq(P, ρ))

∂P

)
ρ

. (7.90)

Although not obvious from (7.83) and (7.87), it is possible to show on general thermodynamic grounds
(see Appendix 4D Fickett and Davis, 1979) that the equilibrium sound speed will always be less than the
frozen sound speed.

afr ≥ aeq (7.91)

The holds irrespective of the nature of the equilibration process, endothermic or exothermic. This inequality
is a consequence of the extremum properties of equilibrium processes, discussed in Chapter 4.

Provide a derivation of (7.91) using thermodynamic transformation to reaction coordinates and proper-
ties of the Hessian at the equilibrium state.

Numerical computation of sound speed

A simple finite difference approach to computing the sound speed is to evaluate pressure at two states, 1
and 2, at nearby points on an isentrope and to form the difference quotient

df

dx
≈ f(x2)− f(x1)

x2 − x1
(7.92)

If we select the two points to be equally spaced about a central point x0, x1 = x0−h and x2 = x0 +h, then
we recover the central difference approximation to the first derivative

df

dx

∣∣∣∣
x0

=
f(x0 + h)− f(x0 − h)

2h
+O(h2) , (7.93)

which as indicated, is accurate to second order in the increment h. Applying this to the computation of
(7.82) and considering P (ρ, s, Y) we obtain

a2eq ≈
P (ρ0 +∆ρ, s0, Yeq)− P (ρ0 −∆ρ, s0, Yeq)

2∆ρ
, (7.94)

where the equilibrium composition Yeq is evaluated at the entropy and density associated with that state.
A straightforward implementation of this approach is to start with an initial equilibrium state and then

to use the 'SV' option to perform equilibrium computations of adjacent states at a fixed entropy and two
density values. The MATLAB code soundspeed eq.m that implements this approach is:

rho0 = density(gas);

T0 = temperature(gas);

p0 = pressure(gas);

s0 = entropy_mass(gas);

x0 = moleFractions(gas);

rho1 = 0.99*rho0;

set(gas,’Density’,rho1,’Entropy’,s0,’MoleFractions’,x0);

equilibrate(gas,’SV’);

p1 = pressure(gas);

rho2 = 1.01*rho0;

set(gas,’Density’,rho2,’Entropy’,s0,’MoleFractions’,x0);

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_eq.m
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equilibrate(gas,’SV’);

p2 = pressure(gas);

dpdrho_s = (p2 - p1)/(rho2 - rho1);

aequil = sqrt(dpdrho_s);

set(gas,’Temperature’,T0,’Pressure’,p0,’MoleFractions’,x0);

If the reference state passed to the function in the gas object is not in equilibrium, the result of the call is still
valid but requires care in interpretation. The resulting equilibrium sound speed is based on an equilibrium
isentrope that passes through the (S, V ) state that is passed to the function but composition and therefore
the thermodynamic properties such as pressure and temperature will be quite different from those of the
reference state.

The approach outlined above is useful for most cases but there are reference states that are challenging
for the Cantera equilibrium solver to converge when using the 'SV' option. The Cantera equilibrium solver
is optimized and most robust when used in the 'TP' mode. To take advantage of this, consider variations in
entropy with small changes in temperature and pressure

s = s0 +

(
∂s

∂T

)
P

∆T +

(
∂s

∂P

)
T

∆P + . . . . (7.95)

In this expression and what follows, the constraint of equilibrium is not explicity stated. On an isentrope, s
= s0 and dropping the higher order terms, we obtain the following relationship between small temperature
and pressure changes along the isentrope

∆T = −

(
∂s

∂P

)
T(

∂s

∂T

)
P

∆P , (7.96)

which can also be written as

=

(
∂T

∂P

)
s

∆P (7.97)

The two derivatives on the right-hand side of (7.96) can be computed using centered differences,(
∂s

∂P

)
T

≈ s(P2, T0)− s(P1, T0)

P2 − P1
, (7.98)

and (
∂s

∂T

)
P

≈ s(P0, T2)− s(P0, T1)

T2 − T1
. (7.99)

The sound speed squared can then be approximated as

a2 ≈ ∆P

∆ρ

∣∣∣∣
s

=
P2 − P1

ρ(P2, TA)− ρ(P1, TB)
. (7.100)

where

TA = T0 +

(
∂T

∂P

)
s

(P2 − P0) , (7.101)

TB = T0 +

(
∂T

∂P

)
s

(P1 − P0) , (7.102)
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Note that all the quantities in the difference approximations are given as a function of temperature and
pressure enabling the use of the 'TP' equilibrium option to find an equilibrium state or else in the case of
frozen composition, direct evaluation of the thermodynamic properties. This is the method that is used in
the Python module soundspeed eq.

If the thermodynamic state has a single component or the composition is fixed, the frozen sound speed
is defined as

a2fr =

(
∂P

∂ρ

)
s, Y

, (7.103)

which can be numerically estimated using the finite difference approximation

a2fr ≈
P (ρ0 +∆ρ, s0, Y)− P (ρ0 −∆ρ, s0, Y)

2∆ρ
. (7.104)

The evaluation of this formula does not involve equilibrium computations and can be evaluated by straight-
forward evaluation of states on the isentrope, which is implemented in the MATLAB soundspeed fr.m and
Python soundspeed fr routines:

rho0 = density(gas);

T0 = temperature(gas);

P0 = pressure(gas);

s0 = entropy_mass(gas);

x0 = moleFractions(gas);

rho1 = 0.99*rho0;

set(gas,’Density’,rho1,’Entropy’,s0,’MoleFractions’,x0);

p1 = pressure(gas);

rho2 = 1.01*rho0;

set(gas,’Density’,rho2,’Entropy’,s0,’MoleFractions’,x0);

p2 = pressure(gas);

dpdrho_s = (p2 - p1)/(rho2 - rho1);

afrozen = sqrt(dpdrho_s);

set(gas,’Temperature’,T0,’Pressure’,P0,’MoleFractions’,x0);

These algorithms for sound speed are independent of equation of state and will work for both ideal and real
gas equations of state.

As discussed in Section 7.10, the frozen sound speed can be computed from the thermodynamic identity(
∂P

∂ρ

)
s

=
cp
cv

(
∂P

∂ρ

)
T

. (7.105)

For frozen composition in a real gas, this quantities can be computed from the ideal gas properties and
departure functions, evaluating the derivative using finite differences. For an ideal gas the derivative simplifies
to (

∂P

∂ρ

)
T,Y

= RT . (7.106)

Defining the frozen ratio of specific heats as

γf (T ) =
cp,Y(T )

cv,Y(T )
, (7.107)

we obtain the following alternative expressions for frozen sound speed.

a2f = γf (T )RT = γf (T )
P

ρ
(7.108)

This is the extension of the perfect gas expression a2 = γRT with γ = constant to the situation of variable
thermal properties accounting for the specific heat dependence on temperature through γf (T ).

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
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Grüneisen Coefficient

The Grüneisen parameter is defined as

G = v

(
∂P

∂e

)
v

, (7.109)

which can be transformed using thermodynamic identities to

= − v

T

(
∂T

∂v

)
s

, (7.110)

=
ρ

T

(
∂T

∂ρ

)
s

. (7.111)

The simplest approach to numerical computation is to use finite differences to approximate the derivative
on the isentrope (

∂T

∂ρ

)
s

≈ T (s, ρ+∆ρ)− T (s, vρ−∆ρ)

2∆ρ
. (7.112)

and the computation of temperature as a function of entropy and specific volume (or mass density) is either at
equilibrium or frozen composition. The MATLAB script gruneisen fr.m (the Python routine is gruneisen fr)
that implements the equilibrium composition version is:

rho0 = density(gas);

P0 = pressure(gas);

T0 = temperature(gas);

s0 = entropy_mass(gas);

x0 = moleFractions(gas);

rho1 = 0.99*rho0;

set(gas,’Density’,rho1,’Entropy’,s0,’MoleFractions’,x0);

equilibrate(gas,’SV’);

t1 = temperature(gas);

rho2 = 1.01*rho0;

set(gas,’Density’,rho2,’Entropy’,s0,’MoleFractions’,x0);

equilibrate(gas,’SV’);

t2 = temperature(gas);

dtdrho = (t2 - t1)/(rho2 - rho1);

rho = (rho1 + rho2)/2.;

t = (t1+t2)/2.;

G_eq = dtdrho*rho/t;

set(gas,’Temperature’,T0,’Pressure’,P0,’MoleFractions’,x0);

Another method of computing the Grüneisen parameter is by using thermodynamic identities (Denbigh,
1981, Sec. 2.10) to transform the derivatives to use temperature and volume as the independent variables.

G = v

(
∂P

∂e

)
v

, (7.113)

= v

(
∂P

∂T

)
v

(
∂T

∂e

)
v

, (7.114)

= v

(
∂P

∂T

)
v(

∂e

∂T

)
v

. (7.115)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
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The denominator is the specific heat at constant volume

cv =

(
∂e

∂T

)
v

, (7.116)

and the numerator can be expressed (Denbigh, 1981, Sec. 2.10) as

(
∂P

∂T

)
v

= −

(
∂v

∂T

)
P(

∂v

∂P

)
T

. (7.117)

The Grüneisen parameter can be expressed as

G = − v

cv

(
∂P

∂v

)
T

(
∂v

∂T

)
P

. (7.118)

The Grüneisen parameter can be related to other thermodynamic properties using the thermodynamic
identity (Denbigh, 1981, Sec. 2.10)

cp − cv = −T
(
∂P

∂v

)
T

(
∂v

∂T

)2

P

. (7.119)

Subsituting the alternative definition (7.118), we obtain the following identity

cp
cv
− 1 = G T

v

(
∂v

∂T

)
P

. (7.120)

Simplfying this with the definition (7.78) we obtain the final version of the relationship between γ and G.

γ − 1 = G ·
[
T

v

(
∂v

∂T

)
P

]
. (7.121)

The last two expressions are valid for both frozen and equilibrium compositions; the term in brackets in
(7.121) is one for frozen conditions. The derivatives will need to be evaluated numerically if the equilibrium
constraint applies. If the derivatives are evaluated at fixed composition, then substantial simplification occurs
for an ideal gas.

1

v

(
∂v

∂T

)
P

=
1

T
Frozen composition , (7.122)

−1

v

(
∂v

∂P

)
T

=
1

P
Frozen composition . (7.123)

At fixed composition, the constant volume specific heat can be expressed in terms of the ratio of specific
heats γ and the gas constant R

cv,f =
R

γf − 1
Frozen composition , (7.124)

γf =
cp
cv

Frozen composition . (7.125)

Considering the frozen case, the Grüneisen parameter for an ideal gas can be expressed as

Gf = γf − 1 Frozen composition (7.126)
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This can be used as a check on the finite difference approximation for the frozen case. The equilibrium
case requires evaluating the derivatives using finite different approximations. Some progress can be made
analytically for an ideal gas by expanding the derivative and simplifying to obtain

T

v

(
∂v

∂T

)
P

= 1 +

n∑
i=1

W
Wi

(
∂Yi

∂T

)
P

. (7.127)

The last term vanishes for frozen conditions (consistent with the previous discussion) and is positive for
equilibrium combustion products, with a value as large as 1.5 for dissociated combustion products. As a
consequence the values of γ obtained from the Grüneisen parameter are smaller than expected based on the
relationship (7.126) extended to equilibrium conditions.

Ratio of specific heats

The specific heats are defined in terms of the derivatives of internal energy e

cv =

(
∂e

∂T

)
v

, (7.128)

or enthalpy h

cp =

(
∂h

∂T

)
p

. (7.129)

These derivatives can be carried out either at frozen or equilibrium conditions. The frozen case can be
evaluated directly form the mixture average specific heats and the differentiation for the equilibrium case is
carried out numerically in demo g.m.

% compute frozen specific heats from thermodynamic properties

set(gas,’T’,T(i),’V’,V);

equilibrate(gas, ’TV’);

gamma_fr_thermo(i) = cp_mass(gas)/cv_mass(gas);

% compute equilibrium specific heats from properties and definition

% constant volume

set(gas,’T’,T(i)*1.01,’V’,V);

equilibrate(gas, ’TV’);

U2 = intEnergy_mass(gas);

set(gas,’T’,T(i)*0.99,’V’,V);

equilibrate(gas, ’TV’);

U1 = intEnergy_mass(gas);

CVEQ = (U2-U1)/(.02*T(i));

% constant pressure

set(gas,’T’,T(i)*1.01,’P’,P(i));

equilibrate(gas, ’TP’);

H2 = enthalpy_mass(gas);

set(gas,’T’,T(i)*0.99,’P’,P(i));

equilibrate(gas, ’TP’);

H1 = enthalpy_mass(gas);

CPEQ = (H2-H1)/(.02*T(i));

gamma_eq_thermo(i) = CPEQ/CVEQ;

The frozen versions are relevant to fluid dynamic simulations (e.g., nozzle flow) and idealized explosion
models (e.g., ZND, CV or CP computations) which model chemical reactions using detailed chemical kinetic
descriptions. The equilibrium versions are sometimes used to describe idealized models of processes that are
sufficiently slow to be modeled as a sequence of equilibrium states.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_g.m
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The ratio of the specific heats are related to the slopes of the isentrope and isotherm in the P −ρ plane by
a thermodynamic identity (Denbigh, 1981, Sec. 2-1) that is valid for either equilibrium or frozen conditions.(

∂P

∂ρ

)
s

=
cp
cv

(
∂P

∂ρ

)
T

, (7.130)

Using the definition of the ratio of specific heats (7.78) this can be expressed as

γ =
a2(

∂P

∂ρ

)
T

, (7.131)

For an ideal gas, (
∂P

∂ρ

)
T

= RT +RT

n∑
i=1

W
Wi

ρ

(
∂Yi

∂ρ

)
T

. (7.132)

The last term vanishes for frozen conditions and is negative for equilibrium conditions (see Fig. 7.16) so that(
∂P

∂ρ

)
T ,eq

≤ RT . (7.133)

The consequences of these relationships are that the equilibrium sound speed is lower than the frozen sound
speed as shown in Fig. 7.13. The deviation of a2 from linear dependence on T is due to both the change in
specific heat ratio and composition with temperature. For both frozen and equilibrium flow we have

a2 =
cp
cv

RT

[
1 +

n∑
i=1

W
Wi

ρ

(
∂Yi

∂ρ

)
T

]
, (7.134)

For frozen flow, this is the extension of the usual perfect gas relationship to an ideal gas with fixed compo-
sition.

a2fr =
cp,fr(T )

cv,fr(T )
RT , (7.135)

= γfr(T )RT . (7.136)

For equilibrium flow, there is similar expression but with an additional term due to the shift in composition
with temperature changes

a2eq =
cp,eq(T )

cv,eq(T )
RT

[
1 +

n∑
i=1

W
Wi

ρ

(
∂Yi

∂ρ

)
T

]
, (7.137)

= γeq(T )RT

[
1 +

n∑
i=1

W
Wi

ρ

(
∂Yi

∂ρ

)
T

]
. (7.138)

An alternative interpretation of the ratio of specific heats is in terms of the nondimensional (logarithmic)
slope of the isentrope in pressure-density coordinates

κ =
ρ

P

(
∂P

∂ρ

)
s

. (7.139)

The origin of the approximation of the isentrope by a power law is based on the integrating this equation
with κ ≈ constant = k. However, this is only valid over a limited range of thermodynamic states as shown
in Fig. 7.14 and discussed in the beginning of this Appendix. The definition of κ can be rewritten as

κ = γ ·
[
ρ

P

(
∂P

∂ρ

)
T

]
. (7.140)
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Figure 7.13: Frozen vs. equilibrium values of sound speed squared a2 for isentropic expansion of combustion
products of stoichiometric H2-O2 constant volume explosion.

The term in brackets is one for frozen flow and less than one for equilibrium conditions (Fig. 7.16a) so that
the slopes of equilibrium isentropes at high temperature will be less than the ratio of specific heats.

In general G, γ − 1, κ and cp/cv are functions of temperature and the frozen values are larger than the
equilibrium values. As shown in Fig. 7.14a, the frozen values Gf = γf − 1 = κf − 1 = cp/cv − 1 are all equal
and show a nonmonotonic dependence on temperature. This is due to the competing processes of excitation
of molecular degrees of freedom and dissociation of molecules to atoms with increasing temperature. In
Fig. 7.14, value of γ was computed from (7.131) and the ratio of specific heats was computed from the
definitions (7.128) and (7.129) using the appropriate composition constraint. Because these definitions are
thermodynamically consistent, both frozen and equilibrium values of γ and cp/cv are identical to the precision
of the computation and the curves overlap in Fig. 7.14. As shown in Fig. 7.14b, the equilibrium values of
κ − 1 and G are significantly lower than γ − 1 at higher temperatures due to the temperature dependence
(Fig. 7.16) of the derivatives in (7.121) and (7.140).

As shown in Fig. 7.15, at low temperatures, less than about 1200 K, the quantities γfr = κeq = γeq
are all equal and increase with decreasing temperature. At low temperatures, dissociation is unimportant
(see Fig. 7.12) and composition can be considered frozen so that the specific heat varies only due to the
population of molecular vibrational states associated with temperature. At intermediate temperatures, 1200
≤ T ≤ 2000, there is a substantial amount of dissociation and shifting composition in equilibrium effectively
increases the heat capacity of the mixture and lowers the value of both κeq − 1 and γeq − 1 below γfr − 1.
This effect is reflected in the variation of the functions shown in Fig. 7.16. With increasing temperatures
above 2000 K, the mixture becomes progressively dominated by atoms resulting in an increase in the value
of γeq. At 3500 K, the mixture is mostly atoms so that the frozen and equilibrium values of γ become equal.
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Figure 7.14: Frozen vs. equilibrium values of γ -1 and κ - 1 for isentropic expansion of combustion products
of stoichiometric H2-O2 constant volume explosion.
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Figure 7.15: Frozen vs. equilibrium values of γ -1 and κ - 1.

7.11 Shock Tube Simulation

The classical shock tube consists of a high-pressure driver section separated by a diaphragm (metal or plastic
sheet) from a low pressure driven section. Rupture of the diaphragm results in the propagation of a shock
wave into the driver section and an expansion into the driven section, see Fig. 7.17. For an idealized shock
tube, the diaphragm ruptures instantaneously and the conditions at states 2 and 3 as well as the shock
strength can be computed by considering these regions as uniform until the waves have reflected from the
far end of the tube and disturb the uniformity of states 2 and 3. This approximation is reasonable and be
used to estimate the strength (Mach number or speed) of the shock wave in real shock tubes for locations
sufficiently far from the diaphragm.

Idealized shock tube performance can be computed by numerically implementing simple wave solutions
using the pressure-velocity matching method. For perfect gases in the driver and driven sections, the solution
for the shock Mach number can be obtained analytically as a function of the ratio of specific heats of each
gas, the ratio of initial sound speed a4/a1 in the driver and driven section, and the pressure ratio P4/P1.
The solution (Appendix A.11) can be obtained analytically in this cases.

For strong shock waves and expansion from hot driver gases, realistic solutions for shock and expansion
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Figure 7.16: (a) Equilibrium value of the function (ρ/P )(dP/dρ)T . (b) Equilibrium value of the function
(T/v)(dv/dT )P .

states require realistic thermochemistry using equilibrium solutions for the composition. This is implemented
in the demonstration program demo ShockTube.m and demo ShockTube.py. There are four driver situations
that have been implemented in the program.

1. Cold gas. This is the conventional shock tube situation in which the driver is just pressurized gas. The
driver gas could be warm but in many cases it is cold, i.e., the same temperature as the driven gas.

2. Hot gas. The gas is hot and generated by a rapid combustion process, approximated as constant-
volume, adiabatic, complete combustion.

3. Forward detonation. An ideal detonation wave propagating toward the diaphragm at the CJ speed.

4. Reverse detonation. An ideal detonation wave starting at the diaphragm and propagation away at the
CJ speed.

In all cases, the solution is constructed by first computing the wave curves that represent the P (u)
relationship for the states behind the shock waves in the driver and expansion in the driven section. The
P (u) relationship for the shock wave is constructed using the postshock routines described in Section 6.1
and computed postshock pressure and density as a function of shock speed Us.

P2 = P2(Us) (7.141)

ρ2 = ρ(Us) (7.142)

u2 = Us(1−
ρ1
ρ2

) (7.143)

TheP (u) relationship for the expansion wave follows the development given in Section 7.1. For the left-
propagating expansion shown in Fig. 7.17, the C+ Riemann invariant across the wave provides the relation-
ship

dP

ρa
= −du . (7.144)

Integration along an isentrope provides the required P (u) relationship

u = −
∫ P

P4

dP

ρa
. (7.145)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ShockTube.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ShockTube.py
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Figure 7.17: Conventional shock tube and initial wave system generated by diaphragm rupture.
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Figure 7.18: Equilibrium postshock properties: (a) density, (b) temperature, (c) pressure as a function of
shock Mach number and (d) Pressure-velocity relationship. Air at an initial state of 1 bar and 298.15 K.

The solution for states 2 and 3 for given values of states 1 and 4 is found by requiring that pressure and
velocity are continuous at the contact surface between these states

u2 = u3 , (7.146)

P2 = P3 . (7.147)

The solution proceeds by tabulation of P (u) for states 2 and 3 followed by interpolation and a simple root-
finding routine. This can be graphically visualized as finding the intersection of the shock and expansion
wave curves in the P -u plane. The ideal gas solutions of Appendix A.11 are a useful first approximation,
particularly for expansion waves in the driver but for strong shock waves with rapid equilibration behind the
front, the shock and detonation toolbox equilibrium postshock routines give more realistic answers. At shock
Mach numbers greater than about 3 in air initially at 1 bar pressure, dissociation results in significant changes
in composition and departures of the gas density and temperature from ideal gas values, less significant are
the departures of the P (u) relationship from ideal.

Examples of wave curves and solutions for states 2 and 3 are shown in Fig. 7.19 for four types of drivers.
The driven gas is air with a composition O2:0.2095 N2:0.7808 Ar:0.0093 CO2:0.0004 and initial state of 100
kPa and 298.15 K. The driver in case (a) is high presure (3.3 MPa) helium. The driver gas used in cases (b),
(c), and (d) is a rich propane-oxygen (C3H8:2.0 O2:5.0) mixture with an initial state of 1 bar and 298.15
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Figure 7.19: Wave curves and solutions for four types of drivers: (a) He ; (b) constant volume explosion of
propane-oxygen; (c) reverse (propagation away from diaphragm) detonation of mixture used in case (b); (d)
forward (propagation toward diaphragm) detonation of mixture used in case (b).

K. In case b, the driven state is uniform and at the condition of an adiabatic, constant-volume explosions
(P = 2.28 MPa, T = 3299 K). For cases (c) and (d), the conditions are for a detonation wave (PCJ = 4.52
MPa, TCJ = 3540 K) in the mixture used in case (b). For case (c), the plateau state (P = 1.64 MPa, T =
3103 K) at the end of the Taylor-Zeldovich wave is most relevant for estimating the driver initial state. The
solutions for case (d) only apply immediately after the interaction of the detonation wave with the driver
gas as there are significant nonsteady processes associated with the Taylor-Zeldovich expansion flow behind
the wave. In cases (a), (b) and (c), the solutions for pressure and velocity at the 2-3 interface are only valid
until the reflected expansion wave from the driver end reaches the interface.

There is another case, Fig. 7.20, that occurs when the CJ state lies under the shock wave curve; a reflected
shock wave occurs in the driver gas. The interaction of a detonation wave with a contact surface within and
at the exit of a detonation tube was investigated numerically and experimentally Wintenberger et al. (2003),
Wintenberger (2004) and used in the development of models for pulse detonation propulsion systems. The
performance of combustion and detonation-driven shock tubes has been investigated for use in hypervelocity
flow facilities (shock tunnels and expansion tubes) Olivier et al. (2002) as well as conventional shock tubes
Schmidt et al. (2013). The interaction of the detonation wave with an interface is crucial but only one
component of the operation; a full unsteady gas dynamic simulation of the wave propagation processes is
required to predict the performance.
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Figure 7.20: Pressure-velocity solution for forward detonation and reflected shock solutions in driver. Stoi-
chiometric propane-oxygen driver at 0.25 atm, air at 1 atm in driven section.
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Chapter 8

Numerical Methods for the Jump Equations

The most common predictive problem in shock physics is to numerically
determine the post-shock state 2 given an initial state 1 and shock velocity
Us = w1. There are many methods to accomplish this task, two of which are
given below. The first method is based on functional iteration in a single
variable (density ratio). The second method is based on a two-variable
(temperature and volume) implicit solution using Newton’s method. The
second method is more robust than the first and is used in the numerical
algorithms in our software package. In order to use these methods, an
equation of state in the form e(P, ρ) or equivalently h(p, ρ) is required. This
can be either an analytic formula, a set of tabulated data, or an algorithmic
procedure.

8.1 Iterative Solution with Density

One convenient way to approach this problem is to rewrite the momentum and energy jump relationships
as a function of density ρ2

P2 = P1 + ρ1w
2
1

[
1− ρ1

ρ2

]
(8.1)

h2 = h1 +
1

2
w2

1

[
1−

(
ρ1
ρ2

)2
]

(8.2)

Using an assumed value of ρ2 = ρ∗2 and the initial state (P1, ρ1, h1, w1), Equations (8.1) and (8.2) are used
to predict interim values of pressure and enthalpy, P ∗

2 and h∗
2. The enthalpy from (8.2) is then compared

with the value obtained from the equation of state

h = h(P ∗
2 , ρ

∗
2) (8.3)

to obtain an error

Err = h(8.3)− h(8.2) (8.4)

Depending on the sign of Err, a new value for ρ2 = ρ∗2 that will reduce the magnitude of Err is selected.
Through repeated1 trials (iterations), Err can be reduced to less than a desired tolerance ϵ. This formulation
of the problem can be used with any equation of state that can be evaluated to yield h(P, ρ); Mollier charts
and tables (Reynolds, 1979) that are widely available for many substances are well suited for this approach.
This method is the basis of the post-shock state solution in the original detonation structure program ZND
developed by Shepherd (1986).

1This is most conveniently carried out using one of the “canned” nonlinear root solvers available in standard libraries of
numerical subroutines (Press et al., 1986).

111
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Algorithm

The details of the solution algorithm are as follows:

1. Define known quantities: Upstream state (1), e.g., specify (w1, P1, T1, Y1), error tolerances

2. Seek unknown quantities: Downstream State (w2, P2, T2, Y2)

3. Define the unknown specific volume ratio to be X

X =
ρ1
ρ2

(8.5)

4. Guess a value for X within assumed upper and lower bounds Xmin < X < Xmax. As discussed below,
the value of Xmin has to be selected carefully to avoid having the solution compute nonphysical values
of properties which will result in runtime errors and a failure to obtain a solution.

Xmin =
1

5
(8.6)

Xmax =
1

1.005
(8.7)

5. Compute the tentative value for pressure from momentum jump

P ∗
2 = P1ρ1w

2
1 (1−X) (8.8)

6. Compute enthalpy from the equation of state using an assumed (frozen) or computed (equilibrium)
composition Y

ρ∗2 =
ρ1
X

(8.9)

h∗
2 = h(P ∗

2 , ρ
∗
2,Y

∗
2) (8.10)

7. Compute the enthalpy using the energy jump equation

h2 = h1 +
w2

1

2

(
1−X2

)
(8.11)

8. Find the error as the difference between the two enthalpies

Err = h2 − h∗
2 (8.12)

In (8.10), h(P, ρ,Y) is the thermodynamic equation of state of the products. If the products are
in chemical equilibrium, in step 6, this will require determining the equilibrium composition Y2,eq

corresponding to P ∗ and ρ∗. This solution algorithm is valid for a general equation of state and can
be simplified for an ideal gas by computing temperature as an intermediate variable in step 6.

9. Iterate until Err (8.12) is less than the specified value.

10. Return final post-shock state (2).

The program ZEROIN (Shampine and Watts, 1970) was used in Shepherd (1986) to carry out the iteration.
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Figure 8.1: The Rayleigh line and reactant (frozen) Hugoniot with the minimum (8.6) and maximum (8.7)
density ratios superimposed for stoichiometric hydrogen-air with the same initial conditions as Fig. 6.3 and
a shock speed of 1.4UCJ. The proposed asymptote (8.14), γ bound, is also shown. demo RH.m

Algorithm Analysis

This algorithm has difficulty converging with strong shock waves such as the leading shock of a highly
overdriven detonation, i.e., a wave speed significantly exceeding the Chapman-Jouguet value. This is due
to the vertical asymptote of the Hugoniot at high pressures (Fig. 8.1). Small changes in density correspond
to large changes in pressure, and if the bounds on the density are not chosen carefully, the algorithm will
pick values that fall to the left of the asymptote which may cause the root-solving routine to fail. In order
to use this method, we need to find a good approximation to the lower bound on the specific volume ratio
Xmin. An approximate asymptote (8.14) can be determined from the constant cP analytic solution to the
jump conditions (see Appendix A.1).

ρ2
ρ1

=
γ + 1

γ − 1 +
2

M2
1

(8.13)

where γ is the ratio of specific heats, cP /cv. As M →∞, this expression becomes

ρ2
ρ1

=
γ + 1

γ − 1
(8.14)

In general, particularly when considering a wide range of shock speeds, the value of γ(T ) shown (Fig. 8.2)
varies with postshock temperature (and pressure for reacting cases) since cP (T ). In order for this estimate
to be useful, we need a value for γ. This will depend on the postshock temperature and pressure. A typical
maximum leading shock velocity in unstable detonations (Eckett et al., 2000) is about 1.4UCJ, where UCJ is
the Chapman-Jouguet value. The value of γ for a shock of this strength in air is about 1.3. Figure 8.1 shows
the typical bounds on the density ratio for this case and we see that the simple estimate falls to the left2 of
the actual solution, which means that considerable trial and error is needed to get appropriate bounds on
the trial value of the density. For this reason, functional iteration on density is not a very robust method
for a wide range of problems, and a more reliable technique is needed.

2When the specific heat is a function of temperature, even if the composition is fixed, (8.14) is incorrect.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH.m
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Figure 8.2: γ as a function of temperature for stoichiometric hydrogen-air at 1 atm (frozen composition).

8.2 Newton-Raphson Method in Temperature and Volume

The iterative solution with density requires a good initial guess for the density and care must be taken
not to exceed the maximum density. The steep slope of the Hugoniot for strong shocks makes this method
unsuitable in those cases. We have found that a more robust method is to use a two-variable Newton-Raphson
scheme with the variables temperature and specific volume. The scheme presented below is an extension of
the method used by Reynolds (1986) to solve the jump conditions for a Chapman-Jouguet detonation.

The momentum and energy jump conditions can be expressed as

H =

(
h2 +

1

2
w2

2

)
−
(
h1 +

1

2
w2

1

)
(8.15)

P =
(
P2 + ρ2w

2
2

)
−
(
P1 + ρ1 w2

1

)
(8.16)

The exact solution to the jump conditions then occurs when both H and P are identically zero. We can
construct an approximate solution by simultaneously iterating these two equations until H and P are less
than a specified tolerance. An iteration algorithm can be developed by considering trial values of (T, v) for
the downstream thermodynamic state 2 that are close to but not equal to the exact solution, (T2, v2). The
expansion of (8.16) and (8.15) to first order in a Taylor series about the exact solution,

H(T, v) = H(T2, v2) +
∂H
∂T

(T − T2) +
∂H
∂v

(v − v2) + . . . (8.17)

P(T, v) = P(T2, v2) +
∂P
∂T

(T − T2) +
∂P
∂v

(v − v2) + . . . (8.18)

Recognizing that H(T2, v2) = P(T2, v2) = 0, this can be written as a matrix equation

 H
P

 =


∂H
∂T

∂H
∂v

∂P
∂T

∂P
∂v


 δT

δv

 (8.19)
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where δT = T −T2 and δv = v−v2. This equation is used to compute corrections, δT and δv, to the current
values of (T, v) and through successive applications, approach the true solution to within a specified error
tolerance. At step i, we have values (T i, vi) which we use to evaluate (8.15) and (8.16) and obtain Hi and
Pi; then we solve (8.19) for δT i and δvi and compute the next approximation to the solution as

T i+1 = T i − δT i (8.20)

vi+1 = vi − δvi (8.21)

The corrections can be formally obtained by inverting the Jacobian

J =


∂H
∂T

∂H
∂v

∂P
∂T

∂P
∂v

 (8.22)

and carrying out the matrix multiplication operation.[
δT
δv

]
= J−1

[
H
P

]
(8.23)

This is equivalent to the Newton-Raphson method (Press et al., 1986) of solving systems of nonlinear equa-
tions. The derivatives needed for the Jacobian might be computed analytically although it is often simpler
to compute these numerically for complex equations of state or problems that involve chemical equilibrium.
This is the approach used by Reynolds (1986) in his implementation of this method for finding CJ states for
detonations and the basis for the method used in the present software. The algorithms for both the Python
and MATLAB implementations are essentially identical and are described next.

Subfunctions shk calc and shk eq calc

The algorithms for both frozen and equilibrium shocks are formally identically and only differ in how
state 2 (postshock state) is updated. For shk calc the composition is kept frozen (equal to that of state 1)
and for shk eq calc, the composition is equilibrated at the given thermodynamic state in order to determine
state 2 thermodynamic properties.

1. Define known quantities: Upstream state (1), e.g., specify (w1, P1, T1, Y1), error tolerances (defaults
are set in software), and initial increment values (δT , δv).

2. Establish preliminary guess (i = 1) for downstream state (2) based on an assumed value of ρ2 = ρ◦2.
A standard starting value that (set in the SDTconfig files) is ρ◦2 = 5ρ1. This value may not work for
all cases and some experimentation may be needed to find an appropriate value.

3. Compute downstream state (2) using jump conditions and current value of ρi2

vi2 =
1

ρi2

P i
2 = P1 + ρ1w

2
1

(
1− ρ1

ρi2

)
4. Compute downstream temperature from the equation of state in the form

T i
2 = T (P i

2, ρ
i
2,Y

i
2)

For frozen shocks, the downstream composition is fixed Yi
2 = Y1, for equilibrium postshock states, the

equilibrium composition Yi
2,eq will need to determined as a function of (P i

2, ρ
i
2). In the case of an ideal

gas, a useful shortcut is to introduce an estimated temperature because the equilibrium algorithms
converge most rapidly with temperature and pressure (or density) as the state variables.
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5. Call Subfunction FHFP to get H(T i
2) and P(T i

2)

6. Perturb temperature holding volume fixed and call Subfunction FHFP to getH(T i
2+∆T ) and P(T i

2+∆T )
using a suitably small perturbation ∆T

7. Perturb specific volume holding temperature fixed and call Subfunction FHFP to get H(vi2 +∆v) and
P(vi2 +∆v) using a suitably small perturbation ∆v

8. Evaluate the elements of the Jacobian by first order differences

∂H
∂T

=
H(T i

2 +∆T )−H(T i
2)

∆T
∂P
∂T

=
P(T i

2 +∆T )− P(T i
2)

∆T
∂H
∂v

=
H(vi2 +∆v)−H(vi2)

∆v
∂P
∂v

=
P(vi2 +∆v)− P(vi2)

∆v

9. Solve the linear system given in (8.19) to find δT and δv

10. Limit the values of δT and δv to avoid runtime errors.

• δT : IF |δT | > 0.2 ∗ T i
2, THEN δT ← 0.2 ∗ T i

2 ∗ sgn(δT )
• δv:

– IF |δv| > 0.2 ∗ vi2 and vi2 + δv < v1, THEN δv ← 0.2 ∗ vi2 ∗ sgn(δv)
– IF |δv| > 0.5(v1 − vi2) and vi2 + δv > v1, THEN δv ← 0.5(v1 − vi2) ∗ sgn(δv)

11. Update post-shock state

T i+1
2 = T i

2 − δT

vi+1
2 = vi2 − δv

12. Check convergence

T i+1
2 − T i

2 < Terror

vi+1
2 − vi2 < verror

13. Repeat 5-12 as needed

14. Return final values of T2 and v2 as the post-shock state.

Subfunction FHFP

The purpose of this routine is to compute the error in jump conditions given the current state of the
iteration.

Procedure:

1. Inputs:
Upstream State (P1, ρ1, h1, w1);
Current Guess State (P i

2, ρ
i
2, h

i
2)

2. Determine w2 and compute H and P

w2
2 = w2

1

(
ρ1
ρi2

)2

(8.24)

H =

(
hi
2 +

1

2
w2

2

)
−
(
h1 +

1

2
w2

1

)
(8.25)

P =
(
P i
2 + ρi2w

2
2

)
−
(
P1 + ρ1w

2
1

)
(8.26)
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8.3 Chapman-Jouguet Detonation Velocity

As discussed previously, the (upper) Chapman-Jouguet detonation velocity, UCJ, can be determined either
by finding the minimum speed solution of the jump conditions or the downstream sonic flow solution in the
wave-fixed frame. The minimum wave speed method is more robust since it does not require an additional
iteration to compute the equilibrium sound speed. However, obtaining an accurate solution requires careful
treatment of the iteration convergence. If a robust method of computing the equilibrium sound speed is
available as a standard routine, then the sonic flow method is easier to implement and test convergence. We
describe both methods but in the current version of the toolbox, only the minimum wave speed method is
implemented in the toolbox.

Sonic Flow Algorithm

This algorithm finds the solution of the shock jump conditions (8.15) and (8.16) where w1 is unknown and
w2 is the equilibrium sound speed. The equilibrium sound speed is calculated by numerical evaluation of
the derivative

a2eq =

(
∂P

∂ρ

)
sYeq

using the methods described in Chapter 7.10.
The algorithm for computing the CJ solution is:

1. Define known quantities: Upstream state, e.g., specify (P1, T1, Y1). Guess the downstream state, e.g.,
specify (P i

2, T
i
2, Y

i
2) - a constant volume explosion state is a useful starting point.

2. Estimate w1 using the guessed state 2 and equilibrium sound speed.

wi
2 = a2,eq(P

i
2, T

i
2, Yi

2) (8.27)

Evaluate the densities in state 1 and 2 and compute the associated trial value of w1

wi
1 = wi

2

ρi2
ρ1

(8.28)

3. Evaluate the enthalpy in states 1 and 2 and compute jump errors H and P

H =

(
hi
2 +

1

2
ai,22,eq

)
−
(
h1 +

1

2
wi,2

1

)
(8.29)

P =
(
P i
2 + ρi2a

i,2
2,eq

)
−
(
P1 + ρ1w

i,2
1

)
(8.30)

4. Use a root-finding method to iterate on temperature and pressure of CJ state to reduce the residuals
H and P below the desired error tolerances.

This method was explored in the orginal toolbox and worked well for simple mixtures, however, there
were difficulties with mixtures that have a large number of product species in converging to an equilibrium
sound speed. The method has been revised3 and an improved version has been implemented as an option in
the latest toolbox.

Minimum Wave Speed Algorithm

As discussed previously, the minimum wave speed solution uniquely determines the (upper) Chapman-
Jouguet point. We implement this by determining w1 as a function of the density ratio ρ2/ρ1 at discrete points
and then using a combination of analysis near the CJ point and statistical methods, find an approximation

3The new algorithm was developed by Zifeng Wang of Tsinghua University in 2021.
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to the minimum value of w1. The solution of the jump conditions for a given density uses the same Newton-
Raphson method previously discussed but with a key difference that instead of solving a system of equations
in volume and temperature (8.19), we used initial velocity and temperature as variables.

 H
P

 =


∂H
∂T

∂H
∂w1

∂P
∂T

∂P
∂w1


 δT

δw1

 (8.31)

The minimum wave speed solution is carried out with two routines. The routine CJ calc computes the wave
speed or shock velocity consistent with the jump conditions and corresponding to a trial value of downstream
density. The routine CJspeed iterates on the trial density, calling CJ calc repeatedly and determining the
CJ velocity as the minimum value of the wave speed.
Subfunction CJ calc

The purpose of this routine is to compute a shock velocity that is consistent with a given upstream state
and a specified downstream density. The solution w1 will be greater than or equal to the CJ speed.

1. Define known quantities: Upstream State, e.g., (P1, ρ1, Y1) and downstream density ratio ρ2, error
tolerances, increment values (δT , δw1)

2. Seek unknown quantities: Downstream State (P2, T2, Y2) and value of shock speed w1.

3. Establish preliminary guess: (i = 1)

wi
1 = 2000

T i
2 = 2000

4. Equilibrate the system with constant temperature and specific volume to find P i
2 and hi

2

5. Call Subfunction FHFP to get H(T i
2) and P(T i

2)

6. Perturb temperature holding initial velocity constant and call Subfunction FHFP to get H(T i
2 + ∆T )

and P(T i
2 +∆T ) with a suitably small value of ∆T

7. Perturb initial velocity holding temperature constant and call Subfunction FHFP to get H(wi
1 +∆w1)

and P(wi
1 +∆w1) with a suitably small value of ∆w1

8. Evaluate the elements of the Jacobian by first order differences a

∂H
∂T
≈ H(T

i
2 +∆T )−H(T i

2)

∆T
∂P
∂T
≈ P(T

i
2 +∆T )− P(T i

2)

∆T
∂H
∂w1

≈ H(w
i
1 +∆w1)−H(wi

1)

∆w1

∂P
∂w1

≈ P(w
i
1 +∆w1)− P(wi

1)

∆w1

9. Solve the linear system given in (8.31) to find δT and δw1

10. Limit the value of δT
IF |δT | > 0.2 ∗ T i

2, THEN δT = 0.2 ∗ T i
2 ∗ sgn(δT )

11. Update values

T i+1
2 = T i

2 − δT

wi+1
1 = wi

1 − δw1
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12. Equilibrate the system with constant temperature and specific volume to find P i+1
2 and hi+1

2

13. Check convergence

T i+1
2 − T i

2 < Terror

wi+1
1 − wi

1 < w1error

The values of the error bounds are determined by using the error tolerances (ERRFT,ERRFV) multiplied
by the current values of temperature and velocity so the convergence is obtained by reducing the
relative error to less than the values of ERRFT,ERRFV.

14. Repeat 4-13 as needed

15. Return final values of T2 and w1.

Minimizing Initial Velocity

Following the algorithm outlined above, we are able to find how the initial velocity varies with the final
density. Analytically, we have found that the initial velocity varies quadratically with density close to the
CJ point (see Appendix B). In order to find the minimum w1, the CJ speed, in MATLAB we use cfit

toolbox and in Python we have implemented the analytical solution for a quadratic least squares fit to
the data points that we gathered from the above algorithm. We use the R-squared value to quantify the
precision of our fit and simultaneously obtain observation prediction bounds to quantify the uncertainty in
our minimum wave speed.

Subfunction CJspeed

The purpose of this routine is to compute the CJ speed by minimizing the wave speed as a function of
downstream density.

1. Define known quantities: Upstream State, e.g., (P1, T1, Y1), initial (i = 1) guess for density ratio X
= ρ2/ρ1 and range (Xi

min = 1.5, Xi
max = 2.0) of interest for the solution. The default values of the

range limits and number of values ((numsteps=20) of X are hardcoded but usually adequate for most
gas detonations.

2. Seek unknown quantities: CJ speed

3. Call CJ calc for each density ratio, Xi for i ∈ (0,numsteps))

4. Fit data to a quadratic equation (aX2 + bX + c) using the method of least squares (regression)

5. Find minimum of fit

(
Xmin = − b

2a

)
6. Narrow density ratio range

Xi+1
min = Xmin − 0.001Xmin (8.32)

Xi+1
max = Xmin + 0.001Xmin (8.33)

7. Check convergence using the regression coefficient of determination “R-squared” (R2). For convergence
require that:

R2 > 0.99999 . (8.34)

8. Repeat 3-7 as needed

9. Return the final result when convergence is obtained. The predicted CJ speed is computed from the
coefficients

w1min =
b2

4a
− b2

2a
+ c (8.35)

of the fitted curve and the prediction bounds on this minimum are given by the descriptive statistics
for the curve fit.

Figures 8.3 and 8.4 depict the results that we obtain from the method described in this section.
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Figure 8.3: Initial velocity as a function of density ratio for stoichiometric hydrogen-air with intial tempera-
ture 300 K and initial pressure 1 atm. Chapman-Jouguet velocity is 1969.03 m/s corresponding to a density
ratio of 1.80. demo CJ.m
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Figure 8.4: Initial velocity as a function of density ratio for stoichiometric hydrogen-oxygen with intial
temperature 300 K and initial pressure 1 atm. Chapman-Jouguet velocity is 2836.36 m/s corresponding to
a density ratio of 1.84. demo CJ.m

Statistical Analysis of CJ Speed Solution

As discussed above, we have used the R-squared value to quantify the precision of the fit and quantify the
uncertainty in the computed value of the CJ speed. In this section these aspects will be discussed more
completely.

If y(x), the R-squared value is defined by the following equation

R2 =

∑n
i=1 (ŷi − y)2∑n
i=1 (yi − y)2

(8.36)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
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If this value is very close to unity then the curve is a good fit.
Simultaneous prediction bounds measure the confidence that a new observation lies within the interval

regardless of the predictor value. There are two main measures of confidence: confidence bounds and
prediction bounds. The confidence bounds give the uncertainty in the least square coefficients. These
uncertainties are correlated, and the prediction bounds account for this correlation. In our particular problem
we have uncertainty in both the x value of the minimum as well as the y value of the minimum. This is
because we choose

xmin = − b

2a
(8.37)

ymin = ax2
min + bxmin + c (8.38)

and there is uncertainty in a, b, and c. We choose simultaneous prediction bounds because that will account
for the uncertainty in x. Non-simultaneous prediction bounds assume that there is no uncertainty in x.
MATLAB defines simultaneous new observation prediction bounds with the following expression.

Ps,o = ŷ ± f
√

σ2
sample + xSx′ (8.39)

In this expression f is the inverse of the cumulative distribution function F (Fig. 8.5), σ2
sample is the mean

squared error (8.40), x is the predictor value for the new observation, and S is the covariance matrix of the
coefficient estimates (8.41).

σ2
sample =

1

ν

n∑
i=0

(yi − ŷi)
2 (8.40)

S = (XTX)−1σ2
sample (8.41)

x

D(x)

F1,2

F1,1

F2,3

Figure 8.5: Cumulative distribution function F for error in fitted parameters.

8.4 Verification and Convergence

As depicted in Fig. 6.3, for a Chapman-Jouguet detonation in stoichiometric hydrogen-air with standard
intial conditions, there is a unique post-shock state. Our experience is that unique results are obtained for
all cases of equilibrium reacting gas mixtures described by ideal gas thermodynamics.4 Theoretical support

4This does not mean that the ideal post-shock state or CJ condition always correctly describes the physical situation. We
are only referring to the mathematical uniqueness of our solution methods.
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for the uniqueness of the post-shock state is given by Menikoff and Plohr (1989). They have determined that
the Bethe-Weyl theorem assures that the Hugoniot is well-behaved when Γ, the fundamental derivative of
gas dynamics, is positive. We note that our algorithms may not be appropriate for cases when Γ < 0.

We can verify the correctness of the software by comparing with perfect gas analytic solutions and
validating it against results from legacy software. First, we can compare PostShock fr results with the
exact solution to the jump conditions for a perfect gas (see Thompson (1972) or Appendix A.1).

P2 = P1

[
1 +

2γ

γ + 1

(
M2

1 − 1
)]

(8.42)

v2 = v1

[
1− 2

γ + 1

(
1− 1

M2
1

)]
(8.43)

In the case of a perfect gas, the specific heat is constant and the enthalpy can be expressed as h = cPT .
Figure 8.6 shows the error in pressure, density, temperature, and enthalpy between the exact solution and
PostShock fr’s results for shock speeds ranging from 500 to 5000 m/s. The system for these simulations
was one mole of Argon at 1 atmosphere and 300 Kelvin.
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Figure 8.6: The percent error in the exact solution and the results of PostShock fr for one mole of Argon
with initial temperature 300 K and initial pressure 1 atm.

For mixtures with non-constant specific heat, we can compare the results of PostShock fr with STAN-
JAN (Reynolds, 1986) results. Figure 8.7 shows the percent difference in post-shock pressure and temperature
for stoichiometric hydrogen air with varying shock speed.

We have also investigated the shape of the H and P surfaces resulting from PostShock fr. Figure 8.8
shows that the surface generated by calculating the RMS of H and P according to (8.44) has a distinct
minimum, and that the minimum corresponds to the valid solution.

RMSCJ =

√(
H
hCJ

)2

+

(
P
PCJ

)2

(8.44)
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Figure 8.7: The percent difference in the solutions of STANJAN and PostShock fr for hydrogen-air at an
equivalence ratio of 0.5 for varying shock speed with initial temperature 300 K and initial pressure 1 atm.
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Figure 8.8: A contour plot of the RMS surface with the solution indicated at the minimum.

The concave shape of the RMS surface implies that the solution should converge to the minimum.
Figure 8.9 shows the absolute value of the differential values at each step and demonstrates this convergence.
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Figure 8.9: Convergence study for stoichiometric hydrogen-air with initial temperature 300 K and initial
pressure 1 atm using PostShock fr.
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Part III

Reacting Flows
This part of these notes treats steady flows and some simple unsteady flows which are not in equilibrium

or frozen and chemical reactions must be considered. The steady flows treated are the reaction zones behind
shock and detonation waves moving at constant speed, the reaction zone along the stagnation streamline
in supersonic blunt body flows, flow through a converging-diverging nozzle and quasi-one dimensional flows
with friction and heat transfer modeled as wall functions. The unsteady flows modeled include reactions
occurring under constant temperature, pressure and volume conditions or with prescribed volume or pressure
time dependence.
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Chapter 9

Reacting Flow Equations

In the continuum-flow regime, the motion of gases with chemical reaction and energy ex-
change processes can be modeled with the standard methods of fluid mechanics using the
conservation of a mass, momentum and energy supplemented with the transport equations
for individual species. These equations have to be augmented with chemical reaction mech-
anisms and associated reaction rates. A consistent set of thermodynamic data must be
provided for each of the chemical species and energy states considered in the model. The
goal of the present chapter is to present the governing equations and various simplification
which are useful for analyzing specific situations.

Our analytical treatment of reacting flow behind shock and detonation waves follows the approach taking
by Kirkwood and his collaborators (Some key papers are collected in Kirkwood, 1967) and the subsequent
work at Los Alamos that is summarized in Fickett and Davis (1979). The analysis is based on the use-
ful fictions of local thermodynamic equilibrium and either steady quasi-one dimensional flow or unsteady
zero-dimensional (control volume) systems, considering only convective transport and neglecting molecular
diffusion. Although limited in application, this approach has been a useful foundation for beginning research
in high-temperature gas dynamics before going on to apply the numerical methods necessary for realistic
treatments of the unsteady, multi-dimensional flows encountered in technology and nature.

The approach in this chapter is to develop fundamental equations in the most general form for a fluid
described by a complete thermodynamic equation of rate, general reaction mechanism and the conservation
laws of fluid mechanics. Our formulation of the basic equations follows that of Kirkwood and Wood (1954)
and the analysis of the structure of the reaction zone behind shock waves and detonations by Wood and
Salsburg (1960). Our treatment emphasizes the key role of the thermicity in coupling chemical reaction and
fluid motion. After developing the general analytical framework, the expressions are specialized to the case
of an ideal gas and examples are given of idealized detonation reaction zone structures and control volume
models of explosions. The thermodynamic property evaluations are expressed in term of the language of
ideal solution theory and partial molar properties used in the standard chemical engineering approach to
evaluating mixture thermodynamic properties.

9.1 Reacting Compressible Flow

The field equations that describe mass, momentum, energy and species transport for a reacting compressible
flow can be written in many different but equivalent forms (Kee et al. Ch. 3 2003, Poinsot and Veynante Ch.
1 2001). The starting point for all of these versions is the conservation form that can be obtained directly
from control volume balance statements.
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∂ρ

∂t
+∇ · (ρu) = 0 (9.1)

∂ρu

∂t
+∇ · (ρuu) = −∇P +∇ · τ (9.2)

∂

∂t
(e+ |u|2/2) +∇ · [ρu(h+ |u|2/2)] = −∇ · q+∇ · (τ · u) (9.3)

∂ρYk

∂t
+∇ · (ρuYk) = −∇ · jk + Ω̇k k = 1, 2, . . . ,K (9.4)

where ρ is the mass density, P is the pressure, ⊗ is the tensor product, u is the velocity vector, h = e+P/ρ
is the enthalpy, e the internal energy, Yk the mass fraction of species k. The net species production rate
Ω̇k, which has units of mass per unit volume and time. The practice in chemical kinetics is to compute the
net rates of production as in terms of moles or molecules per unit volume and time. The term Ω̇k = Wkω̇k,
where Wk the molar mass of species k and the net molar production rate per unit volume ω̇k.

The viscous stress tensor τ is defined in terms of the velocity gradients and the standard assumption is
that the bulk viscosity vanishes and only the mixture viscosity µ is relevant:

τ = −2

3
µ(∇ · u) I+ µ(∇u+ (∇u)T) (9.5)

where I is the identity tensor. In cartesian tensor notation

τij = −
2

3
µ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(9.6)

The mixture viscosity is a function of composition and termperature and is usually approximated using a
mixture averaging formula. The species mass diffusion flux can be defined in terms of a peculiar velocity Vk,
i.e., the effective velocity of a species k relative to the mass average velocity u.

jk = ρYkVk (9.7)

The thermal energy flux is defined as the sum of the usual diffusive flux due to a temperature gradient,
thermal conductivity λ and the transport of enthalpy due to the diffusive flux of each species

q = −λ∇T +

K∑
k=1

jkhk . (9.8)

In order to complete the equation set, we must add the appropriate equation of state, for example
h = h(P, ρ,Y). This can be as simple as the perfect gas equation of state or may be a dense fluid equation of
state derived from an analytical expressions or tabular data based on detailed thermochemical information
and molecular simulation. We also need models and data to compute diffusion fluxes and the transport
coefficients µ and λ, there are various levels of approximation and well developed methodologies for ideal
gases (Kee et al., 2003) and empirical extensions for dense fluids.

The net molar reaction rates ω̇(T, P,Y) must also be specified. This requires an appropriate set of
chemical species, a reaction mechanism and reaction rates describing the significant reactions between these
species. This can be as simple as an irreversible one–step mechanism A −→ B, the ideal dissociating gas
model or the multi-species, multi-reaction mechanisms used to describe the reactions in high-temperature
reentry or laboratory flows or the oxidation of hydrocarbon fuels.

Note that the chemistry appears explicitly only in the last term of Eqn. 9.4 and also note that the
first three equations, Eqns. 9.1, 9.2, 9.3 apparently do not involve chemical reaction explicitly. These first
three equations are sufficient for modeling two special cases. If we assume that reaction does not occur,
then we have fixed composition Y = constant, this is the situation of frozen or nonreactive flow. If we
assume that the species at each point in space reacts infinitely fast and the composition shifts to match
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local thermodynamics state, Y = Yeq(P, T ), this is the case of equilibrium flow. In the general situation,
chemical reaction will occur at a finite rate and will influence the flow through the dependence of the enthalpy
and pressure functions on the composition. This flow-chemistry coupling can be demonstrated explicitly by
reformulating the governing equations and using the the equation of state.

These equations are an incomplete model for high-temperature flows with energy exchange between
translation and internal (rotation, vibration, electonic and ionization states) molecular or atomic energy
states. Additional rate equations and detailed considerations of molecular and atomic collisions are needed
to formulate adequate models of these processes (Zel’dovich and Raizer 1966, Vincenti and Kruger 1965,
Clarke and McChesney 1964). The approximate theory for some simple situations is given in Ch. 11 of
this report. Thermal radiation transport is an important issue for re-entry into planetary atmospheres and
strongly radiating and absorbing gases in explosion products and near strong shock waves. Modeling these
situations requires not only including thermal radiation interactions as a source term in the energy equation
(9.3) but also solving an additional set of model equations for radiation transport (Zel’dovich and Raizer
1966, Pai 1966). If the gas density is sufficiently low, as in the high-altitude stages of atmospheric re-entry,
an approach based on the solution to the Boltzmann equation and kinetic theory is required (Bird 1994,
Boyd and Schwartzentruber 2017). For very dense fluids or liquids, it is necessary to simulate molecular
dynamics using Newtonian mechanics with forces derived from approximate molecular interaction potentials
and statistical averaging over ensembles of molecules.

Material Derivative Formulation

Rather than work directly with Eqs. 9.1 -9.4, it is more convenient to expand the derivatives with the usual
rules of calculus to obtain the following variant of the governing equations. In doing this, a more convenient
notation is the material or substantial derivative, defined as

Df

Dt
=

∂f

∂t
+ u · ∇f . (9.9)

where f is any differentiable field property. Substitution of this definition and simplifying, we obtain

Dρ

Dt
= −ρ∇ · u (9.10)

Du

Dt
= −1

ρ
∇P +∇ · τ (9.11)

Dh

Dt
=

1

ρ

DP

Dt
− 1

ρ
∇ · q+

1

ρ
Υ (9.12)

DYk

Dt
= −1

ρ
∇ · jk +

1

ρ
Ω̇k (k = 1, . . . ,K) (9.13)

The term Υ represents viscous energy dissipation per unit volume and is the tensor product of the velocity
gradient and viscous stress tensor

Υ = τ : ∇u . (9.14)

In cartesian tensor notation, this is

Υ =
∑
j

∑
k

τik
∂ui

∂uk
(9.15)

Entropy

The coupling between chemistry and fluid dynamics can be more explicity displayed by subsituting an
evolution equation for entropy s instead or enthalpy h. Introduce the fundamental property relation of
thermodynamics for a fixed mass of material:

dh = Tds+
dP

ρ
+

K∑
k=1

gkdYk (9.16)
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where gk = µi/Wi is the Gibbs energy per mass of species i. The changes dh, ds, etc. refer to variations
within a certain mass of material or fluid element. For the next step we will take the changes in properties
to be represent the time rate of change following a fixed identity of material using the material derivative,.
With this correspondence dh → Dh/Dt, etc., we can then combine Eqns. 9.16, 9.12 and 9.13 to obtain an
equation for entropy which can be used in place of the energy equation.

Ds

Dt
= − 1

ρT

[
∇ · q−Υ−

K∑
k=1

gk∇ · jk +

K∑
k=1

gkΩ̇k

]
(9.17)

The entropy change has four components, entropy change due to heat transfer from adjacent fluid elements or
boundaries, entropy generation due to viscous dissipation caused by velocity gradients and viscosity, entropy
change due to species diffusion, and entropy changes associated with chemical reaction. Entropy changes or
generation associated with gradients in the flow result in irreversibility that always increases the entropy of
a fluid element. Small changes in the thermodynamic state often can be considered reversible and can either
increase or decrease the entropy. The entropy changes in (9.17) result in both reversible and irreversible
increases in entropy.

Diabatic1 flows with external heat addition or removal (Rayleigh flow) and viscous flows inside ducts
(Fanno flow) can be treated in a quasi-one-dimensional framework (see Ch. 11) as flows with additional
entropy sources in (9.22) to mimic the integrated effects of entropy generation in (9.17). Although volumetric
heat addition is often considered in elementary discussions of combustion as a surrogate for the conversion
of chemical to thermal energy, that is an incomplete and misleading approach to modeling reacting flows.

Euler’s Equations

The role of diffusion in high-speed reacting flow can be important in the multi-dimensional, unsteady flows
that are observed in the laboratory Shepherd (2009) and detailed simulations Ziegler (2011) of detonations
and the many situations in high-temperature gas dynamics associated with reentry or shock wave interactions
that result in shear layers and strong property gradients transverse to the main flow. However, in purely
one-dimensional flows behind shock waves, diffusive transport of mass, momentum and energy are negligible
for even a very modest flow Mach number (relative to the shock) in the reaction zone. Singh et al. (2003)
demonstrate this through numerical simulation of reaction zone structure based on Eqs. 9.1 -9.4 with realistic
properties for the case of methane-air as well as scaling analyses and magnitude estimation of the dominate
balance between reaction, diffusion and convection.

Eliminating the diffusive transport terms, we obtain the governing equations for inviscid, compressible
fluid motion, frequently referred to as Euler’s Equations.

Dρ

Dt
= −ρ∇ · u (9.18)

Du

Dt
= −1

ρ
∇P (9.19)

Dh

Dt
=

1

ρ

DP

Dt
(9.20)

DYk

Dt
=

1

ρ
Wkω̇k (k = 1, . . . ,K) (9.21)

If the flow is adiabatic and the entropy changes due to molecular diffusion (energy and species), and
viscous dissipation are negligble, then the general entropy expression (9.17) reduces to

Ds

Dt
= − 1

T

K∑
k=1

µkω̇k (9.22)

where we are now using the more conventional symbol for Gibbs energy per mole or chemical potential µk

= Wkgk. This expression is consistent with the Euler equations and indicates that the entropy in a smooth,

1A diabatic flow is one that exchanges energy in the form of heat with the surroundings. This is in contrast to adiabatic
flows which are thermally insulated from the surroundings.
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inviscid flow changes only due to chemical reaction. Of course, in a discontinuous flow i.e., one with shocks,
there can be jumps in entropy without any chemical reaction.

9.2 Adiabatic Change Relation

Changes in pressure, density, entropy and species are not independent but are related through the equation
of state. Consider using an equation of state in the form

P = P (s, ρ,Y)

and relate small changes in pressure to changes in ρ, s and Y.

dP =

(
∂P

∂ρ

)
s,Y

dρ+

(
∂P

∂s

)
ρ,Y

ds+

K∑
k=1

(
∂P

∂Yk

)
s,ρ,Yi̸=k

dYk (9.23)

The coefficient of the first term on the right-hand side is just the definition of the frozen sound speed squared(
∂P

∂ρ

)
s,Y

= a2f . (9.24)

The coefficient of the second term on the right-hand side can be expressed in terms of standard thermody-
namic quantities using the definitions and identities in App. E(

∂P

∂s

)
ρ,Y

= ρa2f
Tβ

cp
, (9.25)

the coefficient of thermal expansion is

β = −1

ρ

(
∂ρ

∂T

)
P,Y

, (9.26)

and the specific heat at constant pressure is

cp = T

(
∂s

∂T

)
P,Y

. (9.27)

An alternative but equivalent formulation is to express this derivative in terms of the Grüneisen coefficent G(
∂P

∂s

)
ρ,Y

= ρTG . (9.28)

This formulation will be useful in considering quasi-one-dimenional flows with friction and heat interactions.
The coefficients of the sum in the third term on the right-hand side can be expressed in terms of derivatives
which can be readily computed from the independent variables (T, P,Y).

(
∂P

∂Yk

)
s,ρ,Yi̸=k

= ρa2f

{
−1

ρ

(
∂ρ

∂Yk

)
T,P,Yi̸=k

− β

cp

[(
∂h

∂Yk

)
T,P,Yi̸=k

− gk

]}
(9.29)

Rearranging and collecting terms, the final result is

dP = a2fdρ+ ρa2f
β

cp

(
Tds+

∑
k

gkdYk

)
+ ρa2f

∑
k

[
−1

ρ

(
∂ρ

∂Yk

)
T,P,Yi̸=k

− β

cp

(
∂h

∂Yk

)
T,P,Yi̸=k

]
︸ ︷︷ ︸

σk

dYk (9.30)
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Following Fickett and Davis (1979), we refer to this as the adiabatic change equation. The term

Tds+
∑
k

gkdYk

represents any entropy changes other than those associated with chemically reaction. For example, from
(9.17), we obtain

Tds+
∑
k

gkdYk = −1

ρ

(
∇ · q−Υ−

K∑
k=1

gk∇ · jk

)
dt

For an inviscid, adiabatic flow, the right hand side vanishes and we can substitute ds from Eqn. 9.22 into
(9.30) to obtain

DP

Dt
= a2f

Dρ

Dt
+ ρa2f σ̇ . (9.31)

The thermicity σ̇ represents all the interactions of the chemical reaction with the flow and is defined by

σ̇ =

K∑
k=1

σk
DYk

Dt
; .

Thermicity which has dimensions of reciprocal time (s−1)and as we will see in the following sections, is the
key quantity that determines the structure of the reaction zone in steady flows and the coupling between
chemical reaction and the flow in unsteady cases.

9.3 Thermicity

The thermicity coeeficients σk are thermodynamic properties and can be evaluated once the state (P, ρ,Y)
is known. From the previous derivation we have

σk = −1

ρ

(
∂ρ

∂Yk

)
P,T,Yi̸=k

− β

cp

(
∂h

∂Yk

)
P,T,Yi̸=k

(9.32)

In terms of these coefficients the thermicity is

σ̇ =
∑
k

[
−1

ρ

(
∂ρ

∂Yk

)
P,T,Yi̸=k

− β

cp

(
∂h

∂Yk

)
P,T,Yi̸=k

]
DYk

Dt
(9.33)

Note that this relation is completely general and is independent of any assumptions about the equation of

state or the reaction mechanism. Alternative formulations for the thermicity coefficients can be obtained
using thermodynamic identities and the standard methods of transformation of variables.

Considering expanding h(P, ρ,Y) to obtain

dh =

(
∂h

∂P

)
ρ,Y

dP +

(
∂h

∂ρ

)
P,Y

dρ+

K∑
k=1

(
∂h

∂Yk

)
P,ρ,Yi̸=k

dYk (9.34)

and eliminating the enthalpy using Eqn. 9.20 to obtain the following version of the adiabatic change relation(
1

ρ
−
(
∂h

∂P

)
ρ,Y

)
dP =

(
∂h

∂ρ

)
P,Y

dρ+

K∑
k=1

(
∂h

∂Yk

)
P,ρ,Yi̸=k

dYk . (9.35)

This can be further simplified with the following thermodynamic identities

a2f =

(
∂h

∂ρ

)
P,Y

1

ρ
−
(
∂h

∂P

)
ρ,Y

(
∂h

∂ρ

)
P,Y

= − cp
ρβ

(9.36)
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which results in the following alternative expression for the thermicity coefficient

σk = − β

cP

(
∂h

∂Yk

)
P,ρ,Yi̸=k

(9.37)

A similar derivation can be carried out (Kao, 2008) with internal energy e(P, v,Y) rather than enthalpy
leading to

σk = − G
a2f

(
∂e

∂Yk

)
P,v,Yi̸=k

(9.38)

where the Grüneisen coefficent, see Section 7.10, is

G =
v(

∂e

∂P

)
v,Y

(9.39)

and the sound speed can be computed from e(P, v)

a2f = v2

(
∂e

∂v

)
P,Y

+ P(
∂e

∂P

)
v,Y

(9.40)

Using the identities in Appendix E, the final result can be simplified to

σk = − β

cp

(
∂e

∂Yk

)
P,v,Yi̸=k

(9.41)

which also follows directly from the previous result for enthalpy using the definition h = e + Pv. Yet another
approach using partial molar properties is presented in Appendix D and Section 9.8.

Ideal Gas

For an ideal gas, we can simplify the thermicity coefficients substantially.(
∂h

∂Yk

)
P,T,Yi̸=k

= hk(T ) , β =
1

T
, cp =

K∑
k=1

Ykcp,k (9.42)

−1

ρ

(
∂ρ

∂Yk

)
P,T,Yi̸=k

=
W
Wk

, W =

(
K∑

k=1

Yk

Wk

)−1

. (9.43)

The thermicity coefficients simplify to

σk =
W
Wk
− hk

cpT
, (9.44)

which is straight forward to evaluate from available thermodynamic functions. The final expression for ideal
gas thermicity is

σ̇ =

K∑
k=1

(
W
Wk
− hk

cpT

)
DYk

Dt
. (9.45)

An alternative expression in term of the specific internal energy ek and ratio of heat capacities γ = cp/cv is

σ̇ =
1

γ

K∑
k=1

(
W
Wk
− ek

cvT

)
DYk

Dt
. (9.46)
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Physical significance of thermicity

Thermicity represents the combined physical and chemical response of a reacting system to changes in
chemical composition and more generally exchange of energy between the mean flow associated with the
intermolecular energy associated with rotation, vibration, electronic and ionization states of molecules and
atoms. It can be applied to any sort of reacting flow, endothermic or exothermic, steady or unsteady. It was
originally introduced in the context of modeling the processes behind shock fronts, particularly detonations.
Other applications including reacting flow in nozzles, flow in the stagnation or shock layer region in hypersonic
blunt body flows, the reaction zone between oblique and curved shocks or detonations, and limiting cases of
reaction constrained to occur along specified thermodynamic paths.

Going further, we can assign to components to this response, corresponding to the two terms in the
summations over species in the thermicity.

σ̇ =
∑
k

[
−1

ρ

(
∂ρ

∂Yk

)
P,T,Yi̸=k

DYk

Dt

]
︸ ︷︷ ︸

I.

+

[
−
∑
k

β

cp

(
∂h

∂Yk

)
P,T,Yi̸=k

DYk

Dt

]
︸ ︷︷ ︸

II.

These components represent: I) changes in volume due to changes in composition; II) exchange of internal
energy with the mean flow due to changes in composition. Both of these changes are manifested as a source
term in the adiabatic change equation and can be conceptualized as contributing to the time rate of change
of density and pressure due to chemical reaction processes in the flow. For inviscid flows, this is the sole
manner in which the reaction processes are coupled to the flow.

Term I can be rewritten in terms of the change in specific volume v with time at constant pressure
and temperature to explicitly show how this is a source term of volume created by the chemical reaction
processes.

(I) =
1

v

(
dv

dt

)
P,T

The contribution to the thermicity change in a time increment ∆t is the relative volume change

∆σ̇I =
∆v

v

In a fixed mass of fluid treated as an ideal gas, this can be further manipulated to obtain

(I) = − 1

W

(
dW
dt

)
P,T

=
1

n

(
dn

dt

)
P,T

ideal gas

illustrating the direct connection of term (I) to the change dn in the total number of species per unit mass
due to the reaction process.

(I) =
1

v

(
dv

dt

)
P,T

=

{
> 0 if dn/dt > 0
< 0 if dn/dt < 0

We see that reaction processes that result in an increase in the number of species make a positive contribution
to thermicity analogous to exothermic chemical reactions and those processes that result in a decrease in
the number of species make a negative contribution to the thermicity analogous to endothermic reactions.

Term II can be rewritten in terms of the change in specific enthalpy h with time at constant pressure
and temperature.

(II) = − β

cp

(
dh

dt

)
P,T

The change dh in enthalpy is due to reaction processes making and breaking chemical bonds. Sign of the dh
is determined by the heat of reaction: dh < 0 for exothermic reactions, dh > 0 for endothermic reactions.

The energy released or absorbed from the mean flow is transformed in a temperature change dT = dh/cp
through the mixture specific heat capacity cp, the temperature increment creates generates differential volume
expansion dv/v = βdT through the coefficient of thermal expansion β. The contribution to the thermicity
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due to a change in enthalpy ∆h in time ∆t is the relative volume change associated with the enthalpy
increment

∆σ̇II =
∆v

v
= − β

cp
∆h

The sign of thermicity created by the enthalpy change is determined by the energetics the chemical
reaction processes.

(II) = − β

cp

(
dh

dt

)
P,T

=

{
> 0 exothermic reactions dh/dt < 0
< 0 endothermic reactions dh/dt > 0

For an ideal gas β = 1/T and this provides an alternate explanation of term (II) as the change in enthalpy
compared to a reference thermal energy content cpT

(II) = − β

T

(
dh

dt

)
P,T

= − 1

cpT

(
dh

dt

)
P,T

ideal gas (9.47)

Equivalent Thermal Energy Addition

An alternative interpretation of the thermicity is in terms of defining an a fictitious thermal energy or “heat”
addition that simulates the combustion process. The basis of this is to consider the reversible entropy change
due to a thermal energy source q̇ which represents thermal energy transferred into the fluid per unit volume
and time. For a nonreactive flow, the time rate of change in entropy of a fluid element is

Ds

Dt
=

q̇

ρT
. (9.48)

The adiabatic change equation can then be expressed as

DP

Dt
= a2

Dρ

Dt
+ Gq̇ . (9.49)

Comparison with the thermicity formulation of the adiabatic change equation, we obtain the equivalence

σ̇ = G q̇

ρa2

For an ideal gas, this expression is

σ̇ =
γ − 1

γ

q̇

P

Limiting Cases

Three limiting cases of thermodynamic constraints are often considering in modeling combustion systems.
In the following, the processes are all assumed to be adiabatic.

1. Constant Pressure

Constraining the pressure to be constant, the thermicity is converted to specific volume changes. The
adiabatic change equation becomes an evolution equation for specific volume(

dv

dt

)
P

= +vσ̇

or density (
dρ

dt

)
P

= −ρσ̇
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2. Constant Volume

Constraining the specific volume to be constant, the thermicity is converted to specific volume changes
to pressure changes. The adiabatic change equation becomes an evolution equation for pressure.(

dP

dt

)
ρ

= +ρa2σ̇

3. Steady flow

In steady, adiabatic flow, the conservation of momentum and mass imply that pressure and specific
volume changes are coupled with the constraint taking the form of the Rayleigh line R. Differentiating
(6.17), we obtain: (

dP

dt

)
R

= −(ρw)2 dv
dt

= w2 dρ

dt

Using this constraint in the adiabatic change equation, we obtain(
dρ

dt

)
R

= −ρ a2

a2 − w2
σ̇

and (
dP

dt

)
R

= −ρw2 a2

a2 − w2
σ̇

When the initial conditions are values immediately behind a shock wave, these equations form the ZND
model of steady shock and detonation structure. There are numerous variations on these equations
associated with variable area flow, flows with friction and thermal energy exchange, flows behind
oblique and curved shocks and constraints of imposed pressure or volume changes. These cases are
discussed in Chapter 11.

4. Unsteady flow

The thermicity appears as a source term in the when density is eliminated from the Euler equations,
see Section 9.5 for a discussion of the implications for computing one-dimensional flow with the method
of characteristics.

In addition to the equations given above for pressure and density (or specific volume), equations for
the evolution of temperature can be formulated, the perfect gas versions of these equations are given in
Section 9.7 and the real gas versions are given in Section 9.8.

9.4 Equilibrium and Frozen Flow

In frozen flow, the composition Y = constant, and DY/Dt = 0. From the adiabatic change relation, the
pressure and density changes in frozen flow are related by

DP

Dt
= a2f

Dρ

Dt
and a2f =

(
∂P

∂ρ

)
s,Y

, (9.50)

along particle paths. If the entropy is uniform throughout the flow then this applies broadly to any states
in the flow

dP = a2f dρ. (9.51)
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In particular, this relationship can be used in the momentum equation to replace spatial gradients in pressure
with gradients in density

∇P = a2f ∇ρ (9.52)

and with an expression af (ρ), the mass and momentum equations form a complete description of adiabatic,
irrotational compressible flow (Liepmann and Roshko, 1957, Ch. 7).

An equilibrium flow without diffusive transport has a fixed elemental composition and species composition
that shifts with changing thermodynamic state Y = Yeq(P, ρ). The equilibrium isentrope P -ρ relationship
is defined implicitly by

P = P (ρ,Yeq(P, ρ) ; s = constant) . (9.53)

The slope of the isentrope can be computed from the adiabatic change relationship

dP = a2f dρ+ ρa2f

K∑
i=1

σi dY
eq
i , (9.54)

and the dependence of the composition on thermodynamic state

dYi =

(
∂Y eq

i

∂P

)
ρ

dP +

(
∂Y eq

i

∂ρ

)
P

dρ . (9.55)

Solving for the slope of the equilibrium isentrope, we obtain

(
∂P

∂ρ

)
s,Yeq

= a2f

1 + ρ
∑K

i=1 σi

(
∂Y eq

i

∂P

)
ρ

1− ρa2f
∑K

i=1 σi

(
∂Y eq

i

∂ρ

)
P

(9.56)

This expression is often referred to as the equilibrium sound speed

a2e =

(
∂P

∂ρ

)
s,Yeq

. (9.57)

The interpretation is that this is the speed of propagation of low frequency sound waves in a reactive flow
and is valid as long as the period of the wave is much larger than the characteristic chemical reaction times
so that the composition shifts to remain in equilibrium as pressure and density change within the wave.

In the equilibrium limit, the chemical reaction processes that maintain equilibrium must proceed faster
than all other flow processes. From a molecular point of view, a condition of equilibrium is that the forward
and reverse reaction rates balance or equivalently, the net reaction rates for all species vanish ω̇i(Y

eq, P, ρ) =
0. From the previous discussion on thermodynamics, this means that the entropy is constant along particle
paths in the equilibrium flow limit and it is sensible to speak of an isentropic but reacting flow. This is
of course, an idealization and the consequence of a limiting process. The reaction rates must be non-zero
in order for the species to shift to maintain chemical equilibrium as temperature and pressure vary with
time in a transient flow. As long as the reaction rates are all significantly faster than the rate of change
of temperature and pressure, the species distributions will be sufficiently close to the chemical equilibrium
values to justify using exact thermodynamic equilibrium species distributions. A detailed discussion of this
issue is given in Ch. 6 of Cooper (2004) in the context of chemical reactions within the Taylor-Zeldovich
expansion.

The frozen sound speed is the speed of propagation of high frequency sound waves which have a period
that is sufficiently small compared to the characteristic chemical reaction times that the composition remains
fixed as the pressure and density change within the wave. The dependence of sound speed on frequency leads
to dispersion of wave packets propagating in reactive flows as discussed at length by Vincenti and Kruger
(1965) in the context of both chemical reactions and vibrational-translational energy exchange processes.
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9.5 Nonsteady Flow

The real value of the entropy formulation is the connection that can be established between chemical reaction
and thermodynamic state changes. This can be most clearly illustrated by considering a one-dimensional
flow and formulating the equations in characteristic form.

Starting with the adiabatic change equation and the definition of thermicity (9.33), the governing equation
set for reacting, inviscid flow can be written

DP

Dt
+ ρa2f∇ · u = ρa2σ̇ (9.58)

ρ
Du

Dt
+∇P = 0 (9.59)

DYk

Dt
=
Wkω̇k

ρ
k = 1, 2, . . . ,K (9.60)

Ds

Dt
= − 1

ρT

∑
k

µkω̇k (9.61)

This equation set has to be supplemented by a relationship for frozen sound speed

a2f ≡
(
∂P

∂ρ

)
s,Y

(9.62)

a reaction mechanism, and thermochemical data for computing the equation of state in the form P (ρ, s,Y).

These equations can be further manipulated to obtain the characteristic form for planar (one-dimensional)
geometries:

dP
dt
± ρaf

du
dt

= ρa2f σ̇ on dx
dt

= u± af

ds
dt

= − 1

ρT

∑
k µkω̇k on dx

dt
= u

dYk
dt

=
Wkω̇k

ρ
on

dx

dt
= u (k = 1, . . . ,K)

(9.63)

The effect of chemical reaction is felt through the source terms on the right-hand side of the equation.
Amplification or decay of signals will occur in addition to the propagation effects described for nonreacting
flow. The thermicity appears as the key function coupling chemical reaction and acoustic wave propation.

Physically, this indicates that there are two types of propagating disturbances in the flow. Acoustic
disturbances produce pressure changes δP that are proportional to velocity changes δu and modified by the
chemical reaction through the thermicity

δP = ±ρaf δu+ ρa2f σ̇δt on δx = (u± af )δt. (9.64)

The disturbances created by a pulse of thermicity propagate with the sound speed ±a relative to the flow,
which is moving with velocity u. In a space-time diagram of the process, the acoustic disturbances propagate
along characteristic directions C±

C± :
dx

dt
= u± a. (9.65)

Entropy disturbances δs and composition changes δYk due to chemical reaction or spatial nonuniformity
propagate with the fluid velocity u. This can be interpreted as motion along the particle path characteristic

C0 :
dx

dt
= u (9.66)
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In nonreactive flow ω̇k = 0, the solution of the characteristic equations is obtained by using Riemann
Invariants P and Q defined by (∫

dP

ρaf
+ u

)
= P (9.67)(∫

dP

ρaf
− u

)
= Q (9.68)

For non-reactive flow, these quantities are constant along characteristics and the function

F (P ) =

∫ P

P◦

dP ′

ρaf
(9.69)

is unique. For reactive flow, these quantities are not invariant and the function F (P ) is path dependent

dP
dt

= af σ̇ on
dx

dt
= u+ a (9.70)

dQ
dt

= af σ̇ on
dx

dt
= u− a (9.71)

Numerical solutions of the reactive form of the characteristic equations were used by Fickett and co-workers
in studying the one-dimensional stability of detonation with a model one-step reaction, (See p. 278, Fickett
and Davis, 1979).

Although the characteristics C± are defined using the frozen sound speed, the chemical reaction along
the particle paths results in dispersion (Vincenti and Kruger, 1965, Ch. 8, ) with low-frequency sound waves
traveling at the equilibrium sound speed and high frequency sound waves traveling at the frozen sound
speed relative to the mean flow. Impulsive small amplitude disturbances will spread out to form smooth
compressive waves with a precursor traveling at the frozen sound speed and the bulk of the disturbance
moving at the equilibrium sound speed.

9.6 Steady flow

In terms of thermicity, the unsteady Euler equations are

Dρ

Dt
= −ρ∇ · u (9.72)

Du

Dt
= −1

ρ
∇P (9.73)

DP

Dt
= a2f

Dρ

Dt
+ ρa2f σ̇ (9.74)

DYk

Dt
=

1

ρ
Wkω̇k (k = 1, . . . ,K) (9.75)

These can be simplified for steady one-dimensional reactive flow, with the following definitions:

∂

∂t
= 0 , (9.76)

u = wx̂ , (9.77)

D

Dt
= w

d

dx
. (9.78)

In a frame of reference moving with a fluid element, the relationship between space and time is given by the
trajectory X(t) of the element as defined by the kinematic relationship

dX

dt
= w(X(t)) . (9.79)
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Instead of distance x, we can consider the motion in terms of the time t elapsed from a reference location.
This is equivalent to the Lagrangian interpretation of the convective derivative

D

Dt
=

d

dt
on

dx

dt
= w . (9.80)

When considering shock-initiated reactions as in a detonation, it is usual to consider the time t as being
relative to time the fluid element passed through the shock front. The equations of motion simplify to

dρ

dt
= −ρσ̇

η
, (9.81)

dP

dt
= −ρw2 σ̇

η
, (9.82)

dw

dt
= w

σ̇

η
, (9.83)

dYk

dt
=

1

ρ
Wkω̇k = Ωk (k = 1, . . . ,K) . (9.84)

The sonic parameter is defined in terms of the frozen sound speed

η = 1− w2

a2f
(9.85)

The sonic parameter is always less than one in the reaction zone behind a shock wave and if the sonic
parameter approaches one, then the thermicity has to vanish or the solution will be singular: σ̇ → 0 as η →
0.

These equations (9.81- 9.84) are the basis of the standard Zel’dovich-von Neumann-Döring (ZND) model
of detonation structure and extensions to treat variable area, friction and heat transfer are the foundation
of widely-used elementary models of steady reactive flow (See Ch. 2 of Zhang, 2012). This model and
extensions described in Ch. 11 can be used for both endothermic and exothermic reaction, and is applicable
both to the flows behind shock waves and as well as variable area flows encountered in high-speed flight and
testing facilities.

9.7 Temperature

In this section we derive temperature evolution equations for steady reactive flow and the limiting cases of
constant volume and constant pressure explosions. The derivations in this section are all based on the ideal
gas model. A more general expression for relating changes in T , P , ρ and Y valid for an arbitrary equation
of state is given in Section 9.8.

The derivation begins with the ideal gas relations.

P = ρRT (9.86)

This leads to the following logarithmic derivation relationship.

dP

P
=

dρ

ρ
+

dR

R
+

dT

T
(9.87)

Here R is the specific gas constant,

R =
R
W

= R
NY∑
i=1

Yi

Wi
. (9.88)
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The derivative of R is related to the evolution of the species in the following way

dR

R
=

NY∑
i=1

W
Wi

dYi (9.89)

Now the temperature derivative in a steady flow is

dT

dx
= T

[
1

P

dP

dx
− 1

ρ

dρ

dx
−

NY∑
i=1

W
Wi

dYi

dx

]
, (9.90)

and if we insert the thermicity equations (Eqs. 9.81-9.84),

dT

dx
= T

[
−ρw

P

σ̇

η
+

1

w

σ̇

η
−

NY∑
i=1

W
Wi

Ω̇i

w

]
. (9.91)

By grouping terms and recalling the definition of the frozen sound speed a2f = γP/ρ, the temperature
equation becomes

dT

dx
=

T

w

[(
1− γw2

a2f

)
σ̇

η
−

NY∑
i=1

W
Wi

Ω̇i

]
. (9.92)

Finally, the ZND temperature equation is

dT

dx
=

T

w

[(
1− γM2

) σ̇
η
−

NY∑
i=1

W
Wi

Ω̇i

]
(9.93)

or

dT

dt

∣∣∣∣
Xp

= w
dT

dx
= T

[(
1− γM2

) σ̇
η
−

NY∑
i=1

W
Wi

Ω̇i

]
. (9.94)

Limiting Behavior

The constant volume explosion is the limit of the steady reacting flow equations as velocity goes to infinity
w→∞. The velocity only appears in the first term and its limit is

T
(
1− γ w2

a2
f

) σ̇(
1− w2

a2
f

) → Tγσ̇. (9.95)
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Now we can rearrange the terms as follows to find the correct expression for the constant volume model.

dT

dt

∣∣∣∣
Xp

= T

[
γ

NY∑
i=1

(
W
Wi
− hi

cPT

)
Ω̇i −

NY∑
i=1

W
Wi

Ω̇i

]
(9.96)

= T

NY∑
i=1

[
(γ − 1)

W
Wi
− γ

cP

hi

T

]
Ω̇i (9.97)

= T

NY∑
i=1

[
(γ − 1)

W
Wi
− ei +RiT

cvT

]
Ω̇i (9.98)

= T

NY∑
i=1

[
(γ − 1)

W
Wi
− ei +RiT

cvT

]
Ω̇i (9.99)

= − 1

cv

NY∑
i=1

eiΩ̇i + T

NY∑
i=1

[
(γ − 1)

W
Wi
− R

W

W
Wi

γ − 1

R

]
Ω̇i (9.100)

= − 1

cv

NY∑
i=1

eiΩ̇i + T

NY∑
i=1

[
(γ − 1)

W
Wi
− (γ − 1)

W
Wi

]
Ω̇i (9.101)

dT

dt

∣∣∣∣
Xp

= − 1

cv

NY∑
i=1

eiΩ̇i (9.102)

On the other hand, the constant pressure model is the limit as the velocity goes to zero w → 0. Again,
the velocity only appears in the first term and its limit is

T
(
1− γ w2

a2
f

) σ̇(
1− w2

a2
f

) → T σ̇. (9.103)

Now we can rearrange the terms as follows to find the correct expression for the constant pressure model.

dT

dt

∣∣∣∣
Xp

= T

[
NY∑
i=1

(
W
Wi
− hi

cPT

)
Ω̇i −

NY∑
i=1

W
Wi

Ω̇i

]
(9.104)

= T

NY∑
i=1

− hi

cPT
Ω̇i (9.105)

dT

dt

∣∣∣∣
Xp

= − 1

cP

NY∑
i=1

hiΩ̇i (9.106)

9.8 Real Gas Modeling

Real gases2 are distinguished from ideal gases through the additional pressure (or equivalently volume) de-
pendence of the thermodynamic potentials that arises from continuous intermolecular interactions. These
interactions are important at sufficiently high densities so that the molecules and atom are constantly inter-
acting through the electrostatic force fields as well as quantum mechanical effects. At intermediate densities
and low temperatures, these interactions are attractive and result in a lower pressures than would be pre-
dicted by the ideal gas relations. At higher densities and temperatures, these interactions are repulsive and
result in higher pressures than would be predicted by the ideal gas relations.

There are four key real gas effects on reactive flows:

1. Departures from the ideal gas P (V, T ) equation of state.

2We use the term real gas to indicate any fluid substance (gas, dense gas or liquid) that can be described in terms of the
thermodynamic parameters P , V and T . The considerations in this section apply to any substance in this category.
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2. Departures from the ideal gas properties for thermodynamic potentials E,H,A,G and entropy S.

3. Departures from ideal gas chemical potentials and equilibrium constants.

4. Shifts in chemical reaction mechanisms and rates due to the creation of new intermediates and pathways
associated with stabilizing influence neighboring molecules.

The thermodynamic effects of items 1-3 can be described by defining a compressibility factor Z,

Z =
PV

NRT
, (9.107)

In the attractive regime, Z < 1 and in the repulsive regime, Z > 1. For ideal gases, the molecular interactions
are highly intermittent, occurring through infrequent collisions so that Z = 1 to high degree of accuracy.
The functional dependence Z(T, P,N) for a pure substance at modest temperatures can be determined by
measurements, which can be fit to model equations (Reid et al., 1987, Reynolds, 1979) of the form P (V/N, T ).
As discussed the next section, these relationships can be extended to gas mixtures using empirical averaging
methods to include the effects of composition P (V/N, T,X) or equivalently, P (V/N, T,Y).

Using classical thermodynamics and a functional relationship Z = Z(T, V,N) for a reactive mixture, the
departures associated with item 1 can be computed directly or implicitly, and for items 2 and 3, the relevant
departure functions can be computed from partial derivatives of Z. Item 4 is much more challenging to
address and requires using molecular dynamics and quantum mechanical modeling of molecular interactions
to determine the corrections and limitations of using traditional reaction mechanisms with thermal reaction
rates.

From the thermodynamicist and engineer’s point of view, the effect of molecular interactions can be
represented as compressibility effects and quantified through empirical relationships and extended to other
properties using the methods of classical thermodynamics. From the physicist or chemist’s point of view, the
effect of molecular interactions can be represented by using molecular potentials to describe the interactions
and use the methods of statistical thermodynamics to compute a partition function from which all ther-
modynamic properties can be derived. In practice, a mixture of these methods is used: rigorous statistical
mechanics for ideal gas properties (described in Section 3) complemented by empirical equations of state and
rigorous thermodynamics to correct for the effects of compressibility. This is the approach we will describe.

Critical States and Properties

The effect of molecular interactions on a pure substance can be gauged by evaluating the nondimensional
thermodynamic state, using the thermodynamic critical properties Tc, Pc and Vc as reference conditions.
In these terms the compressibility factor can be expressed as function of nondimensional reduced pressure
Pr = P/Pc, volume V/Vc, temperature Tr = T/Tc, and mole fractions X.

Z = Z(Pr, Tr,X) or Z = Z(Pr, V r,X) (9.108)

Thermodynamic critical states for selected molecules are given in Table 9.1. Additional values and esti-
mation methods (important for radicals and reactive intermediates) are given in texts and monographs on
thermodynamics (e.g., Kee et al., 2003, Reid et al., 1987, Reynolds, 1979).

Reactants and products for combustion systems are mixtures with a composition that varies during the
reaction process. In order to compute the compressibility effects during the reaction process using a model
relationship of the form (9.108), an averaging method is needed to combine pure substance properties to
calculate effective or psuedo-critical states as a function of composition. Prescriptions for averaging are
discussed by Reid et al. (1987). One simple method is Kay’s rule for the effective critical temperature

Tc,m =

K∑
k=1

XkTc,k (9.109)

where Xk is the mole fraction of species k. The Prausnitz-Gunn rule for effective (or pseudo-) critical
pressure, compressibility, and volume is

Pc,m = Zc,m
RTc,m

vc,m
Zc,m =

K∑
k=1

XkZc,k vc,m =

K∑
k=1

Xkvc,k (9.110)



D
RA
FT

144 CHAPTER 9. REACTING FLOW EQUATIONS

Table 9.1: Thermodynamic critical states for some common components of combustion reactants and
products (Reid et al., 1987).

substance W Tc Pc ρc Zc

(kg/kmol) (K) (MPa) (kg·m−3)

CH4 16.043 190.6 4.61 162.0 0.2880
N2 28.014 126.2 3.40 313.2 0.2897
O2 31.999 154.6 5.043 435.2 0.2885
CO2 44.01 304.2 7.38 466.5 0.2753
CO 28.01 134.5 3.50 310.9 0.2819
H2O 18.02 647.0 22.09 322.5 0.2291
H2 2.0159 33.18 1.30 31.36 0.3060

Applying these relationships to a stoichiometric CH4-air mixture, the pseudo-critical values shown in Ta-
ble 9.2 were obtained. The product composition was computed for constant-pressure combustion at 1 bar,
values for constant volume or CJ detonation are comparable and the modest differences are due to the shift
in composition with pressure.

Table 9.2: Effective thermodynamic critical parameters for stoichiometric CH4-air mixtures.

Tc,m Pc,m ρc,m Zc,m

(K) (MPa) (kg·m−3)

reactants 138 3.79 316 0.289
products 238 6.57 329 0.277

For intermediate species, radicals and fuel molecules for which thermodynamic critical states are not
available, the critical properties must be estimated. One method is to use the molecular potential parameters,
ε (well depth), σ (well radius) given in the Cantera or Chemkin thermodynamic database files and used for
computing molecular transport coefficients. These parameters are specified as well depth = ε/kb (K) and
diam = σ (Å). For the purposes of rough approximation, the critical pressure and temperature can be
estimated (all units in SI) using the following correlations Rowlinson and Swinton (1982).

Tc = 1.35
ε

kB
(K) (9.111)

Pc = 0.142
ε

σ3
(Pa) (9.112)

Vc = 2.857NAσ
3 (m3 ·mol−1) (9.113)

Other correlations are available, for example, Smit (1992) has analyzed molecular simulations of a fluid de-
scribed by molecules interacting by intermolecular forces derived from a Lennard-Jones potential to obtain
Tc = 1.316ε/kB and Vc = 3.29NAσ

3, Pc and Zc are determined by the equation of state. These simple
estimation methods are very rough approximations to critical properties and should be used with caution,
particularly with the many molecules and mixtures that require considering the effects of asymmetric molec-
ular potentials that cannot be described by a central potential such as Lennard-Jones. For cubic equations,
the values of Zc depend only on the particular form of the equation Reid et al. (1987). For example van der
Waals Zc = 3/8, Redlich-Kwong Zc = 1/3 and Peng-Robinson Zc = 0.3074.

The actual values of Zc as well as the P (V, T ) relationship in the near-critical region can be significantly
different than predicted by simple cubic equation equations of state. There is a substantial chemical engi-
neering literature on sophisticated equations of state for pure substances that can be used to make highly
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reliable estimates of thermodynamic properties. However, there are significant issues in developing and ap-
plying more sophisticated approached to multi-component mixtures characteristic of combustion systems.
For this reason, cubic equations of state continue to be widely used in estimating compressibility effects for
combustion at elevated pressures with the notable exception of condensed explosives.

Compressibility effects on products and reactants are often found to be quite different due to the much
higher temperatures in combustion products as compared to reactants as well as effects of higher product
pressure in the case of shock and detonation waves. For example, for CH4-air at an initial pressure of 100
bar, the initial reactant state can be considered a perfect gas at room temperature but there are substantial
molecular interaction effects (Z ∼ 2) on the postshock (vN) state and the product CJ state (Z ∼ 1.3). The
compressibility factor will increase with increasing density, reaching values as high as 15 to 20 for condensed
explosives.

Computations and experiments reveal that:

1. At a given reactant density, the constant volume or detonation pressures are higher for a dense gas
than for the ideal gas model.

2. Detonation velocity is higher for dense gases than for low density gases at the same initial composition
and temperature.

3. Dense gas detonation velocities increase with increasing reactant density but computed ideal gas values
reach a limiting value.

4. Compressibility factors of shocked reactants and products increase with increasing reactant density.

5. For modest density increases, the effect on compressibility factor is much more pronounced than the
effect on enthalpy or internal energy.

6. For fuel-air mixtures, the initial pressure should be less than 10 to 20 bar if less than a 10% error in
compressibility, i.e., Z − 1 < 0.1, is to be allowed at the vN point. The initial pressure should be less
than 2 bar if less than 1% error is allowable.

Physically, all of these effects are a consequence of the increasing importance of molecular repulsion with
increasing density of the reactants and consequently, the products. This effect can be crudely approximated
with a hard sphere model which prevents the molecules from being packed together any closer than the mean
diameter. Detailed consideration of dense gas effects for detonations can be found in Schmitt and Butler
(1995a,b)

Equation of State

For chemical equilibrium and reactive flow computations a complete equation of state is required in the form
of a thermodynamic potential (Sec. 2.1) that is a function of two independent thermodynamic variables and
composition. For equilibrium computations, an expression for the Gibbs energy G(T, P,N) is sought. In
the case of reacting flows, either the enthalpy H, internal energy U or Helmholtz energy A will be required
in addition to G. In practice, only one of the potentials, for example A(T, V,N) will be computed and the
other potentials computed by standard thermodynamic transformations (Ch. 2).

In order to construct a complete equation of state, we start from the low-pressure (large volume limit)
of the ideal gas mixture (Section 2.2). In this limit, we can take advantage of the established databases
of information for temperature and species dependence of ideal gas properties (Ch. 5) which are based on
statistical mechanics and physical chemistry (Ch. 3). To estimate the continuous molecular interactions on
the ideal gas properties, we will use an empirical expressions for Z(V, T,N) or Z(T, P,N) and thermody-
namic identities to calculate departure or residual functions which are additive corrections to the ideal gas
properties.

The computation of a complete real gas equations of state proceeds by considering a gas mixture with a
fixed (frozen) composition, a set of ideal gas properties such as Cig

p , Hig(T ) and a analytical relationship for
Z(V, T,N). Because the composition is frozen, we suppress the dependence on composition when computing
the departure functions although the total amount of substance will enter into the results. However, we
will need to keep the composition dependence in mind and carry out differentiation with respect to the
composition variables in order to develop the governing equations for reactive flow.
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Cubic Equations for Z

A popular starting point for analytical Z(V, T,N) expressions is the van der Waals equation (Abbott, 1989),
which has been the basis of further development of a range of cubic equations (Abbott, 1973), so named
because Z is determined as the root of a cubic polynomial. Members of the cubic equation family that are
widely used in chemical engineering (Reid et al., 1987, Smith et al., 1996) include van der Waals, Redlich-
Kwong, Peng-Robinson, and Soave. These equations can all be written in the form

P =
NRT
V −Nb

− N2a

V 2 + V Nc+N2d
(9.114)

The conventional interpretation is that the first term on the right-hand side represents the effect of the
finite size of the molecules, the second represents the effect of attraction associated with the intermolecular
forces. The parameters a, b, c, d are functions of the molecular properties, composition and temperature;
constraints on these functions and relationships to the critical properties, vapor pressure, acentric factors and
virial coefficients are discussed by Abbott (1973). The application of cubic equations to the computation of
detonation properties for high-pressure gases is described by Schmitt and Butler (1995a,b) and the calculation
of the thermodynamics properties based on selected cubic equations is explained in detail by Schmitt (1994),
Schmitt et al. (1994). Cubic equations are successful (Schmitt and Butler, 1995a) in describing detonation
parameters such as CJ wave speeds for hydrocarbon-oxygen-diluent mixtures as a function of initial pressure
up to 500 atm. Measurable deviations from ideal gas predictions are observed for initial pressures greater
than 10-20 atm and the CJ speeds increase with increasing pressure, reaching values that are 50% larger
than the ideal gas values at 300 atm (Schmitt and Butler, 1995a). For even higher pressures and condensed
explosives, specialized P (V, T,N) equations such as JCZ and BKW are utilized (Hobbs et al., 1999); these
are also applicable to high-pressure gaseous detonations.

Redlich-Kwong EOS

A commonly considered cubic EOS for estimating real gas effects is the Redlich-Kwong model, this is
implemented in Cantera 2.5 and the thermodynamic functions can be accessed through the Python interface.
In molar volume coordinates, the EOS is defined by two parameters a and b

P =
RT
V − b

− a

T 1/2V (V + b)
(9.115)

The coefficients a and b can be related to the properties of the thermodynamic critical point. These properties
are implicitly defined by the vanishing of the first and second derivatives of pressure with respect to volume:(

∂P

∂V

)
Tc,Pc

= 0 (9.116)(
∂2P

∂V
2

)
Tc,Pc

= 0 (9.117)

a = Ωa
R2T 2

c

Pc
Ωa =

1

9(21/3 − 1)
= 0.42748 . . . (9.118)

b = Ωb
RTc

Pc
Ωb =

21/3 − 1

3
= 0.0.08664 . . . (9.119)

The coefficients a and b have been determined empirically for a number of pure substances (Reid et al.,
1987) at modest temperatures by fitting experimental (P, V, T ) data. For combustion simulations we are
interested in gas mixtures containing many species such as radicals and intermediates and thermodynamics
conditions for which it is not possible to directly measure the (P, V, T ) EOS and obtain values of a and b.
The state determined by (9.116) for a mixture is more properly referred to as a “pseudo-critical” point as
the near-critical behavior observed in mixtures is often much more complex than the pure substance case.

We also require an analytical model of how the coefficients a and b depend on composition in order to
implement reacting flow models, which as discussed below, require partial molar properties. In order to
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compute value of a and b for mixtures, mixture averaging of individual species properties using mole or mass
fractions is used. A common approach is to use rules (attributed to van der Waals) similar to those proposed
for combining molecular interaction potential parameters.

a =
∑
i

∑
k

XiXk
√
aiak (9.120)

b =
∑
k

Xkbk (9.121)

The coefficients ai and bi for each species are, when available, based on tabulated values for pure substances.
For the many combustion species for which EOS data is not available, the values of ai and bi must be
computed using critical properties (9.116) estimated either from molecular potential parameters (9.111) or
group contribution methods based on molecular structure (Joback and Reid, 1987, Reid et al., 1987). The
a and b values for a mixture can be used in (9.118) and (9.119) as an alternative to (9.110) or (9.111) to
define pseudo-critical point values (Table 9.3).

Table 9.3: Pseudo-critical parameters for stoichiometric CH4-air mixtures computed using a and b values
for Redlich-Kwong equation of state.

Tc,m Pc,m ρc,m Zc,m

(K) (MPa) (kg·m−3)

reactants 135 3.74 279 0.33
products 190 5.28 281 0.33

Departure Functions, Fugacity and Activity

Departure functions (Reid et al., 1987, Schmitt et al., 1994) are defined as additive corrections to the ideal
gas properties to obtain real gas properties at a given temperature and pressure. For any thermodynamic
property M , we define the departure as

Md(T, P,N) = M(T, P,N)−M ig(T, P,N) . (9.122)

Residual functions (Reynolds, 1979, Van Ness and Abbott, 1982) are an alternative terminology for these
corrections and usually defined with the opposite sign, Mr = M ig - M .

Departure for G

For fixed composition the Gibbs energy dependence on temperature and pressure can be found (Van Ness
and Abbott, 1982) by integrating the fundamental relationship in the form

dG = −SdT + V dP . (9.123)

Because G(T, P ) is a state function we are free to choose a convenient path of integration from the reference
state (T ◦, P ◦) to the state (T, P ) and the answer will independent of the path chosen. The choosen path
is to first integrate in temperature at a fixed pressure P ◦ and then integrate in pressure at the fixed final
temperature T . The ideal gas limit is P ◦ → 0, in practical terms, a gas is ideal, i.e., Z ≈ 1, at P ◦ = 1
standard atmosphere if the temperature is sufficiently high compared to the effective critical temperature.

G(T, P ) = G(T ◦, P ◦) +

∫ T

T◦
−Sig(T ′, P ◦) dT ′ + ...

∫ P

P◦
V ig(T, P ′)dP ′︸ ︷︷ ︸

Gig

+... lim
P◦→0

∫ P

P◦

(
V (T, P ′)− V ig(T, P ′)

)
dP ′︸ ︷︷ ︸

Gd

,

(9.124)

= Gig +Gd , (9.125)
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The ideal gas has Z = 1, so that

V ig =
NRT
P

. (9.126)

The compressibility factor can be expressed as

Z = Z(T, V/N,X) or Z = Z(P, T,X) , X = (X1, X2, . . . , XK) , Xk = Nk/N , (9.127)

where Xk is the mole fraction of species k. This is necessary and possible because Z is an intensive variable
that does not depend on the amount of substance N so volume can only enter as a specific volume V/N
and composition as mass or mole fractions. This is consistent with the cubic equation of state with the
parameters a, b, c, d functions only of temperature and the mole (or mass) fractions. Rewriting the second
integrand in (9.124) in terms of compressibility, we have

Gd

RT
=

∫ P

0

(NZ(T, P ′,N)−N)
dP ′

P ′ . (9.128)

Defining the volume departure as

V d = V − V ig =
NRT
P

(Z − 1) , (9.129)

from this definition and (9.128), we obtain

V d

RT
=

[
∂(Gd/RT )

∂P

]
T

. (9.130)

Using these relationships in (9.123), we obtain

Hd

RT
= −T

[
∂(Gd/RT )

∂T

]
P

= −NT

∫ P

0

(
∂Z

∂T

)
P

dP ′

P ′ . (9.131)

Departure functions for other properties can be determined from (9.128) and (9.131) and thermodynamic
identities. In nondimensional form, these are:

Sd

R
=

Hd

RT
− Gd

RT
, (9.132)

Ed

RT
=

Hd

RT
−N(Z − 1) , (9.133)

Ad

RT
=

Gd

RT
−N(Z − 1) . (9.134)

Departure Functions for P (V, T,N EOS

The departure functions computed using Gibbs energy are appropriate for an equation Z(P, T,N). However,
for equations of the form Z(V, T,N) such as the cubic family, it is better to start from the Helmholtz energy
A(T, V,N) and carry out integrations in volume rather than pressure. An alternative is to use the expression
for Ad in terms of Gd and transform to V coordinates for the integration of the departure term. From the
previous section, the departure function for A is

Ad

RT
=

∫ P

0

(NZ(T, P ′)−N)
dP ′

P ′ −N(Z − 1) . (9.135)
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The integral term in (9.135) can be rewritten in terms of volume instead of pressure to facilitate computation
using a P (V, T,N) equation of state. Starting from the definition of compressibility Z, at fixed T and N,
we have

dP

P
+

dV

V
=

dZ

Z
(9.136)

Subsitution into the intergral and transforming to volume integration, we find that

Ad

RT
= −N

∫ ∞

v

(Z − 1)
dV ′

V ′ −N lnZ (9.137)

The departure for entropy can be computed from the fundamental relationship of thermodynamics for A

Sd = −
(
∂Ad

∂T

)
V

. (9.138)

= NR
∫ V

∞

[
T

(
∂Z

∂T

)
V

+ Z − 1

]
dV ′

V ′ . (9.139)

The departure functions for other thermodynamic potentials can be computed from the relationships (9.134)
derived previously and the expressions for Ad and Sd. The internal energy departure function is

Ed

RT
= −T

(
∂(Ad/RT )

∂T

)
V

, (9.140)

and to complete the set of relations, we can show that

N(Z − 1) = V

(
∂(Ad/RT )

∂V

)
T

. (9.141)

Explicit expressions for the departure functions are given in Reid et al. (1987) for several equations of state,
including Redlich-Kwong and variations.

Fugacity

An important application of departure functions is the computation of chemical potential and the application
to chemical equilibrium through the minimization of Gibbs energy

G =
K∑

k=1

NiGi , (9.142)

at constant (T, P ) subjection to the conservation of atoms.

K∑
k=1

µidNi = 0 . (9.143)

where the chemical potential is defined from the partial molar Gibbs energy

µi ≡ Gi =

(
∂G

∂Ni

)
T,P,Nk ̸=i

. (9.144)

Expand G in terms of the departure function to obtain

µi =

(
∂Gig

∂Ni

)
T,P,Nk ̸=i

+

(
∂Gd

∂Ni

)
T,P,Nk ̸=i

. (9.145)
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Identifying the derivative of the departure function as a partial molar property we obtain

µi = µig
i +G

d

i . (9.146)

From (9.124) the partial molar departure function is

G
d

i =

∫ P

0

(
Zi − 1

) dP ′

P ′ , (9.147)

where we define the partial molar compressibility factor as

Zi =

(
∂(NZ)

∂Ni

)
T,P,Nk ̸=i

. (9.148)

In analogy with the ideal gas expression for chemical potential

µig
i = µ◦

i (T ) +RT ln(XiP/P
◦) , (9.149)

the fugacity fi is defined by

µi = µ◦
i (T ) +RT ln(fi/P

◦) . (9.150)

The fugacity coefficient ϕi is defined by

ϕi =
fi

XiP
, (9.151)

which leads to the definition

µi − µig
i = RT lnϕi . (9.152)

Expressing ϕi in terms of the Gibbs energy departure function

lnϕi =
1

RT

∫ P

0

(
Zi − 1

) dP ′

P ′ . (9.153)

Using the Helmholtz departure function to define ϕi, we obtain an expression that is useful for computing
with an equation of state in the form P (T, V,N)

lnϕi = −
1

RT

∫ V

∞

[(
∂P

∂Ni

)
T,V,Nk ̸=i

− RT
V

]
dV ′

V ′ − lnZ (9.154)

The variation of the chemical potentials with pressure and temperature can be evaluated if the partial
molar volume and entropy are known. Applying the reciprocity relationships of thermodynamics to the
fundamental relation we obtain (

∂µi

∂T

)
P,N

= −Sk , (9.155)(
∂µi

∂P

)
T,N

= V k . (9.156)

Differentiating the expression for the Gibbs potential and using the fundamental relationship for dG we
obtain

K∑
k=1

Nkdµk = −SdT + V dP . (9.157)

This is known as the Gibbs-Duhem relationship. Using the partial molar sum representation of S and G and
considering arbitrary variations in composition, the relationship for each component can be written

dµk = −SkdT + V kdP . (9.158)
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Equilibrium

Equilibrium in real gases requires expressing the chemical potential in terms of the fugacity or fugacity
coefficients instead of partial pressures which are used in the ideal gas formulation discussed in Section 4.8.

µi = µ◦
i (T ) +RT ln(fi/P

◦) (9.159)

= µ◦
i (T ) +RT ln(ϕiXiP/P

◦) . (9.160)

For a single equilbrium relation with stoichiometric coefficients νi, the equilibrium condition for a real gas
will be

0 =
∑
i

νi [µ
◦
i (T ) +RT ln(ϕiXiP/P

◦)] (9.161)

or (setting P ◦ = 1)

Πif
νi
i = exp

(
−
∑

i νiµ
◦
i (T )

RT

)
. (9.162)

In terms of partial pressures

ΠiP
νi
i =

1

Πiϕ
νi
i︸ ︷︷ ︸

real gas correction

exp

(
−
∑

i νiµ
◦
i (T )

RT

)
︸ ︷︷ ︸

ideal gas

. (9.163)

or

ΠiP
νi
i = Krg

p (9.164)

Define the ideal gas pressure-based equilibrium constant as

Kig
p = exp

(
−
∑

i νiµ
◦
i (T )

RT

)
(9.165)

to obtain the real-gas pressure-based equilbrium constant as a modification to the ideal gas value

Krg
p =

Kig
p

Πiϕ
νi
i

. (9.166)

Computations of reaction rates often require the equilibrium constant expressed in terms of molar concen-
trations in order to compute the reverse reaction rate from the forward rate. In doing so, there are two
effects that can be significant for real gases: 1) the molar concentration for a real gas at the same partial
pressure will differ from the ideal gas values when Z ̸= 1; 2) the equilibrium constant for a real gas differs
from the ideal gas value when ϕi ̸= 1. The molar concentrations are:

[i] =
Ni

V
(9.167)

or in terms of the partial pressures

[i] =
Pi

ZRT
. (9.168)

The concentration-based equilibrium constant is

Krg
c ≡ Πi[i]

νi , (9.169)
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which can be expressed as

Krg
c =

1

Πi(ϕiZ)νi
Kig

c , (9.170)

in terms of the ideal gas concentration-based equilibrium constant

Kig
c =

1

(RT )∆ν
Kig

p . (9.171)

Real-gas reacting flow model equations

The real gas analogues of the model equations for ideal gas reacting flow are derived starting from the
fundamental relationships of thermodynamics.

V (T, P,N) expansion

A useful general result is the expansion of V (T, P,N) in a Taylor series.

dV =

(
∂V

∂T

)
P,N

dT +

(
∂V

∂P

)
T,N

dP +

(
∂V

∂Nk

)
P,T,Ni̸=k

dNk (9.172)

The coefficients can be expressed in terms of standard thermodynamic propertie and definitions(
∂V

∂T

)
P,N

= V β . (9.173)(
∂V

∂P

)
V,N

= −V cp
cv

Ks = −V
γ

ρa2f
, (9.174)(

∂V

∂Nk

)
V,Ni̸=k

= V k . (9.175)

Solving for the temperature derivative and changing from mole to mass fraction for the composition variables
we obtain

dT =
1

β

[
γ
dP

ρa2f
− dρ

ρ
−
∑
k

V k

V

W

Wk
dYk

]
. (9.176)

The ideal gas version of this expression is

dT = T

[
dP

P
− dρ

ρ
−
∑
k

W

Wk
Yk

]
(ideal gas) (9.177)

consistent with the results obtained directly using the ideal gas EOS in Section 9.7.

Constant pressure reaction

For an adiabatic, constant-pressure reaction process of a fixed mass, the enthalpy is constant and we can
generalize the ideal gas results given previously by starting from

dH = 0 , (9.178)

and considering H = H(P, T,N) for a real gas equation of state. Expanding the derivative and using the
definition of partial molar properties, we obtain

dH =

(
∂H

∂T

)
P,N

dT +

(
∂H

∂P

)
T,N

dP +

K∑
k=1

HkdNk . (9.179)
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Considering the time evolution of a closed, adiabatic reacting system with fixed enthalpy dH = 0 and pressure
dP = 0, we obtain:

dT

dt
= − 1

CP

K∑
k=1

Hk
dNk

dt
, (9.180)

where the heat capacity is

CP =

(
∂H

∂T

)
P,N

(9.181)

=

K∑
k=1

Nk

(
∂Hk

∂T

)
P,Ni̸=k

. (9.182)

From the definition of departure function, the enthalpy can be expressed as

H = Hig +Hd . (9.183)

Defining the partial molar departure function as

H
d

k =

(
∂H

d

∂Nk

)
T,P,Ni ̸=k

, (9.184)

and using the standard expression for the the ideal gas enthalpy

Hig =

K∑
k=1

NkH
ig
k (T ) , (9.185)

we obtain an expression for the coefficients in the energy equation

Hk = Hig
k +H

d

k , (9.186)

In an similar fashion we can define the molar specific heat capacity as the sum of the ideal gas value and a
departure function

Cp,k = Cig
p,k + C

d

p,k , (9.187)

C
d

p,k =

(
∂Hk

∂T

)
P,N

. (9.188)

To compare this result with the ideal gas expression derived previously, define the molar specific heat
capacity as

Cp =
CP

N
, (9.189)

=

K∑
k=1

XkCp,k (9.190)

and compute the time rate of change of the species amounts from the net molar production rates ω̇k and
system volume V

dNk

dt
= V ω̇k . (9.191)
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which can be expressed in terms of the total number of moles, N , the mass density ρ and mean molar mass
W

= NW ω̇k

ρ
. (9.192)

Introducing the specific heat capacity per unit mass cp = Cp/W, we obtain the analog of (11.28), the ideal
gas expression for an adiabatic (q̇ = 0), constant-pressure (P = constant) reaction

dT

dt
= − 1

ρcp

K∑
k=1

Hkω̇k . (9.193)

(9.194)

In the case of constant-pressure combustion, the temperature evolution equations for ideal gas and real
gases are identical in form but the interpretation of the symbols is different as shown in Table 9.4. Mass
densities and concentrations used in computing ω̇ also need to be computed appropriately using the com-
pressibility factor.

Table 9.4: Correspondence between terms in the constant-pressure, adiabatic temperature evolution equation
for real gas and ideal gas models.

symbol real gas ideal gas

Hk Hig
k + H

d

k Hig
k

Cp

∑K
k=1 XkC

ig
p,k +

∑K
k=1 XkC

d

p,k

∑K
k=1 XkC

ig
p,k

ρ
P

ZRT

P

RT

[k] Xk
P

ZRT
Xk

P

RT

The simplicity of the correspondence between ideal gas and real gas in this case is due to the use of
(T, P,N) as the variables and the natural role that partial molar properties plays in the expansion in these
coordinates. Contrast the simplicity of this derivation with the complexity of the derivation3 in Appendix B
of Tang and Brezinsky (2006) as a consequence of choosing (T, V,N) as the thermodynamic state variables.

By defining the partial molar enthalpy per unit mass as

hk =
Hk

Wk
, (9.195)

we can write the energy equation as

dT

dt
= − 1

ρcp

K∑
k=1

hkWkω̇k . (9.196)

or

= − 1

cp

K∑
k=1

hk
dYk

dt
. (9.197)

3The Tang and Brezinsky result, Eq. B8, is also inconsistent with the present derivation because of an error associated with
transforming derivatives when changing independent variables from (T, V,N) to (T, P,N) between equations B2-B6 and B8.
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For an ideal gas, this is simply

dT

dt
= − 1

cp

K∑
k=1

hk
dYk

dt
. (9.198)

This is the form of the expression used in the cpsys.m and cpsys.py routines.

Constant volume reaction

The real-gas, constant-volume, adiabatic reactor energy equation is derived Ch. 7 of Schmitt et al. (1994)
using the (T, P,N) as the independent variables. It is instructive to carry out the derivation in (T, V,N) and
carry out the appropriate thermodynamic transformations to show that it is possible to obtain the identical
result.

Considering the internal energy E = E(V, T,N) for a real gas equation of state, we carry out the Taylor
series expansion

dE =

(
∂E

∂T

)
V,N

dT +

(
∂H

∂V

)
T,N

dV +

K∑
k=1

(
∂E

∂Nk

)
T,V,Ni̸=k

dNk . (9.199)

And apply the constant-volume and adiabatic conditions

dV = 0 , (9.200)

dE = 0 , (9.201)

to obtain the temporal evolution equation for temperature

dT

dt
= − 1(

∂E

∂T

)
V,N

K∑
k=1

(
∂E

∂Nk

)
T,V,Ni̸=k

dNk

dt
. (9.202)

We can identify the denominator on the right-hand side as the heat capacity at constant volume

CV =

(
∂E

∂T

)
V,N

=

K∑
k=1

Nk

(
∂Ek

∂T

)
V,N

= N

K∑
k=1

Xk

(
∂Ek

∂T

)
V,N

= NCV , (9.203)

where the molar specific heat capacity is

CV =

K∑
k=1

Xk

(
∂Ek

∂T

)
V,N

(9.204)

The numerator can be written in terms of a partial molar properties by considering E(P, T,N), P (V, T,N)
and using the chain rule of differentiation.(

∂E

∂Nk

)
T,V,Ni̸=k

=

(
∂E

∂Nk

)
T,P,Ni̸=k

+

(
∂E

∂P

)
T,N

(
∂P

∂Nk

)
V,T,Ni̸=k

(9.205)

The last term can be expressed in terms of conventional thermodynamic properties using classical thermo-
dynamics (

∂E

∂P

)
T,N

(
∂P

∂Nk

)
V,T,Ni̸=k

= −
(
Tβ

κT
− P

)
V k , (9.206)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CP/cpsys.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cp.py
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The term in parentheses represents one of the corrections due to a real gas equation of state and vanishes in
the case of an ideal gas. The terms in this expression are the coefficient of thermal expansion

β =
1

V

(
∂V

∂T

)
P,N

, (9.207)

the isothermal compressibility

κT = − 1

V

(
∂V

∂P

)
T,N

, (9.208)

and the partial molar volume

V k =

(
∂V

∂Nk

)
T,P,Ni̸=k

. (9.209)

An alternative expression for the combination of terms in parentheses can be derived from classical thermo-
dynamics

Tβ

κT
= T

(
∂P

∂T

)
V,N

. (9.210)

This combination of terms can be expressed in terms of the derivative of the compressibility factor

T

(
∂P

∂T

)
V,N

= P

[
1 +

T

Z

(
∂Z

∂T

)
V,N

]
. (9.211)

The final expression for the temperature temporal derivative is

dT

dt
= − 1

NCV

K∑
k=1

[
Ek −

(
Tβ

κT
− P

)
V k

]
dNk

dt
. (9.212)

Or in terms of the compressibility factor

dT

dt
= − 1

NCV

K∑
k=1

[
Ek − P

T

Z

(
∂Z

∂T

)
V,N

V k

]
dNk

dt
. (9.213)

Using the same consideration as in the previous section, we can write this in terms of the net molar production
rate, mass density and mass specific heat heat capacity at constant volume

dT

dt
= − 1

ρcv

K∑
k=1

[
Ek −

(
Tβ

κT
− P

)
V k

]
ω̇k . (9.214)

This is identical to Eq. (7.17) of Schmitt et al. (1994). Contrast this with the ideal gas version

dT

dt
= − 1

ρcv

K∑
k=1

Ekω̇k , (9.215)

dT

dt
= − 1

cv

K∑
k=1

ek
dYk

dt
(9.216)

The final version is the form of the expression used in the cvsys.m and cv.py

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CV/cvsys.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cv.py
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ZND model

The derivation of the ZND model equations terms of mass fraction derivatives was given previously in
Section 9.2 and presented in terms of partial molar properties in Schmitt and Butler (1995b), the complete
derivation can be found in Schmitt (1994). The only difference between the ideal and real gas formulations
is in the computation of thermicity using in (9.81)-(9.84) A derivation of thermicity for the real gas case is
given Appendix D. The result in terms of the partial molar fractions is

σ̇ =
∑
k

(
W
Wk

V k

V
− β

cp

Hk

Wk

)
dYk

dt
. (9.217)

Comparing this with the previous derivation (9.32) and equating corresponding terms, we find that

W
Wk

V k

V
= −1

ρ

(
∂ρ

∂Yk

)
P,T,Yi̸=k

, (9.218)

β

cp

Hk

Wk
=

β

cp

(
∂h

∂Yk

)
P,T,Yi̸=k

. (9.219)

Direct computation of the quantities on the right-hand side is facilitated by using the tranformation dNK =
MdYk/Wk to obtain the relationship between PMP of an extensive property B and the corresponding mass
specific property b = B/M

Bk =

(
∂B

∂Nk

)
P,T,Ni̸=k

=Wk

(
∂b

∂Yk

)
T,P,Yi̸=k

; . (9.220)

(9.221)

Using this transformation verifies that the mass and mole based expressions for the terms in thermicity are
equivalent.

From the definition of the compressibility factor, we can express the first term in the thermicity using
the partial molar derivative of Z

V k

V
= 1 +

1

Z
Zk . (9.222)

The second term in the sum has three components, cp, β, Hk, all of which will have departure from ideal gas
values due to real gas effects. The effects on specific heat capacity and enthalpy require detailed computation
using the departure functions, while the effect on thermal expansion coefficient can be computed from the
compressibility

β =
1

T
+

1

Z

(
∂Z

∂T

)
P,Y

(9.223)

(9.224)

The real gas thermicity expression reduces to the ideal gas version (9.33) in the limit of Z −→ 1 with the
following correspondence between ideal and real gas quantities.

The evolution of temperature for the ZND model of a real gas can be computed using the ZND model
equations for P (9.82), ρ (9.81) and (9.176). The result is

dT

dt
=

1

β

[
1− γM2

η
σ̇ −

∑
k

V k

V

W

Wk

dYk

dt

]
(9.225)
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Table 9.5: Correspondence between terms in the thermicity expresssion for real gas and ideal gas models.

symbol real gas ideal gas

Hk Hig
k + H

d

k Hig
k

CP

∑K
k=1 XkC

ig
P,k +

∑K
k=1 XkC

d

P,k

∑K
k=1 XkC

ig
P,k

β
1

T
+

1

Z

(
∂Z

∂T

)
P,Y

1

T

V k

V
1 +

1

Z
Zk 1
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Chapter 10

Reactions and Reaction Rates

Chemical reaction rates in gases are determined from a network of reactions and associated
reaction rates which are assembled into a reaction mechanism. The types of individual reac-
tions and empirical rate descriptions are described as is the computation of net reaction rates
for each species within the reaction network. The concept of detailed balance is introduced
to relate forward and reverse reactions to equilibrium constants.

The time rate of the change of each species mass density ρi = Yiρ is determined by the mass source term
Wiω̇i on the right-hand side of the species equations (9.21). The fluid motion is coupled to the chemical
reaction through the thermicity (9.33) which can be written as a sum of terms, each of which is proportional
to the time rate of change of the species mass fraction. The source term for (9.21) the has units of mass (of
species i) per unit time per unit volume of the gas. The term is written as the product of the molar massWi

and the molar source term ωi, which traditionally is specified in units of mol·cm−3· s−1. The terminology
of chemical reactions and reaction rates is a legacy of chemisty and chemical engineering which measure
the quantity of substance in terms of moles and the concentration in terms of moles per unit volume (the
concentration of species A is written [A]) in legacy units of mol·cm−3. The key to computing a chemically
reacting flow is to have a prescription for computing the source term.

In order to compute the source term, we need to select a set of species, a reaction mechanism and
associated reaction rates. Only elementary reactions, that is, physically plausible reactions mediated by
molecular collisions, are of interest for detailed reaction modeling. These come in three varieties: uni-
molecular, bi-molecular and ter-molecular; see Laidler (1987) for an introduction to chemical kinetics and
the theory of reaction rates.

10.1 Unimolecular reactions

Unimolecular is a term that is used to describe a reaction that appears to obey first order rate laws, that
is, the rate of disappearance of the reactant is proportional to the amount of reactant. For example, an
initial step of the decomposition of the explosive molecule nitromethane under high pressure conditions is
the thermal decomposition which can be expressed as

CH3NO2 −→ CH3 + NO2 (R2)

and if rate of reaction is k∞, the rate of disappearance of nitromethane can be expressed as

d[CH3NO2]

dt
= −k∞[CH3NO2] (10.1)

This reaction, like many other reactions that appear to be unimolecular, actually depend on bimolecular
collisions to provide the energy to overcome the bonding that stabilizes the molecule (the activation energy
for this reaction is 58.5 kcal/mol), and create an excited state that decomposes into the observed products.
When the collisions are sufficiently rapid compared to the rate of decomposition, decomposition is the
limiting or rate-controlling step and the pressure does not appear explicitly in the rate law. As the pressure
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is decreased and collisions become rarer, the collisions are the rate limiting step and the collisions with the
other molecules (denoted M) in the gas need to be explicitly taken account of in the reaction

CH3NO2 + M −→ CH3 + NO2 + M (R3)

and the rate of disappearance of nitromethane depends on pressure (P = [M]RT ).

d[CH3NO2]

dt
= −k◦[CH3NO2][M ] (10.2)

The transition from unimolecular to bimolecular with decreasing pressure is a general situation that occurs
with reactions that appear uni-molecular at high pressure and are truly elementary.1 The representation of
these reaction rates for use in comprehensive combustion models requires measuring or estimating the high-
pressure (k∞) and low-pressure (k◦) rate constants and an interpolating function of pressure and temperature
that fits the intermediate data. The meaning of high and low pressure as well as the interpolating function
are discussed subsequently in Section 10.3.

True unimolecular reactions can occur due to the spontaneous emission or absorption of photons. These
are relevant to predicting optical emission and absorption or photochemical initiation of combustion. Some
examples that are important in high-temperature gas dynamics and combustion of the decay of an excited
atomic or molecular electronic state and the emission of a photon are:

OH(A2Σ+) −→ OH(X2Π) + hν (R4)

with emission in a band between 305-315 nm.

CH(A2∆) −→ CH(X2Π) + hν (R5)

with emission in a band between 425-435 nm.

CO2(A
2B2) −→ CO2(X

1Σ) + hν (R6)

with emission in a band between 405-415 nm.

C2(d
3Πg) −→ C2(a

3Πu) + hν (R7)

with emission in a band between 465-475 nm, part of the Swan bands.

NO(A2Σ+) −→ NO(X2Π) + hν (R8)

with emission in the gamma band between 180-270 nm.

Na(3P3/2 or 3P1/2) −→ Na(3S1/2) + hν (R9)

with emission in two adjacent lines (termed the D-doublet or D-lines) at 588.995 and 589.5924 nm. Although
sodium is sometimes deliberately introduced into flows, it is a ubiquitous contaminant and the D-lines are
prominent in high-temperature gas spectra.

The rate of disappearance of an excited state, generically written as A∗, is proportional to the amount
of that state.

d[A∗]

dt
= −krad[A∗] . (10.3)

In the context of transitions between two quantum states, from a single upper level to lower level, the
constant krad is known as the Einstein A-coefficient. In the absence of competing processes, krad is the
inverse of the excited state radiative lifetime

krad =
1

τrad
. (10.4)

1There are many empirical models of reactions, particularly of explosives, which are modeled as uni-molecular but these
are approximations of composite molecular processes not true elementary reactions.
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The order of magnitude of the radiative life time is 10−6 s for OH∗ and NO∗, and 10−8 s for Na∗. The
quantity krad[A

∗] is the number of photons emitted per second and for a single frequency emission, each
photon will have energy hν. The spontaneous emission of photons occurs uniformly in all directions so that
the energy emission rate J per unit volume and unit solid angle is given by

J =
1

4π
hν krad[A

∗] W · sr−1 (10.5)

Comprehensive models Hanson et al. (2016), Zel’dovich and Raizer (1966) of radiative emission in high-
temperature gases requires considering the competing processes of creation and destruction of the excited
species as well as the absorption and re-emission that occurs during the transport of radiation through the
surrounding gas. Additional reaction processes include the production of excited species by recombination
of atoms or bimolecular reactions, and nonradiative transitions or quenching due to collisions. The most
sophisticated models consider the manifold of electronic and molecular states and all the possible transitions
between these states in order to predict the wavelength dependence of emission.

10.2 Bi-molecular or two-body reactions

Bi-molecular reactions involve the collision of two reactant molecules to produce two distinct reactant
molecules. In the following example (considered the most important reaction in combustion) the reactants
are H and O2 and the products are OH and O.

H + O2 −→ OH + O (R10)

These form the majority of the reactions considered in detailed reaction mechanisms. These reactions
rearrange or shuffle the atoms but do not decrease or increase the number of molecules in the system.
Energy will be released or absorbed depending on the heat of reaction. The molar rates of creation of the
products are equal because each reaction between an H and an O2 will always create an OH and one O. The
rates of reactions associated with the reaction (R10) are:

d[OH]

dt
=

d[O]

dt
(10.6)

= −d[H]

dt
(10.7)

= −d[O2]

dt
(10.8)

For bi-molecular reactions, the rate of reaction is equal to the collision rate between the molecules times
the probability of a reactive collision. This can be expressed a reaction rate constant times the product of
the molar concentration of the reactants. For the reaction (R10), the rate constant is kf with the subscript
indicating the forward reaction proceeding from left to right.

d[OH]

dt
= kf [H][O2] (10.9)

The rate constant for a mixture in local thermodynamic equilibrium is only a function of the temperature
and is conventionally parameterized and fit to the modified Arrhenius form.

k = ATn exp (−E/RT ) , (10.10)

where the pre-exponential A, temperature exponent n, and the activation energy E are theoretically or
experimentally determined constants.

Elementary reactions can always proceed in either the forward direction(10) or in the reverse direction

H + O2←− OH + O (R11)
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and the associated reaction rate is kr. The rates of reaction associated with (R11) are:

d[H]

dt
=

d[O2]

dt
(10.11)

= −d[OH]

dt
(10.12)

= −d[O]

dt
(10.13)

= kr[OH][O] (10.14)

The forward and reverse reactions together are usually written as a single reaction equation with double
arrows

H + O2
−→←− OH + O . (R12)

The net reaction rate is the difference between the contributions of the forward and reverse rates, for (R12),
these are:

d[OH]

dt
= kf [H][O2]− kr[OH][O] , (10.15)

d[O]

dt
= kf [H][O2]− kr[OH][O] , (10.16)

d[H]

dt
= −kf [H][O2] + kr[OH][O] , (10.17)

d[O2]

dt
= −kf [H][O2] + kr[OH][O] . (10.18)

The forward and reverse reactions generally proceed at very different rates due to the distinct dependence of
the forward and reverse rate constants on temperature as well as the concentration of the species in the gas
mixture. Setting aside the obvious effect of concentrations on reaction rates, the differences in rate constants
reflects the relative size of the energy barriers (measured by the magnitude of the activation energy) and the
probability of a geometrically favorable collision. Many elementary reactions actually go through a series of
intermediate steps which have been averaged over to arrive at a reaction rate. For example, (R10) proceeding
through the creation of an intermediate complex HO∗

2 of the H and O2 molecules,

H + O2 −→ HO∗
2 −→ OH + O (R13)

which is actually in a potential well (lower energy) compared to both products and reactants ( 180 kJ/mol
lower) (Melius and Blint, 1979, Miller, 1981, Quéméner et al., 2010, Guo, 2012). The overall reaction is
endothermic, with an enthalpy change of about +70 kJ/mol, which is consistent with the activation energy
inferred from the measured reaction rate temperature dependence.

Forward and reverse rates are determined in separate measurements and for combustion reactions, there
has been a multi-decade collective effort (Gardiner, 1984, Baulch et al., 1992, 1994, 2005) to evaluate these
measurements and make consensus recommendations for rates. The measured rates for (R10) are shown in
Fig. 10.1. Baulch et al. (2005) recommend a reaction rate of 3.43×10−10T−0.097 exp(−7560/T ) in units of
cm3·molecule−1·s−1 for (R10) over the range 800-3500 K. Note the use of alternate units in the rate, the
units can be converted to the convention most often used in Cantera (length = cm, time = s, quantity =
mol, activation energy = cal/mol) using the Avogadro number 6.02214×1023 molecules·mol−1 and energy
equivalence 1.9872 cal·mol−1·K−1. For reaction (11), Baulch et al. (2005) recommend a reaction rate of
2.0×10−10T−0.352 exp(113/T ) over the range 250-3000 K.

Although the forward and reverse reaction rates can be independently measured and specified for an
elementary reaction, these rates may not be consistent with thermodynamic equilibrium. In equilibrium, the
net rate of reaction vanishes for all species. For our example reaction,

d[OH]

dt
=

d[O]

dt
=

d[H]

dt
=

d[O2]

dt
= 0 , (10.19)
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897897EVALUATED KINETIC DATA FOR COMBUSTION MODELING

J. Phys. Chem. Ref. Data, Vol. 34, No. 3, 2005

Figure 10.1: Measured reaction rates for H+O2 −→ OH+O from Baulch et al. (2005).

which implies that

0 = kf [H]eq[O2]eq − kr[OH]eq[O]eq , (10.20)

or

[OH]eq[O]eq
[H]eq[O2]eq

=
kf
kr

. (10.21)

The left-hand side is known as the concentration equilibrium constant

Kc ≡
(
[OH][O]

[H][O2]

)
eq

, (10.22)
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and can be computed from thermodynamic data for each of the species (Denbigh, 1981, Sec. 4.4).

Kc =
exp
(
−∆G◦(T )

RT

)
(RT )∆ν

. (10.23)

The argument of exponential is the net change in the pressure-independent portion of the molar Gibbs energy
G◦ = H - TS◦. For set of K species, this change is defined as

∆G◦ =

K∑
k=1

νk (Hk − TS◦
k) (10.24)

where

νk = ν′′k − ν′k and ∆ν =

K∑
k=1

νk . (10.25)

The stoichiometic coefficients ν′k for reactants and ν′′k for products are the species numeric multipliers in the
equilibrium relationship or corresponding reaction equation of interest when written symbolically in terms
of the species Mk as

ν′1M1 + ν′2M2 + · · ·+ ν′KMK ⇀↽ ν′′1M1 + ν′′2M2 + · · ·+ ν′′KMK (10.26)

or more concisely

K∑
k=1

ν′kMk ⇀↽

K∑
k=1

ν′′kMk . (10.27)

The ν′k and ν′′k are either zero or positive integers for elementary reactions. In the case of the reaction (R12),
the equilibrium relation is

H + O2︸ ︷︷ ︸
reactants

⇀↽ OH + O︸ ︷︷ ︸
products

(10.28)

and the stoichiometric coefficients are

ν′H = +1 ν′′H = 0 (10.29)

ν′O2
= +1 ν′′O2

= 0 (10.30)

ν′OH = 0 ν′′OH = +1 (10.31)

ν′O = 0 ν′′O = +1 (10.32)

The net change ∆ν is zero for bimolecular reactions and non-zero for unimolecular or ter-molecular reactions.
The stoichiometric coefficients can be used to more compactly express the relationships between changes in
species amounts due to a reaction or shift in equilibrium by defining the net change in species i as νi =
ν′′i − ν′i. The net reaction rates normalized by νi are known as the rate of progress q and are identical for all
species in the reaction

1

ν1

d[M1]

dt
=

1

ν2

d[M2]

dt
= · · · = 1

νK

d[MK ]

dt
= q = kf

K∏
k=1

[Mk]
ν′
k − kr

K∏
k=1

[Mk]
ν′′
k . (10.33)
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For bimolecular reactions, the concentration equilibrium constant Kc is identical to the partial pressure
equilibrium constant

Kp(T ) = exp
(
−∆G◦(T )

RT

)
(10.34)

=

K∏
k=1

(Pk)
νk

eq . (10.35)

where Pk,eq = Xk,eqP is the equilibrium partial pressure of species k.
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Figure 10.2: Equilibrium constants Kp for the forward and reverse reactions of H+O2 −→ OH+O.

To avoid thermodynamic inconsistency, combustion modelers typically only specify either the forward or
reverse rate and compute the other rate from the equilibrium relation, for example if the forward rate is
specified, the reverse rate is computed as

kr =
kf
Kc

. (10.36)

This is the case for almost all of the reaction mechanisms supplied with the SDToolbox. The choice of which
direction to use as the reference reaction for specifying the rate often depends on which has been measured
or estimated more reliably. For example, as shown in Fig. 10.1 there are extensive measurements over a wide
temperature range for (R10) but measurements for (R11) are only available for temperatures less than 500
K. The reverse rate has been fit to an expression which is consistent at high temperatures with (10.36) as
shown in Figure 10.3. At room temperature, the estimated rate kf/Kc is almost 5 times larger than the
recommended rate of Baulch et al. but within 20% for temperatures between 800 and 3000 K, which is the
range of interest in most combustion situations.

10.3 Ter-molecular or three-body reactions

As discussed in the introduction, there are many reaction processes which require collisions with other gas
molecules in order to create a reaction pathway to the products. These collisions either serve to add sufficient
energy to overcome an energy barrier or stabilize a product molecular by removing energy. At sufficiently



D
RA
FT

166 CHAPTER 10. REACTIONS AND REACTION RATES

500 1000 1500 2000 2500
T

101

103

105

107

109

1011

re
ac

tio
n 

ra
te

R9
R9 (rev)
R10

Figure 10.3: Forward and reverse rates for H+O2 −→ OH+O using the recommended values from Baulch
et al. (2005) and the estimate kf/Kc for the reverse rate.

low pressures, these reactions appear to depend explicitly on the pressure through the total concentration of
the gas molecules. One-way of including this dependence is by introducing a third molecule into the reaction
equation and to make the rate proportional to the concentration of that molecule. These processes are for
this reason termed ter-molecular or three body reactions although they are really composite and consist of
a sequence of bimolecular reactions.

Some important examples include the chain-termination reaction

H + O2 + N2 −→ HO2 + N2 , (R14)

dissociation of diatomic molecules

N2 + Ar −→ N + N + Ar , (R15)

or the inverse process of recombination

N + N + Ar −→ N2 + Ar . (R16)

The third-body or chaperone molecule, N2 or Ar in these examples, is often generically indicated as M
although in many cases, the rate of reaction will depend significantly on the identity of M. This is often
taken account of by assuming that each type of molecule has a collision efficiency α relative to some reference
molecule, usually argon.

A three-body reaction will result in a change in the total number of molecules in addition to the release
or absorption of thermal energy. In addition to chain termination, association reactions play a significant
role in creating intermediate species and most importantly, in releasing energy through the recombination
of intermediates to products. Two of the most important examples in combustion are:

H + OH + M −→ H2O + M and (R17)

CO + O + M −→ CO2 + M . (R18)

Recombination or association can generically be written as
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A + B + M −→ AB + M (R19)

and if this reaction is elementary, then the reverse reaction

AB + M −→ A + B + M (R20)

is equally plausible and the combination of forward and reverse reactions can be written

A + B + M −→←− AB + M (R21)

Using the formalism discussed in Section 10.2, the rate of progress can be written

1

ν1

d[M1]

dt
=

1

ν2

d[M2]

dt
= · · · = 1

νK

d[MK ]

dt
= q =

(
K∑

k=1

αk[Mk]

)(
kf

K∏
k=1

[Mk]
ν′
k − kr

K∏
k=1

[Mk]
ν′′
k

)
(10.37)

The reaction rate constants kf and kr are usually given as functions of temperature using the modified
Arrhenius format (10.10). As in the bi-molecular reaction case, for consistency only one of the two reaction
rate constants are specified, usually the forward rate constant kf and the reverse reaction rate constant can
be computed using the equilibrium constant, kr = kf/Kc. The equilibrium constant for concentrations will
depend on pressure because ∆ν ̸= 0 for these cases. for example, for (R14), the equilibrium relation is

Kc =

(
[H][O2]

[HO2]

)
eq

, (10.38)

=
1

RT

(
PHPO2

PHO2

)
eq

, (10.39)

=
KP (T )

RT
(10.40)

Pressure-dependent or fall-off reactions

Ter-molecular reactions such as (R14) transition to uni-molecular reactions with increasing pressure.

H + O2 −→ HO2 (R22)

At low pressures, the forward reaction rate (R14) the value ko = 6.37×1020T−1.72 exp−524.8/RT and at
high pressures, the forward reaction rate of (R22) is k∞ = 4.65×1012T 0.44, see Baulch et al. (2005). The
combined pressure dependent reaction, including the reverse process, is written as

H + O2 (+M) −→←− HO2 (+M) (R23)

and the effective forward reaction rate is described by a pressure-dependent rate constant kf (T, P ). The
simplest model (Gardiner, 1984, Laidler, 1987, Kee et al., 2003) is based on the notion that the reaction
proceeds in two steps. First, the creation of an excited species through collisions of the reactants. For our
example reaction, this is

H + O2
−→←− HO∗

2 , forward rate: kf1

Second, the stabilization of the excited species through collisions with the other molecules.

HO∗
2 + M −→←− HO2 + M forward rate: kf2

The excitation and de-excitation of the excited intermediate species HO∗
2 are assumed to both occur suffi-

ciently rapidly that the concentration of that species is in quasi-steady state.

d[HO∗
2]

dt
= 0 (10.41)
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Further approximating the concentration of HO2 as negligible, the algebraic relationship between species
obtained by the quasi-steady state approximation can be solved to compute the concentration of the excited
intermediate state to be

[HO∗
2] =

k1fk2f [H][O2]

k1r + k2f [M]
. (10.42)

Substituting this into the reaction, the reaction progress can be computed to be

−d[H]

dt
= −d[O2]

dt
= +

d[HO2]

dt
= kf [O2][H]− kr[HO2] (10.43)

where kr = kf/Kc and Kc is the equilibrium constant for the association reaction

H + O2
−→←− HO2 (10.44)

and kf is the concentration-dependent forward reaction rate for the association reaction

kf =
k1fk2f [M]

k1r + k2f [M]
. (10.45)

This is equivalent to a pressure dependent reaction

kf = k∞
Pr

1 + Pr
(10.46)

using the ideal gas law to define [M] = P/RT and a reduced pressure

Pr =
P

P ∗ (10.47)

with a reaction reference pressure of

P ∗ =
k∞RT
k◦

(10.48)

The high pressure limit, Pr →∞, of the rate constant is

kf −→ k∞ = k1f (10.49)

and the reaction progress equation is

−d[H]

dt
= −d[O2]

dt
= +

d[HO2]

dt
= k∞[O2][H]− k∞

Kc
[HO2] . (10.50)

The low pressure limit, Pr → 0, is

kf −→ k◦[M] =
k1fk2f
k1r

[M] . (10.51)

and the reaction progress equation is

−d[H]

dt
= −d[O2]

dt
= +

d[HO2]

dt
= ko[M][O2][H]− ko

Kc
[M][HO2] . (10.52)
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A refinement of the reaction rate pressure dependence (10.46) is to introduce an empirical correction factor
F (T, Pr) that can be used to better fit experimental data or reaction rate computations. A common model
that is used in combustion reaction networks is the Troe function (Kee et al., 2003, Section 9.4); the parame-
ters used by this function are supplied as part of the Cantera .cti reaction network data files. The reaction
rate is modeled as

kf = k∞
Pr

1 + Pr
F (Pr, T ) . (10.53)

and the high and low pressure reaction rate constants k∞ and ko are functions of temperature using the
modified Arrhenius format (10.10) with distinct parameters for each as determined by a combination of
measurement (primarily for ko) and computation or estimation (primarily for k∞). The rate constants used
in the Burke et al. (2012) reaction mechanism provided as part of the SDToolbox CTI resources use the Troe
formulation for F .

The fall-off effect for reaction (R23) is shown in Fig. 10.4. The large decrease in reaction rate constants
with decreasing or falling pressure is what give rises to the terminology fall-off effect. Three features
standout and are common to all reactions of this type: first, the falloff effect is much more pronounced at
low temperatures than high temperatures; second, the reverse reaction also has a fall-off effect; third, in
order for the high-pressure limit to be reached, the pressure must be quite high (100 to 1000 atm) compared
to typical gas-phase combustion conditions.

For consistency with the low-pressure limit of three-body reactions (R21) and the computation of reaction
progress (10.37), the collision efficiency is included in computing the effective molar concentration of the third
body [M] and the parameter Pr.

Pr =
ko
k∞

K∑
k=1

αk[Mk] =
ko
k∞

P

RT

K∑
k=1

αk[Xk]

where Xk is the mole fraction of species k. The effective value of the reference pressure is

P ∗ =
k∞
ko

RT∑K
k=1 αk[Xk]

For (R23), the reference pressure is 5.67×107 Pa at 600 K and 3.69×109 Pa at 2500 K. These pressures
are quite high compared to conditions encountered in most combustion applications but may be relevant
behind sufficiently strong shock waves in high-pressure situations like internal-combustion engines or some
deflagration-to-detonation transition scenarios.

Another reaction that plays an important role in high-pressure and low-temperature combustion is the
decomposition of hydrogen peroxide

H2O2 (+M) −→←− OH + OH (+M) . (R24)

The reaction progress equation based on the reaction rate kf incorporating the fall-off factor is

−d[H2O2]

dt
= +

1

2

d[OH]

dt
= kf [H2O2]−

kf
Kc

[HO]2 . (10.54)

The reaction rates as a function of temperature and pressure are shown in Figure 10.5. The fall-off effect
is qualitatively similar to (R23) and the magnitudes of the reference pressures: 3.11×107 Pa at 600 K and
1.25×109 pa at 2500 K are comparable.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/cti_mech.html
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Figure 10.4: Evaluation of rate constants for (R23) as a function of pressure for two temperatures using the
Burke et al. (2012) rate constant parameters and an atmosphere consisting of stoichiometric hydrogen-air
combustion products in equilibrium at the specified temperatures and pressures.
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Figure 10.5: Evaluation of rate constants for (R24) as a function of pressure for two temperatures using the
Burke et al. (2012) rate constant parameters and an atmosphere consisting of stoichiometric hydrogen-air
combustion products in equilibrium at the specified temperatures and pressures.
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10.4 Reaction Networks

Reaction mechanisms for even the simplest fuel-oxidizer systems like H2-O2 consist of a network of reactions
that serve to transform the reactants into products through series and parallel reactions involving a numerous
intermediate species. Each of these reactions j = 1, 2, . . . J has associated reaction rate constants kf,j and

kr,j , and stoichiometric coefficients ν
′′

kj , ν
′

kj that define the rate of progress qj for reaction j given the
composition, pressure and temperature of the mixture. The net molar rate of production per unit volume
of species k due to creation and destruction by all the reactions is

ω̇k =

J∑
j=1

νkj q̇j νkj = ν
′′

kj − ν
′

kj (10.55)

The net rate of mass of species k generated per unit volume is Wkω̇k. In a a reacting flow without diffusive
transport, the mass balance equation for each species is (9.21)

∂

∂t
(ρYk) +∇ · (ρuYk) =Wkω̇k (k = 1, . . . ,K) , (10.56)

and further simplification leads to the most convenient expression for further use in formulating the reacting
flow equations

DYk

Dt
=
Wkω̇k

ρ
(k = 1, . . . ,K) . (10.57)

The molar concentrations of each species are related to the mass fractions by

[Xk] =
Ykρ

Wk
(10.58)

so that the material derivative of the molar concentration of species Xk can be expressed as

D[Xk]

Dt
= ω̇k + [Xk]

1

ρ

Dρ

Dt
. (10.59)

which provides the interpretation of ω̇ as the molar reaction rate at constant mass density.
A species can be created or destroyed by both forward and reverse reactions. To examine the role of

individual reactions and the collective actions of the reaction network, the contributions to the rate of progress
for a reaction are written as the difference between the contributions of forward and reverse reactions.

q̇j = q̇f,j − q̇r,j . (10.60)

For a binary reaction, the rate of progress (10.33) can be used to define these two components

q̇f,j = kf

K∏
k=1

[Mk]
ν′
kj , q̇r,j = kr

K∏
k=1

[Mk]
ν′′
kj , (10.61)

and a similar expression can be derived from the rate of progress (10.37) for ter-molecular reactions. The
net reaction rate of a species i is

ω̇k =

J∑
j=1

(ν
′′

kj − ν
′

kj)(q̇f,j − q̇r,j) . (10.62)

=

 J∑
j=1

ν
′′

kj q̇f,j +

J∑
j=1

ν
′

kj q̇r,j


︸ ︷︷ ︸

creation

−

 J∑
j=1

ν
′

kj q̇f,j +

J∑
j=1

ν
′′

kj q̇r,j


︸ ︷︷ ︸

destruction

(10.63)

= Ċk − Ḋk (10.64)
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The terms Ċ and Ḋ are both positive. When these are large and nearly equal, the net rate of change of
species k will be slow in comparison to that of species with much larger magnitudes of ω̇i and the species k
is said to be in quasi-steady-state, ω̇k ≈ 0. This defines a set of algebraic relationships between the species
concentrations in the relevant reactions. These relationships can be used to make analytic approximations
which sometimes lead to simplifications in the reaction network representation.

The creation and destruction rates for a species can also be defined for a single reaction

Ċkj = ν
′′

kj q̇f,j + ν
′

kj q̇r,j , (10.65)

Ḋkj = ν
′

kj q̇f,j + ν
′′

kj q̇r,j . (10.66)

10.5 Molecular Collisions and Reaction Rates

Collisions between pairs of individual molecules are the essential mechanism underlying the chemical (Hous-
ton, 2001, Laidler, 1987) and physical (Vincenti and Kruger, 1965, Boyd and Schwartzentruber, 2017) pro-
cesses in high-temperature gas dynamics . The outcome of these collisions depends essentially on the speed
with which molecules approach each other (relative speed or energy in the center of mass) and the distance
of closest approach during the collision. In a high-temperature gas, the statistical distribution of individ-
ual molecular velocities and trajectories results in a corresponding statistical distribution of relative speeds
and closest approach distances. The collective behavior of a gas is a consequence of averaging over these
parameters to determine the average outcomes of the enormous numbers of collisions occurring per second
in a volume of gas. The description of these collisions and the averaging process is the topic of gas kinetics
research which started in the 19th century with Maxwell and Boltzmann.

Collisions conserve energy and momentum and at low energies or large distances, the identities of the
molecules, but result in the transfer of energy, momentum and molecules from one region of a flow to
another. Although this seems paradoxical, it is the essence of the process of diffusive transport and results
from colliding molecules originating from different locations in the flow. If the flow has gradients in properties
that are significant at the molecular level, as occurs in boundary or shear layers, flames and shock waves,
then the colliding molecules will come from regions with significantly different mean properties and collisions
effectively transport those mean properties across those gradients.

Collisions that take place with high relative speeds and close approach distances, will also result in
transfer of internal energy (vibration and rotation) and in extreme cases, the transfer between or separation
of atoms within the colliding molecules, i.e., chemical reactions. At the highest collision speeds, dissociation
of molecules into atoms or separation into ions and electrons (ionization) can take place. The evaluation
of energy exchange rates between molecules or chemical reaction rates requires not only averaging over the
collision parameters but considering the dynamics of the atomic and electronic motion that control the
bonding between the atoms and the electronic

Relative Motion of Molecules

The motion of the molecules of a gas in thermal equilibrium can be described statistically by the Maxwell-
Boltzmann distribution of velocities (McQuarrie, 1976, Boyd and Schwartzentruber, 2017). For a molecule
of mass m, each velocity component has a probability distribution function

P(vi) =
(

m

2πkBT

)1/2

exp

(
− mv2i
2kBT

)
, i = x, y, z . (10.67)

The molecular speed v = |v| =
√
v2x + v2y + v2z distribution is

P(v) =
(

m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
4πv2 (10.68)
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The likelihood of chemical reaction or energy transder during a collision depends on the kinetic energy with
which molecules A and B collide. This can be characterized by relative speed vr =|vA − vB | of approach to
the collision event and the masses of the molecules. The probability distribution of the mean relative speeds
of two molecules A and B is of the same form as the speed vA = |vA| for an individual molecule but using
a reduced reduced molecular mass

mr =
mAmB

mA +mB
. (10.69)

The mean relative speed is

⟨vr⟩ =
(
8kBT

πmr

)1/2

(10.70)

where ⟨·⟩ indicate the average over the equilibrium distribution of speeds. For nitrogen at room temperature,
vr = 660 m·s−1.

Collision Cross Section Consider two molecules, A and B, approaching each other. If we consider the
molecules as “hard spheres” of diameter dAand dB , they will only collide if centers of the molecules approach
closer than a distance dAB = 1/2(dA + dB). This is equivalent to a collision taking place if the projected
trajectory of molecule A passes through an area equal to πd2AB centered on molecule B. For that reason, this
area is known as the collision cross-section σAB . A more realistic model, discussed at the end of this section,
is that the molecules are not hard spheres and the collision cross section is not a constant but depends on
the relative velocity or energy of the two molecules. First, we will give the results for the hard sphere model.
The effective hard sphere diameter of nitrogen molecules is about 0.36 nm and σ = 4 ×10−19 m−2 at room
temperature.

Mean Free Path Consider a single molecule A in a gas of B molecules in thermal equilibrium. Each
collision2 of A with a B molecule will result in a change in velocity and direction of A and a compensating
change in B in order to conserve energy and momentum. For ideal gases, the collisions are sufficiently rare
and of such short duration, that after N collsions the path of A appears as a series of straight segments of
variable length ℓ1, ℓ2, . . ., ℓN and assuming the molecule moves with speed vr on each of these flights. The
average length of these flights, ℓ is known as the mean free path. If there are nB molecules per unit volume,
then our A molecule will encounter exactly N B molecules within the total volume VN of the cylinders of
radius dAB surrounding each of the flight paths

N = nB

(
N∑
i=1

ℓiσAB

)
︸ ︷︷ ︸

VN

. (10.71)

Defining the average flight distance as

ℓ = lim
N→∞

N∑
i=1

ℓi (10.72)

we obtain the average mean free path

ℓ =
1

nBσAB
(10.73)

2For the purpose of this initial discussion we only consider non-reactive elastic collisions.
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This expression is approximate as it does not account for the fact that the molecules have a distribution of
velocities, may have unequal masses, and short flights are more likely than longer flights. A more accurate
model requires considering the dynamics of the collisions and the Maxwell-Boltzmann velocity distributions
for both molecules (Vincenti and Kruger, 1965). The exact result for a hard sphere model of a a gas composed
of only one type of molecule is

ℓ =
1√
2nσ

(10.74)

This simple model is frequently used for gas mixtures with average values of σ and the total density n. For
example, in air at sea level, n = 2.55 ×1025 molecules·m−3 and using the cross section for N2, the mean free
path is predicted to be ℓ =69 nm, within 4% of the more accurate mixture computation of 66 nm.

Collision Frequency Using the simple approach for mean free path, the average time between collisions
can be estimated as

< tc > =
ℓ

⟨vr⟩
(10.75)

In air at sea level, the average time between collisions is 0.148 ns, which is > 102 times longer than the
duration d/⟨vr⟩ = 0.55 ps of the average collision. The relatively long time (and distance) between collision
provides the justification for the ideal gas assumptions of neglecting the molecular size and interactions
except during the actual collisions. The average number of collisions of a single A molecule with the B
molecules taking place per unit time is the collision frequency z and is equal to the reciprocal of the average
time between collisions

z =
1

⟨tc⟩
=
⟨vr⟩
ℓ

. (10.76)

Substituting the simple expression for ℓ, we obtain

z = nB⟨vr⟩σAB . (10.77)

for the rate at which a single A molecule collides with B molecules per unit volume and unit time. The total
number of collisions ZAB between all A and B molecules per unit volume and time is obtained by multiplying
the rate for a single molecule by the number of A molecules per unit volume

ZAB = nAnB⟨vr⟩σAB . (10.78)

If the molecules are identical then this expression over-counts the collision rate by a factor of two becuase
each collision terminate two flights of a molecule A

ZAA =
1

2
n2
A⟨vr⟩σAB . (10.79)

For identical molecules, mr = m/2 and ⟨vr⟩ =
√
2⟨v⟩.

Gas Mixtures For a mixture of K species, the net rate at which molecule A collides with all other species
i in the mixture requires summing over the collision rates with all the species

z =

√
8kBT

π

K∑
i=1

niσAi

√
1

mA
+

1

mi
(10.80)

The mean free path of molecule A in the mixture is

ℓ =
1∑K

i=1 niσAi

√
1 +

mA

mi

(10.81)

For a binary mixture with mA = mB , we recover the result given previously.
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Realistic Cross Sections A more realistic molecular collision model is that the collision cross-section is
a function of the relative speed between the collision partners σ(vr). The cross-section for a non-reactive or

elastic collision increases with decreasing relative velocity, for a Lennard-Jones potential, limvr→0 σ ∼ v
−2/5
r

due to the attractive portion of the potential and for high speed, limvr→∞ σ ∼ v
−2/11
r due to the repulsive

portion of the potential (Levine and Bernstein, 1987, p. 84).

Considering a gas in thermodynamic equilibrium and averaging over the distribution relative speed, the
collision rate is

z = nB⟨vrσAB⟩ .

where in general we must include the dependence of σAB on vr, the orientation, and impact parameters of
the colliding molecules when carrying out the averaging process. The total number of collisions ZAB between
all A and B molecules per unit volume and time is obtained by multiplying the rate for a single molecule by
the number of A molecules per unit volume

ZAB = nAnB⟨vrσAB⟩ .

We can express with in terms of an effective average collision cross-section σ(T ) that is temperature depen-
dent. The usual way in which this is taken into account for elastic collisions is through a nondimensional
collision function Ω∗ which is a function of the molecular potential parameters such as the Lennard-Jones
potential.

⟨vσAB⟩ = ⟨vr⟩πd2ABΩ
∗
(
kBT

ϵAB

)
, (10.82)

where dAB = 1/2(ϱA + ϱB) where ϱA and ϱB are the potential zero location. ϵA and ϵB are the potential
well depths and ϵAB =

√
ϵAϵB . Curve fits to the collision function are given in Neufeld et al. (1972), Ω(1,1)∗

is the appropriate choice for computing collision frequency. This gives the final result for the elastic collision
rate

ZAB = nanb⟨vr⟩πd2ABΩ
∗ (10.83)

This result provides an upper bound on the rate of reaction or energy exchange in a gas (Chen et al., 2017).
This also motivates the further development of reaction rate models through more sophisticated treatments
of the cross section.

Reaction Rates

Consider a bimolecular collision between species A and B

A + B −→ Products (R25)

The number of reactive collisions of A and B molecules per unit volumes and time is the product of the
collision rate ZAB and the probability PAB of reaction per collision. The rate of reaction of species A and
B are

−dnA

dt
= −dnB

dt
, (10.84)

= ZABPAB , (10.85)

=

(
8kBT

πmr

)1/2

πd2ABΩ
∗(T )PABnAnB . (10.86)

In terms of the molar concentrations that are usually employed in chemical kinetics computations, this can
be written

−d[A]

dt
= −d[B]

dt
=

(
8kBT

πmr

)1/2

πd2ABΩ
∗NAPAB [A][B] (10.87)



D
RA
FT

10.5. MOLECULAR COLLISIONS AND REACTION RATES 177

Comparing this with the usual bi-molecular rate expression

−d[A]

dt
= −d[B]

dt
= k(T )[A][B] , (10.88)

we observe that the rate constant can be expressed as

k =

(
8kBT

πmr

)1/2

πd2ABΩ
∗(T )NAPAB . (10.89)

The largest value for PAB = 1, which means every pair of A-B collisions is reactive. This is the collision
limit for the reaction rate and sets an upper bound on the rate constant k ≤ kcol where

kcol =

(
8kBT

πmr

)1/2

πd2ABΩ
∗(T )NA . (10.90)

See the discussion in Chen et al. (2017) for examples of how this can be used to check the values of rate
constants for physical reasonableness. Elementary gas-phase bimolecular reactions can only occur if a col-
lision occurs. When reaction rates are modeled with empirical expressions using parameters determined
by optimizing the mechanism against sets of experimental data for properties like flame speed, shock tube
or rapid compression machine induction times, the resulting rate constants may exceed the collision limit
in some temperature ranges because the constraint k(T ) ≤ kcol(T ) is not enforced during optimization or
checked when reaction rates are estimated with empirical methods. This can lead to unphysical results.

Activation Energy For exothermic reactions with a high probability of reaction taking place during a
collision, the rate constant can be approximated using the collision-limit value of k discussed above. However,
many reactions only take place with the relative collision velocities or equivalently, energy, exceed a critical
or activation value. The empirical observation is that the reaction rate constant has the form pioneered by
Arrhenius:

k = A exp

(
−EA

RT

)
(10.91)

using the standard chemical kinetics notation of a pre-exponential factor A and activation energy EA (in
molar units). In general, the pre-exponential factor is also a function of temperature which is modeled in
the modified Arrhenius form prevalent in many chemical kinetics reaction rate mechanisms by including an
additional term

k = AT β exp

(
−EA

RT

)
(10.92)

where β is an empirical constant. A simple approach to modeling the effect of an activation energy at the
molecular level is to incorporate a threshold energy εA in the cross section.

σ = 0 for ε < εA , and σ > 0 for ε ≥ εA . (10.93)

A standard functional relationship that reproduces empirical Arrhenius dependence on temperature and
approaches the collision limit at high energies is the line of centers model (Houston, 2001, Laidler, 1987)

σ =

{
0 ε < εA

πd2
(
1− εA

ε

)
ε ≥ εA

(10.94)

Using the distribution function for relative velocity and averaging, the resulting reaction rate constant in
molar units is

k = Naπd
2
AB

√
8kBT

πmr
exp

(
− Ea

RT

)
, (10.95)
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where Ea = NaεA. To go further in modeling reaction rates requires considering the electonic structure of
the molecules, the resulting potential energy surfaces describing the interactions, the theory of the activated
complexes formed during collision, and the statistical treatment of the atomic and molecular motions during
the collision process, see the introductory discussions in Levine and Bernstein (1987), Houston (2001), Laidler
(1987).

10.6 One-step Reactions

An empirical approach to treating reaction rates is to treat the reaction as occur through a single progress
variable. This is known as a one-step or global reaction model (Westbrook and Dryer, 1981) and although
not a reliable approach for quantitative prediction, has been widely used in numerical and analytical studies
of the interaction of fluid dynamics and chemical reaction.

The basic notion is that the reaction between fuel F and oxidizer O or decomposition of a molecular
explosive, form products P. Schematically this can be represented for fuel-oxidizer mixtures as a global
reaction

nfF + noO → npP (R26)

with a single rate of progress variable and reaction rate. In conventional terms, the rate of generation of
products is expressed as

d[P]
dt

= ω̇P , (10.96)

where the molar production rate is based on an empirical correlation motivated by the modified Arrhenius
model of elementary reaction rates

ω̇P = [F ]a[O]bATm exp(−Ea/RT ) , (10.97)

where the coefficients a, b, A,m,Ea are obtained by fitting experimental data such as flame speed or shock
tube induction time. Values derived from flame speed measurements for a variety of fuel-oxidizer systems
are given in Westbrook and Dryer (1981). Although this form of the reaction rate is superficially similar
to that of elementary molecular reaction rates, the parameters cannot be interpreted in terms of molecular
processes and in particular, a and b are not the same as or even related to the stoichiometric coefficients in
global reaction R26. The conservation of mass places the following constraint on the reaction rates of each
species.

0 =

K∑
k=1

Wkω̇k . (10.98)

For R26, this becomes

0 = Woω̇O +Wf ω̇F +Wpω̇P . (10.99)

A further constraint is the conservation of each atomic species making up the reactants and products.
The reaction R26 must be balanced which constrains the net rates of destruction of the reactants and the
production of the products (the reaction is assumed to be irreversible). From the previous discussion on
reaction detailed balancing (10.33), we obtain the additional constraint

1

np

d[P]
dt

= − 1

no

d[O]
dt

= − 1

nf

d[F ]
dt

, (10.100)

which can be used to define all reaction rates in terms of a single rate of progress q̇

1

np
ω̇P = − 1

no
ω̇O = − 1

nf
ω̇F = q̇ . (10.101)
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One limitation of this approach is that the molar mass and stoichiometric coefficients are constants, so that
the composition of the products is fixed. This means that only fixed proportions of the major species can
be considered in the products and the dissociation of the products to form minor species is not allowed; the
thermodynamics of the products can only be represented very approximately by these models. For example,
the stoichiometric reaction of pentane and air would be described by the following global reaction

C5H12 + 8O2 + 30.08N2 → 5CO2 + 6H2O + 30.08N2 (R27)

while at typical combustion product temperatures, the major products will actually be a mix of CO, CO2,
H2O, and H2 and smaller but still significant amounts of species H, O, and OH will be present. An example
of the distribution of the actual equilibrium product species for R27 at 1 atm as a function of temperature
is shown in Fig. 10.6.
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Figure 10.6: Equilibrium product species distribution for R27 as a function of temperature at a pressure of
1 atm.

In terms of the one-step formalism, the products are just the mixture of the CO2 and H2. Referring
to Fig. 10.6, this is a reasonable approximation for constant-pressure combustion which has an equilibrium
product temperature of 2276 K. At higher temperatures that occur for constant-volume (T = 2650, P =
0.96 MPa) or Chapman-Jouguet detonation equilibrium states (T = 2847 K, P = 1.9 MPa), minor species
are much more important and the major species approximation with only two major product species is
increasingly inaccurate. The effect of increased temperature is partially mitigated by the dependence of
equilibrium temperature on increased pressure as discussed below.

The nitrogen in the air in considered as a nonreactive diluent that has to be accounted for in computing
heat capacity and mass fractions of fuel, oxidizer and products. For a reactive system without diffusive
transport of species, the conservation of mass for each species can be written in terms of the single rate of
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progress q̇:

DYf

Dt
= −nfWf

ρ
q̇ ; (10.102)

DYo

Dt
= −noWo

ρ
q̇ ; (10.103)

DYp

Dt
= +

npWp

ρ
q̇ ; (10.104)

DYm

Dt
= 0 . (10.105)

The species M and the associated mass fraction Ym represent any nonreactive species like N2. Consider
an initial value situation where we start with known values of fuel and oxidizer which react over time to
form products which are initially not present. We integrate the species equations to obtain the following
constraints for the mass fractions

Yf (0) = Yf +
Mf

Mp
Yp , (10.106)

Yo(0) = Yo +
Mo

Mp
Yp , (10.107)

Ym = Ym(0) , (10.108)

where Mk = nkWk. The conservation of species
∑

Yk = 1 provides an additional constraint

1− Ym = Yf + Yo + Yp = constant (10.109)

To proceed further, we consider an irreversible reaction which results in the complete consumption of reac-
tants as t → ∞

Yf (∞) = 0 , (10.110)

Yo(∞) = 0 , (10.111)

Yp(∞) = 1− Ym . (10.112)

The mass fractions of fuel and oxidizer can now be expressed in terms of the mass fractions of the product
and nonreactive species

Yf =
Mp

Mf
(Yp(∞)− Yp) , (10.113)

Yf = (1− Ym)
Mp

Mf
(1− λ) , (10.114)

Yo = (1− Ym)
Mp

Mo
(1− λ) , (10.115)

λ = Yp/Yp(∞) . (10.116)

The variable 0 < λ < 1 is the reaction coordinate or progress variable describing the extent of reaction;
λ = 0 is all reactants, λ = 1 is all products. The composition and empricial reaction rate expression can
be completely specified in terms of λ and the initial state of the mixture using the concentration-mixture
fraction relationships

[O] = ρ
Yo

Wo
, (10.117)

[F ] = ρ
Yf

Wf
. (10.118)
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Substituting into (10.97), we obtain the final equation for the rate of progress of the model one-step reaction

Dλ

Dt
= (1− Ym)a+b−1

(
Mp

Mf

)a(
Mp

Mo

)b

ρa+b−1(1− λ)a+bATm exp(−Ea/RT ) . (10.119)

The quantity a + b is referred as the reaction order. True bi-molecular reactions are second order and uni-
molecular reactions are first order; the reaction orders for empirical rates of the form (10.97) have orders of
approximately 1.75 for most hydrocarbon fuels in air when the metric is flame speed and flammability limit.
Typical activation energies are on the order of 30 kcal·mol−1.

Approximate treatments of reaction, particulary in detonation modeling (Fickett and Davis, 1979, Lee,
2008) often simplify the one-step reaction model rate expression to be

Dλ

Dt
= k(1− λ)n exp(−Ea/RT ) . (10.120)

Values of n = 1 are common although high-explosives researchers often choose n = 1/2 and use a pressure
rather than temperature-dependent expression.

The thermodynamics of the product state must be approximated in order to use a one-step model in
conjunction with either steady or unsteady simulations of fluid motion. The product state is a function of
the composition, temperature and pressure. For a fixed pressure, we can evaluate the product state for an
equilibrium composition as a function of temperature. The equilibrium product and frozen reactant enthalpy
for R27 are shown at three representative pressures in Fig. 10.7. The dissociation of the major species shown
in Fig.10.6 results in the nonlinear dependence of product enthalpy on temperatures at sufficiently high
temperatures. As discussed previously, the dependence of equilibrium composition on pressure shifts the
onset of significant nonlinearity to higher temperatures at higher pressures. The approximate linearity of
the enthalpy-temperature relation at sufficiently low temperatures is the motivation of the approximate
models discussed next.
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Figure 10.7: Equilibrium product enthalpy for R27 as a function of temperature at pressures of 1, 10 and
100 atm.
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The simplest sort of thermodynamic model is a constant-γ, constant molar-mass, fixed-energy release
function for the specific internal energy

e =
P/ρ

γ − 1
− λq , (10.121)

or equivalently, enthalpy

h =
γP/ρ

γ − 1
− λq . (10.122)

Values of γ and q are selected to mimic the properties of a particular chemical system. A slightly more
realistic model is to assume that the specific heats for reactants and products take on different values as in
the two-γ model described in Section A.5. The mixture specific enthalpy can be approximated as

h = (1− Ym) [(1− λ)hr(T ) + λhp(T )] + Ymhm(T ) , (10.123)

for fixed composition in each constituent. This can be reorganized to separate the contributions of the
reaction to the change in enthalpy

h = (1− λ) [(1− Ym)hr(T ) + Ymhm(T )] + λ [Ymhm(T ) + (1− Ym)hp(T )] . (10.124)

In the notation of Section A.5, the correspondence to the one-step enthalpies is

h1(T ) = Ymhm(T ) + (1− Ym)hr(T ) , (10.125)

and

h2(T ) = Ymhm(T ) + (1− Ym)hp(T ) . (10.126)

The final reduction to the two-γ model form requires further simplification by taking the specific heat to be
a constant for each constituent group and approximating the enthalpy as

h ≈ cpT + h0 . (10.127)

The energy release parameter is

q = h0,1 − h0,2 , (10.128)

or in terms of the actual reactant and product properties

q = (1− Ym) [hr(0)− hp(0)] . (10.129)

The values of the specific heat cp and constant h0 for the two-γ model approximation have to be determined
by fitting the actual thermodynamic data over the range of (T, P ) of interest. The effective values of the
specific heat ratios are:

γ1 =
cp,1

cp,1 −R1
, γ2 =

cp,2
cp,2 −R2

. (10.130)

For the example of R27, the linear model (10.127) for reactant and product enthalpy can be implemented
by using the least-squares method to obtain the slope and intercept of lines fit to evaluation of mixture
enthalpy. The fit is limited to temperature values less than the maximum that results in significant departure
from linearity. For the a pressure of 1 atm, this is a temperature of approximately 2300 K. The resulting
fits obtained by demo eq one step.m are shown in Fig. 10.8. The values for the thermodynamic coefficients
obtains from the fits in Fig. 10.8 are given in Table 10.1 as the “low-temperature” set of parameters. An

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_eq_one_step.m
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Figure 10.8: Linear fits to reactant (a) and equilibrium product (b) enthalpy for R27 as a function of
temperature at a pressure of 1 atm.
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Figure 10.9: Comparison of stoichiometric pentane-air h(T ) for reactants and products (CJ isentrope) as
well as low and high-temperature linear fits to equilibrium product enthalpy.

alternative procedure is to use the CJ state to create a thermodynamic model as described in Section 6.7 and
A.3. These values of the product specific heat, γ and the value of enthalpy intercept h0 for CJ state products
are substantially different than the low temperature fit values due to higher temperature resulting in more
dissociation in the products and also the choice of equilibrium values rather than frozen for the specific heat
with corresponding value of γ). The product specific heat was obtained by fitting the product isentrope
originating at the CJ state, which approximates typical expanded states encountered in compressible flow
simulations of detonation wave dynamics. Fig. 10.8.

The value of h02 was computed using the effective value of q = that matches MCJ = 5.3814 and the value
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of h01 determined from the reactant fit at low temperature. The program demo CJstate isentrope.m was
used together with a minimal set of major and minor species (nC5H12, N2, O2, H2O, CO2, CO, H2, H, O, OH)
in pentane thermo.cti in order to reduce computation time yet still get accurate results for the equilibrium
products. A comparison between the reactant and product h(T ) relationships for realistic thermodynamics
as well as the low and high-temperature linear fits was computed with demo eq one step.m and is shown in
Fig. 10.9.

Table 10.1: Themodynamic parameters for one-step model of R27.

cp h0 W γ
(J·kg−1·K−1) (J·kg−1) (kg·kmol−1)

Low-temperature, T < 2300 K.

reactants 1351.5 -6.069×105 29.96 1.2584
products 1361.3 -3.415×106 28.50 1.2727

High-temperature, CJ isentrope

products 1718.0 -4.035×106 27.83 1.2105

Using the NASA-7 format of the thermodynamic data for the Cantera .cti file as described in Section 5.1,
the linear fit coefficients will be of the form

thermo = (NASA( [200, 1000], [cp/R, 0, 0, 0, 0, h0/R, s0/R]),

NASA( [1000, 6000], [cp/R, 0, 0, 0, 0, h0/R, s0/R]) )
.

Because we are using a constant and equal specific heat for both the first and second segment of the fit,
the values for the minimum, midpoint and maximum temperature are arbitrary so we have used nominal
values. Unless we are considering a specific family of solutions with reversibility between reactants and
products (Kao, 2008), the values of s0/R can be chosen to be zero for reactants and sufficiently large (s0/R
= 10) for the products to create an effectively irreversible reaction. A drawback to this approach is that the
molar mass of reactants and products must be equal because Cantera requires conservation of elements and
mass in the reactions and in the equilibrium algorithm.

Two .cti files with the thermodynamic model and several one-step reaction models are provided in pen-
tane two gamma.cti (low-temperature fit) and pentane two gamma CJ.cti. The effect of choice of reaction
order using the two-γ, one-step model is shown in Fig. 10.10. The values of A have been adjusted for each
order so that the induction time based on the maximum temperature time derivative is 5.5×10−6 s, the same
as predicted by the detailed reaction mechanism simulation.

We can create a slightly better one-step model for Cantera with more realistic thermodynamics and
different molar masses for reactants and products by using a mixture of the actual reactant species and
major products. This will properly simulate the change in the number of moles or equivalently average
molar mass between reactants and products as well as the dependence of the enthalpy of those species on
temperature. This will also enable the use of empirical reaction rate expressions of the form (10.97). The
pentane one step.cti file takes this approach.

In the .cti file, the empirical reaction is balanced as in R27 but empirical reaction orders are specified
as shown in (10.97) instead of using the stoichiometric coefficients from the balanced reaction. However, the
thermodynamic state of the products will still not be quite correct as the effect of dissociation is not taken
into account because only N2,CO2 and H2O are used as product species. A polynomial curve could be fit to
the equilibrium enthalpy to take account of the nonlinearity in enthalpy vs temperature, however the change
in molar mass of the products will not be accounted for unless those species and the associated reactions
are included. If more realistic results are needed for equilibrium or chemical reaction rate computations, a
realistic set of species has to be used.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_thermo.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_eq_one_step.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_two_gamma.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_two_gamma.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_two_gamma_CJ.cti
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_one_step.cti
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Figure 10.10: Example constant-pressure combustion simulation with two-γ, one-step reaction model k =
A(1− λ)n exp(−E/RT ), Ea = 30 kcal · mol−1. a) n = 1/2, A = 5.15×106. b) n = 1, A = 3.6×108. c) n =
2, A = 1.7×1012. The initial conditions are P0 = 3.49 MPa; T0 = 1549 K, the vN state for a stoichiometric
pentane-air CJ detonation .

One-step reactions may be directly specified as an overall reaction rate k of the form (10.97), e.g, West-
brook and Dryer (1981) and the reaction progress computed from

d[F ]
dt

= ω̇F , (10.131)

d[F ]
dt

= −k . (10.132)

For example, Westbrook and Dryer gives the following reaction rate as being appropriate for low-pressure
flame simulations for pentane-air combustion

k = 6.4× 1011 exp(−30000/RT )[nC5H12]
0.25[O2]

1.5 (10.133)

Alternatively, rates can be inferred from induction times determined from shock tube measurements of
ignition delay time τ . For pentane data, see Burcat and Dvinyaninov (1995), Burcat et al. (1971) and the
more recent work of Bugler et al. (2016), A simple way to interpret induction time tind is as the characteristic
decay time τ for fuel concentration

d[F ]
dt

= ω̇F , (10.134)

= −F
τ

. (10.135)

Given an empirical expression for tind as a function of temperature and reactant concentrations, the equiv-
alent reaction rate is

k =
[F ]
tind

. (10.136)

For example, Burcat and Dvinyaninov give the following correlation for induction time in pentane-oxygen
mixtures diluted with Ar

tind = 10−12.8 exp(+34610/RT )[nC5H12]
0.29[O2]

−1.1[Ar]0.13 , (10.137)

and the effective reaction rate is

k = 6.3× 1012 exp(−34610/RT )[nC5H12]
0.71[O2]

1.1[Ar]−0.13 . (10.138)
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Both the expressions of Westbrook and Dryer and Burcat and Dvinyaninov for the reaction rate are provided
in pentane one step.cti and

Shock tube induction time data is most appropriate for validating reaction mechanisms for detonations.
However, care is needed because induction time is measured in a variety of ways including pressure rise,
heat flux, emission of electronically excited species or absorption using specific wavelengths or wavelength
modulation. Different ways of measuring induction time must be accounted for in combining data sets and
validating reaction models. There are also significant facility effects such as pressure changes during the
induction time that need to be considered. A compendium of data (as of 2000) for hydrogen, ethylene and
propane and discussion of instrumental and facility issues is given in Schultz and Shepherd (2000).3 Shock
tube induction time data are often the foundation (particularly at high temperature) in the development
and validation of detailed chemical reaction models such as Bugler et al. (2016). Although common in
past studies, these find limited use in calibrating one-step models, which are primarily used in analytical
and computational studies that seek insights into the interaction between fluid mechanics and chemical
reactions in multi-dimensional transient flows for which detailed reaction mechanisms are not practical for
doing extensive parametric studies. More realistic than one-step reactions are multi-step models Liang et al.
(2007) which have some of the features that mimic aspects of detailed models without the computational
overhead.

In Fig. 10.11, the computed temperature histories are shown for a detailed reaction model of pentane-
combustion and compared to two one-step models. The predictions of the detailed model are substantially
different than either one-step model. The detailed model predicts that the initial temperature drops due
to endothermic reactions associated with the breakdown of the fuel to smaller hydrocarbons and there is
a very sharp temperature rise at the end of the induction period. In contrast, the one-step models are
entirely exothermic, do not have a clearly defined induction period or a distinct energy release transient.
The one-step models also predict a much faster reaction rate than the detailed model. In part, this is due
to the very different regimes of pressure and concentration as well as the types of combustion data used for
validation in the case of Westbrook and Dryer (1981). Experiments in air at pressures up to 2 MPa are
reported in Bugler et al. (2016) but the induction times are given in terms of OH∗ emission peaks rather
than pressure rise so careful interpretation with a detailed reaction mechanism (including OH∗ production
and destruction) is required in order to use this data for validation.
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Figure 10.11: Example constant-pressure combustion simulation with three reaction and thermodynamic
models, same initial conditions as in Fig. 10.10. a) Detailed chemistry and thermodynamics using the
JetSurf2 mechanism. b) One-step reaction of Westbrook and Dryer (1981) c) One-step reaction of Burcat
and Dvinyaninov (1995).

3The validation results presented in this report are for older reaction mechanisms without proper models for excited species.
However, the tabulation of experimental data obtained by digitizing plots is still quite useful.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/pentane_one_step.cti
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Applications

The formulation of the reaction zone equations and applications to steady and unsteady
flows, was introduced in Ch. 10. In this chapter, reaction zones behind propagating and
stationary shock or detonation waves are considered for a variety of applications. This
includes the standard ZND model for detonations, zero-dimensional models with prescribed
pressure and volume changes, propagating waves with curvature, steady and moving waves
in ducts with friction and heat interactions, the shock change equation, stagnation point
flows and the effects of vibrational-translational nonequilibrium behind shock waves.

11.1 Steady shock waves followed by reaction zones

The reaction zone behind a planar shock moving with a constant speed can for many purposes be analyzed
in a shock-fixed reference frame as an inviscid, adiabatic flow. Under these conditions the flow properties
will satisfy the conservation relations for steady one-dimensional compressible flow at each point.

ρw = ρ1w1 (11.1)

P + ρw2 = P1 + ρ1w
2
1 (11.2)

h+
1

2
w2 = h1 +

1

2
w2

1 (11.3)

and evolves due to the change in chemical composition with distance downstream from the shock.

w
dYk

dx
=
Wkω̇k

ρ
(k = 1, . . . ,K) (11.4)

Following a parcel of gas downstream from the shock the distance traveled and time elapsed are related by
integrating in time to find distance x along the stream line

dx

dt
= w . (11.5)

The formulation given above is equivalent to the steady flow reaction model developed previously in Ch. 9.6
which can be expressed in terms of spatial derivatives as

w
dρ

dx
= −ρσ̇

η
, (11.6)

w
dP

dx
= −ρw2 σ̇

η
, (11.7)

w
dw

dx
= w

σ̇

η
, (11.8)

w
dYk

dx
=

1

ρ
Wkω̇k = Ωk (k = 1, . . . ,K) . (11.9)
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The solution to these equations for both shock and detonation waves is implemented in the ZND solvers
discussed below.

Considering the reaction zone structure computation downstream of a shock as an initial value problem,
state 1 is the condition immediately behind the shock wave (t = 0 or x = 0) as determined by the solution to
the (frozen) shock jump conditions. The equations are valid for both endothermic and exothermic reaction
zones.

Endothermic Reactions

Endothermic reaction zones occur behind shock waves in high-speed atmospheric flight and planetary reentry
as well as laboratory testing in shocks or related high-speed flow facilities. These endothermic processes may
include exchange of energy between translation, rotation and vibration can also be included in a steady flow
framework but require extensions of the thermodynamic model and reaction mechanisms that we defer to
later discussion.

For endothermic flows there is no limitation on the shock speed unlike the case of exothermic flows
(detonations) that is discussed next. Solutions for the reaction behind a strong shock in air are shown in
Fig. 11.1.

10-5 100

distance (m)

5000

6000

7000

8000

9000

10000

11000

te
m

pe
ra

tu
re

 (
K

)

10-5 100

distance (m)

7750

7800

7850

pr
es

su
re

 (
Pa

)

10-5 100

distance (m)

3.2

3.4

3.6

3.8

4

4.2

de
ns

ity
 (

kg
/m

3 )

10-3

10-5 100

distance (m)

10-10

10-8

10-6

10-4

10-2

100

sp
ec

ie
s 

m
ol

e 
fr

ac
tio

n

O2
O
N2
N
NO
C
C2
CO
CO2
CN
AR

Figure 11.1: Reaction zone structure behind a strong shock wave (U = 6000 m/s) in a mixture of N2/CO2

(4/96) initially at 13.3 Pa and 300 K.



D
RA
FT

11.2. ZND DETONATION MODEL 189

11.2 ZND Detonation Model

The ZND detonation model is a one-dimensional steady model, which can be expressed by an algebraic-
differential system of equations or a purely differential system of equations. First we will discuss physical
and graphical interpretations of this model.

Physical Model

A detonation is a supersonic combustion wave in which a shock wave and a reaction zone are coupled. The
leading shock raises the temperature and pressure of a mixture of fuel and oxidizer initiating a coupled
thermal branching-chain explosion. After an induction time, exothermic recombination reactions create
product species whose expansion acts as a piston propelling the shock wave forward. The interaction between
the leading shock and consequent reaction zone is a defining characteristic of self-sustained detonations.

The simplest detonation model, the ZND model, was developed in the 1940s independently by Zel’dovich
(1940), von Neumann (1942), and Doering (1943). In this model, shown in the wave-fixed frame in Fig. 11.2,
a frozen shock is followed by a finite reaction zone. State 1 is a cold mixture of reactants, state 2 is a shocked
(hot) mixture of the same reactants, and state 3 is the equilibrium state of the reactive mixture. This model
assumes that the composition does not change between states 1 and 2. Within the reaction zone, there are
two main length scales: ∆i, the induction length, and ∆e, the energy release pulse width. These two scales
will be discussed further in relation to the mathematical model. The equations presented in the steady-state
model approximate the path between states 2 and 3.

sh
oc

k

induction

reactants

radicals

products

energy release

U

1 2 3

Di De

Figure 11.2: Schematic of the ZND detonation model. (a) States 1, 2, and 3 (b) Reaction zone structure.

Figure 11.3 illustrates how we can visualize this model in the P -v plane with the Rayleigh line (Eq. B.4)
and Hugoniot curve (Eq. B.5). A frozen shock wave connects states 1 and 2. We see that in this figure,
the Rayleigh line is tangent to the product Hugoniot which indicates that this is the CJ case. State 2, the
frozen post-shock state, for the CJ case is often called the von Neumann (vN) point. For an overdriven
detonation, state 2 is simply the frozen post-shock state. State 3 lies on the same Rayleigh line, but on the
equilibrium Hugoniot rather than the frozen Hugoniot. We see that in the ZND model, both the pressure
and the specific volume vary through the reaction zone. In reactive systems, there are many Hugoniot curves
for each amount of partial reaction ranging from frozen to total equilibrium. Although only the frozen and
equilibrium Hugoniots are shown in Fig. 11.3 each point along the red line connecting states 2 and 3 lies on
a partial equilibrium Hugoniot.

ZND Software

The ZND model and variations are implemented in the SDToolBox. Simple examples of how to use these
functions are given in the following demonstration programs.
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Figure 11.3: Path (red) between frozen Hugoniot (solid) and equilibrium Hugoniot (dashed) for a ZND
detonation traveling at the Chapman-Jouget detonation velocity.

• demo ZNDCJ.py demo ZNDCJ.m Solves ODEs for ZND model of detonation structure. Generate plots
and output files for a for a shock front traveling at the CJ speed.

• demo ZND.m Solves ODEs for ZND model of detonation structure. Generate plots and output files for
a for a shock front traveling at the CJ speed. Provide reaction characteristics in terms of thermicity
peak and half-width time and distance.

• demo ZNDshk.py demo ZNDshk.m Solves ODEs for ZND model of detonation structure. Generate
plots and output files for a for a shock front traveling at a user specified speed U .

• The MATLAB programs implement the ordinary differential equation set in the functions zndsolve.m
and zndsys.m.

• The Python programs implement the ordinary differential equation set in the class ZNDsys and module
zndsolve.py.

An example of the ZND reaction zone structure for two examples are given in Figs. 11.4 and 11.5. A
CJ detonation stoichiometric CH4-air mixture at atmospheric pressure is shown in Fig. 11.4 and a highly-
diluted stoichiometric H2-O2-Ar mixture at low pressure is shown in Fig. 11.5. These two mixtures represent
extremes in structure for atmospheric pressure hydrocarbon-air and low-pressure highly-diluted mixtures
typical of laboratory experiments as discussed further below.

Thermicity in ZND models

As discussed in Section 9.3, the coupling between the flow and the chemistry is represented by the thermicity
(9.32), for an ideal gas a convenient form is

σ̇ =

K∑
k=1

(
W
Wk
− hk

cpT

)
DYk

Dt
.

The variation of the thermicity within the flow reflects the net effect and history of all chemical reactions
taking place: bimolecular exchanges, recombination and dissociation. The magnitude and sign of σ̇ depends
on the rate at which each process is occuring, the net amount of energy released or absorbed, and the net
creation or destruction of molecules.

The first term in (9.32) is the effective energy release associated with changing the total number of moles
of species per unit mass of the reacting mixture. The second term in (9.32) is the normalized energy release
associated with chemical bond breaking and formation. Normally, the second term completely dominates the

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/ZND/zndsolve.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/ZND/zndsys.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/znd.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/znd.py
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Figure 11.4: Reaction zone spatial profiles for the ZND model of a steady CJ detonation in a stoichiometric
CH4-air mixture with initial conditions of 25◦C and 1 atm.

first. In those cases, if the dominant processes are endothermic reactions, σ̇ < 0; if the dominant processes
are exothermic reactions, σ̇ > 0.

In general, thermicity is a dynamic property and evaluation can only be carried as part of simulation of
a reacting flow. Thermicity in the steady ZND reaction zone behind a CJ detonation wave is often used to
define the characteristic length and time scales. Examples of the thermicity spatial profiles in given in for
two examples shown Fig. 11.4 and 11.5.

There are two key features of detonation reaction zones illustrated in these examples: a) there is dwell
or induction time ti (or induction distance ∆i) during which very little energy is released or absorbed; b)
there is an energy release event that occurs over a characteristic time te (or distance ∆e). The relevance
of these time scales is in comparison to the time scale of other flow processes such as flow pressure and
temperature variation due to wave diffraction or area change, acoustic wave propagation time and instability
period. The simplest notion used in analyzing detonations is that the induction time (or length) provides
the fundamental scale that determines the other critical time (or length) scales in the problem. While only
approximately true, this provides one of the key links between the chemical processes and the macroscopic
wave behavior. The ratio ti/te (or ∆i/∆e) is highly correlated with the experimentally observed in stability
characteristics of propagating detonations Ng et al. (2005) as is the effective activation energy Austin et al.
(2005).

Various definitions of the induction and energy release times have been used by different researchers. Some
researchers do not distinguish between these measures and simply report a “reaction zone” length ∆. While
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Figure 11.5: Reaction zone spatial profiles for the ZND model of a steady CJ detonation in a stoichiometric
H2-O2-Ar mixture (70% Ar dilution) with initial conditions of 25◦Cand 0.1 atm.

useful as a notion when carrying out order-of-magnitude computations or scaling terms in mathematical
analyses, this is problematic when attempting to quantify reaction structure or determine the relationship
to other detonation properties such as detonation cell width, critical tube or channel widths or initiation
energy. Numerical solutions of the ZND model with a range of fuel-oxidizer-diluent mixtures reveal that
there is a continuum of reaction zone structures ranging from systems without a distinct induction zone
where ∆i ≈ ∆e to those with a very distinct and long induction zone in comparison with the energy release
zone ∆i ≫ ∆e (see the discussion in Shepherd, 2009). In the example of Fig. 11.4, the thermicity peak can
be used to define an induction length ∆i = 16 mm that is two orders of magnitude larger than the energy
release length ∆e = 0.25 mm. On the other hand, in the example of Fig. 11.5, the thermicity peak ∆i =
0.96 mm an order of magnitude smaller than the energy release length ∆e = 8.7 mm.

The meaning of induction time is particular to the situation being described and may be various de-
fined by spectroscopic emission or absorption peaks of certain species, arbitrary concentration, presssure or
temperature rises. The concept of induction time or distance is often quantified by defining the induction
time or distance in terms of the location where a certain property like temperature, pressure, or species
concentrations increases by a small amount over the initial post-shock value, see the discussion in Akbar
et al. (1997), Schultz and Shepherd (2000). A less arbitrary method that works well for systems with distinct
induction periods and short energy release period is to define the end of the induction period by the location
of the maximum rate of temperature or pressure rise.

A maximum temperature gradient or rate of change definition is convenient particularly for constant
pressure or volume models of reaction processes, which have been used by some researchers as an approxi-
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Figure 11.6: ZNd model results for (a) thermicity and (b) Mach number spatial profiles for the stoichiometric
CH4-air case shown in Fig. 11.4.
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Figure 11.7: ZND model results for (a) thermicity and (b) Mach number spatial profiles for a steady CJ
detonation for the stoichiometric H2-O2-Ar case shown in Fig. 11.5.

mation to the ZND model. For example, these models are often used to make estimates of ZND induction
time and length by using the maximum temperature rate of change with time to define an induction time ti.
The induction zone length is then approximated by assuming a constant postshock velocity w2 (evaluated at
the vN point) and setting ∆i = w2ti. Often, only a estimate of the reaction zone size is needed and such an
approximate model of the reaction zone suffices. However, if the ZND model structure of the reaction zone
is desired, particularly the details of the energy release zone, then it is necessary to compute the reaction
progress along the Rayleigh line, which is equivalent to the numerical solution of (11.6 - 11.9).

Various methods have been proposed for characterizing reaction zone length scales, some preliminary
efforts are discussed in Shepherd (1986). The most useful and unambiguous way to define the induction time
(distance) for ZND simulations of detonations is by location of the thermicity maximum

ti = t(σ̇max) , ∆i = x(σ̇max) ,
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shown in Fig. 11.8. Time and distance are measured in the shock-fixed reference frame with the zero datum
at the location of the shock front. The energy release time (distance) for detonations can be characterized
by the width of the thermicity pulse. The width can be measured in various ways, one way is to find the
duration (or distance) between the locations of an arbitrary fraction α of σ̇max on the rising and falling
portions of the thermicity.

te = tσ̇α = t

(
σ̇ = ασ̇max,

dσ̇

dt
< 0

)
− t

(
σ̇ = ασ̇max,

dσ̇

dt
> 0

)
, (11.10)

or length

∆e = ∆σ̇α = x

(
σ̇ = ασ̇max,

dσ̇

dx
< 0

)
− x

(
σ̇ = ασ̇max,

dσ̇

dx
> 0

)
. (11.11)

Lengths defined by fractions α = 0.5 and 0.1 are defined in Fig. 11.8 and the value of 0.5 is reported by
default in the programs demo ZND.m and demo ZNDshk.py.
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Figure 11.8: Definitions of induction and energy length based on thermicity profile for case shown in Fig. 11.4.

The CH4-air detonation shown in Figs. 11.4 and 11.6 has a value of ∆σ̇max/∆σ̇0.1 = 59 whereas the
stoichiometric H2-O2mixture diluted with 70% Ar shown in Figs.11.5 and 11.7 has value of ∆σ̇max/∆σ̇0.1 =
1.7. The CH4-air detonation is observed to have highly irregular cellular structure whereas the Ar-diluted
H2-O2mixture displays the classical regular cellular pattern (Austin et al., 2005).

Ng et al. (2005) defined the induction zone length based on the thermicity peak ∆I = ∆σ̇max but used
an alternative definition of energy release zone length ∆R = w2/σ̇max. With these definitions, they propose
a stability parameter

χ = Θ
∆I

∆R

where Θ is the reduced effective activation energy Ea/RTvN computed on the basis of constant volume
explosion computations. The length ∆R is similar to the length ∆e defined by the width of the thermicity
function but not identical.

An unambiguous way to define the width or duration of the thermicity pulse is to define length or time
scales using the integral of the σ̇ temporal profile. One possibility is to define a characteristic pulse duration
as

tσ̇p
=

1

σ̇max

∫ ∞

0

σ̇(t) dt . (11.12)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDshk.py
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The integral can be estimated with the aid of the reaction zone structure equation (9.83)∫ ∞

0

σ̇ dt =

∫ w3

w2

η

w
dw . (11.13)

Inspection of the integrand on the righthand side indicates that it will be on the order of ηmax ln(w3/w2).
Using typical values of the velocities and sonic parameters, we find that this can be approximated as a con-
stant C which has a value betweeen 0.4 and 0.7. We conclude that the pulse width can be well approximated
as

tσ̇p
=

C

σ̇max
∝ 1

σ̇max
(11.14)

In order to estimate the spatial extent of the pulse we have to transform to spatial coordinates and define a
pulse width as

∆σ̇p
=
(w
σ̇

)
max

∫ ∞

0

σ̇(x)

w(x)
dx . (11.15)

The integral is identical to what we have previously computed∫ ∞

0

σ̇(x)

w(x)
dx =

∫ ∞

0

σ̇(t) dt = C (11.16)

and we obtain the estimate

∆σ̇p = C
wmax

σ̇max
(11.17)

The relationship to ∆R defined by Ng et al. can be obtained by approximating the velocity wmax = w2 to
obtain

∆R =
w2

σ̇max
≈ ∆σ̇p

. (11.18)

Values of the various reaction zone lengths are given in Table 11.1 for the CH4-air and the H2-O2-Ar example.
A different measure of reaction zone length is used in analytical studies with idealized reaction models.

A widely-used model is the one-step irreversible reaction A → B with constant ratio of specific heats
and specified energy release. A standard method of characterizing the reaction zone is to normalize the
length and time scales by the values at the point where one-half of the reactants A have been consumed,
∆1/2 = x(YA = 0.5). The length or time scales ∆1/2 or t1/2 can be related to thermicity measures ∆σ̇max

and tσ̇max but are not identical. For example, numerical simulation of the case ∆S = 0 from Kao (2008)
yields ∆1/2 = 0.94∆σ̇max

and t1/2 = 0.97tσ̇max
. See Section 10.6 and Ch.2 of Kao (2008) for examples of

reaction zone structure with one-step models.

Sonic Singularity in Exothermic Flows

Another feature of the reaction zone that can be observed in Figs. 11.6 and 11.7 is the difference in the
behavior of the Mach number as the end of the reaction zone is approached. In the case of CH4-air, singular
behavior is observed as the end of the reaction zone is approached. The rate of change of T , P , ρ and M
= w2/a2 all increase without bound as M → 1. This is a common feature of ZND simulations as the CJ
condition computed based on the equilibrium sound speed at the end of the reaction zone is inconsistent
with the Mach number based on the frozen sound approaching one as the end of the reaction zone is reached.
As a consequence the quantity η defined by (9.85) may become zero before σ̇ vanishes, resulting in singular
behaviour with the righthand side of (9.81), (9.82), and (9.83) becoming infinite at η −→ 0.

This singular feature is not present in all steady reaction zones computations behind shock waves. In
particular, this does occur in reaction zones behind overdriven detonations, U > UCJ; reaction zones with



D
RA
FT

196 CHAPTER 11. APPLICATIONS

Table 11.1: Characteristic reaction zone length and time scales for two examples of ZND detonation structure.

H2-O2-Ar CH4-air

distance

∆σ̇max
9.637×10−4 1.572×10−2 m

∆σ̇0.5
8.834×10−4 2.579×10−4 m

∆σ̇0.1
8.753×10−3 1.506×10−3 m

∆σ̇p
3.026×10−3 7.832×10−4 m

∆R 6.098×10−3 5.2547×10−4 m

time

tσ̇max
2.422×10−6 5.110×10−5 s

tσ̇0.5
2.065×10−6 4.633×10−7 s

tσ̇0.1 1.680×10−5 2.915×10−6 s
tp 7.360×10−6 1.330 ×10−6 s
1/σ̇max 1.54×10−5 1.780×10−6 s

endothermic reactions (e.g, dissociation), i.e., strong shock waves in atmospheres of planets; and detonations
in many reactive mixtures with a high extent of dilution (Fig. 11.5 and 11.7). Overdriven detonations and
shock waves with purely endothermic reaction zones have values of η < 1 throughout the reaction zone, i.e.,
the flow is always subsonic relative to the shock.

If singularities due occur when the classical CJ velocity is used for the shock speed, these usually occur
near the end of the reaction zone, after the main energy release has taken place, and do not impact the
computation of the characteristic length scales that are often the main objective of simulation.

One case in which the singularity appears to play an essential role is when there is a significant delayed
endothermic reaction followings the main exothermic reactions. In such a case, the thermicity changes sign
within the reaction zone. The classical CJ solution for the detonation speed will result in the frozen sonic
point occurring within the reaction at a location where the thermicity does not vanish, resulting in singularity
in the solution at that location.

In general, sonic point singularities can be resolved by considering the detonation velocity to be a free
parameter U ̸= UCJ and treating the reaction zone solution as a two-point boundary-value problem. The
left-hand boundary condition is determined by the postshock (frozen) state defined by U and the right-hand
boundary is the sonic point at the location x∗ of the frozen sonic point η = 0, where we require that

σ̇ → 0 as η = 1−M2 → 0 , (11.19)

such that

lim
η→0

σ̇

η
is finite . (11.20)

The value of U that results in the solution integrating through the point η = 0 without the solution divering
is known as the eigenvalue speed U∗. Finding U∗ requires an iterative search such as a shooting method.
Fickett and Davis (1979, Ch. 5B2) refer to this the pathological point, and show that this point is saddle
point for simplified reaction models such as two competing irreversible reactions or one reaction with a mole
decrement.

For the case of a fast exothermic followed by a slower endothermic reaction, the eigenvalue speed will be
higher than the classical CJ speed. Although there are a number of theoretical and numerical studies of this
possibility, the only known example appears to be H2-Cl2 detonations Dionne et al. (2000). However, the
concept of an eigenvalue solution and the reaction zone as a two-point boundary value problem arises in a
number of other contexts such as quasi-steady curved detonations or detonations with distributed energy or
momentum loss.
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11.3 Constant volume and pressure explosions

Due the simplicity of the formulations, constant volume and constant pressure models of combustion are
widely used to model a variety of ignition problems. Both models and some variations are implemented in
the SDToolBox. Examples of simulations are given as demonstration programs provided in the SDToolBox.

• demo cv comp.py demo cv comp.m Generates plots and output files for a constant volume explosion
simulation where the initial conditions are adiabatically-compressed reactants.

• demo cvCJ.py demo cvCJ.m Generates plots and output files for a constant volume explosion simu-
lation where the initial conditions are shocked reactants using shock speed given by CJ detonation
simulation.

• demo cvshk.py demo cvshk.m Generates plots and output files for a constant volume explosion sim-
ulation where the initial conditions are shocked reactants behind a shock traveling at a user defined
shock speed U1.

• In MATLAB, the basic functions are cvsolve.m and cvsys.m; cpsolve.m and cpsys.m.

• In Python, the basic functions are cp.py and cv.py.

• demo cv.m Generates plots and output files for constant volume explosion simulation with user specified
initial conditions; uses cv plot.m to plot temperature, pressure and species. This program estimates the
effective activation energy and reaction order using the methodology described in Bane et al. (2010).

• demo cp.m Generates plots and output files for constant pressure explosion simulation with user spec-
ified initial conditions; uses cp plot.m to plot temperature, volume and species.

The methodology of computing effective activation energy that is implemented in these programs is
described by Bane et al. (2010). Theoretical and numerical analyses have demonstrated recognized that
the effective activation energy is a key parameter that is correlated with macroscopic properties such as
the regularity of detonation cellular structure Austin et al. (2005). The effective activation energy can
significantly vary as a function of the fuel type and mixture composition Shepherd (1986), Browne et al.
(2005a).

Constant volume and constant pressure simulations are shown in Fig. 11.9 for the initial conditions
(postshock or von Neumann state) of P = 3.11 MPa and T = 1525 K.
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Figure 11.9: Reaction zone temporal profiles for: a) constant pressure simulation and, b) constant volume
simulation with postshock conditions for CJ a detonation in a stoichiometric CH4-air mixture.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cv_comp.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv_comp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CV/cvsolve.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CV/cvsys.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CP/cpsolve.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CP/cpsys.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cp.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cv.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Utilities/cv_plot.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Utilities/cp_plot.m
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Constant-volume simulations have been used by Westbrook and co-workers Westbrook (1982b,a)to es-
timate the induction time ti based on maximum temperature rate of change and reaction zone length ∆i

= w2ti, where w2 is evaluated at the von Neumann state. A comparison between the ZND model values
of ∆σ̇max and ∆i is discussed by Shepherd (1986). Both the ZND and CV models have been extensively
used to predict the effect of fuel type, concentration, dilution and initial temperature effects on detonation
parameters through empirical correlations of reaction zone length with cell width, critical tube diameter
and initiation energy. Less commonly, constant-pressure simulations are also used for this purpose. The
predicted reaction zone lengths by these three models are within 10-15% (Table 11.2) and for the purposes
of empirical detonation parameter correlations Westbrook and Urtiew (1982), Tieszen et al. (1991), any of
the three simulations will suffice.

Model ti ∆i

(µs) (mm)
ZND (thermicity peak) 50.4 15.4
CV (dT/dtmax) 49.2 13.3
CP (dT/dtmax) 45.2 14.5

Table 11.2: Comparison of three methods of computing reaction zone induction time and length for a
stoichiometic stoichiometric CH4-air mixture.

Constant pressure or volume computations are often used in modeling ignition delay times in shock
tube experiments. An example of how the maximum rate of change of temperature with time can be used
to define induction time is shown in Fig. 11.10. The temperature increase is quite modest for this highly
diluted mixture but the location of the maximum in the temperature rate of change unambiguously defines
the induction time.

𝑡

Figure 11.10: (a) Constant-volume explosion simulation of reaction behind a reflected shock wave for 0.1H2

+ 0.05O2 + 99.85Ar at P1 = 64 atm and T1 = 1585 K. The induction time determined from the location of
the peak in dT/dt is τi = 48 µs, (Fig. 54 Schultz and Shepherd, 2000)

11.4 Unsteady Control Volume Models

The constant-pressure and constant-volume limits can be generalized to treat control volumes with heat
transfer and external work by using the conservation of energy and mass. For a fixed amount of mass M ,
only the energy conservation equation need be considered in the form

dE

dt
= Ẇ + Q̇ . (11.21)
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If the only component of energy is the internal thermodynamic energy, we can express the left-hand side for
an ideal gas as

dE

dt
= Mcv

dT

dt
+M

K∑
k=1

ek
dYk

dt
, (11.22)

and the species mass fractions can be computed from the reation mechanisms and rates as

dYk

dt
=
Wkω̇k

ρ
. (11.23)

For a fluid system, the external work per unit mass is

Ẇ

M
= −P dv

dt
, v =

V

M
, (11.24)

and we define the heat transfer per unit mass as

q̇ =
Q̇

M
. (11.25)

The final form of the energy equation can be written

dT

dt
=

1

cv

[
−

K∑
k=1

Ek
ω̇k

ρ
− P

dv

dt
+ q̇

]
, (11.26)

where we have converted the specific energy for each species to molar units

Ek =Wkek . (11.27)

In addition to computing the species evolution, the pressure has to be computed from the gas law, P =
RT/v, as the temperature and volume evolve. If instead of considering the volume as a function of time, the
pressure is more convenient, the energy equation equation can be more conveniently written in terms of the
enthalpy H = E + PV , rather than the internal energy

dT

dt
=

1

cp

[
−

K∑
k=1

Hk
ω̇k

ρ
+ v

dP

dt
+ q̇

]
(11.28)

where we have converted the specific enthalpy for each species to molar units

Hk =Wkhk (11.29)

for this form of the energy conservation equation, the volume will need to be evaluated as a function of
pressure, temperature and mass fractions using the gas law v = RT/P .

These equations and extensions have found widespread use in developing engineering models of thermal
ignition (Boettcher et al., 2012, Melguizo-Gavilanes et al., 2019), ignition in rapid compression machines
(Goldsborough et al., 2017), reactions in the end gas of shock tubes used in chemical physics experiments
(Tang and Brezinsky, 2006, Pang et al., 2009, Chaos and Dryer, 2010) and simplified models of ignition of
gas bubbles and segments within piping with pressure transients (Shepherd, 2020, Coronel et al., 2020).

The critical decay concept postulates that ignition can only occur when the rate of change of the ther-
modynamic state is less than a critical value. The magnitude of the critical decay rate is function of the
pathway to ignition and the manner in which the thermodynamic state varies during the ignition process.
Demonstration programs for adiabatic compression with specified volume or pressure changes were developed
for the study described in Shepherd (2020).
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• demo cdr.m Generates plots and output files for a constant volume explosion simulation with critical
decay rate model using exponential increase in volume following instantaneous isentropic compression.

• demo cdr exp critical.m Generates plots and output files for for a constant volume explosion simulation
with critical decay rate model using exponential increase in volume following instantaneous isentropic
compression. Computes critical decay rate by successive approximation.

• demo pulse cdr.m Computes adiabatic compression and explosion with a specified volume as a function
of time. Set up for Gaussian pulse model with two parameters:CR - compression ratio (Vmax/Vmin); τ
- pulse width parameter in Gaussian function. Requires two functions: f volume.m - defines normalized
volume and derivative as a function of time; cvsys v.m to carry out the integration of energy and species
equations. Integrates the equations twice, once for nonreactive, once for reactive case. Computes a
single case with specified parameters. Optionally plots output for thermodynamic quantities and
species.

• demo pulse tau critical.m Extension of the program demo pulse cdr.m to multiple values of compres-
sion ratio and determines the critical value of τ for each.

• demo TransientCompression.m Explosion computation simulating adiabatic compression ignition by a
piston with prescribed mass and applied pressure. Requires adiasys.m function for ODE solver.

11.5 Reaction zones with stream tube area change

If the flow can be considered quasi-one dimensional and the stream tube cross section area A(x) variation
with distance is known, as in flow constrained by rigid nozzle, the mass conservation relationship is changed
to

ρwA = ρ1w1A1 . (11.30)

The energy conservation and species evolution equations are unchanged, however the momentum equation
cannot in general be integrated exactly and A(x) may be unknown and have to be determined as part of the
flow solution. For this reason, the DAE form of the equations cannot be used for computation in the general
case. Instead we take the same approach as with the detonation reaction zone and compute the structure
as a solution to the equivalent set of ordinary differential equations that govern the flow behind the shock
front. The differential form of the equations that can be extended to nozzles, stagnation point flow or curved
shock waves is derived next.

The flow will be modeled as adiabatic, inviscid, quasi-one-dimensional and reacting. The stream tube
area A has be specified as a function of distance or computed as part of solution process as discussed in
the next section. Differentiating the algebraic conservation equations we obtain the conventional quasi-one-
dimensional flow relations.

d

dx
(ρw) = −ρw 1

A

dA

dx
(11.31)

ρw
dw

dx
= −dP

dx
(11.32)

d

dx
(h+

w2

2
) = 0 (11.33)

w
dYk

dx
=
Wkω̇k

ρ
(k = 1, . . . ,K) (11.34)

11.6 Streamtube Area

There are three cases that we will consider: a) quasi-steady curved shock or detonation waves; b) stagnation
point flow between a curved shock and blunt body; c) rigid nozzle flows.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cdr_exp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cdr_exp_critical.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_pulse_cdr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_pulse_tau_critical.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_TransientCompression.m
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Curved waves

Consider a portion of a curved shock or detonation wave with a local radius of curvature Rs, speed U and
a characteristic thickness ∆. In a reference frame attached to the shock wave moving with velocity U(t) =
dR/dt into stationary reactants, the transformed distance and velocity variables are

x = Rs(t)− r (11.35)

w = U(t)− u (11.36)

The stream tube area change dA/dx for slightly curved waves can be approximated (see Section 11.10 below)
as

α =
1

A

dA

dx
= κ(

D

w
− 1) (11.37)

where κ is the curvature of the wave front

κ =

 2/Rs spherical waves

1/Rs cylindrical waves
(11.38)

This approach is valid as long as the reaction zone is thin, Rs ≫ ∆ and the characteristic time scale for
the change in the shock speed is much longer than the passage time of fluid elements through the reaction
zone, τ = ∆/w≪ U/(dU/dt). For positive curvature, the stream tube area A(x) increases with downstream
distance behind the shock front.

Stagnation point flow

For hypersonic stagnation point flow over a blunt body, numerical simulations of the complete flow field Wen
and Hornung (1995), Hornung (1972), Stulov (1969) show that to a good approximation the mass flux ρw
decreases linearly between the shock front and body

ρw = ρ◦w◦

(
1− x

∆

)
(11.39)

along the stagnation streamline, where ∆ is the shock standoff distance. Treating the flow as quasi-one-
dimensional on the streamtube enclosing the stagnation streamline the conservation of mass can be expressed
as

Aρw = A◦ρ◦w◦ = constant . (11.40)

From this expression and the approximate behavior of mass flux on the stagnation streamline, we compute
that the logarithmic area derivative to be

α =
1

A

dA

dx
(11.41)

=
1

∆− x
. (11.42)

Although α is singular at the body, as shown below, α always enters the reaction zone equations as the
product wα which is non-singular

wα =
w◦

∆

ρ◦
ρ

(11.43)

Nozzles

For rigid nozzles, the area change A(x) will be a specified function of distance

α(x) =
1

A(x)

dA(x)

dx
(11.44)
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The quasi-one-dimensional approach with specified A(x) is widely used for estimates of nozzle performance
as it is computationally inexpensive and reasonably reliable for mean flow properties. If knowledge of the
flow uniformity is important or the nozzle is being used off-design, a more sophisticated approach will be
necessary. Applications to facility design and performance usually require simulations that include viscous
effects and multidimensional flow considerations.

11.7 Formulation using thermicity

A more convenient form of the reaction zone equations for numerical computation is to use elapsed time as
the independent variable and to use the adiabatic change equation to eliminate the energy equation.

dP

dt
= −ρw2 (σ̇ − wα)

η
(11.45)

dρ

dt
= −ρ (σ̇ − wM2α)

η
(11.46)

dw

dt
= w

(σ̇ − wα)

η
(11.47)

dYk

dt
=
Wkω̇k

ρ
(k = 1, . . . ,K) (11.48)

These equations are the logical extension of the standard reaction zone model for planar waves, which is
termed the ZND model in the context of detonations. The thermicity parameter σ̇ and the sonic parameter
η are as defined in Section. 9.6.

A key issue is the boundary conditions for these equations. The flow properties at the beginning of the
reaction zone are those computed from the shock jump conditions evaluated at fixed composition.

ρ1w1 = ρ◦w◦ (11.49)

P1 + ρ1w
2
1 = P◦ + ρ◦w

2
◦ (11.50)

h1 +
1

2
w2

1 = h◦ +
1

2
w2

◦ (11.51)

In these equations, states ◦ are the reactant conditions upstream of the shock. For a propagating shock,
w◦ = U - u◦, where U is the shock speed and u◦ is the flow speed upstream of the shock in the laboratory
reference frame. For a stationary (bow) shock in the stagnation point flow situation, w◦ is freestream flow
velocity U in the body-fixed reference frame. State 1 is just downstream of the shock at the beginning of
the reaction zone; for a detonation, this is known as the von Neumann (vN) state. In general, the jump
conditions must be numerically solved for state 1.

The downstream boundary condition on the flow depends on geometry. In the case of an expanding
streamtube and endothermic reactions, as in stagnation point flow, the flow will be subsonic η > 0 throughout
the reaction zone and the solutions are nonsingular as long as wα is nonsingular. The situation is more
complex for exothermic reactions, particularly detonations. For Chapman-Jouguet (CJ) waves, the flow
approaches and potentially reaches the frozen sonic point, resulting in a singularity at the rear at of the
reaction zone.

If the detonation is overdriven, U > UCJ, and α is sufficiently small, the flow will remain subsonic
throughout the reaction zone and the solutions are nonsingular for all values of U . For cases where U ≤
UCJ, and α is sufficiently large, there is the potential for the flow to become supersonic,, which will result in
η = 0 within the reaction zone.

In those cases where the sonic parameter η passes through zero within the reaction zone, the solution
will be singular unless the numerator σ̇−αw vanishes at the same time as η vanishes, i.e., at the sonic point
M = 1. This is particularly important for the cases of curved quasi-steady detonation waves. Nonsingular
solutions will occur only for particular values1 of the detonation velocity D for each value of the curvature
κ. The appearance of a sonic point in this flow can be attributed to the competing effects of chemical energy

1D is conventionally used for detonation speed U in this context
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release σ̇ and area change −wα creating an effective throat or converging-diverging nozzle in the flow. The
area function is actually monotonically increasing, dA/dx > 0, and tends to decelerate the initially subsonic
flow behind the shock, driving it away from the sonic point. The thermicity σ̇ > 0 is positive in the main
energy release region of the reaction zone and tends to accelerate the flow, driving it toward the sonic point.
The appearance of a sonic point at other than a physical area minimum and the eigenvalue nature of the
flow is well-known in the context of the ideal dissociating gas through a nozzle.

As a consequence of these considerations, for quasi-steady curved detonations the flow equations are
a two-point boundary value problem with a regularity condition at one endpoint that will determine an
eigenvalue solution D(κ). For general reaction mechanisms and realistic thermodynamics, this problem will
have to be solved numerically as a two-point boundary value problem using a method such as a shooting
procedure. It is possible to obtain an analytical solution for a perfect gas with a one-step irreversible reaction
described by a first-order Arrhenius rate law with a large activation energy.

The case of a converging or converging-diverging rigid nozzle also requires finding initial conditions so
that the solutions are non-singular at the sonic point, η = 0. In the case of converging-diverging nozzles, the
solution will be singular at an interior point and in general the location of the singularity is unknown. This
requires an iterative procedure to find the physical solution that passes through the sonic point. This is an
extension of the usual idea of critical mass flow rate or choking in ideal non-reacting gas dynamics.

11.8 Flows with Friction and Thermal Interactions

Reacting steady flows in ducts with friction and heat transfer can be treated using the quasi-one-dimensional
formulation with empirical sources terms in the momentum and energy equations. For a steady flow in the
x-direction with mean velocity u, the governing equations are most conveniently formulated in terms of the
spatial derivatives.

d

dx
(ρuA) = 0 (11.52)

ρu
du

dx
= −dP

dx
− τ̃ (11.53)

ρu
d

dx
(h+

u2

2
) = q̃ (11.54)

u
dYk

dx
=
Wkω̇k

ρ
(k = 1, . . . ,K) (11.55)

The friction force (per unit length and area of the duct) τ̃ is proportional to the local wall shear stress τw

τ̃ =
4

D
τw , (11.56)

where D = 4 × area/perimeter is the hydraulic diameter of the duct. A common engineering approach is to
define the shear stress by a skin friction coefficient cf

τw =
1

2
ρu2cf , (11.57)

or the Darcy friction factor Λ = 4cf given by an engineering correlation with flow Reynolds number and
duct roughness.

The thermal interaction q̃ (per unit mass of fluid and length of the duct) can be related to the wall heat flux
qw (> 0 for transfer into the flow from the duct) and the mass flow rate

q̃ = qw
4

D
, (11.58)
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The heat flux can be computed from a nondimensional heat transfer coefficient ch

qw = chρucp(Tw − T ) , (11.59)

which is usually specified by an engineering correlation with the skin friction coefficient, Reynolds and
Prandtl numbers, and wall/flow temperature ratio. Note that for high-temperature flows and cold walls, the
heat transfer will be from the flow into the duct walls, qw and q̃ < 0.

Combining equations (11.53) and (11.54) with the fundamental relation of thermodynamics, an expression
for the entropy gradient is obtained

T
ds

dx
=

q̃

ρu
+

τ̃

ρ
−
∑
k

gi
dYk

dx
. (11.60)

The adiabatic change equation (9.30) can be used to relate gradients in pressure, density, entropy and species.

dP

dx
= a2f

dρ

dx
+ G

(
q̃

u
+ τ̃

)
+ ρa2f

∑
k

σk
dYk

dx
. (11.61)

Defining a modified thermicity function

σ̇′ =
∑
k

σk
dYk

dx
, (11.62)

we can use (11.52) and (11.53) to solve for the gradient in density

dρ

dx
= −ρ

σ̇′ +
G
ρa2f

[
q̃

u
+ (G + 1)τ̃

]
− M2

A

dA

dx

1−M2
, (11.63)

pressure

dP

dx
= −ρu2

σ̇′ +
G
ρa2f

[
q̃

u
+ (G +

1

M2
)τ̃

]
− 1

A

dA

dx

1−M2
, (11.64)

and velocity

du

dx
= u

σ̇′ +
G
ρa2f

[
q̃

u
+ (G + 1)τ̃

]
− 1

A

dA

dx

1−M2
. (11.65)

Flow in nozzles

A common and important example of a flow through a variable area duct is the case of converging-diverging
nozzle used to accelerate flow from subsonic to supersonic conditions. If we neglect heat transfer and friction,
the equations simplify to:

dρ

dx
= −ρ

σ̇′ − M2

A

dA

dx
1−M2

, (11.66)

dP

dx
= −ρu2

σ̇′ − 1

A

dA

dx
1−M2

(11.67)

du

dx
= u

σ̇′ − 1

A

dA

dx
1−M2

, (11.68)
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For an ideal gas, these can be used to compute the temperature gradient

dT

dx
= T

 σ̇′ + (γ − 1)
M2

A

dA

dx
1−M2

−
K∑

k=1

W
Wk

dYk

dx

 (11.69)

The species mass fractions gradients are

dYk

dx
=
Wkω̇k

ρu
(11.70)

Propagating waves with friction and heat transfer

Equations (11.63) - (11.65) have been formulated in the reference frame of a stationary duct or nozzle and
do not apply to the flow behind a propagating detonation or shock wave. In order to formulate the equations
correctly for a propagating wave moving with a constant speed U , it is necessary to use a control volume
formulation of the integral conservation laws when deriving the differential form of the relationship in a
shock-fixed frame; taking into account the effective forces acting on the control volume moving relative to
the duct surface. The correlations for friction and convective heat transfer need to evaluated using the
appropriate relative velocity ∆u between the flow and duct surface.

The key observation is that in a shock-fixed frame of reference, the duct walls are moving relative the
wave with speed U . This situation is also encountered when modeling boundary layers behind shock or
detonation waves. The conservation of mass and momentum are identical to the stationary frame equations
with the substitution u → w = U - u. The energy equation contains a work term that corresponds to the
work (per unit area) Uτw done on the fluid by the moving walls of the duct due to the friction forces at the
wall τw, moving with speed U . This treatment is necessarily highly approximate as observations of flows
behind propagating shocks and detonations demonstrate that immediately behind and for some distance
downstream, the flow is highly multidimensional with the effects of friction and heat transfer confined to
the relatively thin boundary layers adjacent to the wall. The quasi-one-dimensional flow approximation only
makes sense for fully developed flows some distance downstream of the wave. Despite this limitation, this
approach has been used to develop correlations for detonation speed as a function of duct size by applying
a generalized CJ condition to determine the detonation speed (See Ch. 2 Zhang, 2012).

The equations in the shock-fixed reference frame (flow from left to right) for a constant area duct are:

d

dx
(ρw) = 0 (11.71)

ρw
dw

dx
= −dP

dx
− τ̃ (11.72)

ρw
d

dx
(h+

w2

2
) = q̃ + Uτ̃ (11.73)

w
dYk

dx
=
Wkω̇k

ρ
(k = 1, . . . ,K) (11.74)

The entropy gradient is

T
ds

dx
=

q̃ + Uτ̃

ρw
+

τ̃

ρ
−
∑
k

gi
dYk

dx
. (11.75)

Inserting this entropy gradient into the adiabatic change equation results in the further transformation of
the steady flow equations (11.63) - (11.65) with q̃/u → (q̃ + Uτ̃)/w.

11.9 Stagnation Point and Shock Tube Flows

Stagnation point and shock tube flows can both be used to create reaction zones behind shock waves. In the
case of the stagnation stream line, the constraint of the body causes this to occur in a specified and short
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spatial domain 0 < x < ∆ while behind a propagating shock wave, there is no constraint and the reaction
zone will extend over a much larger distance behind the shock. An ideal reaction zone behind a propagating
shock wave is governed by the reaction zone structure equations with constant stream tube area A = A◦,
i.e., α = 0.

The relationship between distance and time in both cases is determined by integrating the flow velocity

dx

dt
= w (11.76)

to relate distance x traveled by the gas particles to time t elapsed when using the time evolution form of
the reaction zone equations. This relationship will in general have to be solved simultaneously with the
flow variables. In the case of stagnation point flow, the approximate model of linearly decreasing mass flux
simplifies the solution of this relationship. The quasi-one-dimensional mass conservation relation can be
written

A(x)

A◦

dx

dt
= ρ◦w◦

1

ρ(t)
(11.77)

which can be integrated to obtain the following implict relationship for x(t)∫ x

0

A(x′)

A◦
dx′ =

∫ t

o

ρ◦w◦
dt′

ρ(t′)
. (11.78)

Substituting the A(x) relation in (11.42) and carrying out the integration on the left-hand side, we obtain

x

∆
= 1− exp

(
−w◦

∆

∫ t

o

ρ◦ dt
′

ρ(t′)

)
. (11.79)

This demonstrates that although the stagnation point is located a finite distance ∆ from the shock front, the
flow takes an infinitely long time to travel along the stagnation streamline from the shock to the stagnation
point. If we suppose that the variation with time of the properties P ,ρ, w and Y is identical for the
stagnation point and propagating shock reaction zones, we can further simplify the relationship between the
two situations. The distance xs behind a propagating shock is given by integrating the flow speed ws relative
to the shock

dxs

dt
= ws , (11.80)

Flow area is constant in the ideal shock tube case, so that

ws = w◦ρ◦/ρ(t) (11.81)

or

dxs = ρ◦w◦
dt

ρ(t)
. (11.82)

Substituting in (11.79), we obtain the following relationship between the distance x between the shock and
body in a stagnation point flow and postshock distance xs in a shock tube flow

x

∆
= 1− exp

(
−xs

∆

)
(11.83)

An example of the results of comparing the reaction zone structure behind a planar shock wave and a
stagnation point flow is shown in Fig. 11.11 for a typical case studied in the EAST facility at NASA Ames.
The shock or freestream flow speed is 6000 m/s and the initial conditions are a gas composition of 0.96 CO2

and 0.04 N2 (mole fractions), pressure of 133 Pa (1 Torr) and temperature of 300 K. The reaction mechanism
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discussed in Johnston and Brandis (2014) is used to perform the computation although V-T nonequilibrium
was not included in this simulation. The comparison for temperature, density and species (only CO2 is
shown but the other species were comparable) is excellent but as we might expect, the pressure at the end
of the reaction zone is higher in the stagnation case than the shock tube. The pressure variation throughout
the reaction zone is very modest for both the shock and stagnation case so this small (3%) deviation does
not affect the overall quality of the comparison. We conclude that transformation (11.83) provides a very
useful means to make quantitative comparisons between shock tube and stagnation point flows.
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Figure 11.11: Comparison of flow properties evaluated with planar shock and stagnation point models using
the transformation methodology of (11.83).
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11.10 Curvature-Area Relation

A simple explanation of the curvature-area relationship for propagating waves can be motivated by examining
the conservation of mass relationship for the flow behind the wave

∂ρ

∂t
+∇ · (ρu) = 0 . (11.84)

Modeling the wave front as a spherical or cylindrical surface of radius Rs moving with a speed U = dRs/dt,
the conservation equations can be written in terms of a radial coordinate r

∂ρ

∂t
+

∂ρu

∂r
+

j

r
ρu = 0 , (11.85)

where j = 1 for cylindrical waves and j = 2 for spherical waves. Transform to wave-fixed coordinates using
the relations

x = Rs(t)− r (11.86)

w = U(t)− u (11.87)

to obtain

∂ρ

∂t
+

∂ρw

∂x
+

j

Rs(t)− x
ρ(U − w) = 0 . (11.88)

The quasi-steady, slightly-curved approximate form of this equation can be deduced with the aid of the
following order of magnitude estimates

x ∼ ∆ ; tslow ∼ ρ/
∂ρ

∂t
and Rs/

∂Rs

∂t
; tfast ∼

w

∆
(11.89)

Estimating the size of each term in Eqn. (11.84), we find that in order to obtain the quasi-steady form of
the equations we must have

tslow >> tfast (11.90)

so that the evolution of the wave speed is slow compared to the transit time of fluid elements through the
reaction zone. In the limit as tfast/tslow → 0, the partial derivative with respect to time in (11.88) can
be neglected and we can approximate Rs as a constant. Physically we are making the assumption that the
reaction takes place much faster than the wave speed is changing so that in the wave-fixed frame the reaction
zone structure is steady to a first approximation.

To further simplify the mass conservation equation, we need to suppose that the reaction zone length is
small

Rs >> ∆ (11.91)

so that the last term in (11.88) can be expanded to yield the approximate expression

∂ρw

∂x
+

j

Rs
ρ(U − w)(1 +

x

Rs
+ . . . ) = 0 (11.92)

which as x/Rs → 0, yields
∂ρw

∂x
+ ρw

j

Rs
(
U

w
− 1) = 0 (11.93)

Comparing this with the quasi-one-dimensional steady mass conservation equation, we can identify the
logarithmic area derivative as

α =
1

A

dA

dt
=

j

Rs
(
U

w
− 1) (11.94)

This is the result used for the simplest version of the quasi-one-dimensional, quasi-steady reaction zone
structure model of curved detonation waves. The history of this model is given in Bdzil and Stewart (2007),
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who provide a rigorous derivation with extensions to multidimensional flow and illustrations of applications
to high explosives.

The effect of wave curvature on stream tube expansion at first glance appears contradictory. There are
two ways to explain this. The first is that radial flow u induced by the shock wave is in the direction of
the shock motion U , for expanding waves this means that the flow moves in the +r direction into increasing
stream tube area. For converging waves, the flow moves in the −r direction into decreasing stream tube
area. The second explanation, is to consider the motion relative to curved shock front propagating into an
uniform region at rest. Considering the flow in a small region (the red box outlined in Fig. 11.12 surrounding
the central un-deflected streamline, the deflection of the adjacent streamlines creates divergence due to the
obliquity of the shock at locations on the surface away from the central streamline. This deflection is
a consequence of the oblique shock jump conditions and the decomposition of the velocity in normal and
transverse components. For unsteady flow, the approximate mass balance equation in shock fixed coordinates

𝑟

O

𝑅

O

Figure 11.12: Explanation of relationship between wave curvature and stream tube expansion for a decaying
blast wave.

is
∂ρ

∂t
+ w

∂ρ

∂x
= −ρ∂w

∂x
− j u

Rs
(11.95)

11.11 Shock Change Relations - Planar Waves

The growth or decay of shock waves in a reactive flow can be analyzed by focusing on the processes just
behind the wave front to obtain an evolution equation for the wave strength, known as the shock change
equation.

Versions of the shock change or acceleration wave formalism has been derived independently by a number
of researchers over the past century as discussed by Becker (1972) and Chen and Gurtin (1971). The results
have been used to analyze the growth and decay of shock waves in inhomogeneous (Nunziato and Walsh,
1972, 1973) and chemically reacting flows (Nunziato, 1973, Kennedy and Nunziato, 1976). Fickett and Davis
(1979, p. 101) discuss the application to detonations and the implications for steady flow in the reaction
zone. Recently, Radulescu (2020) derived expressions for shock propagation in quasi-one dimensional flows,
gave explicit expressions for nonreactive perfect gases and discussed the relationship to the shock dynamics
approximation of Whitham. Extension to fully three-dimensional shock fronts was given by Rabie and
Wackerle (1978) defining the local shock shape with principle radii of curvature. Emanuel (2013) discusses



D
RA
FT

210 CHAPTER 11. APPLICATIONS

in great detail the computation of computing spatial derivatives at curved shock in a perfect gas, there is
brief mention of unsteadiness but no consideration of reaction processes. Hornung (1972, 1998) has derived
and used the steady version of the curved shock relationships with reaction and a general equation of state to
explain (Hornung, 2010) features in the relaxation region behind shock waves on blunt bodies in hypervelocity
flows. Hornung’s approach has been applied to combusting flows to analyze the reaction zone behind steady
oblique detonation waves (Kaneshige, 1999, Hung and Shepherd, 2005) and unsteady one- (Eckett et al.,
2000) and two-dimensional detonation waves (Arienti and Shepherd, 2005).

These derivations usually consider the upstream conditions to be uniform, with the exception of (Nunziato
and Walsh, 1972), and the flow to be at rest. In order to treat the interaction of a shock waves with an
expansion wave, as occurs when a detonation wave reflects from a contact surface or end wall, it is necessary to
consider how both the upstream unsteadiness and spatial nonuniformity enter into the relationship between
wave acceleration and flow gradients downstream of the shock.

Assumptions

The fundamental idea of the shock change relation is to compute the time rate of change of the properties on
each side of the shock from both the shock jump conditions and the governing partial differential equations
of fluid motion. Requiring these independent computations to be compatible results in a system of equations
that we solve to determine the rate of change of shock speed and through the jump conditions any other
post-shock property in terms of the gradients in the flow.

We make some restrictive assumptions in deriving and solving these equations.

1. The shock wave is an ideal surface of discontinuity in the flow, so that the ideal shock jump conditions
are applicable and relate fluid properties upstream (state 1) and downstream (state 2) of the shock in
an unsteady flow with spatial gradients.

2. The flow upstream and downstream of the shock is consider as inviscid, i.e., the effects of molecular
transport are neglected, but can be reacting through chemical or physical mechanisms like energy
transfer between the various degrees of freedom.

3. The flow is considered to be adiabatic and one-dimensional. The extension to multi-dimensional flows
with unsteadiness is significantly more involved (Emanuel, 2013) than the one-dimensional treatment.
For simplicity, we have intentionally kept the focus of the present work on the effect of gradients and
unsteadiness in the upstream flow for planar flows.

Shock Motion

The shock velocity can be expressed in terms of the time derivative of the location X(t) of the surface of
discontinuity representing the ideal shock

U =
dX

dt
. (11.96)

Flow properties f(x, t) adjacent to the shock can be expressed as limits approaching the surface of disconti-
nuity

f1 = lim
x→X−

f(x, t) = lim
ϵ→0

f(X(t)− ϵ, t) = f1(X(t), t) , (11.97)

f2 = lim
x→X+

f(x, t) = lim
ϵ→0

f(X(t) + ϵ, t) = f2(X(t), t) . (11.98)

The time rate of change of the properties adjacent to the shock must be computed in a reference frame
moving with the shock. From (11.97) and (11.96), we have(

df

dt

)
S
=

∂f

∂t
+ U

∂f

∂x
, (11.99)
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Consistent with the limiting proceses used in (11.97) we define the partial derivatives at the shock front by
limiting process, computing the derivatives in the bulk fluid away from the shock and finding the limiting
value as the the shock front is approached from either the upstream or downstream side(

dfi
dt

)
S
= lim

x→X±

(
∂f

∂t

)
+ U lim

x→X±

(
∂f

∂x

)
=

∂fi
∂t

+ U
∂fi
∂x

. (11.100)

The equations of fluid motion can be written in terms of the convective or substantial derivative

Df

Dt
=

∂f

∂t
+ u

∂f

∂x
. (11.101)

From (11.99), the relationship of convective and shock frame time derivatives at the shock front can be
expressed as (

dfi
dt

)
S
=

Dfi
Dt

+ (U − ui)
∂fi
∂x

(11.102)

In terms of the convective derivatives, the equations of motion are

Dρ

Dt
= −ρ∂u

∂x
(11.103)

ρ
Du

Dt
= −∂P

∂x
(11.104)

DP

Dt
= a2f

Dρ

Dt
+ ρa2f σ̇ (11.105)

DYk

Dt
= Ω̇k k = 1, . . . ,K (11.106)

The frozen sound speed is defined as

a2f =

(
∂P

∂ρ

)
s,Y

(11.107)

and the thermicity is defined as

σ̇ =

K∑
k=1

σk
DYk

Dt
(11.108)

= σ · DY

Dt
(11.109)

The variables Yk represent the internal state variables such as mass fraction that are associated with reaction
or relaxation processes that evolve according to reaction rates Ω̇k. The thermicity coefficients σk are response
functions associated with isentropic changes in the internal state variables

σk =
1

ρa2f

(
∂P

∂Yk

)
s,ρ,Yi̸=k

(11.110)

Compatibility Conditions at Shock Front

Eliminating density from (11.105) using (11.103) and transform to shock coordinates, we obtain a pair of
relationships coupling the time rate of change of properties at the shock to spatial gradients and reaction.(

dP

dt

)
S
+ (u− U)

∂P

∂x
+ ρa2f

∂u

∂x
− ρa2f σ̇ = 0 , (11.111)

ρ

(
du

dt

)
S
+ ρ (u− U)

∂u

∂x
+

∂P

∂x
= 0 . (11.112)
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Eliminating ∂P/∂x from (11.111) and (11.112) we obtain(
dP

dt

)
S
+ ρw

(
du

dt

)
S
− ρa2f

(
σ̇ − η

∂u

∂x

)
= 0 , (11.113)

where we have made the subsitution w = U − u and defined the sonic parameter

η = 1− (w/af )
2
. (11.114)

The compatibility conditions apply equally upstream and downstream of the shock. In what follows, we will
assume the upstream state is specified and evaluate all terms in (11.113) at the state downstream of the
shock.

The upstream states enter in through the jump conditions, in the laboratory reference frame these are:

[ρ] = [ρu]/U (11.115)

[P ] = [ρ(U − u)] (11.116)

[h] = [(U − u)2]/2 (11.117)

where [f ] is the change or jump f2 − f1 of any property across the wave. Because we are assuming an
ideal shock wave, the jump conditions have a unique solution for a given upstream state (u1, P1, ρ1,Y1) and
wave speed U . The shock speed and upstream flow velocity do not enter into the jump conditions (11.115)
independently but through the combination w1 = U − u1. For a given upstream state and shock speed, a
unique solution exists to the downstream state.

P2 = P2(w1, P1, ρ1,Y1) (11.118)

w2 = w2(w1, P1, ρ1,Y1) (11.119)

ρ2 = ρ2(w1, P1, ρ1,Y1) (11.120)

For frozen (nonreactive) shock waves, the composition does not change across the wave

Y2 = Y1 . (11.121)

For reactive shock waves that result in equilibrium downstream states

Y2 = Yeq
2 (P2, ρ2;Y1) (11.122)

Changes in downstream state can be related to small changes in the upstream state through differentiation
of the jump conditions:

dP2 =

(
∂P2

∂w1

)
P1,ρ1,Y1

dw1 +

(
∂P2

∂P1

)
w1,ρ1,Y1

dP1 +

(
∂P2

∂ρ1

)
w1,P1,Y1

dρ1 +

K∑
k=1

(
∂P2

∂Y1,k

)
w1,P1,Y1,i ̸=k

dY1,k ,

(11.123)

dw2 =

(
∂w2

∂w1

)
P1,ρ1,Y1

dw1 +

(
∂w2

∂P1

)
w1,ρ1,Y1

dP1 +

(
∂w2

∂ρ1

)
w1,P1,Y1

dρ1 +

K∑
k=1

(
∂w2

∂Y1,k

)
w1,P1,Y1,i ̸=k

dY1,k .

(11.124)

The changes in the velocities w1 and w2 depend both on the lab frame velocity and shock speed

dw1 = dU − du1 , (11.125)

dw2 = dU − du2 . (11.126)
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Using these results, the two unsteady terms in (11.113) can be computed(
dP2

dt

)
S
=

(
∂P2

∂w1

)
P1,ρ1,Y1

[
dU

dt
−
(
du1

dt

)
S

]
+

(
∂P2

∂P1

)
w1,ρ1,Y1

(
dP1

dt

)
S

+

(
∂P2

∂ρ1

)
w1,P1,Y1

(
dρ1
dt

)
S
+

K∑
k=1

(
∂P2

∂Y1,k

)
w1,P1,Y1,i ̸=k

(
dY1,k

dt

)
S

,

(11.127)

(
du2

dt

)
S
=

[
1−

(
∂w2

∂w1

)
P1,ρ1,Y1

]
dU

dt
+

(
∂w2

∂w1

)
P1,ρ1,Y1

(
du1

dt

)
S
−
(
∂w2

∂P1

)
w1,ρ1,Y1

(
dP1

dt

)
S

−
(
∂w2

∂ρ1

)
w1,P1,Y1

(
dρ1
dt

)
S
−

K∑
k=1

(
∂w2

∂Y1,k

)
w1,P1,Y1,i ̸=k

(
dY1,k

dt

)
S

(11.128)

Derivatives and Hugoniot Thermodynamics

For unsteady and/or spatially nonuniform upstream flows it is necessary to compute the six partial deriva-
tives. For a perfect gas model of the equation of state, the derivatives can be computed analytically from
the explicit solutions for the jump conditions. For more complex equations of state, it may be necessary to
use numerical methods in the Shock and Detonation Toolbox (2020) or analysis based on differentiating the
jump conditions and solving the resulting system of equations Kao (2008). These derivatives depend only
on the instantaneous upstream state and solutions to the jump condition so they are properties of the fluid
state and thermodynamic properties. An additional complication is that for spatially nonuniform flows, the
partial derivatives will vary from point to point in the flow and even if analytical solutions are available,
these must be evaluated at each point in the flow.

For spatially uniform upstream flow, only two of the derivatives are required and for steady, spatially
uniform upstream flow, only one derivative is needed because the solutions to the jump conditions can
be parameterized by a single variable. This is the conventional approach used (Fickett and Davis, 1979,
Radulescu, 2020) to derive the shock change equation.

Perfect gas The perfect gas model of a shock wave has explicit solutions for nondimensional property
ratios in terms of the upstream Mach number M1 = w1/a1 and specific heat ratio γ. Pressure derivatives
can be evaluated from the pressure jump equation solution in the form

P2 =
2

γ + 1
ρ1w

2
1 − P1

γ − 1

γ + 1
(11.129)

The derivatives of pressure can be expressed as(
∂P2

∂w1

)
P1,ρ1

=
P1

a1

4γ

γ + 1
M1 (11.130)(

∂P2

∂P1

)
w1,ρ1

= −γ − 1

γ + 1
(11.131)(

∂P2

∂ρ1

)
w1,P1

=
2a21
γ + 1

M2
1 (11.132)

(11.133)

where M1 = w1/a1 and we have suppressed the dependence on Y which we assume to be constant. The
velocity jump solution can be expressed as

w2 =
γ − 1

γ + 1
w1 +

P1

ρ1

2γ

γ + 1

1

w1
(11.134)
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and the derivatives are (
∂w2

∂w1

)
P1,ρ1

=
γ − 1

γ + 1
− 2

γ + 1

1

M2
1

(11.135)(
∂w2

∂P1

)
w1,ρ1

=
2γ

γ + 1

a1
P1

1

M1
(11.136)(

∂w2

∂ρ1

)
w1,P1

= − 2

γ + 1

a1
ρ1

1

M1
(11.137)

(11.138)

Real fluids Analytic expressions for the derivatives in terms of thermodynamic properties can be obtained
by using the technique described in (Kao, 2008, p. 157) of differentiating the jump conditions with appro-
priate constraints and solving a set of linear equations. The results can be simplified by using the following
thermodynamic definitions. The Grüneisen parameter is defined as

G =
1

ρ

(
∂P

∂e

)
ρ

(11.139)

and is related to the derivative of enthalpy w.r.t. pressure by(
∂h

∂P

)
ρ

=
1

ρ

G + 1

G
. (11.140)

An alternative definition of sound speed is

a2 =

(
∂h

∂ρ

)
P

1

ρ
−
(
∂h

∂P

)
ρ

. (11.141)

The derivative of enthalpy w.r.t. density can be expressed as(
∂h

∂ρ

)
P

= −a2

ρ

1

G
. (11.142)

Spatially uniform, steady flows

The solutions to the jump conditions can be parameterized by a single upstream variable such as shock
velocity U = w1 or shock Mach number M1 = U/a1; parameterizing in terms of a downstream variable such
w2 is often used in simple wave analysis in the form of a P2(u2) relation to aid in graphical pressure-velocity
solutions.

The derivative relations for this case simplify to(
dP2

dt

)
S
=

(
∂P2

∂w1

)
P1,ρ1,Y1

dU

dt
, (11.143)

(
du2

dt

)
S
=

[
1−

(
∂w2

∂w1

)
P1,ρ1,Y1

]
dU

dt
(11.144)

Taking the ratio of these terms

(
du2

dP2

)
H

=

(
du2

dt

)
S(

dP2

dt

)
S

=

1−
(
∂w2

∂w1

)
P1,ρ1,Y1(

∂P2

∂w1

)
P1,ρ1,Y1

(11.145)
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The subscript H indicates that the derivative is a relationship obtained by constraining the variables to the
Hugoniot or shock adiabat, i.e., the solution to the jump conditions. Graphically, the interpretation of this
derivative is the co-slope of the Hugoniot solution in P −u coordinates. Substituting into (11.113) we obtain

dP2

dt
= ρ2a

2
2,f

σ̇ − η
∂u2

∂x

1 + ρ2w2

(
du2

dP2

)
H

(11.146)

In terms of shock velocity, this relationship is

dU

dt
= ρ2a

2
2,f

σ̇ − η
∂u2

∂x(
dP2

dU

)
H

[
1 + ρ2w2

(
du2

dP2

)
H

] (11.147)

where the notation ( )H indicates derivatives on the ordinary shock adiabat or Hugoniot with u1 = 0, and
constant values of (P1, ρ1,Y1)) in the spatially uniform upstream state.

For a perfect gas, the terms can be expressed in terms of the shock Mach number using the results of the
previous section. For example

(
∂u2

∂P2

)
P1,ρ1

=

(
∂u2

∂w1

)
P1,ρ1(

∂P2

∂w1

)
P1,ρ1

(11.148)

=
1

2ρ1a1

M2
1 + 1

M3
1

(11.149)

and the denominator of (11.146) is

1 + ρ1w1

(
∂u2

∂P2

)
P1,ρ1

=
3

2
+

1

2M2
1

(11.150)

Note that the denominator is bounded between 2 and 1.5 for 1 ≤M1 ≤∞. The parameter η can be expressed
in terms of the shock Mach number

η = 1−M2
2 =

γ + 1

2γ

M2
1 − 1

M2
1 −

γ − 1

2γ

(11.151)

and 0 ≤ η ≤ (γ + 1)/2γ for 1 ≤ M1 ≤ ∞. A case of special interest is the nonreacting, σ̇ = 0 shock. The
shock change equation can be written in nonndimensional form as

1

ρ1a21

dP2

dt
= −ρ2a

2
2

ρ1a21

η
∂u2

∂x

1 + ρ2w2

(
du2

dP2

)
H

(11.152)

For a perfect gas, simplifies to

dP2/P1

dt
= −γ P2

P1

η
∂u2

∂x

1 + ρ2w2

(
du2

dP2

)
H

(11.153)
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Another useful representation of the shock change equation is to express the velocity gradient in terms of
the rate of change of the shock velocity by rearranging (11.147) and formulating dP2/dw1 in terms of the
shock Mach number

dP2

dw1
= ρ1a1

4

γ + 1
M1 (11.154)

to obtain

∂u

∂x
= − 4M1

(γ + 1)η

P1

P2

(
1 + ρ2w2

(
du2

dP2

)
H

)
dM1

dt
(11.155)

This relationship can be written in term of a nondimensional function F (M,γ)

∂u

∂x
= −F (M,γ)

dM1

dt
(11.156)

Using the perfect gas jump conditions, after some algebraic manipulation the function F can be expressed
as

F =
2

γ + 1

(3M2
1 + 1)

M1(M2
1 − 1)

(11.157)

See Radulescu (2020) for discussion of applications of this form of the equation to blast decay problems. The
function F (M) is strongly varying as a function of shock Mach number, as shown Fig. 11.13 The limiting

0.1

1.0

10.0

100.0

1 2 3 4 5 6

F

M

Exact

Strong shock

Weak shock

Figure 11.13: Shock change relation function F (M) for a perfect gas, γ = 1.4.

behavior for weak and strong shock waves is

lim
M1→1

F ∼ 4

γ + 1

1

M1 − 1
(11.158)

lim
M1→∞

F ∼ 6

γ + 1

1

M1
(11.159)

Note that the weak shock approximation is useful for a much large range of shock Mach numbers than the
strong shock approximation and has the correct M1 dependence at both limits. The weak shock approxima-
tion for F has a maximum relative error of 25% over the range 1 ≤ M1 ≤ 5 for γ = 1.4.
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Spatially nonuniform, nonsteady flows

Substituting (11.127) and (11.128) into (11.113), the most general form of a shock change relationship is
obtained

dU

dt
=

ρ2a
2
2,f

[
σ̇ − η

∂u2

∂x

]
−
∑
ns(

dP2

dw1

)
P1,ρ1,Y1

+ ρ2w2

[
1−

(
dw2

dw1

)
P1,ρ1,Y1

] . (11.160)

All of the effects associated with the nonsteady and nonuniform upstream state have been lumped into a
single term ∑

ns

= −

[(
∂P2

∂w1

)
P1,ρ1,Y1

− ρ2w2

(
∂w2

∂w1

)
P1,ρ1,Y1

](
du1

dt

)
S

+

[(
∂P2

∂P1

)
w1,ρ1,Y1

− ρ2w2

(
∂w2

∂P1

)
w1,ρ1,Y1

](
dP1

dt

)
S

+

[(
∂P2

∂ρ1

)
w1,P1,Y1

− ρ2w2

(
∂w2

∂ρ1

)
w1,P1,Y1

](
dρ1
dt

)
S

+

K∑
k=1

[(
∂P2

∂Yk

)
w1,P1,Y1,i ̸=k

− ρ2w2

(
∂w2

∂Y1,k

)
w1,P1,Y1,i ̸=k

](
dY1,k

dt

)
S

(11.161)

Nonuniformity and unsteadiness enters into (11.160) not only through the explicit derivatives of the upstream
state in (11.161) but also through the dependence of downstream states and the derivatives of the shock
jump conditions on the local upstream state. For nonreacting flows, the equations can be further simplified
since σ̇ = 0 and the consideration of composition or internal state Y can be dropped from the differentiation
process and upstream state. This approach was successfully applied by Schoeffler and Shepherd (2022, 2023)
to modelling the acceleration of shock waves generated by detonation reflection.

Equilibrium Shock States

In some situations, the reaction proceeds sufficiently rapidly behind the shock front that an equilibrium state
is reached a short distance ∆ behind the shock front. If the thickness of the reaction zone is much smaller
than any other length scale L, i.e., ∆ ≪ L, then the shock wave can be idealized as a surface between an
arbitrary upstream state and a chemically equilibrium downstream state. This case can be idealized as the
composition changing instantaneously to keep the state in chemical equilibrium as the pressure and density
vary. For a specified upstream state, the downstream composition will be determined by simultaneously
solving the chemical equilibrium condition with the jump conditions for mass, momentum and energy. The
equilibrium composition is only a function of the local thermodynamic state, for example (P, ρ) so that

Y2 = Yeq(P, ρ;Y1) (11.162)

The dependence on the upstream composition can be supressed if the elemental composition of the upstream
state does not vary with space or time. This will be the case in reacting flows with initially uniform
composition as long as species diffusion does not create significant variations in elemental composition. For
this case

Y2 = Yeq(P2, ρ2) (11.163)

The composition Y2 will shift as (P, ρ) vary downstream of the shock and the time rate of change of
composition will be

DY

Dt
=

(
∂Yeq

∂P

)
ρ

DP

Dt
+

(
∂Yeq

∂ρ

)
P

Dρ

Dt
(11.164)
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Subsituting into the adiabatic change relationship (11.105) we obtain

DP

Dt
= a2f

Dρ

Dt
+ ρa2fσ ·

(
∂Yeq

∂P

)
ρ

DP

Dt
+ ρa2fσ ·

(
∂Yeq

∂ρ

)
P

Dρ

Dt
(11.165)

Simplifying, we obtain the equilibrium form of the adiabatic change equation

DP

Dt
= a2eq

Dρ

Dt
(11.166)

where the equilibrium sound speed is defined as

a2eq = a2f

1 + ρσ ·
(
∂Yeq

∂ρ

)
P

1− ρa2fσ ·
(
∂Yeq

∂P

)
ρ

(11.167)

An alternative expression for the equilibrium sound speed is simply

a2eq =

(
∂P

∂ρ

)
s,Yeq

. (11.168)

With these changes implemented and repeating the derivation, the shock change relation (11.160) for
equilibrium shocks is transformed to

dU

dt
=

−ρ2a22,eqη
∂u2

∂x
−
∑
ns(

dP2

dw1

)
P1,ρ1,Y1

+ ρ2w2

[
1−

(
dw2

dw1

)
P1,ρ1,Y1

] . (11.169)

where all downstream (post-shock) states and derivatives are computed using the assumption of complete
chemical equilibrium. In particular, the sonic parameter will be based on the equilibrium rather than frozen
sound speed, η = 1 − w2

2/a
2
2,eq. If the elemental composition is varying upstream of the shock, there will

be an additional term in the adiabatic change equation the shock change equation will have corresponding
modifications.

Although the thermicity no longer explicitly appears in the shock change relation for an equilibrium shock,
this result is not equivalent to setting the thermicity or species time derivatives to zero. The components σk

of the thermicity and the rate of change of the species do not vanish in an equilibrium, spatially and time-
dependent flow. They key is the evolution of the composition is assumed to always occur sufficiently rapidly
that the rate of change of the composition precisely keeps step with the changes in the thermodynamic
state. This situation is more general and can apply throughout a flow as long as the chemical reactions are
sufficiently rapid compared to the rate of change of the thermodynamic state. This is often the case in the
expansion wave immediately following a detonation although the applicability of this approximation depends
both on the specific mixture as well as the location within flow. A detailed examination of these chemical
nonequilibrium issues for the Taylor-Zeldovich model of detonation propagation was made by Cooper (see
Ch. 6 of Cooper, 2004) and the implications for modeling the impulse of detonation waves are discussed by
Wintenberger (see Ch. 4 and App. B of Wintenberger, 2004).

Application to Detonation and the CJ Condition

The shock change equation illustrates how shock waves are affected by chemical reaction and flow divergence.
Exothermic chemical reactions σ̇ > 0, and favorable velocity gradients ∂u/∂x < o will cause the shock
pressure to increase, i.e., the shock strengthens. Endothermic chemical reactions σ̇ < 0, or unfavorable
velocity gradients ∂u/∂x > o will cause the shock pressure to decrease, i.e., the shock weakens.
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If the flow is to be steady, then the energy exchange processes must be exactly balanced by the spatial
gradients in the flow

σ̇ − η
∂u

∂x
= 0 (11.170)

This is the basis of computing steady detonation wave structure for the ZND model.
The hydrodynamic model of a detonation considers the reaction zone to sufficiently thin that we can

consider the detonation wave to behave as a reactive shock wave that can be treated as a jump from
reactants to equilibrium products. The postshock state then refers to properties in the completely reacted
equilibrium products hence the thermicity term vanishes, σ̇ = 0. The appropriate shock adiabat is the
equilibrium detonation adiabat H with a corresponding velocity-pressure relation uH(P ). The adiabatic
change relation between pressure and density for an equilibrium flow is

DP

Dt
= a2e

Dρ

Dt
, (11.171)

and using the equations of motion as above, this is

DP

Dt
= −ρa2e

∂u

∂x
, (11.172)

where ae is the equilibrium sound speed. The derivative of the pressure just behind the detonation wave D
is

dP

dt

∣∣∣∣
D
= − ρa2e

1 + ρ1U

(
du

dP

)
D

ηe
∂u

∂x
(11.173)

where (du/dP )D is computed using the equilibrium detonation products. The sonic parameter is now based
on the equilibrium sound speed

ηe = 1− (U − u)2

a2e
(11.174)

The unsteady evolution of an overdriven detonation towards the CJ state can be explained using (11.173).
Since the flow is subsonic behind an overdriven detonation wave or shock, η > 0 and the wave will decay,
dP
dt

)
D
< 0 if it is followed by an expansion wave with ∂u/∂x > 0. As the wave approaches the CJ condition,

η −→ 0 and the influence of gradients behind the wave diminish. Therefore, the wave will tend to a steady

wave dP
dt

)
D
→ 0 with U − u → ae at large times as long as the wave remains sufficiently thin and the

reaction zone is relatively insensitive to the unsteadiness in thermodynamic state behind the shock front.
This provides an alternative justification for the CJ condition to the conventional explanation of the CJ
condition as the minimum wave speed consistent with the steady flow jump conditions.
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11.12 Shock Change Relations - Curved Waves

Shock change relations can be extended to curved shock waves in two or three dimensions. The approach
is extend the previous treatment using the same considerations as developed for the quasi-steady model of
reaction zone structure behind curved propagating waves, Section 11.10. We will first consider blast waves
with unifrom surface curvature independent of position on the wave and then consider the extension to a
more general case of nonuniform curvature.

Uniform Curvature

Modeling the flow as one-dimensional in a planar (j = 0), cylindrical (j = 1), or spherical (j = 2) coordinate
system, the conservation of mass equation can be written as in terms of a radial coordinate r

1

ρ

Dρ

Dt
= −∂u

∂r
− j

r
u (11.175)

For a shock wave of radius Rs moving with a speed U = dRs/dt, the methodology used for the planar shock
change equation can be extended to a curved wave. For the case of a unifrom, stationary upstream the
followin versions of the shock change relation can be derived

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
−η ∂u

∂r
+ σ̇ − j u

Rs

)
(11.176)

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
η
1

ρ

Dρ

Dt
+ σ̇ − w2

a2
j u

Rs

)
(11.177)

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
η

1

ρa2
DP

Dt
+

w2

a2
σ̇ − w2

a2
j u

Rs

)
(11.178)

Using the thermodynamic transformations and shock jump conditions, the left-hand side can be written in
terms of the derivatives on the Hugoniot and the shock acceleration

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
=

[
1 + ρ1U

(
du

dP

)
H

](
dP

dU

)
H

dU

dt
(11.179)

The coefficient mutiplying shock acceleration can written in terms of a nondimensional function f

f =
1

ρ1a1

{[
1 + ρ1U

(
du

dP

)
H

](
dP

dU

)
H

}
, (11.180)

and the left-hand side of (11.178) can be written as

ρ1U

(
du

dt

)
S
+

(
dP

dt

)
S
= ρ1a1f

dU

dt
. (11.181)

For a perfect gas, the function f can be given analytically in terms of shock Mach number Ms = U/a1

f =
4

γ + 1

[
3

2
Ms +

1

2Ms

]
(11.182)

Expressing the unsteady contributions in terms of shock acceleration, the the substantial derivative of pres-
sure at the shock front can be expressed as

η
DP

Dt
= − ρw2σ̇︸ ︷︷ ︸

chemical

+ρw2 u j

Rs︸ ︷︷ ︸
curvature

+ρ1a1f
dU

dt︸ ︷︷ ︸
unsteady

. (11.183)

(11.184)
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The chemical term represents the exchange of energy between molecular process and the flow. This contribu-
tion is identical to that obtained in the previous analyses of reaction zones behind steady shock waves. The
curvature term is more properly described as a transverse divergence contribution and can be generalized
as discussed below. The unsteady terms are all proportional to the shock acceleration dU/dt. The sign and
magnitude of each term depends on the specific details of chemistry and shock wave configuration. The main
distinctions are between exothermic σ̇ < 0 and endothermic σ̇ > 0 reactions at the shock front, diverging
(Rs > 0) and converging (Rs < 0) shock waves, accelerating (dU/dt > 0) and decelerating (dU/dt < 0)
shocks.

The interpretation of the curvature term is facilitated by referring to the quasi-steady flow discussion of
Section 11.10, which gave the relationship of stream tube area A change immediately behind the front to
the shock radius Rs. In the shock-fixed coordinate system, this correspondence is

j u

Rs
= w

1

A

dA

dx
(11.185)

In an unsteady flow, there are no well-defined stream tubes so it is more appropriate to refer to the curvature
term as being associaed with the transverse component of flow divergence. The kinematics of fluid motions
links the flow divergence to the density or volume rate of change through the continuity equation

1

ρ

Dρ

Dt
= − 1

υ

Dυ

Dt
= −∇ · u (11.186)

The divergence can be divided into components parallel and transverse to the path line. In cartesian
coordinates, the divergence is

∇ · u =
∂u

∂x︸︷︷︸
parallel to path

+
∂v

∂y
+

∂w

∂z︸ ︷︷ ︸
transverse to path

(11.187)

In radially symmetric coordinates attached to the shock front (see Sec. 11.10), the transverse component is

∇ · u︸ ︷︷ ︸
transverse to path

=
j u

Rs − x
. (11.188)

Nonuniform Curvature

Rabie and Wackerle (1978) derived a generalization of the one-dimensional model (11.178) to (almost)
arbitrary shock shapes by considering the differential geometry of the front and generalizing the curvature
term at the shock front to be

j

Rs
→ κ , (11.189)

where κ is twice the mean curvature of the shock front, which can be defined in terms of the surface shape

κ = −∇ · n̂ . (11.190)

where n̂ is the unit normal to the shock surface in the oriented in the direction of shock propagation. An
alternative representation is in terms of the principal radii of curvature of the surface, Rs,1 and Rs,2

κ =
1

Rs,1
+

1

Rs,2
. (11.191)

This generalization (Eq. 35 of Rabie and Wackerle, 1978)

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= η

DP

Dt
+ ρw2σ̇ − ρw2uκ
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only makes sense when streamlines are not significantly curved within the reaction zone. When the stream-
lines behind the shock are significantly curved, a different approach is needed with transformation to shock
conformal coordinates and the recognition that curvature of the shock may generate significant vorticity in
the downstream flow even for uniform upstream flows. For example, in a steady, planar flow, the vorticity
immediately downstream of the shock is

∇× u = Uκ cosβ

(
1− ρ1

ρ2

)2
ρ2
ρ1

where β is the shock angle. For a straight but oblique detonation wave in a steady, uniform flow, ∇ ×
u = 0, and the reaction zone equations are equivalent (Shepherd, 1994) to the usual steady flow ZND
equations. Approximate extensions of the reaction zone models to curved detonation waves and applications
to initiation of detonation waves by projectiles are given by Kaneshige (1999) and Hung and Shepherd
(2005), Hung (2003). The general case of a two- and three-dimensional steady flow following a curved shock is
treated exactly by Hornung (1998) (See also Hornung and Kaneshige, 1998) who provides detailed derivations
and explores in depth the steady-flow analog of the shock-change equations with extensive applications to
hypersonic flow (Hornung, 2010) over blunted shapes.

11.13 Unsteady Reaction Zone Models

The analyses of Eckett et al. (2000) and Arienti and Shepherd (2005) of reaction zones behind decaying
blast waves in one and two dimensions examined the dominate balance along streams in the reaction zone
and divided contributions into terms representing the effects of chemical reaction (effective heat release),
stream tube divergence (curvature), and unsteadiness. The balance equations along a streamline behind a
propagating shock appear identical in form to the shock change relations but the terms apply throughout
flow, not just at the shock front. For example, (2.6c) of Eckett et al. (2000) describes the evolution of the
pressure along a particle path with downstream distance from the shock measured by x = Rs(t) − r and
with relative velocity w = U(t)− u(r, t), U = dRs/dt. The equations of motion in the (x, t) coordinates are:

η
DP

Dt
= −ρw2σ̇ +

j

Rs − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t
. (11.192)

The corresponding density equation is

η
Dρ

Dt
= −ρσ̇ +

1

a2

[
j

Rs − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t

]
, (11.193)

and the velocity equation is

η
Dw

Dt
= wσ̇ − j

Rs − x
w(U − w)−

(w
a

)2 dU

dt
+

∂w

∂t
− w

ρa2
∂P

∂t
, (11.194)

The species evolution equation transforms without any addition terms

DYk

Dt
= Ωk . (11.195)

In this coordinate system, the substantial derivative is

D(·)
Dt

=
∂(·)
∂t

+ w
∂(·)
∂x

. (11.196)

At the shock front, x = 0, (11.192) identical with (11.178) and this is also the case for the ρ and w evolution
equations. Downstream of the front, these equations are an exact transformation of the unsteady, one-
dimensional reactive flow equations. However, this system of equations is not closed for a given streamline
even if we are given a prescription for the blast wave trajectory Rs(t). The partial derivatives with respect
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to time of P and w depend on the time variation on adjacent streamlines at a fixed x location, information
that can only be reliably found by direct simulation of the entire flow field using the reactive Euler equations.
However, this formulation is useful for analyzing direct simulations and serves as motivation for approximate
models based estimating the time derivatives.

Analyzing several cases of direct numerical simulation of decaying, reactive blast waves with a simple
chemical reaction models, Eckett et al. (2000) proposed an approximate model of the reaction zone based
on examining the magnitude of the terms in (11.192 - 11.195) for path lines leaving the shock near the
time when the reaction was quenched due to the decay of the blast wave. For sufficiently large shock wave
radii, the dominant balance was found to be between unsteadiness and chemical energy release with lateral
(stream tube) expansion playing a minor role. An approximate model was developed using a constant value
of the unsteadiness contribution and neglecting the curvature contribution. An asymptotic analysis of this
approximate model revealed that there existed a critical magnitude of the unsteadiness that determined when
the reaction was quenched. This critial decay rate model was applied to the problem of direct initiation of
detonations by point energy sources to estimate the magnitude of minimum energy required to establish
a self-sustaining detonation. The idea of competition between unsteadiness and chemical energy release
has subsequently been applied to other situations such ignition by transient compression events (Shepherd,
2020).

Approximate reaction zone structure equations can be formulated by recognizing that the right-hand side
of (11.178) represents the quasi-steady, thin reaction zone model terms and the left-hand side as contribution
of the unsteadiness of the shock wave. If approximations for the unsteady and curvature terms can be found,
then these reaction zone equations can be integrated to determine the effect of contributions on the reaction
zone structure along a particular particle path line downstream of an unsteady shock wave. Consider the
pressure (11.192) and density (11.193) equations. These each involve the combination of terms

j

Rs − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t
. (11.197)

At the shock front, these terms are identical to corresponding terms in the shock change equation. The
magnitude of the curvature term at the shock front is therefore

j

R− x
ρw2(U − w) = κsρ2w

2
2u2 at x = 0 and t = t0 , (11.198)

where to is the instant of time when the fluid element passes through the shock and the subscript 2 indicates
the postshock value. The magnitude of the sum of the unsteady terms is

ρw
dU

dt
− ρw

∂w

∂t
+

∂P

∂t
= ρ1a

2
1fs

dMs

dt
at x = 0 and t = t0 . (11.199)

We seek models of each of these terms - models that only depend on time or location on a path line in order
to integrate (11.192) along the path. The location on a path line is implicitly given by integration of the
relative velocity

dx

dt
= w and

dr

dt
= U(t)− w(t; t0) = u(t; t0) (11.200)

to obtain path lines labeled by the time t0 when the fluid element crosses the shock front

x(t; t0) =

∫ t

t0

w(t′; t0) dt
′ and r(t; t0) =

∫ t

t0

u(t′; t0) dt
′ +Rs(t0) . (11.201)

Computing density and flow speed on a path line can be accomplished using relationship developed from
the exact path line equations

Dρ

Dt
= ρ

[
1

ρa2
DP

Dt
− σ̇

]
, (11.202)

Dw

Dt
= − 1

ρw

[
DP

Dt
− ∂P

∂t

]
+

dU

dt
, (11.203)
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and an approximation for either the substantial derivative of density

η
Dρ

Dt
= −ρσ̇ +

1

a2

[
ρw2uκ+ ρw

∂u

∂t
+

∂P

∂t

]
(11.204)

or pressure

η
DP

Dt
= −ρw2σ̇ + ρw2uκ+ ρw

∂u

∂t
+

∂P

∂t
. (11.205)

The effects of transverse divergence can be approximated by an emprical effective curvature function κ(t).
For a one-dimensional blast wave and a thin reaction zone

j

Rs − x
→ j

Rs
= κ . (11.206)

The unsteady terms are more challenging to estimate. One approach, motivated by the shock change
relations, is to consider these terms as due to effective shock decay rate and equal to the values at the shock
front

ρw
∂u

∂t
+

∂P

∂t
→ ρ1a1f

dU

dt
. (11.207)

A similar approximation can be proposed for the unsteady pressure term in the w equation

1

ρw

∂P

∂t
+

dU

dt
→
[
1 +

1

ρ1U

(
∂P

∂U

)
H

]
dU

dt
, (11.208)

using the nondimensional function

g =

[
1 +

1

ρ1U

(
∂P

∂U

)
H

]
. (11.209)

For perfect gases, this function is independent of shock speed and depends only on the ratio of specific heats

g =
γ + 5

γ + 1
3 ≥ g ≥ 2.5 for 1 ≤ γ ≤ 5/3 . (11.210)

Critical evaluation of the approximations (11.206) and (11.207) requires analyzing direct numerical simula-
tions. This is the approach taken by Eckett et al. (2000), Arienti and Shepherd (2005).

Temperature Model The path line energy balance equation can be used to develop an equation for
temperature that is more convenient for further simplifications. One version of the balance equation is

Dh

Dt
=

1

ρ

DP

Dt
. (11.211)

Expanding the mixture enthalpy and distributiong the differentiation, we obtain

cp
DT

Dt
= −

∑
k

hk
DYk

Dt
+

1

ρ

DP

Dt
. (11.212)

To complete the model, we need an estimate of the substantial derivative of pressure. The exact value is
given by (11.192) but as pointed out previously, absent a detailed simulation of the flow field, it is necessary
to estimate the unknown terms. A possible approach is to use (11.206) and (11.207) and assume these terms
are constant through the reaction zone.

DP

Dt
≈ DP

Dt

∣∣∣∣
S
=

1

η

[
ρw

(
du

dt

)
S
+

(
dP

dt

)
S
+ ρw2uκ

]
S

(11.213)
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where the contribution of thermicity σ̇ is neglected at the shock front. An equivalent approach is to use the
energy equation in the form

De

Dt
=

P

ρ2
Dρ

Dt
, (11.214)

cv
DT

Dt
= −

∑
k

ek
DYk

Dt
+RT

1

ρ

Dρ

Dt
, (11.215)

and the shock change relations to estimate the substantial derivative of density

1

ρ

Dρ

Dt
≈ 1

ρ

Dρ

Dt

∣∣∣∣
S
=

1

ρa2η

[
ρw

(
du

dt

)
S
+

(
dP

dt

)
S
+ ρw2uκ

]
S

(11.216)

or in terms of shock acceleration

1

ρ

Dρ

Dt
≈ 1

η

[
ρ1a1
ρa2

f
dU

dt
+

w2

a2
uκ

]
S

(11.217)

Note that for decaying shock waves with κ > 0, the contribution of transverse divergence due to wave curva-
ture is positive and that of unsteadiness is negative. The approximate evoluation equation for temperature
is

DT

Dt
= − 1

cv

∑
k

ek
DYk

Dt
+

R

cv

T

η

[
ρ1a1
ρa2

f
dU

dt
+

w2

a2
uκ

]
S
. (11.218)

A more convenient form for comparing the relative size of the terms constributing to temperature change is

1

T

DT

Dt
= − 1

cvT

∑
k

ek
DYk

Dt︸ ︷︷ ︸
chemical

1

η

R

cv

ρ1a1
ρa2

f
dU

dt︸ ︷︷ ︸
unsteady

+
1

η

R

cv

w2

a2
uκ︸ ︷︷ ︸

curvature

(11.219)
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Part IV

Toolbox Software
The basic functions of the toolbox software, input and output variables are described for each program.

The demonstration programs are listed together a brief description.
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Chapter 12

Functions

A summary is provided of the major functions of the toolbox. The basic
syntax, input, and output are provided for MATLAB and Python. For each
function, links are given to both the MATLAB and Python implementations.
See the website to download and install the complete software package.
There are a number of auxiliary files that are required but are not described
here.

Core Functions

The core functions for MATLAB are in subdirectories in the SDToolbox subdirectory of the MATLAB toolbox
directory, for Python the functions are contained within Python scripts in the sdtoolbox subdirectory of
the Python site-packages directory. Each function contains a header that describes the input and output
variables as well as optional parameters.

PostShock CJ speed, frozen and equilibrium state following shock waves

CJSpeed Calculates CJ detonation velocity for a given pressure, temperature, and composition and
gas object.

CJSpeed.m

FUNCTION SYNTAX:

If only CJ speed required:

U_cj = CJspeed(P1,T1,q,mech)

If full output required:

[U_cj, curve, goodness, dnew, plot_data] = CJspeed(P1,T1,q,mech)

INPUT:

P1 = Initial Pressure (Pa)

T1 = Initial Temperature (K)

q = string of reactant species mole fractions

mech = cti file containing mechanism data (i.e. ’gri30.cti’)

OUTPUT:

cj_speed = CJ detonation speed (m/s)

curve = cfit object of LSQ fit

goodness = goodness of fit statistics for curve

dnew = CJ density ratio

plot_data = structure containing additional parameters to use

CJSpeed in postshock.py

229

http://shepherd.caltech.edu/EDL/PublicResources/sdt
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/CJspeed.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
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FUNCTION SYNTAX:

If only CJ speed required:

cj_speed = CJspeed(P1,T1,q,mech)

If full output required:

[cj_speed,R2,plot_data] = CJspeed(P1,T1,q,mech,fullOutput=True)

INPUT:

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OPTIONAL INPUT:

fullOutput = set True for R-squared value and pre-formatted plot data

(the latter for use with sdtoolbox.utilities.CJspeed_plot)

OUTPUT

cj_speed = CJ detonation speed (m/s)

R2 = R-squared value of LSQ curve fit (optional)

plot_data = tuple (rr,w1,dnew,a,b,c)

rr = density ratio

w1 = speed

dnew = minimum density

a,b,c = quadratic fit coefficients

PostShock eq Calculates equilibrium post-shock state for a specified shock velocity, pressure, tem-
perature, and composition and gas object.

PostShock eq.m

FUNCTION SYNTAX:

[gas] = PostShock_eq(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at equilibrium post-shock state

PostShock eq in postshock.py

FUNCTION SYNTAX:

gas = PostShock_eq(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/PostShock_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
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gas = gas object at equilibrium post-shock state

PostShock fr Calculates frozen post-shock state for a specified shock velocity, pressure, temperature,
and composition and gas object.

PostShock fr.m

FUNCTION SYNTAX:

[gas] = PostShock_fr(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at frozen post-shock state

PostShock fr in postshock.py

FUNCTION SYNTAX:

[gas] = PostShock_fr(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at frozen post-shock state

Reflections Calculated state behind a shock or detonation after reflection from a rigid surface.

reflected eq Calculates equilibrium post-reflected-shock state.

reflected eq.m

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_eq(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at equilibrium post-reflected-shock state

reflected eq in reflections.py

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/PostShock_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/reflections.py
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FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_eq(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at equilibrium post-reflected-shock state

reflected fr Calculates frozen post-reflected-shock state.

reflected fr.m

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_fr(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at frozen post-reflected-shock state

reflected fr in reflections.py

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_fr(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at frozen post-reflected-shock state

ZND Model Detonation Structure Computation

zndsolve.m

FUNCTION SYNTAX:

[output] = zndsolve(gas,gas1,U1)

INPUT:

gas = Cantera gas object - postshock state

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/ZND/zndsolve.m
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gas1 = Cantera gas object - initial state

U1 = Shock Velocity

OPTIONAL INPUT (name-value pairs):

t_end = end time for integration, in sec

rel_tol = relative tolerance

abs_tol = absolute tolerance

advanced_output = calculates optional extra parameters

such as induction lengths

max_step = maximum step size (in time) that solver is allowed to take

OUTPUT:

output = a dictionary containing the following results:

time = time array

distance = distance array

T = temperature array

P = pressure array

rho = density array

U = velocity array

thermicity = thermicity array

species = species mass fraction array

M = Mach number array

af = frozen sound speed array

g = gamma (cp/cv) array

wt = mean molecular weight array

sonic = sonic parameter (c^2-U^2) array

tfinal = final target integration time

xfinal = final distance reached

gas1 = a copy of the input initial state

U1 = shock velocity

and, if advanced_output=True:

ind_time_ZND = time to maximum thermicity gradient

ind_len_ZND = distance to maximum thermicity gradient

exo_time_ZND = pulse width (in secs) of thermicity (using 1/2 max)

ind_time_ZND = pulse width (in meters) of thermicity (using 1/2 max)

max_thermicity_width_ZND = according to Ng et al definition

zndsolve in znd.py

This function is included as a module in the toolbox script znd.py .

FUNCTION SYNTAX:

output = zndsolve(gas,gas1,U1,**kwargs)

INPUT

gas = Cantera gas object - postshock state

gas1 = Cantera gas object - initial state

U1 = shock velocity (m/s)

OPTIONAL INPUT:

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/znd.py
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t_end = end time for integration, in sec

max_step = maximum time step for integration, in sec

t_eval = array of time values to evaluate the solution at.

If left as ’None’, solver will select values.

Sometimes these may be too sparse for good-looking plots.

relTol = relative tolerance

absTol = absolute tolerance

advanced_output = calculates optional extra parameters such as induction lengths

Method = method of integration, ’LSODA’ is default.

OUTPUT:

output = a dictionary containing the following results:

time = time array

distance = distance array

T = temperature array

P = pressure array

rho = density array

U = velocity array

thermicity = thermicity array

species = species mass fraction array

M = Mach number array

af = frozen sound speed array

g = gamma (cp/cv) array

wt = mean molecular weight array

sonic = sonic parameter (c^2-U^2) array

tfinal = final target integration time

xfinal = final distance reached

gas1 = a copy of the input initial state

U1 = shock velocity

and, if advanced_output=True:

ind_time_ZND = time to maximum thermicity gradient

ind_len_ZND = distance to maximum thermicity gradient

exo_time_ZND = pulse width (in secs) of thermicity (using 1/2 max)

ind_time_ZND = pulse width (in meters) of thermicity (using 1/2 max)

max_thermicity_width_ZND = according to Ng et al definition

CV Model Explosion Computation

cvsolve.m

FUNCTION SYNTAX:

output = cvsolve(gas,varargin)

INPUT:

gas = working gas object

OPTIONAL INPUT (name-value pairs):

t_end = end time for integration, in sec. If not included

as an input, set to 10^-3 by default.

rel_tol = relative tolerance

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CV/cvsolve.m
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abs_tol = absolute tolerance

max_step = maximum step size (in time) that solver is allowed to take

OUTPUT:

output = a structure containing the following results:

time = time array

T = temperature profile array

P = pressure profile array

speciesY = species mass fraction array

speciesX = species mole fraction array

gas = working gas object

exo_time = pulse width (in secs) of temperature gradient (using 1/2 max)

ind_time = time to maximum temperature gradient

ind_time_10 = time to 10% of maximum temperature gradient

ind_time_90 = time to 90% of maximum temperature gradient

cvsolve in cv.py

This function is included as a module in the toolbox script cv.py.

FUNCTION SYNTAX:

output = cvsolve(gas,**kwargs)

INPUT:

gas = working gas object

OPTIONAL INPUT:

t_end = end time for integration, in sec

max_step = maximum time step for integration, in sec

t_eval = array of time values to evaluate the solution at.

If left as ’None’, solver will select values.

Sometimes these may be too sparse for good-looking plots.

relTol = relative tolerance

absTol = absolute tolerances

OUTPUT:

output = a dictionary containing the following results:

time = time array

T = temperature profile array

P = pressure profile array

speciesY = species mass fraction array

speciesX = species mole fraction array

gas = working gas object

exo_time = pulse width (in secs) of temperature gradient (using 1/2 max)

ind_time = time to maximum temperature gradient

ind_time_10 = time to 10% of maximum temperature gradient

ind_time_90 = time to 90% of maximum temperature gradient

CP Model Explosion Computation

cpsolve.m

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cv.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CP/cpsolve.m
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FUNCTION SYNTAX:

output = cpsolve(gas,varargin)

INPUT:

gas = working gas object

OPTIONAL INPUT (name-value pairs):

t_end = end time for integration, in sec. If not included

as an input, set to 10^-3 by default.%

rel_tol = relative tolerance

abs_tol = absolute tolerance

max_step = maximum step size (in time) that solver is allowed to take

OUTPUT:

output = a structure containing the following results:

time = time array

T = temperature profile array

P = pressure profile array

speciesY = species mass fraction array

speciesX = species mole fraction array

gas = working gas object

exo_time = pulse width (in secs) of temperature gradient (using 1/2 max)

ind_time = time to maximum temperature gradient

ind_time_10 = time to 10% of maximum temperature gradient

ind_time_90 = time to 90% of maximum temperature gradient

cpsolve in cp.py

FUNCTION SYNTAX:

output = cpsolve(gas,**kwargs)

INPUT:

gas = working gas object

OPTIONAL INPUT:

t_end = end time for integration, in sec

max_step = maximum time step for integration, in sec

t_eval = array of time values to evaluate the solution at.

If left as ’None’, solver will select values.

Sometimes these may be too sparse for good-looking plots.

relTol = relative tolerance

absTol = absolute tolerances

Method = method of integration, ’LSODA’ is default.

OUTPUT:

output = a dictionary containing the following results:

time = time array

T = temperature profile array

D = density profile array

speciesY = species mass fraction array

speciesX = species mole fraction array

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/cp.py
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gas = working gas object

exo_time = pulse width (in secs) of temperature gradient (using 1/2 max)

ind_time = time to maximum temperature gradient

ind_time_10 = time to 10% of maximum temperature gradient

ind_time_90 = time to 90% of maximum temperature gradient

Stagnation Reaction zone structure computation for blunt body flow using the approximation of linear
gradient in mass flux (ρw)

stgsolve.m

SYNTAX

[output] = stgsolve(gas,gas1,U1,Delta)

INPUT

gas = Cantera gas object - postshock state

gas1 = Cantera gas object - initial state

U1 = Shock Velocity

Delta = shock standoff distance

OPTIONAL INPUT (positional argument):

t_end = end time for integration, in sec. If not included

as an input, set to 10^-3 by default.

OUTPUT

Structure

output.time = time array

output.distance = distance array

output.T = temperature array

output.P = pressure array

output.rho = density array

output.U = velocity array

output.thermicity = thermicity array

output.M = Mach number array

output.af = frozen sound speed array

output.g = gamma (cp/cv) array

output.wt = mean molecular weight array

output.sonic = sonic parameter (c^2-U^2) array

stgsolve in stagnation.py

This function is included as a module in the toolbox script stagnation.py .

FUNCTION SYNTAX:

output = stgsolve(gas,gas1,U1,Delta,**kwargs)

INPUT

gas = Cantera gas object - postshock state

gas1 = Cantera gas object - initial state

U1 = shock velocity (m/s)

Delta = shock standoff distance (m)

OPTIONAL INPUT:

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Stagnation/stgsolve.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/stagnation.py
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t_end = end time for integration, in sec

max_step = maximum time step for integration, in sec

t_eval = array of time values to evaluate the solution at.

If left as ’None’, solver will select values.

Sometimes these may be too sparse for good-looking plots.

relTol = relative tolerance

absTol = absolute tolerance

OUTPUT:

output = a dictionary containing the following results:

time = time array

distance = distance array

T = temperature array

P = pressure array

rho = density array

U = velocity array

thermicity = thermicity array

distance = distance array

species = species mass fraction array

M = Mach number array

af = frozen sound speed array

g = gamma (cp/cv) array

wt = mean molecular weight array

sonic = sonic parameter (c^2-U^2) array

gas1 = a copy of the input initial state

U1 = shock velocity

Delta = shock standoff distance

Thermo Computation of sound speed and Grüneisen coefficent.

soundspeed eq Computes the equilibrium sound speed by using a centered finite difference approx-
imation. Directly evaluating pressure at two density/specific volume states along an isentrope
requires use of equilibrate('SV'). However, this may not always converge at high pressure.
Instead, a more robust method using equilibrate('TP') is used that employs thermodynamic
identities detailed further in Appendix G2 of the report.

soundspeed eq.m

FUNCTION SYNTAX:

aequil = soundspeed_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

aequil = equilibrium sound speed = sqrt({d P/d rho)_s, eq) (m/s)

soundspeed eq in thermo.py

FUNCTION SYNTAX:

ae = soundspeed_eq(gas)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
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INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

ae = equilibrium sound speed = sqrt({d P/d rho)_s, eq) (m/s)

soundspeed fr Computes the frozen sound speed by using a centered finite difference approximation
and evaluating frozen composition states on the isentrope passing through the reference (S, V)
state supplied by the gas object passed to the function.

soundspeed fr.m

FUNCTION SYNTAX:

afrozen = soundspeed_fr(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

afrozen = frozen sound speed = sqrt({d P/d rho)_{s,x0})

soundspeed fr in thermo.py

FUNCTION SYNTAX:

afrz = soundspeed_fr(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

afrz = frozen sound speed = sqrt({d P/d rho)_{s,x0})

gruneisen eq Computes the equilibrium Grüneisen coefficient by using a centered finite difference
approximation and evaluating equilibrium states on the isentrope passing through the reference
(S, V) state supplied by the gas object passed to the function.

gruneisen eq.m

FUNCTION SYNTAX:

G_eq = gruneisen_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

G_eq = equilibrium Gruneisen coefficient [-de/dp)_{v,eq} =

-(v/T)dT/dv)_{s,eq} = + (rho/T)(dT/d rho)_{s,eq}]

gruneisen eq in thermo.py

FUNCTION SYNTAX:

G_eq = gruneisen_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

G_eq = equilibrium Gruneisen coefficient [-de/dp)_{v,eq} =

-(v/T)dT/dv)_{s,eq} = + (rho/T)(dT/d rho)_{s,eq}]

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
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gruneisen fr Computes the frozen Grüneisen coefficient by using a centered finite difference approx-
imation and evaluating frozen states on the isentrope passing through the reference (S, V) state
supplied by the gas object passed to the function.

gruneisen fr.m

FUNCTION SYNTAX:

G_fr = gruneisen_fr(gas)

INPUT:

gas = working gas object (not modified in function)

OUTPUT:

G_fr = frozen Gruneisen coefficient [-de/dp)_{v,x0} =

-(v/T)dT/dv)_{s,x0} = + (rho/T)(dT/d rho)_{s,x0}]

gruneisen fr in thermo.py

FUNCTION SYNTAX:

G_fr = gruneisen_fr(gas)

INPUT:

gas = working gas object (not modified in function)

OUTPUT:

G_fr = frozen Gruneisen coefficient [-de/dp)_{v,x0} =

-(v/T)dT/dv)_{s,x0} = + (rho/T)(dT/d rho)_{s,x0}]

Internal Functions called as part of iteration process.

shk calc Calculates frozen post-shock state using Reynolds iterative method (see Section 8.2).
MATLAB Function - shk calc.m
Python Function - shk calc (in postshock.py)

SYNTAX:

[gas] = shk_calc(U1,gas,gas1,ERRFT,ERRFV)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

OUTPUT:

gas = gas object at frozen post-shock state

shk eq calc Calculates equilibrium post-shock state using Reynolds iterative method (see Section 8.2).
MATLAB Function - shk eq calc.m
Python Function - shk calc (in postshock.py)

SYNTAX: [gas] = shk_eq_calc(U1,gas,gas1,ERRFT,ERRFV)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

OUTPUT:

gas = gas object at equilibrium post-shock state

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/shk_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/shk_eq_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
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FHFP
Uses the momentum and energy conservation equations to calculate error in current pressure and
the enthalpy guesses (see (8.16) & (8.15)). In this case, state 2 is frozen.
MATLAB Function - FHFP.m
Python Function - FHFP (in postshock.py)

SYNTAX:

[FH,FP] = FHFP(U1,gas,gas1)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

OUTPUT:

FH,FP = error in enthalpy and pressure

FHFP reflected fr
Uses the momentum and energy conservation equations to calculate error in current pressure and
the enthalpy guesses (see (8.16) & (8.15)). In this case, state 3 is frozen.
MATLAB Function - FHFP reflected fr.m
Python Function - FHFP reflected fr (in reflections.py)

SYNTAX:

[FH,FP] = FHFP_reflected_fr(u2,gas3,gas2)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas3 = working gas object

gas2 = gas object at post-incident-shock state (already computed)

OUTPUT:

FH,FP = error in enthalpy and pressure

CJ calc
Calculates the wave speed for the Chapman-Jouguet case using Reynolds’ iterative method (see
Section 8.2).
MATLAB Function - CJ calc.m
Python Function - CJ calc (in postshock.py)

SYNTAX:

[gas,w1] = CJ_calc(gas,gas1,ERRFT,ERRFV,x)

INPUT:

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

x = density ratio

OUTPUT:

gas = gas object at equilibrium state

w1 = initial velocity to yield prescribed density ratio

state
Calculates frozen state given T and ρ.
MATLAB Function - state.m
Python Function - state (in thermo.py)

SYNTAX:

[P,H] = state(gas,r1,T1)

INPUT:

gas = working gas object

r1,T1 = desired density and temperature

OUTPUT:

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/FHFP.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/FHFP_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/CJ_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
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P,H = pressure and enthalpy

eq state
Calculates equilibrium state given T and ρ.
MATLAB Function - eq state.m
Python Function - eq state (in thermo.py)

SYNTAX:

[P,H] = eq_state(gas,r1,T1)

INPUT:

gas = working gas object

r1,T1 = desired density and temperature

OUTPUT:

P,H = equilibrium pressure and enthalpy at constant temperature and specific volume

hug eq
Algebraic expressions of equilibrium (product) Hugoniot pressure and enthalpy. Passed to root
solver ’fsolve’.
MATLAB Function - hug eq.m
Python Function - hug eq (in postshock.py)

SYNTAX:

[x,fval] = fsolve(@hug_eq,Ta,options,gas,array)

INPUT:

Ta = initial guess for equilibrium Hugoniot temperature (K)

options = options string for fsolve

gas = working gas object

array = array with the following values

vb = desired equilibrium Hugoniot specific volume (m^3/kg)

h1 = enthalpy at state 1 (J/kg)

P1 = pressure at state 1 (Pa)

v1 = specific volume at state 1 (m^3/kg)

OUTPUT:

x = equilibrium Hugoniot temperature corresponding to vb (K)

fval = value of function at x

hug fr
Algebraic expressions of frozen (reactant) Hugoniot pressure and enthalpy. Passed to root solver
’fsolve’.
MATLAB Function - hug fr.m
Python Function - hug fr (in postshock.py)

SYNTAX:

[x,fval] = fsolve(@hug_fr,Ta,options,gas,array)

INPUT:

Ta = initial guess for frozen Hugoniot temperature (K)

options = options string for fsolve

gas = working gas object

array = array with the following values

vb = desired frozen Hugoniot specific volume (m^3/kg)

h1 = enthalpy at state 1 (J/kg)

P1 = pressure at state 1 (Pa)

v1 = specific volume at state 1 (m^3/kg)

OUTPUT:

x = frozen Hugoniot temperature corresponding to vb (K)

fval = value of function at x

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/eq_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/hug_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/hug_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
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LSQ CJspeed
Determines least squares fit of parabolic data.
MATLAB Function - N/A
Python Function - LSQ CJspeed (in postshock.py)

SYNTAX:

[a,b,c,R2,SSE,SST] = LSQ_CJspeed(x,y)

INPUT:

x = independent data points

y = dependent data points

OUTPUT:

a,b,c = coefficients of quadratic function (ax^2 + bx + c = 0)

R2 = R-squared value

SSE = sum of squares due to error

SST = total sum of squares

PostReflectedShock eq
Calculates equilibrium post-reflected-shock state for a specified shock velocity.
MATLAB Function - PostReflectedShock eq.m
Python Function - PostReflectedShock eq (in reflections.py)

FUNCTION SYNTAX:

[gas3] = PostReflectedShock_eq(u2,gas2,gas3)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

OUTPUT:

gas3 = gas object at equilibrium post-reflected-shock state

PostReflectedShock fr
Calculates frozen post-reflected-shock state for a specified shock velocity.
MATLAB Function - PostReflectedShock fr.m
Python Function - PostReflectedShock fr (in reflections.py)

SYNTAX:

[gas3] = PostReflectedShock_fr(u2,gas2,gas3)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

OUTPUT:

gas3 = gas object at frozen post-reflected-shock state

Utilities Plotting and output routines

znd plot Creates four plots from the solution to a ZND detonation: temperature, pressure, Mach
number, and thermicity vs. distance. Optionally, also creates plots of species mass fraction vs.
time, for given lists of major or minor species. If major species= ’All’, all species will be plotted
together.

znd fileout Creates 2 formatted text files to store the output of the solution to a ZND detonation.
Includes a timestamp of when the file was created, input conditions, and tab-separated columns
of output data.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/PostReflectedShock_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/PostReflectedShock_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/reflections.py
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cv plot Creates two subplots from the solution to a CV explosion: temperature vs. time, and pressure
vs. time. Optionally, also creates plots of species mass fraction vs. time, for given lists of major
or minor species. If major species=’All’, all species will be plotted together.

CJspeed plot Creates two plots of the CJspeed fitting routine: both display density ratio vs. speed.
The first is very ”zoomed in” around the minimum, and shows the quadratic fit plotted through
the calculated points. The second shows the same fit on a wider scale, with the minimum and its
corresponding speed indicated.

Error Control and Limits Setting iteration error and volume limits

Three parameters control the convergence and bounds on the specific volume for the Newton-Raphson
iteration used to solve the jump conditions. These are specified in files located in the SDToolbox
directory:

MATLAB Function - SDTconfig.m
Python Function - config.py

The default values of these parameters are:

ERRFT = 1e-4;

ERRFV = 1e-4;

volumeBoundRatio = 5;

The values of the error parameters represent the maximum relative errors allowed for convergence of
shock and detonation jump condition computations, see the discussion in Section 8.1. Iteration ceases
and the solution is returned when the conditions ∆T/T < ERRFT and ∆v/v < ERRFV are both met.

The value of volumeBoundRatio is the lower bound on specific volume ratio v1/v2 used as a start-
ing point for the iteration. For shock waves in gases with a high specific heat, higher values of
volumeBoundRatio may be required in order to get solutions but care must be taken not to select
volumeBoundRatio larger than the maximum value possible on the Hugoniot. The perfect gas analyt-
ical solution for strong shock is a useful estimate if the ratio of specific heats γ is known.

v1
v2,min

≥ γ + 1

γ − 1
(12.1)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/SDTconfig.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/config.py
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Demonstration Programs

A number of demonstration programs are provided with the Shock and Detonation Toolbox. These show
how Cantera and the SDT routines can be used to carry out a variety of calculations. The programs are
available in the demos subdirectories in the Python and MATLAB branches of the distribution. The links
to the MATLAB versions are in given in the following list. Python version of all demonstration programs
are also available and have identical names except for the extension .py instead of .m.

demo CJ.py demo CJ.m Computes CJ speed.

demo CJ and shock state.py demo CJ and shock state.m Computes 2 reflection conditions. 1) equilibrium
post-initial-shock state behind a shock traveling at CJ speed (CJ state) followed by equilibrium post-
reflected-shock state 2) frozen post-initial-shock state behind a CJ wave followed by frozen post-
reflected-shock state

demo CJstate.py demo CJstate.m Computes CJ speed and CJ state.

demo CJstate isentrope.py demo CJstate isentrope.m Computes CJ speed, CJ state, isentropic expansion
in 1-D Taylor wave, plateau state conditions.

demo cv.m Generates plots for a constant volume explosion simulation with specified initial conditions.
Outputs metrics on induction time, reaction pulse, effective activation energy and reaction order.

demo cv comp.py demo cv comp.m Generates plots and output files for a constant volume explosion simu-
lation where the initial conditions are adiabaically compressed reactants.

demo cvCJ.py demo cvCJ.m Generates plots and output files for a constant volume explosion simulation
where the initial conditions are given by the postshock conditions for a CJ speed shock wave.

demo cvshk.py demo cvshk.m Generates plots and output files for a constant volume explosion simulation
where the initial conditions are given by the postshock conditions for shock wave traveling at a user
specified speed.

demo detonation pu.py demo detonation pu.m Computes the Hugoniot and pressure-velocity (P − U) rela-
tionship for shock waves centered on the CJ state. Generates an output file.

demo equil.py demo equil.m Computes the equilibrium state at constant (T, P ) over a range of temperature
for a fixed pressure and plots composition.

demo EquivalenceRatioSeries.py demo EquivalenceRatioSeries.m - An example of how to vary the equiva-
lence ratio over a specified range and for each resulting composition, compute constant volume explosion
and ZND detonation structure. This example creates a set of plots and an output file.

demo exp state.py demo exp state.m Calculates mixture properties for explosion states (UV,HP, TP).

demo ExplosionSeries.py demo ExplosionSeries.m How to compute basic explosion parameters as a function
of concentration of one component for given mixture. Creates plots and output file.
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http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ_and_shock_state.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ_and_shock_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJstate.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJstate_isentrope.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cv_comp.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv_comp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_detonation_pu.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_detonation_pu.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_equil.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_equil.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_EquivalenceRatioSeries.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_EquivalenceRatioSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_exp_state.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_exp_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ExplosionSeries.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ExplosionSeries.m
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demo g.py demo g.m Compares methods of computing ratio of specific heats and logarithmic isentrope slope
using several approaches and compares the results graphically.

demo GasPropAll.py demo GasPropAll.m Mixture thermodynamic and transport properties of gases at fixed
pressure as a function of temperature. Edit to choose either frozen or equilibrium composition state.
The mechanism file must contain transport parameters for each species and specify the transport model
’Mix’.

demo oblique.py demo oblique.m Calculates shock polar using FROZEN post-shock state based the initial
gas properties and the shock speed. Plots shock polar using three different sets of coordinates.

demo overdriven.py demo overdriven.m Computes detonation and reflected shock wave pressure for over-
driven waves. Both the post-initial-shock and the post-reflected-shock states are equilibrium states.
Creates output file.

demo OverdriveSeries.py demo OverdriveSeries.m This is a demonstration of how to vary the Overdrive
(U/UCJ)) in a loop for constant volume explosions and ZND detonation simulations.

demo PrandtlMeyer.py demo PrandtlMeyer.m Calculates Prandtl-Meyer function and polar. Creates plots
of polars.

demo PrandtlMeyer CJ.py demo PrandtlMeyer CJ.m Calculates Prandtl-Meyer function and polar expanded
from CJ state. Creates plots of polars and fluid element trajectories.

demo PrandtlMeyerDetn.py demo PrandtlMeyerDetn.m Calculates Prandtl-Meyer function and polar orig-
inating from CJ state. Calculates oblique shock wave moving into expanded detonation products
or a specified bounding atmosphere. Creates a set of plots, evaluates axial flow model for rotating
detonation engine.

demo PrandtlMeyerLayer.py demo PrandtlMeyerLayer.m Calculates Prandtl-Meyer function and polar orig-
inating from lower layer postshock state. Calculates oblique shock wave moving into expanded deto-
nation products or a specified bounding atmosphere. Two-layer version with arbitrary flow in lower
layer (1), oblique wave in upper layer (2). Upper and lower layers can have various compositions as
set by user.

demo precompression detonation.py demo precompression detonation.m Computes detonation and reflected
shock wave pressure for overdriven waves. Varies density of initial state and detonation wave speed.
Creates an output file.

demo PressureSeries.py demo PressureSeries.m Properties computed as a function of initial pressure for a
constant volume explosions and ZND detonation simulations Creates a set of plots and an output file.

demo PSeq.py demo PSeq.m Calculates the equilibrium post shock state based on the initial gas state and
the shock speed.

demo PSfr.py demo PSfr.m Calculates the frozen postshock state based on the initial gas state and the shock
speed.

demo quasi1d eq.py demo quasi1d eq.m Computes ideal quasi-one dimensional flow using equilibrium prop-
erties to determine exit conditions for expansion to a specified pressure. Carries out computation for
a range of helium dilutions.

demo reflected eq.py demo reflected eq.m Calculates post-relected-shock state for a specified shock speed
speed and a specified initial mixture. In this demo, both shocks are reactive, i.e. the computed states
behind both the incident and reflected shocks are equilibrium states.

demo reflected fr.py demo reflected fr.m Calculates post-relected-shock state for a specified shock speed
speed and a specified initial mixture. In this demo, both shocks are frozen, i.e. there is no composition
change across the incident and reflected shocks.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_g.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_g.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_GasPropAll.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_GasPropAll.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_oblique.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_oblique.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_overdriven.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_overdriven.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_OverdriveSeries.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_OverdriveSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PrandtlMeyer.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyer.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PrandtlMeyer_CJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyer_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PrandtlMeyerDetn.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyerDetn.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PrandtlMeyerLayer.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyerLayer.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_precompression_detonation.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_precompression_detonation.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PressureSeries.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PressureSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSeq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSeq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSfr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSfr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_quasi1d_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_quasi1d_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_fr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_fr.m
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demo RH.py demo RH.m Creates arrays for Rayleigh Line with specified shock speed, Reactant, and Product
Hugoniot Curves for H2-air mixture. Options to creates output file and plots.

demo RH air.py demo RH air.m Creates arrays for Rayleigh Line with specified shock speed and frozen
Hugoniot Curve for a shock wave in air. Options to create output file and plot.

demo RH air eq.py demo RH air eq.m Creates arrays for Rayleigh Line with specified shock speed in air,
frozen and equilibrium Hugoniot curves. Options to create output file and plot.

demo RH air isentropes.py demo RH air isentropes.m Creates arrays for frozen Hugoniot curve for shock
wave in air, Rayleigh Line with specified shock speed, and four representative isentropes. Options to
create plot and output file.

demo RH CJ isentropes.py demo RH CJ isentropes.m Creates plot for equilibrium product Hugoniot curve
near CJ point, Shows Rayleigh Line with slope UCJ and four isentropes bracketing CJ point. Creates
plot showing Gruneisen coefficient, denominator in Jouguet’s rule, isentrope slope.

demo rocket impulse.py demo rocket impulse.m Computes rocket performance using quasi-one dimensional
isentropic flow using both frozen and equilibrium properties for a range of helium dilutions in a
hydrogen-oxygen mixture. Plots impulse as a function of dilution.

demo RZshock.py demo RZshock.m Generate plots and output files for a reaction zone behind a shock front
traveling at a user specified speed.

demo shock adiabat.py demo shock adiabat.m Generates the points on a frozen shock adiabat and creates
an output file.

demo shock point.py demo shock point.m This is a demonstration of how to compute frozen and equilibrium
postshock conditions for a single shock Mach number. Computes transport properties and thermody-
namic states.

demo shock state isentrope.m Computes frozen post-shock state and isentropic expansion for specified shock
speed. Create plots and output file.

demo ShockTube.py demo ShockTube.m Calculates the solution to ideal shock tube problem. Three cases
possible: conventional nonreactive driver (gas), constant volume combustion driver (uv), CJ detonation
(initiate at diaphragm) driver (cj).

demo STGshk.py demo STGshk.m Generate plots and output files for a steady reaction zone between a
shock and a blunt body using the model of linear profile of mass flux ρw on stagnation streamline.

demo STG RZ.py demo STG RZ.m Compare propagating shock and stagnation point profiles using trans-
formation methodology of Hornung.

demo TP.py demo TP.m Explosion computation simulating constant temperature and pressure reaction.
Reguires function tpsys.m for ODE solver

demo TransientCompression.py demo TransientCompression.m Explosion computation simulating adiabatic
compression ignition with control volume approach and effective piston used for compression. Requires
adiasys.m function for ODE solver.

demo vN state.py demo vN state.m Calculates the frozen shock (vN = von Neumann) state of the gas behind
the leading shock wave in a CJ detonation.

demo ZNDCJ.py demo ZNDCJ.m Solves ODEs for ZND model of detonation structure. Generate plots and
output files for a for a shock front traveling at the CJ speed.

demo ZNDshk.py demo ZNDshk.m Solves ODEs for ZND model of detonation structure. Generate plots
and output files for a for a shock front traveling at a user specified speed U .

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_air_isentropes.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RH_CJ_isentropes.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_rocket_impulse.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_rocket_impulse.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_RZshock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RZshock.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_shock_adiabat.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_adiabat.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_shock_point.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_point.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_state_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ShockTube.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ShockTube.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_STGshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_STGshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_STG_RZ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_STG_RZ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_TP.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_TP.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_TransientCompression.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_TransientCompression.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_vN_state.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_vN_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDshk.m
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demo ZND CJ cell.py demo ZND CJ cell.m Computes ZND and CV models of detonation with the shock
front traveling at the CJ speed. Evaluates various measures of the reaction zone thickness and exother-
mic pulse width, effective activation energy and Ng stability parameter.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZND_CJ_cell.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND_CJ_cell.m
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Utility Programs

Checking and Updating Data

thermo check.py This Python script scans a Cantera .cti mechanism file to determine the size of jumps
in thermodynamic properties and derivatives. Identifies species with largest Cp/R jump. Provides
routines for finding all jumps and plotting thermodynamic properties of individual species. Only
works for NASA-7 polynomials with the current version of Cantera 2.3 and 2.4

thermo refit.m Refits thermodynamic data to eliminate jumps in properties at midpoint temperature.
Works with a list of species created by thermo check.py or individual species specified by user. Creates
a new NASA-7 fit and data structure for polynomial coefficients, writes output files in three formats
(cti, NASA-7 and NASA-9).

thermo replace.m Reads new thermodynamic data fits generated by thermo refit.m and batch processes
replaces the data in the NASA format data file using the list generated by check thermo.py. Currently
only works for NASA-7 polynomials.

thermo fit.m fit tabular thermodynamic data to generate NASA-7 polynomial fits and writes files in three
formats. An example input file is provided for 2-butenal

Statistical Thermodynamics

partition rotvib.m. Evaluation of the partition function for heteronuclear diatomic molecules and the result-
ing thermodynamic properties. Creates plots and output files, data files in the form of Cantera cti file,
NASA 7 and NASA 9 formats.

The spectroscopic data needed to compute the energy levels is provided in files for three molecules.

NO rotvib.m Nitric oxide (NO), first 15 electronic states.

OH rotvib.m Hydroxyl (OH), first 4 electronic states.

CH rotvib.m Methylidyne (CH), first 6 electronic states.

249

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_check.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_refit.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_replace.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/thermo_fit.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/twobutenal.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/partition_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/NO_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/OH_rotvib.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/cti/utilities/CH_rotvib.m
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Chapter 15

Hints and Tips

The routines provided in the Toolbox are reasonably robust but do not always yield the correct answer or
even result in errors that cause the programs halt with error messages. Usually these issues can be resolved
by adjusting the parameters that control the routine algorithms. In some cases, you may have to investigate
the innards of the toolbox and do some diagnostic work. The routines are not particularly sophisticated and
should be considered “research” grade software which does not attempt to prevent user errors or provide
particularly verbose error messages. On the other hand, these have been used by successfully by many
generations of students and professional researchers. Based on these experiences here are some observations
about possible problems and tips for solutions.

Jump Conditions

For certain cases, the jump conditions will not converge. In those instances, it may be necessary to adjust
the error bounds and convergence parameters.

Three parameters control the convergence and bounds on the specific volume for the Newton-Raphson
iteration used to solve the jump conditions. These are specified in files located in the SDToolbox directory:

MATLAB Function - SDTconfig.m
Python Function - config.py

The default values of these parameters are:

ERRFT = 1e-4;

ERRFV = 1e-4;

volumeBoundRatio = 5;

The values of the error parameters represent the maximum relative errors allowed for convergence of
shock and detonation jump condition computations, see the discussion in Section 8.1. Iteration ceases and
the solution is returned when the conditions ∆T/T < ERRFT and ∆v/v < ERRFV are both met.

The value of volumeBoundRatio is the lower bound on specific volume ratio v1/v2 used as a starting point
for the iteration. For shock waves in gases with a high specific heat, higher values of volumeBoundRatio

may be required in order to get solutions but care must be taken not to select volumeBoundRatio larger
than the maximum value possible on the Hugoniot. The perfect gas analytical solution for strong shock is a
useful estimate if the ratio of specific heats γ is known.

v1
v2,min

≥ γ + 1

γ − 1
(15.1)

In rare instances, Cantera may fail to converge to an equilibrium composition. The equilibrium solvers are
fairly robust but you may find that there are particular combinations of stoichiometry and thermodynamic
state, particularly for exothermic mixtures, that halt with error messages. This can often be solved by
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http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/SDTconfig.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/sdtoolbox/config.py
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using compositions are slightly displaced from equivalence ratios of precisely unity and for sufficiently rich
mixtures, the stoichiometries that determine the possible oxidation states of H (H2 vs H2O) and C (CO2 vs
CO vs C) can be problematic. Displacing the compositions slightly from the precise values that define those
boundaries may be helpful in obtaining convergence.

ODE Solvers

The functions cvsolve, cpsolve, zndsolve as well as other programs that use ordinary differential equa-
tions solvers will require some adjustment of input parameters when used with reaction mechanisms and
compositions other than those selected in the demo programs.

Time trouble

If the t_end parameter is too small, a peak in the reaction zone energy release will not be found. The
solution is simply to increase the value of t_end. However, excessively large values of t_end can result in a
lengthy simulation and a frustrated user. For ZND solutions, if a sonic point is reached within the reaction
zone, the solution will be singular and the ode solver will halt with an error message. This can be avoided
by either reducing t_end or using an events function to halt the ode solver gracefully when the sonic point
is approached. This approach is needed to compute so called “eigenvalue” solutions or models of reaction
zone structure with area change, friction or thermal energy losses.

Convergence issues

If you have trouble getting a converged solution with the ode solver, this is usually associated with large
mechanisms for hydrocarbons. There are often species that are present in very small amounts at the end of
the reaction zone and change (decrease) rapidly in the energy release portion of the reaction zone. Although
these are usually not significant to resolve in the post-energy release zone, if the solver takes too large a time
step, negative species amounts will result in the solver halting with an error message. Cantera will report
an error but the difficulty is fundamentally with the ode solver.

The issue is created by the solver automatically adjusting the time step based on the state of the solution
and derivatives. This is usually not an issue but can be a problem if there is a sudden change in conditions that
the time step algorithm cannot handle properly. This happens within energy release zone for compositions
and conditions with long induction zone and short energy release zone. The time step will be increased within
the induction zone to sufficiently large values so that rapid decreases in minor species at the end of induction
can create problems in the form of negative concentrations, which are an anathema to the thermodynamic
state.

There are three approaches to dealing with these problems.

1. Switch solvers.

a. For python programs, use LSODA or BDF, these are more robust alternatives to the Radau

solver that was used in previous versions of the toolbox. A method parameter has been
added to the calls and the default is LSODA.

b. For MATLAB programs, try ode23tb instead of the ode15s that is the default. However, it
is often necessary to reduce the maximum time step and tolerance parameters.

2. Reduce the tolerance paramters, absTol, relTol

3. Reduce the max_step parameter

Examine the species (particularly the minor species) near the energy release region to determine what
sort of abs_tol and max_step are needed. The values can be surprisingly small in order to avoid oscillations
in species concentrations.
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Underdriven detonations

An underdriven or sub-CJ detonation is shock wave with U < UCJ. A ZND reaction zone simulation of an
underdriven case will always terminate in a sonic singularity and the solver will halt with an error message.
The solution is valid up to this point but if will be necessary to reduce t_end or add a events function to the
ode solver to enable the solver to halt normally and output the solution. If reaction zone length or time scale
estimates are needed for sub-CJ cases, constant pressure or constant volume simulations should be used.

If the postshock_eq function is called with U < UCJ, a solution may be returned that is not valid.
Always check the CJ speed and only use results from equilibrium postshock computations for U ≥ UCJ.

Weak Shocks

The shock jump conditions only have solutions for U > a where a is the sound speeds. Attempts to solve
the jump conditions with U close to or smaller than a will either fail with an error or result in an invalid
solution. It is good practice to compare the magnitude of the shock speed with the sound speed before
computing shock jump conditions.
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Dave Goodwin (1957-2012), late Professor of Mechanical Engineering and Applied Physics at Caltech,
had the vision to create Cantera and making it an open resource. Dave and his students, particularly
Vaughan Thomas, provided us with substantial assistance in solving problems and extending the capabilities
of Cantera for our purposes. The viability and stability of the Cantera code base is due to the dedicated
volunteer efforts of the Cantera developers who have taken over this project.

Bob Kee, currently Professor at the Colorado School of Mines, led the development effort for CHEMKIN
while he was at Sandia Laboratories. He provided substantial help to JES in creating the first generation
of shock and detonation programs based on the CHEMKIN library. Hai Wang while at USC (currently at
Stanford) helped us understand his method of specific heat extrapolation and provided us with programs that
we initially used for extending some of his reaction mechanisms to higher temperatures. Graduate students
and postdoctoral scholars who worked in the Explosion Dynamics Laboratory at Caltech have contributed to
taking care of the legacy codes and extending the capabilities. In particular, Mike Kaneshige, Eric Schultz,
and Florian Pintgen did substantial work on software development and reaction mechanism validation using
the legacy software.

Two researchers made substantial contributions to this field and we have benefited substantially from
their efforts. Prof. W. C. Reynolds (1933-2004) of Stanford University created STANJAN and shared the
source code with JES, which enabled us to reverse-engineer and modify his algorithms for our purposes.
A specially modified-version of STANJAN was used in our laboratories for many years to compute shock
and detonation problems. Bonnie McBride (d. 2005)of NASA Glenn shared her thermodynamic libraries,
computer codes, and knowledge of chemical equilibrium numerical methods.

Graduate students did a substantial amount of the software development and documentation. Shannon
Kao (née Browne) implemented and carefully tested the fundamental jump solution methods, as well as did
extensive documentation and testing of the scripts for Cantera 1.7 to 2.0. Jack Zeigler developed the initial
Python 2.5 scripts. The scripts were revised by Neal Bitter and Bryan Schmidt for use with Cantera 2.1 and
Python 2.7 in 2015. Conversion to Cantera 2.3, testing and upgrading to Python 3.5 was accomplished in
2017-18 by Joel Lawson, who rewrote the Python toolbox and wrote new demonstration programs. Matei
Radulescu provided his implementation of the Python ZND routine, which was useful in developing the new
toolbox routines. Matt Leibowitz and Nelson Yanes motivated and tested the vibrational relaxation and
Landau-Teller models for shock wave structure; the simplified model for stagnation point flow and mapping
to propagating shock waves originated from Hans Hornung. This is the third version of the SDToolbox and
this document is based on the earlier versions of two reports, Browne et al. (2005b) and Browne et al. (2017).
Shannon Kao contributed substantially to those reports and developed the extensive online documentation
for earlier versions of the toolbox.

How to reference this report (SDToolbox) with bibtex:

@techreport{explosion_dynamics_laboratory_sdtoolbox_2020,

title = "{SDToolbox}: {N}umerical Tools for Shock and Detonation Wave Modeling",

author = "{E}xplosion {D}ynamics {L}aboratory",

year = {2020},

month = jan,

address = {{Pasadena, CA}},

institution = {{California Institute of Technology}},

number = {FM2018.001},

type = {{GALCIT Report}},

note="Contributors: {Kao, S. T. and Ziegler, J. L. and Bitter, N. P.

and Schmidt, B. E. and Lawson, J. and Shepherd, J. E.}. See the Shock and
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Heufer, Eric L. Petersen, and Henry J. Curran. An ignition delay time and chemical kinetic modeling
study of the pentane isomers. Combustion and Flame, 163:138–156, January 2016. 185, 186

Alexander Burcat and Michael Dvinyaninov. Ignition Delay-Times of n-Pentane in a Shock Tube. In
Raymond Brun and Lucien Z. Dumitrescu, editors, Shock Waves @ Marseille II, pages 197–202. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1995. viii, 185, 186

Alexander Burcat, Karl Scheller, and Assa Lifshitz. Shock-tube investigation of comparative ignition delay
times for C1-C5 alkanes. Combustion and Flame, 16(1):29–33, February 1971. 185

Michael P. Burke, Marcos Chaos, Yiguang Ju, Frederick L. Dryer, and Stephen J. Klippenstein. Compre-
hensive H2/O2 kinetic model for high-pressure combustion. International Journal of Chemical Kinetics,
44(7):444–474, July 2012. vii, 169, 170, 171

Marcos Chaos and Frederick L. Dryer. Chemical-kinetic modeling of ignition delay: Considerations in
interpreting shock tube data. International Journal of Chemical Kinetics, 42(3):143–150, March 2010.
199



D
RA
FT

260 CHAPTER 15. HINTS AND TIPS

D. L. Chapman. On the rate of explosion in gases. Philos. Mag., 14:1091–1094, 1899. 72

M.W. Chase, Jr., C. A. Davies, Jr. Downey, J. R., D J Frurip, R. A. McDonald, and A N Syverud. NIST-
JANAF Thermochemical Tables. NIST Standard Reference Database 13, 1998. Update of 3rd Edition.
21, 59

Dongping Chen, Kun Wang, and Hai Wang. Violation of collision limit in recently published reaction models.
Combustion and Flame, 186:208–210, December 2017. 176, 177

Peter J. Chen and Morton E. Gurtin. Growth and Decay of One-Dimensional Shock Waves in Fluids with
Internal State Variables. Physics of Fluids, 14(6):1091–1094, 1971. 209

G. Ciccarelli and S. Dorofeev. Flame acceleration and transition to detonation in ducts. Prog. Energy
Combust. Sci., 34(4):499–550, August 2008. in press. 89

J. F. Clarke and M. McChesney. The Dynamics of Real Gases. Butterworths, 1964. 4, 129

L.D. Cloutman. A Selected Library of Transport Coefficients for Combustion and Plasma Physics Appli-
cations. Technical Report UCRL-ID-139893, Lawrence Livermore National Laboratory, Livermore, CA,
August 2000. ix, 309

Marcia Cooper. Impulse Generation by Detonation Tubes. PhD thesis, California Institute of Technology,
Pasadena, California, June 2004. Electronic version available at. 137, 218

S.A. Coronel, J.-C. Veilleux, and J. E. Shepherd. Ignition of Stoichiometric Hydrogen-Oxygen by Water
Hammer. Proceedings of the Combustion Institute, 38(3):3537–3545, 2020. 199

R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Interscience, 1948. 65

W C Davis, T R Salyer, S I Jackson, and T D Aslam. Explosive-Driven Shock Waves in Argon. In Proceeding
of the 13th International Detonation Symposium, pages 1035–1044, 2006. 53

B deB Darwent. Bond Dissociation Energies in Simple Molecules. Technical Report NBS-21, National
Bureau of Standards, 1970. 312

K. Denbigh. The Principles of Chemical Equilibrium. Cambridge University Press, fourth edition, 1981. 9,
43, 99, 100, 102, 164

JP Dionne, R Duquette, A Yoshinaka, and JHS Lee. Pathological detonations in h-2-cl-2. COMBUSTION
SCIENCE AND TECHNOLOGY, 158:5–14, 2000. 17th International Colloquium on the Dynamics of
Explosions and Reactive Systems, HEIDELBERG, GERMANY, JUL 25-30, 1999. 196

W. Doering. Uber den Detonationsvorgang in Gasen. Annalen der Physik, 43, 1943. 5, 189

C. A. Eckett, J. J. Quirk, and and J. E. Shepherd. The role of unsteadiness in direct initiation of gaseous
detonations. Journal of Fluid Mechanics, 421:147–183, 2000. 113, 210, 222, 223, 224

G. Emanuel. Shock Wave Dynamics - Derivatives and Related Topics. CRC Press/Taylor & Francis, Boca
Raton, FL, 2013. 209, 210

B Fegley, Jr. Practical Chemical Thermodynamics for Geoscientists. Elsevier, 2013. 43

W. Fickett and W. C. Davis. Detonation. University of California Press, Berkerely, CA, 1979. 43, 50, 72,
74, 75, 96, 127, 132, 139, 181, 196, 209, 213

W. C. Gardiner, editor. Combustion Chemistry. Springer Verlag, 1984. 162, 167

I. I. Glass and J. P. Sislian. Nonstationary Flows and Shock Waves. Claredon, Oxford, 1994. 88, 90

S.S. Goldsborough, S. Hochgreb, G. VanHove, M. Woolridge, H.J. Curran, and C-J. Sung. Advances in
rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Prog.
Energy Combust. Sci., 63:1–78, 2017. 199



D
RA
FT

261

David G. Goodwin, Harry K. Moffat, and Raymond L. Speth. Cantera: An Object-oriented Software Toolkit
for Chemical Kinetics, Thermodynamics, and Transport Processes, 2017. Version 2.4.0. 1, 309

S. Gordon and B. J. McBride. Computer Program for the Calculation of Complex Chemical Equilibrium
Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations.
Technical Report SP-273, NASA, 1976. 43, 55, 86

S. Gordon and B. J. McBride. Thermodynamic Data to 20 000 K for Monatomic Gases. Technical Paper
1999-208523, NASA, 1999. 28

Sanford Gordon and Bonnie J. McBride. Computer Program for Calculation of Complex Chemical Equilib-
rium Compositions and Applications. I. Analysis. Reference Publication RP-1311, NASA, 1994. Describes
theory and numerical algorithms behind CEA computer program. 55

H. Guo. Quantum dynamics of complex-forming bimolecular reactions. International Reviews in Physical
Chemistry, 31(1):1–68, January 2012. 162

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein. Spectroscopy and Optical Diagnostics for Gases.
Springer, 2016. 28, 39, 161, 309

W. D. Hayes. Gasdynamic Discontinuities. Princeton, 1960. Excerpted from \em Fundamentals of Gasdy-
namics, edited by H. W. Emmons. 294

M.L. Hobbs, M.R. Baer, and B.C. McGee. JCZS: An Intermolecular Potential Database for Performing
Accurate Detonation and Expansion Calculations. Propellants, Explosives, Pyrotechnics, 24:269–279, 1999.
146

H. G. Hornung. Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. Journal of
Fluid Mechanics, 53(1):149–176, 1972. 201, 210

H. G. Hornung. Deriving Features of Reacting Hypersonic Flow from Gradients at a Curved Shock. AIAA
Journal, 48(2):287–296, February 2010. AIAA 5th Theoretical Fluid Mechanics Meeting, Seattle, WA,
JUN 23-26, 2008. 210, 222

H.G. Hornung. Gradients at a curved shock in reacting flow. Shock Waves, 8(1):11–21, February 1998. 210,
222

H.G. Hornung and M.J. Kaneshige. Gradients at a curved shock in reacting flow - Erratum. Shock Waves,
8(1):11–21, February 1998. 222

P.L. Houston. Chemical Kinetics and Reaction Dynamics. McGraw-Hill, New York, 2001. 173, 177, 178

V. N. Huff, S. Gordon, and V.E. Morell. General Method and Thermodynamic Tables for Computation
of Equilibrium Composition and Temperature of Chemical Reactions. Technical Report NACA 1037,
National Advisory Committee for Aeronautics, 1951. 43

P. Hung and J. E. Shepherd. Initiation of stabilized detonations by projectiles. In Z. Jiang, editor, Shock
Waves, pages 769–774. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. 210, 222

Patrick Hung. Algorithms for Reaction Mechanism Reduction and Numerical Simulation of Detonations
Initiated by Projectiles. PhD thesis, California Institute of Technology, Pasadena, California, June 2003.
For a version formatted for printing, see this. 222

K. K. Irikura and D. J. Frurip, editors. Computational Thermochemistry: Prediction Amd Estimation of
Molecular Thermodynamics. American Chemical Society, 1998. 23

A.W. Irwin. Refined diatomic partition functions. Astron. Astrophys., 182:348–358, 1987. 29

K.G. Joback and R.C. Reid. Estimation of Pure-Component Properties from Group-Contributions. Chemical
Engineering Communications, 57(1-6):233–243, July 1987. 147



D
RA
FT

262 CHAPTER 15. HINTS AND TIPS

C.O. Johnston and A.M. Brandis. Modeling of nonequilibrium CO Fourth-Positive and CN Violet emission
in CO 2 –N 2 gases. Journal of Quantitative Spectroscopy and Radiative Transfer, 149:303–317, December
2014. 207

E. Jouguet. On the propagation of chemical reactions in gases. J. de Mathematiques Pures et Appliquees, 1:
347–425, 1905. continued in 2:5-85, 1906 72, 74
continued in 2:5-85, 1906.

Michael J. Kaneshige. Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles. PhD
thesis, California Institute of Technology, Pasadena, California, January 1999. 210, 222

Shannon Kao. Detonation Stability with Reversible Kinetics. PhD thesis, California Institute of Technology,
Pasadena, California, June 2008. Electronic version available to internal users at. 133, 184, 195, 213, 214

R. J. Kee, J. A. Miller, and T. H. Jefferson. CHEMKIN: A General–Purpose, Problem–Independent, Trans-
portable, Fortran Chemical Kinetics Code Package. Technical Report SAND80-8003, Sandia National
Laboratories, 1980. 55

R. J. Kee, F. M. Rupley, and J. A. Miller. The CHEMKIN Thermodynamic Data Base. Technical Report
SAND87-8215, Sandia National Laboratories, 1987. 55

R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J.A. Miller, and H.K. Moffat. A Fortran Computer
Code Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties. Technical Report
SAND86-8246B, Sandia National Laboratories, Livermore, CA, 1998. ix, 309

R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting Flow. John Wiley & Sons, 2003. 23, 127,
128, 143, 167, 169

J.E. Kennedy and J.W. Nunziato. Shock-wave evolution in a chemically reacting solid. Journal of the
Mechanics and Physics of Solids, 24(2-3):107–124, June 1976. 209

G.A. Khachkuruzov. On Determination of JMAX for Diatomic Molecules I. General Considerations. Optics
and Spectroscopy - USSR, 21(2):91–93, 1966. 30, 31

G.A. Khachkuruzov. Determination of JMAX in Diatomic Molecules II. Relationships Based on the Morse
and Hulburt-Hirschfelder Functions. Optics and Spectroscopy - USSR, 22(1):11–13, 1967. 30, 31

G.A. Khachkuruzov. Determination of JMAX of Diatomic Molecules 3. Approximate Relations. Optics and
Spectroscopy - USSR, 30(5):455–458, 1971. 30

J. G. Kirkwood. Shock and Detonation Waves. Gordon and Breach, 1967. 74, 127

John G. Kirkwood and William W. Wood. Structure of a Steady-State Plane Detonation Wave with Finite
Reaction Rate. The Journal of Chemical Physics, 22(11):1915–1919, November 1954. 127

G. B. Kistiakowsky and E. B. Wilson. Final Report on The Hydrodynamic Theory of Detonation and Shock
Waves. Technical Report OSRD-114, Office of Scientific Research and Development, 1941. 296

D. Kondepudi and I. Prigogine. Modern Thermodynamics. John Wiley and Sons, first edition, 1998. ix, 9,
44

Explosion Dynamics Laboratory. SDToolbox: Numerical Tools for Shock and Detonation Wave Modeling.
GALCIT Report FM2018.001, California Institute of Technology, Pasadena, CA, March 2020. Contribu-
tors: {Kao, S. T. and Ziegler, J. L. and Bitter, N. P.
and Schmidt, B. E. and Lawson, J. and Shepherd, J. E.}. See the Shock and
Detonation Toolbox Website \url{http://shepherd.caltech.edu/EDL/PublicResources/sdt/}
for related software packages and updates. 213, 256

Keith J. Laidler. Chemical Kinetics. Harper and Row, 3rd edition, 1987. 159, 167, 173, 177, 178

J. H. S. Lee. The Detonation Phenomenon. Cambridge University Press, New York, NY USA, 2008. 181



D
RA
FT

263

R.D. Levine and R.B. Bernstein. Molecular Reaction Dynamics and Chemical Reactivity. Oxford University
Press, 1987. 176, 178

Z. Liang, S. Browne, R. Deiterding, and J. E. Shepherd. Detonation Front Structure and the Competition
for Radicals. In Proceedings of the 31rst Combustion Institute, volume 31, pages 2445–2453, 2007. 186

H. W. Liepmann and A. Roshko. Elements of Gasynamics. Wiley, New York, 1957. 65, 86, 137, 271, 282

A. Lutz, F. M. Rupley, and R. J. Kee. EQUIL: A CHEMKIN implementation of STANJAN, for computing
chemical equilibria. Technical Report SAND96-XXXX, Sandia National Laboratories, Livermore CA,
1996. 51

A. Maczek. Statistical Mechanics. Oxford Science Publications, 2004. 23

C. Mader. Numerical Modeling of Detonation. University of California Press, Berkerely, CA, 1979. 43

B. J. McBride and S. Gordon. Computer Program for Calculating and Fitting Thermodynamic Functions.
Reference Publication 1271, NASA, 1992. 28, 37, 59

B. J. McBride, M. J. Zehe, and S. Gordon. NASA Glenn Coefficients for Calculating Thermodynamic
Properties of Individual Species. Technical Paper 2002-211556, NASA, 2002. 27, 34, 35, 55, 58, 59, 312

Bonnie J. McBride and Sanford Gordon. Computer Program for Calculation of Complex Chemical Equilib-
rium Compositions and Applications. II. User’s Manual and Program Description. Reference Publication
RP-1311-P2, NASA, 1996. 43, 55

Bonnie J. McBride, Sanford Gordon, and Martin A. Reno. Coefficients for Calculating Thermodynamic
and Transport Properties of Individual Species. Technical Memorandum TM-4513, NASA, 1993. This
describes the pre-1994 7-coefficient fit, which is used in Cantera. 55, 59

M.L. McGlashan. Chemical Thermodynamics. Academic Press, 1979. 21, 303

D. A. McQuarrie. Statistical Mechanics. Harpers Chemistry Series. Harper Collins Publishers, 1976. 23, 24,
25, 39, 41, 53, 173
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Appendix A

Perfect Gas Analytical Solutions

The perfect gas has a constant heat capacity and we assume a fixed composition across the shock, so that
for both upstream and downstream states, the equation of state is given by

P = ρRT (A.1)

h = cPT (A.2)

The classical studies of gas dynamics use this model extensively since the jump conditions and many other
problems can be solved exactly. A compendium of exact solutions for perfect gases is given in the NACA
1135 report (1953); derivations and discussion can be found in texts and monographs on compressible flow
(e.g., Liepmann and Roshko, 1957, Thompson, 1972).

A.1 Incident Shock Waves

The standard approach in classical gas dynamics is to express the solutions in terms of nondimensional
variables and parameters. Instead of the specific heat capacity, the gas is characterized by the nondimensional
parameter γ = cP /cv, the ratio of specific heats. Instead of velocities, the Mach number is used

M = w/a (A.3)

For a perfect gas, because the specific heat is constant, there is a single sound speed.

a =
√
γRT (A.4)

The conservation relationships can be analytically solved in terms of the jump or change in properties,

[F ] = F2 − F1 , (A.5)
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across the wave

[P ]

P1
=

2γ

γ + 1

(
M2

1 − 1
)

(A.6)

[w]

a1
= − 2

γ + 1

(
M1 −

1

M1

)
(A.7)

[v]

v1
= − 2

γ + 1

(
1− 1

M2
1

)
(A.8)

[s]

R
= − ln

(
Pt2

Pt1

)
(A.9)

Pt2

Pt1
=

1(
2γ

γ + 1
M2

1 −
γ − 1

γ + 1

) 1

γ − 1

 γ + 1

2
M2

1

1 +
γ − 1

2
M2

1


γ

γ − 1

(A.10)

Using the transformation from wave-fixed to laboratory frame, we have

[w] = −[u] (A.11)

so that

[u]

a1
=

2

γ + 1

(
M1 −

1

M1

)
(A.12)

(A.13)

We can also analytically express the shock adiabat or Hugoniot

P2

P1
=

γ + 1

γ − 1
− v2

v1
γ + 1

γ − 1

v2
v1
− 1

(A.14)

or alternatively

P2

P1
= 1 +

2γ

γ + 1

(
M2

1 − 1
)

(A.15)

=
2γ

γ + 1
M2

1 −
γ − 1

γ + 1
(A.16)

ρ2
ρ1

=
γ + 1

γ − 1 +
2

M2
1

(A.17)

M2
2 =

M2
1 +

2

γ − 1
2γ

γ − 1
M2

1 − 1
(A.18)

Another useful equation is Prandtl’s relation,

w1w2 = a∗2, (A.19)

where a∗ is the sound speed at a sonic point obtained in a fictitious isentropic process in the upstream flow.

a∗ =

√
2
γ − 1

γ + 1
ht, ht = h+

w2

2
(A.20)
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A.2 Reflected Shock Waves

Several relationships for reflected waves can be derived by based on the fact that fluid adjacent to a stationary
surface must be stationary. Figure 6.8 (Section 6.6) illustrates a possible geometry for wave reflection. The
above condition requires that

u1 = u3 = 0 . (A.21)

Therefore, the jump in velocity across the reflected wave,

[u]R = u3 − u2 = −u2 (A.22)

is the exact opposite of the jump in velocity across the incident wave,

[u]I = u2 − u1 = u2 , (A.23)

or

[u]I = −[u]R (A.24)

The Rayleigh line equation (6.16) can be expressed in terms of jumps in properties, i.e.

[u]2 = −[P ][v] (A.25)

Now we relate the Rayleigh line of each wave

[P ]R[v]R = [P ]I [v]I . (A.26)

Pressure Jump

Using the perfect gas Hugoniot relationship (A.14) for both the incident and reflected waves, we can eliminate
the volume jumps and find a relationship between the pressure ratios across the incident and reflected waves.
Using the notation in Section 6.6,

P3

P2
=

(3γ − 1)
P2

P1
− (γ − 1)

(γ − 1)
P2

P1
+ (γ + 1)

(A.27)

The pressure ratio across the reflected shock is always less than across the incident shock and has a limiting
value for large incident shock speeds of

P3

P2
→ 3γ − 1

γ − 1
as

P2

P1
→∞ (A.28)

On the other hand, for small incident shock speeds, the pressure ratio across the reflected and incident shock
waves approaches 1. In this limit, if we expand about the initial state,

P3

P2
− 1 =

P2

P1
− 1− γ − 1

2γ

(
P2

P1
− 1

)2

+

(
γ − 1

2γ

)2(
P2

P1
− 1

)3

+ . . . , (A.29)

and retain only the first order terms of the series, we obtain the acoustic result, i.e. the pressure rise across
the reflected shock is equal to the rise across the incident shock. In other words, the total pressure rise
(P3 − P1) is twice the pressure rise due to the incident wave (P2 − P1).

P3 − P1 ≈ 2 (P2 − P1) for acoustic waves (A.30)
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Mach Number

Similarly, we can determine an expression for the reflected shock Mach number. First, we define the incident
and reflected shock Mach numbers.

MI =
UI

a1
(A.31)

MR =
UR + u2

a2
. (A.32)

Then, using the velocity jump relation (A.12) and recalling (A.21), we relate the two Mach numbers

MR −
1

MR
=

a1
a2

(
MI −

1

MI

)
. (A.33)

The left-hand side is a function α of the incident shock speed

α =
a1
a2

(
MI −

1

MI

)
. (A.34)

For a specified incident shock Mach number, we can compute α and find the reflected shock Mach number
by solving the resulting quadratic equation

MR =
α+
√
α2 + 4

2
. (A.35)

From the incident shock jump conditions, α ranges between zero and a maximum value which is only a
function of γ. Taking the limit as MI → ∞, we find that

αmax =
γ + 1√
2γ(γ − 1)

(A.36)

which means that the reflected shock Mach number ranges betweem one and a maximum value of

MR,max =

√
2γ

γ − 1
. (A.37)

Enthalpy

For strong incident shock waves, we can derive from the reflected shock relationships (6.46)-(6.48), the
approximate results

h2 ≈ h1 +
1

2
U2
I (A.38)

h3 ≈ h2 +
1

2
U2
I (A.39)

so that the enthalpy behind a strong reflected shock wave is

h3 ≈ h1 + U2
I (A.40)

which is very useful in estimations of the reservoir enthalpy in the reflected shock tunnels.
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A.3 Detonation Waves in Perfect Gases

The jump conditions given in Section 6.1 are

ρ1w1 = ρ2w2 (A.41)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 (A.42)

h1 +
w2

1

2
= h2 +

w2
2

2
(A.43)

s2 ≥ s1 (A.44)

Perfect-Gas, 2-γ Model

For a detonation, we assume two perfect gases, reactant (1) and product (2), with different specific heats
and molecular weights. In this case, there will be two gas constants. We also assume an energy release, q,
due to exothermic chemistry. Now our thermodynamic relations are

h1 = cP1T + h0,1 (A.45)

h2 = cP2T + h0,2 (A.46)

q = h0,1 − h0,2 (A.47)

P1 = ρ1R1T1 (A.48)

P2 = ρ2R2T2 (A.49)

cP1 =
γ1R1

γ1 − 1
(A.50)

cP2 =
γ2R2

γ2 − 1
(A.51)

We substitute these into the jump conditions to yield:

P2

P1
=

1 + γ1M
2
1

1 + γ2M2
2

(A.52)

v2
v1

=
γ2M

2
2

γ1M2
1

1 + γ1M
2
1

1 + γ2M2
2

(A.53)

T2

T1
=

γ1R1

γ2R2

1

γ1 − 1
+

1

2
M2

1 +
q

a21
1

γ2 − 1
+

1

2
M2

2

(A.54)

Additionally, the entropy variation along adiabat is

ds =
1

2T
(v1 − v)2 d(ρw)2 (A.55)

A.4 Chapman-Jouguet Conditions

At the CJ point, the isentrope, and Hugoniot and Rayleigh line are all tangent.

PCJ − P1

vCJ − v1
=

(
∂P

∂v

)
H

=

(
∂P

∂v

)
s

(A.56)

which implies that the product velocity is sonic relative to the wave

w2,CJ = a2 (A.57)
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Jouguet’s Rule

w2 − a2

v2
=

[
1− G

2v
(v1 − v)

] [(
∂P

∂v

)
Hug

− ∆P

∆v

]
(A.58)

where G is the Grúniesen parameter.

The flow downstream of a detonation is subsonic relative to the wave for points above the CJ state and
supersonic for states below.

A.5 Two-γ CJ Conditions

Using the CJ conditions and the perfect-gas, 2-γ model, and the Mach number for the upper CJ (detonation)
point

MCJ =

√
H+

(γ1 + γ2)(γ2 − 1)

2γ1(γ1 − 1)
+

√
H+

(γ2 − γ1)(γ2 + 1)

2γ1(γ1 − 1)
(A.59)

where the parameter H is the nondimensional energy release

H =
(γ2 − 1)(γ2 + 1)q

2γ1R1T1
=

γ2
2 − 1

2

q

a21
, (A.60)

q = h01 − h02 . (A.61)

The inverse relationship is

q

γ1R1T1
=

1

2

(
γ2
γ1

)2 (1 + γ1M
2
CJ

)2
(γ2

2 − 1)M2
CJ

− 1

γ1 − 1
− M2

CJ

2
(A.62)

Other quantities of interest include

• CJ pressure

PCJ

P1
=

1 + γ1M
2
CJ

γ2 + 1
(A.63)

• CJ density

ρCJ

ρ1
=

γ1(γ2 + 1)M2
CJ

γ2(1 + γ1M2
CJ)

(A.64)

• CJ temperature

TCJ

T1
=

PCJ

P1

ρ1
ρCJ

R1

R2
(A.65)

• CJ sound speed

aCJ

a1
=

γ2
γ1

1 + γ1M
2
CJ

(1 + γ2)MCJ
(A.66)

• Effective energy release parameter

q

a21
=

γ2 + 1

2(γ2 − 1)

(
aCJ

a1

)2

−
(

1

γ1 − 1
+

M2
CJ

2

)
(A.67)
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A.6 One-γ CJ Conditions

A common approximation used in analytical and some numerical studies is to assume that ratio of specific
heats γ has a common value and is constant in both reactants and products; usually, the additional assump-
tions are made that the molar masses in reactants and products are equal. The analytical expressions for
the CJ state are particularly simple for this case:

MCJ =

√
γ + 1

2

q

CpT1
+ 1 +

√
γ + 1

2

q

CpT1
(A.68)

PCJ

P1
=

γM2
CJ + 1

γ + 1
(A.69)

ρCJ

ρ1
=

(γ + 1)M2
CJ

1 + γM2
CJ

(A.70)

TCJ

T1
=

(
γM2

CJ + 1
)2

M2
CJ(γ + 1)2

(A.71)

A useful alternative relationship between energy release and CJ Mach number is

MCJ −
1

MCJ
=

√
2q(γ2 − 1)

γRT1
(A.72)

which yields the following relation for the effective energy release parameter

q

a21
=

γ2 − 1

2

(
MCJ −

1

MCJ

)2

(A.73)

A.7 Strong detonation approximation

A useful limit for approximate analysis is MCJ ≫ 1. This simplifies the expressions for the CJ properties
(A.63)-(A.65).

UCJ ≈
√

2(γ2
2 − 1)q (A.74)

ρCJ ≈
γ2 + 1

γ2
ρ1 (A.75)

PCJ ≈
1

γ2 + 1
ρ1U

2
CJ (A.76)

aCJ ≈
γ2UCJ

γ2 + 1
(A.77)

uCJ ≈
UCJ

γ2 + 1
(A.78)

A.8 Reflection of Detonation

A detonation wave incident on a rigid surface will reflect as a shock wave which propagates into the detonation
products. The computation of the properties behind the reflected wave proceed in the same fashion as with
the previous discussion for shock waves (Appendix A.2). When we compare the reflection of a detonation
wave (traveling at CJ velocity) with a nonreactive shock wave of the same speed, we find that the pressure
behind the resulting reflected shock wave is much higher in the case of the incident shock than the detonation.
This is because the momentum flux behind the shock wave is higher than that behind the detonation. The
chemical energy release in the detonation increases the equilibrium post-incident-wave temperature and
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lowers the post-incident-wave pressure, density, and particle velocity compared to a shock wave of the same
speed.

demo CJ and shock state.m demonstrates how to compute the following four states.

• CJ state: equilibrium behind a CJ detonation

• Frozen post-reflected-shock state resulting from reflection of a CJ detonation

• Frozen post-incident-shock state behind a shock traveling at the CJ speed

• Frozen post-reflected-shock state resulting from reflection of a frozen shock wave

for stoichiometric hydrogen-air mixtures.

CJ state

CJ speed 1968. (m/s)

CJ pressure 1.54 (MPa)

CJ temperature 2940. (K)

CJ density 1.511 (kg/m3)

w2 (wave frame) 1092. (m/s)

u2 (lab frame) 875.7 (m/s)

a2 (frozen) 1127. (m/s)

a2 (equilibrium) 1091. (m/s)

gamma2 (frozen) 1.242 (m/s)

gamma2 (equilibrium) 1.163 (m/s)

Reflected shock (equilibrium) from CJ detonation

Reflected wave speed 782.9 (m/s)

Reflected shock pressure 3.74 (MPa)

Reflected shock temperature 3297. (K)

Reflected shock density 3.200 (kg/m3)

Incident Shock (frozen) at CJ speed

shock speed 1968. (m/s)

shock pressure 2.74 (MPa)

shock temperature 1530. (K)

shock density 4.506 (kg/m3)

w2 (wave frame) 366.1 (m/s)

u2 (lab frame) 1602. (m/s)

a2 (frozen) 895.8 (m/s)

gamma2 (frozen) 1.319 (m/s)

Reflected shock (frozen)

Shock speed 1968. (m/s)

Reflected wave speed 599.4 (m/s)

Reflected shock pressure 18.63 (MPa)

Reflected shock temperature 2832. (K)

Reflected shock density 16.55 (kg/m3)

In this example, the pressure behind the reflection of a frozen shock wave is 18.6 MPa as compared with
3.74 MPa behind the reflection of the detonation. The ratio of reflected to incident post-wave pressure is
6.97 for the frozen incident shock wave and only 2.46 for the detonation case. The ratio computed for the

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ_and_shock_state.m
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detonation is found to be very insensitive to the mixture composition with both computed and measured
values being close to 2.5 (see Shepherd et al., 1991).

Following the derivation of Stanyucovich and Zel’dovich (Stanyukovich, 1960, p. 372-372), the ratio of
post-reflected to post-incident pressure can be approximately computed for detonations using ideas similar
to those for incident shock waves together with the strong detonation approximation (Appendix A.7). Using
the notation of Section 6.6, the Rayleigh line for the detonation can be written:

u22 = (P2 − P1) (v1 − v2) (A.79)

and applying the strong detonation approximation (A.78), this is

u22 ≈
P2v1
γ + 1

(A.80)

where we have dropped the subscripts on γ and assumed it has the same value for state 2 and 3. For the
reflected shock wave, the Rayleigh line is

u22 = (P3 − P2) (v2 − v3) . (A.81)

We can eliminate v3 by using the following form of the Hugoniot relation

v3
v2

=
(γ + 1)P3 + (γ − 1)P2

(γ − 1)P3 + (γ + 1)P2
. (A.82)

The volumes v2 and v1 can be eliminated by using the strong detonation relation (A.75)

v2 ≈
γv1
γ + 1

(A.83)

which results in a quadratic for the pressure ratio P3/P2. The solution to the quadratic is

P3

P2
=

5γ + 1 +
√
17γ2 + 2γ + 1

4γ
. (A.84)

For values of γ between 1 and 5/3 (realistic for gases), this approximate formula give values of the pressure
ratio between 2.4 and 2.5. Despite the very rough nature of the strong detonation approximation, the
resulting values are in reasonable agreement with detailed computations and experimental data as discussed
in Shepherd et al. (1991).
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A.9 Oblique Shocks in Perfect Gases

The jump conditions for oblique shocks in perfect gases can be expressed analytically in terms of the wave
angle β and upstream flow state by applying the transformation from laboratory coordinates to wave-fixed
coordinates and applying the usual shock jump conditions with a normal shock Mach number M1n specified
as

M1n = M1 sinβ (A.85)

where the freestream Mach number M1 = u1/a1. From Appendix A.1 the ratios of properties across the
shock are found to be

P2

P1
=

2γM2
1 sin2 β − (γ − 1)

γ + 1
(A.86)

ρ2
ρ1

=
(γ + 1)M2

1 sin2 β

(γ − 1)M2
1 sin2 β + 2

(A.87)

w1

u1
= cosβ (A.88)

v

u1
=

(γ − 1)M2
1 sin2 β + 2

(γ + 1)M2
1 sinβ

(A.89)

The flow deflection angle is given by

tan θ =
2 cotβ(M2

1 sin2 β − 1)

(γ + 1)M2
1 − 2(M2

1 sin2 β − 1)
(A.90)

Prandtl’s relationship is a tidy way to express the relationship between upstream and downstream normal
velocities in terms of a reference sonic state a2∗

w1w2 = a2∗ −
γ − 1

γ + 1
v2 (A.91)

a2∗ =
2

γ + 1
a21 +

γ − 1

γ + 1
u2
1 (A.92)
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A.10 Prandtl-Meyer Expansion in Perfect Gas

The definition of the Prandtl-Meyer function is

dω =
√
M2 − 1

du

u
(A.93)

The key idea for further developments is that along a streamline in steady, supersonic flow is that for
isentropic flow, the variation in all properties can be related to the stagnation state and the local flow
velocity or Mach number. In the case of a perfect gas, these can be expressed as analytic relationships. In
the adiabatic flow of a perfect gas, the conservation of energy can be expressed as

ht = h+
u2

2
(A.94)

where ()t is the stagnation state. This can be rewritten using the perfect gas relationship h = CpT with Cp

= γ/(γ − 1) where γ = CP /Cv is constant for a perfect gas.

Tt

T
= 1 +

γ − 1

2
M2 (A.95)

Using the perfect gas entropy relationships, the gas thermodynamic state can be obtained analytically

Pt

P
=

(
1 +

γ − 1

2
M2

) γ

γ − 1
, (A.96)

ρt
ρ

=

(
1 +

γ − 1

2
M2

) 1

γ − 1
. (A.97)

(A.98)

To simplify the Prandtl-Meyer function we start with the perfect gas expression for sound speed a =√
γRT as a function of Mach number

a2t
a2

= 1 +
γ − 1

2
M2 . (A.99)

Defining u = aM , this leads to the expression for velocity changes as

du

u
=

da

a
+

dM

M
, (A.100)

subsitute and simplifying, we find that

du

u
=

1

1 +
γ + 1

2
M2

dM

M
, (A.101)

and the Prandtl-Meyer function is defined by

dω =

√
M2 − 1

1 +
γ + 1

2
M2

dM

M
. (A.102)

The integration is tedious but can be performed analytically (the convention is to set ω(M = 1) = 0) to
yield

ω(M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1 (A.103)



D
RA
FT

282 APPENDIX A. PERFECT GAS ANALYTICAL SOLUTIONS

The use of this relationship is discussed in detail in books on compressible flow Liepmann and Roshko
(1957), Thompson (1972). The key result is that the Mach numbers upstream M1 and downstream M2 of
an expansion wave that turns the flow through an angle ∆θ are determined implicitly by the relation

ω(M2) = ω(M1)± |∆θ| (A.104)

where the choice of sign depends on the direction of the turn and we always have M2 > M1 > 1.
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A.11 Shock Tubes

The perfect gas shock jump conditions can be combined to obtain the following relationship between the
absolute change in velocity across the shock ∆u = |[u]| and the jump in pressure across the shock ∆P =
|[P ]|

∆P

P1
= γ

∆u

a1

γ + 1

4

∆u

a1
+

√(
γ + 1

4

∆u

a1

)2

+ 1

 , (A.105)

or equivalently

∆u

a1
=

1

γ

∆P

P1√
1 +

γ + 1

2γ

∆P

P1

. (A.106)

The relationship between pressure and velocity change across an expansion wave can be computed from the
Riemann invariants and the perfect gas isentropic relationships

∆P

P1
=

[
1− γ − 1

2

∆u

a1

]2γ/(γ−1)

− 1 . (A.107)

The maximum value of the velocity change is achieved with expansion to P = 0

∆umax =
2

γ − 1
a1 . (A.108)

These relationships can be used together to match pressure and velocity at states 2 and 3 to obtain the
following relationship between driver (state 4) and driven section (state 1) conditions and the shock Mach
number Ms = Us/a1.

P4

P1
=

[
1− a1

a4

γ4 − 1

γ + 1

(
Ms −

1

Ms

)]−2γ4
γ4−1

[
1 +

2γ1
γ1 + 1

(
M2

s − 1
)]

(A.109)

The limiting shock Mach number for P4/P1 → ∞ is

Ms →
a4
a1

γ1 + 1

γ4 − 1
(A.110)

These formulas are useful guides for shock tube performance at modest pressures and shock Mach numbers
but have to be used cautiously at high pressures and for strong shocks, see Section 7.11 for a discussion of
some of these issues.
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Appendix B

Differentials on the Hugoniot

In the numerical solution of the jump conditions for CJ velocity described in Chapter 8, we take advantage
of some special properties of solutions near the CJ point. The key result is that the deviation in detonation
speed δw = w1−WCJ is a quadratic function of the deviation of downstream specific volume δv = v2− vCJ.
This appendix derives this result for a generic equation of state, expresses the results for ideal gases in terms
of standard thermodynamic derivatives and verifies the results using the perfect gas analytical expressions.

B.1 Differential Relationships on the Hugoniot

We will use the following notation for partial derivatives evaluated at a specific state.(
∂f

∂x

)
1

= f1,x (B.1)(
∂2f

∂x2

)
1

= f1,xx (B.2)

where f is a function of x and 1 is the state where we evaluate the derivative. Also if we are holding y
constant, where f is also a function of y, we will express that as(

∂f

∂x

)
y

= (f,x)y (B.3)

Recall

• Rayleigh Line

P − P1 = −
(
w1

v1

)2

(v − v1) (B.4)

• Hugoniot

h− h1 = (P − P1)
(v + v1)

2
(B.5)

Now we find the Taylor expansion of P about P2 along the Hugoniot.

P = P2 + P2H,vδv +
1

2
P2H,vv(δv)

2 + ... (B.6)

We want an equation of the form

δw1 = C(δv)n (B.7)

285
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that explains how the curve w1(v2/v1) behaves near the post-shock state, so we perturb the system from
this state, state 2, where w∗

1 is the specific value of w1 that produces the chosen state 2.

v = v2 + δv (B.8)

w1 = w∗
1 + δw1 (B.9)

The equation of the Rayleigh line (B.4) becomes

P − P1 = − 1

v21
(w1 + δw1)

2((v2 + δv)− v1) (B.10)

and combined with the Hugoniot pressure expansion (B.6)

(P2 − P1) + P2H,vδv+
1

2
P2H,vv(δv)

2 + ...

= − 1

v21
(w∗2

1 + 2w∗
1δw1 + (δw1)

2)(v2 + δv − v1)
(B.11)

Now we can group terms in powers of δv

• Zero Order

(P2 − P1) = −
w∗2

1

v21
(v2 − v1) (B.12)

Because this is (B.4) evaluated at state 2, these terms cancel.

• Higher Order

P2H,v +
1

2
P2H,vv(δv)

2 + ... = −w∗2
1

v21
− 1

v21
(2w∗

1δ w1 + (δw1)
2)(v2 + δv − v1) (B.13)

It is important to remember that the derivatives of pressure are evaluated along the Hugoniot so P2H,v

is the slope of the equilibrium Hugoniot.

B.2 CJ Point Analysis

From (B.4), the slope of the Rayleigh line is

− w2
1

v21
(B.14)

which is

− U2
CJ

v21
(B.15)

in the CJ case. At the CJ point, the Rayleigh line and the Hugoniot are tangent (i.e. have the same slope)
so the slope of the Hugoniot, P2H,v, is the equal to the slope of the Rayleigh line. Now it is clear that the
first order terms of (B.13)

P2H,v = −w∗2
1

v21
= −U2

CJ

v21
(B.16)

also cancel. The remaining higher order terms equation is

1

2
P2H,vv(δv)

2 + ... = − 1

v21
(2w∗

1δw1 + (δw1)
2)(v2 + δv − v1) (B.17)
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and if we only retain the lowest order term on each side, the equation simplifies to

v21
2
P2H,vv(δv)

2 = −δw1[2 w∗
1(v2 − v1)] (B.18)

Therefore in the CJ case, (B.11) reduces to the form (B.7) we want

δw1 =
w∗

1

4(P2 − P1)
P2H,vv (δv)

2
(B.19)

B.3 Derivatives of Pressure

It would be convenient if we could express P2H,vv in terms of quantities that we can measure. We can use
(B.5) to accomplish this. We would like to express enthalpy as a function of pressure and specific volume:
h(P, v)

h(P, v) = h2 + [h2,P dP + h2,vdv] +
1

2

[
h2,PP dP

2 + 2h2,PvdPdv + h2,vvdv
2
]

(B.20)

To evaluate P2H,vv, we will look again at states near state 2. Equation B.20 close to state 2 is

h(P, v) = h2 + [h2,P (P − P2) + h2,v(v − v2)] +

1

2

[
h2,PP (P − P2)

2 + 2h2,Pv(P − P2)(v − v2) + h2,vv(v − v2)
2
]

(B.21)

To simplify this equation, substitute v − v2 = δv.

h(P, v) = h2 + [h2,P (P − P2) + h2,vδv] +

1

2

[
h2,PP (P − P2)

2 + 2h2,Pv(P − P2)δv + h2,vv(δv)
2
] (B.22)

Now we can group terms

h(P, v) = [h2] + δv [h2,v] + (δv)2
[
h2,vv

2

]
+ (P − P2) [h2,P + δv(h2,Pv)] + (P − P2)

2

[
h2,PP

2

]
(B.23)

Substituting (B.23) the Hugoniot equation B.5 gives

[h2 − h1] + δv [h2,v] + (δv)2
[
h2,vv

2

]
+ (P − P2) [h2,P + δv(h2,Pv)] + (P − P2)

2

[
h2,PP

2

]
= [(P − P2) + (P2 − P1)]

(
v1 + v2

2
+

δv

2

)
(B.24)

If we substitute the Taylor expansion for Hugoniot pressure (B.6 this equation becomes[
(h2 − h1)− (P2 − P1)

v2 + v1
2

]
+ δv

[
h2,v −

P2 − P1

2

]
+ (δv)2

[
h2,vv

2

]
=

(
P2H,vδv +

1

2
P2H,vv(δv)

2

)[
v2 + v1

2
− h2,P + δv

(
1

2
− h2,Pv

)]
−(

P 2
2H,v(δv)

2 + P2H,vP2H,vv(δv)
3 +

1

4
P 2
2H,vv(δv)

4

)[
h2,PP

2

]
(B.25)

As before we can group powers of δv
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• Zero Order

(h2 − h1)− (P2 − P1)
v2 + v1

2
= 0 (B.26)

This is exactly the Hugoniot curve expression (B.5) evaluated at state 2. Therefore, these terms cancel.

• First Order

h2,v −
P2 − P1

2
= P2H,v

(
v2 + v1

2
− h2,P

)
(B.27)

so

P2H,v =

[
h2,v −

P2 − P1

2

] [
2

v2 + v1 − 2h2,P

]
(B.28)

• Higher Order

(δv)2
h2,vv

2
=(δv)2P2H,v

(
1

2
− h2,Pv

)
+

(δv)2

2
P2H,vv

[
v2 + v1

2
− h2,P + δv

(
1

2
− h2,Pv

)]
−
(
P 2
2H,v(δv)

2 + P2H,vP2H,vv(δv)
3 +

1

4
P 2
2H,vv(δv)

4

)[
h2,PP

2

] (B.29)

If we only keep the lowest order term on each side, the equation simplifies to

h2,vv

2
= P2H,v

(
1

2
− h2,Pv

)
+

1

2
P2H,vv

[
v2 + v1

2
− h2,P

]
− P 2

2H,v

[
h2,PP

2

]
(B.30)

Solving for P2H,vv, we get

P2H,vv =
[
h2,vv + P 2

2H,v (h2,PP ) + P2H,v (2h2,Pv − 1)
] [ 2

v2 + v1 − 2h2,P

]
(B.31)

B.4 Thermodynamic Analysis

We would like to express the derivatives of enthalpy as functions of quantities that we can determine so
that we can evaluate the derivatives of pressure. To determine these derivatives of enthalpy we need two
fundamental equations as well as the definitions of the Grüneisen Coefficient, G, and the equilibrium sound
speed, aeq.

dh = Tds+ vdP (B.32)

Tds = de+ Pdv (B.33)

G = v (P,e)v (B.34)

a2eq = −v2 (P,v)s (B.35)

First we will evaluate the first order partial derivatives of enthalpy

(h,P )v = (e,P + (Pv),P )v (B.36)

= (e,P )v + v (B.37)

=
v

G
+ v (B.38)

(h,P )v = v
G + 1

G
(B.39)
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Similarly

(h,v)P = (Ts,v + vP,v)P (B.40)

= (Ts,v)P (B.41)

= − (Ts,P )v (P,v)s (B.42)

= − (e,P )v (P,v)s (B.43)

= −
(
v

G

)(−a2eq
v2

)
(B.44)

(h,v)P =
a2eq
v

1

G
(B.45)

To evaluate the second order partial derivatives of enthalpy, we need to take derivatives of the above expres-
sions

(h,PP )v = (v,P )v

(
1 +

1

G

)
− v

G2
(G,P )v (B.46)

(h,vv)P =
aeq
vG

(
2 (aeq,v)P −

aeq
vG
(
G + v (G,v)P

))
(B.47)([

(h,P )v
]
,v

)
P
= (v,v)P

(
1 +

1

G

)
− v

G2
(G,v)P (B.48)([

(h,v)P
]
,P

)
v
=

aeq
vG

(
2 (aeq,P )v −

aeq
vG
(
G (v,P )v + v (G,P )v

))
(B.49)

The mixed partials should be equivalent so

G + 1 +

(
a2eq
vG
− v

G

)
(G,P )v = −

a2eq
v2

(v,P )v +
2aeq
v

(aeq,P )v (B.50)

Plugging in these expressions for derivatives of enthalpy into the derivatives of pressure gives

P2H,v =

[
a22eq
v2

1

G2
− P2 − P1

2

] [
2G2

G2(v1 − v2)− 2v2

]
(B.51)

P2H,vv =
a2eq
v2G2

[
2G2

G2(v1 − v2)− 2v2

] [
2 (a2eq,v)P −

a2eq
v2G2

(
G2 (v2,P )v + v2 (G2,v)P

)]
+ P 2

2H,v

[
2G2

G2(v1 − v2)− 2v2

] [
(v2,P )v

(
1 +

1

G2

)
− v2
G22

(G2,P )v

]
+ P2H,v

[
2G2

G2(v1 − v2)− 2v2

]
[2h2,Pv − 1]

(B.52)

B.5 Perfect Gas Analysis

For a perfect gas, the specific heat is constant and the equation of state is given by

P = ρRT (B.53)

h = cPT (B.54)
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The derivatives of enthalpy are

h,P =
γ

γ − 1
v (B.55)

h,v =
γ

γ − 1
P (B.56)

h,PP = 0 (B.57)

h,vv = 0 (B.58)

h,Pv =
γ

γ − 1
(B.59)

Plugging these derivatives of enthalpy into the derivatives of pressure (B.51)-(B.52), we get

P2H,v =

[
γ

γ − 1
P2 −

P2 − P1

2

] 2

v1 + v2 − 2
γ

γ − 1
v2


=

[
P1 + P2

γ + 1

γ − 1

] [
γ − 1

v1(γ − 1) + v2(γ + 1)

] (B.60)

P2H,vv =

[
0 + 0 + P2H,v

(
2

γ

γ − 1
− 1

)] 2

v1 + v2 − 2
γ

γ − 1
v2


= 2P2H,v

[
γ + 1

γ − 1

] [
γ − 1

v1(γ − 1) + v2(γ + 1)

]2 (B.61)

We can check the validity of (B.60)-(B.61) if we use the perfect gas expressions in the Hugoniot equation
(B.5) directly, i.e.

γ

γ − 1
(Pv − P1v1) = (P − P1)

(v + v1)

2
(B.62)

which simplifies as follows

P1

[
(v + v1)

2
− v1

γ

γ − 1

]
= P

[
(v + v1)

2
− v

γ

γ − 1

]
(B.63)

(P1v − Pv1) = (P1v1 − Pv)

(
γ + 1

γ − 1

)
(B.64)

Now, we perturb the system as before and look at terms of the same order

P1

[
(v2 + δv + v1)

2
− v1

γ

γ − 1

]
=

(
P2 + P2H,vδv +

1

2
P2H,vv(δv)

2

)
[
(v2 + δv + v1)

2
− (v2 + δv)

γ

γ − 1

] (B.65)

[
P1

(
v2 − v1

γ + 1

γ − 1

)]
+ δv =

(
P2 + P2H,vδv +

1

2
P2H,vv(δv)

2

)
[(

v1 − v2
γ + 1

γ − 1

)
− δv

(
γ + 1

γ − 1

)] (B.66)

• Zero Order

P1

(
v2 − v1

γ + 1

γ − 1

)
= P2

(
v1 − v2

γ + 1

γ − 1

)
(B.67)
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• First Order

1 = −P2

(
γ + 1

γ − 1

)
+ P2H,v

(
v1 − v2

γ + 1

γ − 1

)
(B.68)

so

P2H,v =

[
1 + P2

(
γ + 1

γ − 1

)][
γ − 1

v1(γ − 1)− v2(γ + 1)

]
(B.69)

This is exactly (B.60).

• Higher Order

0 = −(δv)2P2H,v

(
γ + 1

γ − 1

)
+

(δv)2

2
P2H,vv

[(
v1 − v2

γ + 1

γ − 1

)
− δv

(
γ + 1

γ − 1

)] (B.70)

If we only keep the lowest order term on each side, the equation simplifies to

0 = −P2H,v

(
γ + 1

γ − 1

)
+

P2H,vv

2

(
v1 − v2

γ + 1

γ − 1

)
(B.71)

Solving for P2H,vv

P2H,vv = 2P2H,v

[
γ + 1

γ − 1

] [
γ − 1

v1(γ − 1)− v2(γ + 1)

]
(B.72)

We see that this expression for P2H,vv is identical to (B.61) which verifies that the general solution reduces
correctly to the perfect gas model solution.
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Appendix C

Thermodynamics of the Hugoniot

Using thermodynamics, the jump conditions, and the Hugoniot equation, we can determine if the flow is
subsonic or supersonic behind the wave and also the nature of the entropy extremum at the CJ points.
Differential equations can be formulated to described the variation of temperature and entropy on the
Hugoniot.

C.1 Jouguet’s rule

The starting point of this discussion is the variation of entropy on the Hugoniot that was derived from the
Fundamental Relation of Thermodynamics and the energy version of the Hugoniot equation 6.19.(

∂s

∂v

)
H

=
∆v

2T

[
∆P

∆v
−
(
∂P

∂v

)
H

]
(C.1)

This expression gives the entropy change in terms of the difference between the slope of the Hugoniot and
Rayleigh line. In order to draw conclusions about the flow Mach number, we need to reformulate this in
terms of the slope of the isentropes and the Rayleigh line. The relationship of the Hugoniot to the isentropes
requires determining the slope of the Hugoniot. This can be accomplished by expanding internal energy
e(P, v) as a function of pressure and volume.

de =

(
∂e

∂P

)
v

dP +

(
∂e

∂v

)
P

dv (C.2)

Using thermodynamic relationships, we can write the coefficients in terms of the Grüniesen parameter G

G = v

(
∂P

∂e

)
v

(C.3)

= − v

T

(
∂T

∂v

)
s

(C.4)

de =
v

G
dP −

[
v

G

(
∂P

∂v

)
s

+ P

]
dv (C.5)

Equating this to the expression obtained by differentiating the Hugoniot and solving for the slope, we have

(
∂P

∂v

)
H

=

(
∂P

∂v

)
s

+
G
2v

∆P

1 +
G
2v

∆v
(C.6)
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An independent relationship between the Hugoniot and isentrope slopes can be obtained by expanding P (v, s)
on the Hugoniot (

∂P

∂v

)
H

=

(
∂P

∂v

)
s

+

(
∂P

∂s

)
v

(
∂s

∂v

)
H

(C.7)

This can be simplified by using the thermodynamic relations to read(
∂P

∂v

)
H

=

(
∂P

∂v

)
s

+ G T
v

(
∂s

∂v

)
H

(C.8)

Note that the unsubscripted variable v, G, and the slope of the isentrope are to be evaluated at the down-
stream conditions (2) in this equation. Equation (C.8) indicates how the sign of G and the rate of change of
entropy along the isentrope determines if the slope of the isentrope is larger or smaller than the slope of the
Hugoniot. For substances with G > 0, the slope of the Hugoniot will be smaller (larger) than the slope of the
isentrope when the entropy derivative (ds/dv)H < 0 (> 0). Shock waves in usual substances (see Menikoff
and Plohr, 1989) are compression waves

∆P > 0 (C.9)

and have G > 0 and (ds/dv)H < 0, so that

∞ <

(
∂P

∂v

)
H

<

(
∂P

∂v

)
s

< 0 (C.10)

and there are no vertical asymptotes (see Hayes, 1960) so that the denominator does not vanish

1 + G∆v

2v
> 0 (C.11)

Combining (C.6) and (C.1) gives

(
∂s

∂v

)
H

=
∆v

2T


∆P

∆v
−
(
∂P

∂v

)
s

1 + G∆v

2v

 (C.12)

which can also be written as

(
∂s

∂v

)
H

=
∆v

2Tv2

 a2 − w2

1 + G∆v

2v

 (C.13)

This illuminates a crucial connection between the flow speed (subsonic vs supersonic) downstream of the
shock, the Grüniesen parameter, and the variation of entropy along the Hugoniot. The denominator is posi-
tive for most substances since the slope of a realistic Hugoniot (C.6) is negative and is a continuous function
of the volume. Equating the two expressions for the variation of entropy along the Hugoniot (C.1) and (C.13),
we find

∆P

∆v
−
(
∂P

∂v

)
H

=
1

v2
a2 − w2

1 + G∆v

2v

(C.14)

This equation can be applied to the downstream state at any intersection point between the Rayleigh line
and the Hugoniot. From the geometry of the Hugoniot and Rayleigh line shown in Fig. 6.4, we conclude
that if the denominator of (C.14) is positive, the flow downstream (state 1) of a shock wave is subsonic.
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The flow upstream of a shock is supersonic, w1 > a1, since the isentrope and Hugoniot are tangent at
the initial state (C.6) and from the geometry shown in Fig. 6.4, we have

∆P

∆v
<

(
∂P

∂v

)
H

=

(
∂P

∂v

)
s

(C.15)

or

−w2
1

v21
< −a21

v21
(C.16)

which proves that the flow is superonic upstream of the wave

w1 > a1 (C.17)

For detonation waves, we can apply (C.14) at the downstream state 2 to determine the nature of the
flow there. Assuming that the denominator of the r.h.s. is positive, we obtain Jouguet’s rule: The flow
downstream is subsonic or supersonic if the slope of the Hugoniot is smaller or larger than the slope of the
Rayleigh line. Referring to Fig. 6.5, there are four cases to consider, given in Table C.1. The physically
reasonable solutions for both detonations and deflagrations have subsonic states (strong solution) downstream
of the wave.

Table C.1: Jouguet’s rule for detonations and deflagrations

Case a2 − w2 ∂s/∂v)H Note
detonation, U1 < 0 < 0 strong detonation
detonation, U2 > 0 > 0 weak detonation
detonation, L2 < 0 < 0 strong deflagration
detonation, L1 > 0 > 0 weak deflagration

We can show that the denominator of (C.14) is positive for a shock wave in a perfect gas. The Grüneisen
parameter for a perfect gas is a constant and is equal to

G = γ − 1 . (C.18)

From the perfect gas shock jump conditions (Section A.1), the jump in volume normalized by state 2 is

∆v

v2
=

−2 + 2

M2
1

γ + 1 +
2

M2
1

(C.19)

so that

1 + G∆v

2v2
=

2 +
γ + 1

M2
1

γ + 1 +
2

M2
1

(C.20)

> 0 (C.21)

For large shock speeds, M1 → ∞, a limiting value is reached

→ 2

γ + 1
(C.22)
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For reacting gases with realistic thermodynamic properties, the Grüneisen parameter has to be computed
numerically. The simplest way to do this is to use finite differences to approximate

G = − v

T

(
∂T

∂v

)
s

(C.23)

The evaluation can be carried out either at frozen composition (gruneisen fr.m) or equilibrium composition
(gruneisen eq.m). An example of an evaluation of G and the denominator of (C.6) is shown in Fig. C.1 for
states on the Hugoniot near the CJ point of hydrogen-air detonation (see demo RH CJ isentropes.m). The
values of both G and the denominator are approximated by the perfect gas expressions for strong shock
waves

G ≈ γs − 1 (C.24)

2

γs + 1
< 1 +

G
2v

∆v < 1 (C.25)

and the equilibrium value of the isentropic exponent γs

γs = −
v

P

(
∂P

∂v

)
s,eq

(C.26)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

G

γs,eq

CJ

v (m3/kg)

1+2G(∆v/v)

Figure C.1: Grüneisen parameter, denominator of (C.6), and isentropic exponent (C.26) for the example
shown in Fig. 6.7.

C.2 Entropy Extremum

The nature of the entropy extremum at the CJ points can be determined by computing the second derivative
of entropy along the Hugoniot. This argument is apparently due to Becker (1922) and an alternate presen-
tation is given by Kistiakowsky and Wilson (1941). Proceed by differentiating (C.1) and evaluating at the
CJ point, where(

∂s

∂v

)
H

= 0 at the CJ point (C.27)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
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to obtain (
∂2s

∂v2

)
H

= −∆v

2T

(
∂2p

∂v2

)
H

at the CJ point (C.28)

Now consider using the differentiation rule embodied by (C.8)(
∂

∂v

)
H

=

(
∂

∂v

)
s

+

(
∂s

∂v

)
H

(
∂

∂s

)
v

(C.29)

twice to compute the derivative(
∂2P

∂v2

)
H

=

(
∂

∂v

)
H

(
∂P

∂v

)
H

(C.30)

=

[(
∂

∂v

)
s

+

(
∂s

∂v

)
H

(
∂

∂s

)
v

](
∂P

∂v

)
s

+

(
∂

∂v

)
H

[(
∂P

∂s

)
v

(
∂s

∂v

)
H

]
(C.31)

Carrying out the differentiation and evaluating at the CJ point, the only remaining non-zero terms are(
∂2P

∂v2

)
H

=

(
∂2P

∂v2

)
s

+

(
∂P

∂s

)
v

(
∂2s

∂v2

)
H

at the CJ point (C.32)

Combining this with the result of (C.28), we have that(
∂2P

∂v2

)
H

=
1

1 +
G
2v

∆v

(
∂2P

∂v2

)
s

at the CJ point (C.33)

the curvatures of the isentrope and Hugoniot have the same sign as long as the denominator is positive.
Define the Fundamental Derivative of Gasdynamics Thompson (1971) as

Γ =
v3

2a2

(
∂2P

∂v2

)
s

(C.34)

we can write (C.28) to clearly show the sign and verify the dimensional correctness

(
∂2s

∂v2

)
H

=

(
−∆v

v

)
·
(

a2

Tv2

)
·

 1

1 + G∆v

2v

 · Γ at the CJ point. (C.35)

For normal fluids Menikoff and Plohr (1989), the curvature of the isentropes will be positive, Γ > 0, so that
the entropy is a relative minimum at the upper CJ point(

∂2s

∂v2

)
H

> 0 at the upper CJ point ∆v < 0 (C.36)

and a relative maximum at the lower CJ point(
∂2s

∂v2

)
H

< 0 at the lower CJ point ∆v > 0 (C.37)

The entropy extremum property has been the source of a great deal of confused speculation and led to
the misconception that detonation-based combustors are the most efficient for propulsion. There is a very
substantial irreversible entropy rise associated with detonation compared to the modest irreversibility for
deflagration. The variation of entropy on the Hugoniot and the implications for propulsion systems are
discussed in detail by Wintenberger and Shepherd (2006). From their Abstract, we quote the results:
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“For a given stagnation enthalpy, we find that stationary detonation waves generate a higher
entropy rise than deflagration waves. The combustion process generating the lowest entropy in-
crement is found to be constant-pressure combustion. These results clearly demonstrate that the
minimum entropy property of detonations derived from the conventional Hugoniot analysis does
not imply superior performance in all propulsion systems. This finding reconciles previous analy-
sis of flow path performance analysis of detonation-based ramjets with the thermodynamic cycle
analysis of detonation-based propulsion systems. We conclude that the thermodynamic analysis
of propulsion systems based on stationary detonation waves must be formulated differently than
for propagating waves, and the two situations lead to very different results.”

C.3 Temperature and Entropy on the Hugoniot

Differentiating the internal energy form of the Hugoniot equation we obtain the relation between changes in
internal energy, pressure and specific volume on the Hugoniot

de =
1

2
(υ1 − υ) dP − 1

2
(P + P1) dυ . (C.38)

A alternate expression for de is obtained by considering e(υ, T ) and using thermodynamic identities

de =

(
G
υ
cvT − P

)
+ cvdT . (C.39)

Equating these two expressions, a differential equation for temperature on the Hugoniot is obtained

dT

dυ
= −G

v
T +

1

2cv

[
(υ1 − υ)

(
dP

dυ

)
H
+ P − P1

]
. (C.40)

A differential equation for entropy can be obtained by rewriting the fundamental relation of thermodynamics
as

Tds = de+ Pdυ , (C.41)

and evaluating this on the Hugoniot to obtain

ds

dυ
=

1

T

[(
de

dυ

)
H
+ P

]
. (C.42)

From the energy form of the Hugoniot we obtain(
de

dυ

)
H

=
1

2

[
(υ1 − υ)

(
dP

dυ

)
H
− (P + P1)

]
, (C.43)

substituting and simplifying we obtain

ds

dυ
=

1

2T

[
(υ1 − υ)

(
dP

dυ

)
H
+ P − P1

]
. (C.44)

These equations for temperature and entropy can be integrated as a function of volume on the Hugoniot given

a relationship PH(υ) and the derivative

(
dP

dυ

)
H

as well as estimates for the Grüneisen coefficient G(υ, T )

and specific heat capacity cv(T, υ). This is a useful strategy that is used when limited thermodynamic data
is available about states on the Hugoniot as is often the case in shock compression of liquids and solids.
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Real Gas Adiabatic Change Equation

This derivation of the real gas thermicity function is the work of Abbott (1991). Similar to Section 9.2, the
derivation begins with expanding pressure as a function of entropy, volume and species amounts. Unlike
Section 9.2, the following derivation is carried out with extensive quantities and mole numbers. At the
conclusion, the results will be transformed into specific mass properties and compared with the ideal gas
results obtained in Section 9.

dP =

(
∂P

∂V

)
S,N

dV +

(
∂P

∂S

)
V,N

dS +
∑
k

(
∂P

∂Nk

)
V,S,Ni̸=k

dNk . (D.1)

Factoring out the first partial derivative, we obtain

dP =

(
∂P

∂V

)
S,N

[
dV +

(
∂P

∂S

)
V,N

(
∂V

∂P

)
S,N

dS

]
+
∑
k

(
∂P

∂Nk

)
V,S,Ni̸=k

dNk . (D.2)

(D.3)

The first term in (D.1) (
∂P

∂V

)
S,N

(D.4)

can be expressed in terms of frozen sound speed af

a2f = −v2
(
∂P

∂v

)
s,Y

, (D.5)(
∂P

∂V

)
S,N

= −
ρa2f
V

, (D.6)

(D.7)

where ρ = V/M , M = total mass of the system.
The second term, the coefficient of dS can be rewritten with the usual rules of manipulation of partial

derivatives, (
∂P

∂S

)
V,N

(
∂V

∂P

)
S,N

= −
(
∂V

∂S

)
P,N

. (D.8)

We can use the standard results of nonreactive thermodynamics to express this as(
∂V

∂S

)
P,N

=
βV T

Cp
, (D.9)
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in terms of the coefficient of thermal expansion

β =
1

V

(
∂V

∂T

)
P,N

, (D.10)

and heat capacity

Cp = T

(
∂S

∂T

)
P,N

. (D.11)

The third term in (D.1) requires special consideration. Abbott did so by considering a more general
situation described in the Theorem at the end of this section. Using this theorem, we obtain(

∂P

∂Nk

)
V,S,Ni̸=k

= ρa2f

[
V k

V
− βT

Cp
Sk

]
, (D.12)

From the definition of the thermodynamic potentials

Sk =
Hk −Gk

T
. (D.13)

Switching to the chemical potential notation, Gk = µk, we obtain the following version of (D.1)

dP = ρa2f

[
−dV

V
+

βT

Cp
dS +

∑
k

(
V k

V
− β

Cp
Hk

)
dNk +

β

Cp

∑
k

µkdNk

]
(D.14)

D.1 Thermicity

As discussed in Chapter 9, the fundamental relationship of thermodynamics

dH = TdS + V dP +
∑
k

µkdNk , (D.15)

and the energy equation for adiabatic flow

dH = V dP , (D.16)

implies that the entropy change is

dS = − 1

T

∑
k

µkdNk . (D.17)

Substituting this into (D.14), we find that the entropy change is exactly balanced by the change in Gibbs
energy resulting in the cancelation of the second and fourth terms in the adiabatic change equation. Trans-
forming to mass fraction variables

dNk =
M

Wk
dYk , (D.18)

defining the specific heat per unit mass

cp =
Cp

M
, (D.19)
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and molar volume

V =
V

N
, (D.20)

we obtain the following real-gas version of the adiabatic change equation:

dP

dt
= a2f

dρ

dt
+ ρa2f

∑
k

(
W
Wk

V k

V
− β

cp

Hk

Wk

)
dYk

dt︸ ︷︷ ︸
σ̇

(D.21)

Defining σ̇ as the thermicity as in Chapter 9, we have

σ̇ =
∑
k

(
W
Wk

V k

V
− β

cp

Hk

Wk

)
dYk

dt
. (D.22)

and the adiabatic change equation can be written compactly as

dP

dt
= a2f

dρ

dt
+ ρa2f σ̇ (D.23)

which is identical to the previous development and provided an alternative formulation of thermicity enabling
the computation using partial molar properties instead of mass fractions. This is more convenient for working
with the many dense gas equations of state that have developed by the chemical engineering community.

D.2 Abbott’s Theorem: Derivative of Intensive Properties by Extensive
Properties

Assume that an intensive property W depends on extensive properties A, B and species mole numbers {Nk}.
Let X and Y be two intensive quantities (one of which may be W ). Define the two generalized partial molar

properties Â and B̂

Âk =

(
∂A

∂Nk

)
X,Y,Ni̸=k

, (D.24)

B̂k =

(
∂B

∂Nk

)
X,Y,Ni̸=k

. (D.25)

Then for W (A,B,N) we have:(
∂W

∂Nk

)
A,B,Ni̸=k

=

(
∂W

∂Nk

)
X,Y,Ni̸=k

−
(
∂W

∂A

)
B,N

Âi −
(
∂W

∂B

)
A,N

B̂i (D.26)

The proof proceeds by apply the chain rule of differentiation considering A and B as a function of the species
mole amounts Nk.

dW =

(
∂W

∂A

)
B,N

dA+

(
∂W

∂B

)
A,N

dB +
∑
k

(
∂W

∂Nk

)
Ni̸=k

dNk (D.27)

Dividing by dNk and restricting differentiation to constant (X,Y ), we obtain(
∂W

∂Nk

)
X,Y,Ni̸=k

=

(
∂W

∂A

)
B,N

(
∂A

∂Nk

)
X,Y,Ni̸=k

+

(
∂W

∂B

)
A,N

(
∂B

∂Nk

)
X,Y,Ni̸=k

+

(
∂W

∂Nk

)
A,B,Ni̸=k

(D.28)

Rearranging and simplifying using the previous definitions of Âi and B̂i, we obtain the desired result.
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D.3 Application

Using the theorem just demonstrated, make the following assignments:

A = V , (D.29)

B = S , (D.30)

W = Y = P , (D.31)

X = T . (D.32)

For these choices (
∂W

∂Nk

)
X,Y,Ni̸=k

=

(
∂P

∂Nk

)
T,P,Ni̸=k

≡ 0 . (D.33)

The generalized partial molar properties can be expressed in term of the conventional partial molar properties

Â =

(
∂V

∂Nk

)
T,P,Ni̸=k

= V k , (D.34)

B̂ =

(
∂S

∂Nk

)
T,P,Ni̸=k

= Sk , (D.35)

and the theorem yields (
∂P

∂Nk

)
V,S,Ni̸=k

= −
(
∂P

∂V

)
S,N

V k −
(
∂P

∂S

)
V,N

Sk . (D.36)

The partial derivatives can be expressed in terms of standard property definitions using thermodynamic
identities. (

∂P

∂V

)
S,N

= −
ρa2f
V

, (D.37)(
∂P

∂S

)
V,N

= ρa2f
βT

Cp
. (D.38)

The final result is (
∂P

∂Nk

)
V,S,Ni̸=k

= ρa2f

[
V k

V
− βT

Cp
Sk

]
(D.39)
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Classical Thermodynamics

This appendix provides a brief summary of classical thermodynamic relations for a single-phase, constant-
composition substance. Relationships are presented using mass-specific quantities.

“Thermodynamics is an experimental science, and not a branch of meta-
physics. It consists of a collection of equations, and also some inequalities,
which inter-relate certain kinds of measurable physical quantities. In any
thermodynamic equation every quantity is independently measurable. What
can such an equation ‘tell one’ about one’s system or process? Or, in other
words, what can we learn from such an equation about the microscopic ex-
planation of macroscopic change? Nothing whatsoever. What then is the
use of thermodynamic equations? They are useful because some quantities
are easier to measure than others.” - McGlashan (1979)

E.1 Thermodynamic potentials and fundamental relations

energy e(s, v)

de = T ds− P dv (E.1)

enthalpy h(s, P ) = e+ Pv

dh = T ds+ v dP (E.2)

Helmholtz a(T, v) = e− Ts

da = −sdT − P dv (E.3)

Gibbs g(T, P ) = e− Ts+ Pv

dg = −sdT + v dP (E.4)

E.2 Maxwell relations

(
∂T

∂v

)
s

= −
(
∂P

∂s

)
v

(E.5)(
∂T

∂P

)
s

=

(
∂v

∂s

)
P

(E.6)(
∂s

∂v

)
T

=

(
∂P

∂T

)
v

(E.7)(
∂s

∂P

)
T

= −
(
∂v

∂T

)
P

(E.8)

Calculus identities:
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F (x, y, . . . ) dF =

(
∂F

∂x

)
y,z,...

dx+

(
∂F

∂y

)
x,z,...

dy + . . . (E.9)

(
∂x

∂y

)
f

= −

(
∂f

∂y

)
x(

∂f

∂x

)
y

(E.10)

(
∂x

∂f

)
y

=
1(

∂f

∂x

)
y

(E.11)

E.3 Various defined quantities

specific heat at constant volume cv ≡
(
∂e

∂T

)
v

(E.12)

specific heat at constant pressure cp ≡
(
∂h

∂T

)
P

(E.13)

ratio of specific heats γ ≡ cp
cv

(E.14)

sound speed a ≡

√(
∂P

∂ρ

)
s

(E.15)

coefficient of thermal expansion β ≡ 1

v

(
∂v

∂T

)
P

(E.16)

isothermal compressibility KT ≡ −1

v

(
∂v

∂P

)
T

(E.17)

isentropic compressibility Ks ≡ −1

v

(
∂v

∂P

)
s

=
1

ρa2
(E.18)

thermal pressure coefficient

(
∂P

∂T

)
v

≡ cv
G
v

(E.19)

≡ β

KT
(E.20)

≡ ρa2β
cv
cp

(E.21)

Joule-Thompson coefficient ≡
(
∂P

∂T

)
h

=
v

cp
(βT − 1) (E.22)

Specific heat relationships

γ ≡ cp
cv

=
KT

Ks
or

(
∂P

∂v

)
s

= γ

(
∂P

∂v

)
T

(E.23)

cp − cv = −T
(
∂P

∂v

)
T

(
∂v

∂T

)2

P

(E.24)

= T
vβ2

KT
(E.25)

= Ta2β2 cv
cp

(E.26)
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Fundamental derivative

Γ ≡ a4

2v3
∂2v

∂P 2

)
s

(E.27)

=
v3

2a2

(
∂2P

∂v2

)
s

(E.28)

= 1 + ρa

(
∂a

∂P

)
s

(E.29)

=
1

2

(
v2

a2

(
∂2h

∂v2

)
s

+ 1

)
(E.30)

= −v

2

(
∂2P
∂v2

)
s(

∂P
∂v

)
s

(E.31)(
∂2P

∂v2

)
s

=

(
∂2P

∂v2

)
T

− 3T

cv

(
∂P

∂v

)
T

(
∂2P

∂v∂T

)
+

3T

c2v

(
∂P

∂T

)2

v

(
∂cv
∂v

)
T

(E.32)

+
T

c3v

(
∂P

∂T

)3

v

[
1− T

cv

(
∂cv
∂T

)
v

]
Bethe 1942 (E.33)

Sound speed (squared)

a2 ≡
(
∂P

∂ρ

)
s

(E.34)

= −v2
(
∂P

∂v

)
s

(E.35)

=
v

Ks
(E.36)

= γ
v

KT
(E.37)

= v2

(
∂e

∂v

)
P

+ P(
∂e

∂P

)
v

(E.38)

=

(
∂h

∂ρ

)
P

1

ρ
−
(
∂h

∂P

)
ρ

(E.39)
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Grüneisen Coefficient

G ≡ vβ

cvKT
(E.40)

= v

(
∂P

∂e

)
v

(E.41)

=
vβ

cpKs
(E.42)

=
a2β

cp
(E.43)

= − v

T

(
∂T

∂v

)
s

(E.44)

=
v

T

(
∂P

∂s

)
v

(E.45)

=
v

cv

(
∂P

∂T

)
v

(E.46)

E.4 v(P, s) relation

dv

v
= −Ks dP + Γ(Ks dP )2 + β

T ds

cp
+ . . . (E.47)

= − dP

ρa2
+ Γ

(
dP

ρa2

)2

+ G Tds
a2

+ . . . (E.48)

E.5 Equation of State Construction

Given cv(v, T ) and P (v, T ), integrate

de = cv dT +

(
T

(
∂P

∂T

)
v

− P

)
dv (E.49)

ds =
cv
T

dT +

(
∂P

∂T

)
v

dv (E.50)

along two paths: I: variable T , fixed ρ and II: variable ρ, fixed T .
Energy:

e = e◦ +

∫ T

T◦

cv(T, ρ◦) dT︸ ︷︷ ︸
I

+

∫ ρ

ρ◦

(
P − T

(
∂P

∂T

)
ρ

)
dρ

ρ2︸ ︷︷ ︸
II

(E.51)

Ideal gas limit ρ◦ → 0,

lim
ρ◦→0

cv(T, ρ◦) = cigv (T ) (E.52)

The ideal gas limit of I is the ideal gas internal energy

eig(T ) =

∫ T

T◦

cigv (T ) dT (E.53)

Ideal gas limit of II is the departure function

ed(ρ, T ) =

∫ ρ

0

(
P − T

(
∂P

∂T

)
ρ

)
dρ

ρ2
(E.54)
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and the complete expression for internal energy is

e(ρ, T ) = e◦ + eig(T ) + ed(ρ, T ) (E.55)

Entropy:

s = s◦ +

∫ T

T◦

cv(T, ρ◦)

T
dT︸ ︷︷ ︸

I

+

∫ ρ

ρ◦

(
−
(
∂P

∂T

)
ρ

)
dρ

ρ2︸ ︷︷ ︸
II

(E.56)

The ideal gas limit ρ◦ → 0 has to be carried out slightly differently since the ideal gas entropy, unlike the
internal energy, is a function of density and is singular at ρ = 0. Define

sig =

∫ T

T◦

cigv (T )

T
dT −R

∫ ρ

ρ◦

dρ

ρ
(E.57)

where the second integral on the RHS is R ln ρ◦/ρ. Then compute the departure function by subtracting the
singular part before carrying out the integration

sd(ρ, T ) =

∫ ρ

0

(
R− 1

ρ

(
∂P

∂T

)
ρ

)
dρ

ρ
(E.58)

and the complete expression for entropy is

s(ρ, T ) = s◦ + sig(ρ, T ) + sd(ρ, T ) (E.59)
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Appendix F

Physical Constants of Selected Molecules

The critical constants of selected molecules and Lennard-Jones (LJ) potential parameters for selected fluids
are given in the following table. The LJ parameters are taken from the transport databases used for Cantera
(Goodwin et al., 2017).

Table F.1: Critical Constants (Rumble, 2018) and LJ parameters (Cloutman, 2000, Kee et al., 1998) for
selected molecular fluids .

Species W Pc Tc ρc Zc ϵ/kB ϱ
(g/mol) (MPa) (K) (kg/m3) (K) (nm)

H2 2.016 1.30 33.2 31.04 0.305 38.0 0.292
CO2 44.01 7.38 304. 466. 0.275 244.0 0.3763
N2 28.02 3.40 126. 314. 0.290 97.53 0.3621
O2 32.00 5.04 155. 435. 0.289 107.4 0.3458
H2O 18.01 22.1 647. 323. 0.230 572.4 0.2605
NO 30.01 6.48 180. 516. 0.252 97.53 0.3621
CO 28.01 3.50 134. 311. 0.274 98.1 0.365
Ar 39.95 4.90 151. 536. 0.291 136.5 0.33
He 4.00 0.227 5.20 69. 0.308 10.2 0.2576

F.1 Diatomic Molecule Energy Levels

The molecular electronic, vibrational and rotational states for many diatomic molecules are tabulated in
two NIST data bases: diatomic spectra and chemistry webbook See p. 73-83 and Eq. 2.97 of Boyd and
Schwartzentruber (2017) to translate the spectroscopic symbols for molecular states into degeneracy factors.
States for all of these atoms and molecules (including NO and NO+) are tabulated in Park (1990), at the end
of Chapter 1. Chapter 9 and 10 of Hanson et al. (2016) and Bernath (2016) give a more in depth discussion
of the fundamentals of electronic structure of atoms and molecules.

The energy levels derived from spectroscopic measurement for diatomic molecules are given in term of
expansions in integer powers of the rotational and vibrational level quantum numbers (v, J). One way of
doing this is to use the Dunham coefficients Yk,l and the formula

E(v, J) =
∑
k,l

Yk,l(v + 1/2)k[J(J + 1)]l . (F.1)

Many papers and some databases, particularly the multivolume compilations of Herzberg and Huber Molec-
ular Spectra and Molecular Structure, use a different nomenclature and a translational table between con-
ventional and Dunham notation is given below.
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https://www.nist.gov/pml/diatomic-spectral-database
http://webbook.nist.gov/chemistry/
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k \ l 0 1 2 3 4
0 Be −De He Le

1 ωe −αe −βe

2 −ωexe γe
3 ωeye
4 ωeze

Constants using the historical notation are given for selected diatomic molecules and some relevant excited
states are given in Table F.2. The energy levels are computed as follows accounting for the conversion from
wavenumber units (cm−1) to Joule.

E = Erot + Evib + Eele (F.2)

Erot/hc = Bv(J + 1)−DvJ(J + 1)2 (F.3)

where

Bv = Be − αe(v + 1/2) (F.4)

Evib/hc = ωe(v + 1/2)− ωexe(v + 1/2)2 (F.5)

Eele/hc = Te (F.6)

Table F.2: Diatomic molecular constants for selected species. Spectroscopic constants and Bond dissociation
energies from Rumble (2018)

State ωe ωexe Be αe Dv re
(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (nm)

Ground States

N2 X1Σ+
g 2358.560 14.320 1.9982360 0.0173100 5.737×10−6 0.1097690

NO X2Π1/2 1904.200 14.070 1.6719500 0.0171000 0.5×10−6 0.1150770
O2 X3Σ−

g 1580.190 11.980 1.4456220 0.0159330 4.839×10−6 0.1207520
H2 X1Σg 4401.210 121.340 60.8530000 3.0620000 0.0471 0.0741440
CO X1Σ+ 2169.810 13.290 1.9312810 0.0175044 6.1216×10−6 0.1128320
OH X1Πi 3737.760 84.881 18.910 0.724 0.001938 0.0970

Excited Electronic States

NO∗ A2Σ+ 2374.31 10.106 1.9965 0.01915 5.47×10−6 0.106434
OH∗ A2Σ+ 3178.8 92.91 17.358 0.786 0.002039 0.10121
O∗

2 B3Σ−
u 709.31 10.65 0.819 0.01206 4.55×10−6 0.16042

Electronic excitation energy Te

NO∗ 43965.7 (cm−1)
OH∗ 32684.1 (cm−1)
O∗

2 49793.28 (cm−1)

Table F.3 gives values of constants for diatomic molecules useful for approximate computations with rigid
rotator, harmonic oscillator models of specific heats and dissociation energies that can be used with the ideal
dissociating gas model.
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Table F.3: Diatomic molecule symmetry factor, rotation and vibration quanta and dissociation energy
expressed as temperatures Θ = ∆E/kb.

Species σ Θr Θv Θd

(K) (K) (K)
H2 2 87.5 6,325 52,000
N2 2 2.89 3,393 113,400
O2 2 2.08 2,273 59,000
CO 1 2.78 3,122 129,000
NO 1 2.45 2,719 75,490
OH 1 27.9 5,377 52,197
CH 1 20.8 4,113 40,200
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F.2 Degeneracy, Electronic States, Bond and Ionization Energies

The degeneracy and electronic states of the atomic species needed for the partition function computations can
be determined by using the NIST atomic spectroscopy data base which gives electronic orbital configurations,
spectroscopic terms and energy levels for neutral species and the first ion. See p. 69-73, particularly Table
3.2 and the following paragraph in Boyd and Schwartzentruber (2017) to translate the spectroscopic term
symbols into degeneracy factors. The values of enthalpy at 0 K are from Table B1 in McBride et al. (2002).
This is used to compute the heat of reaction for the ionized species at 0 K. The tabulated bond dissociation
energies are from deB Darwent (1970). Except for NO which is from Table “Bond Dissociation Energies” in
Rumble (2018). Values of Do are for 0 K; Do(0 K) = Do(298.15 K) - 3.7181 J/mol-K

Table F.4: Degeneracy factors, ionization, enthalpy at zero temperature and dissociation energies for selected
species.

g I H◦(0) D◦

(eV) (kJ/mol) (kJ/mol)
e− 2 - -6.197 -

N 4 14.53 466.483 -
N+ 9 29.60 1875.011 -

N2 1 15.57 -8.670 941.636
N+

2 2 1500.837 -

O 9 13.61 242.450 -
O+ 4 35.12 1562.590 -

O2 3 12.07 -8.680 493.58
O+

2 4 1162.517 -

NO 4 9.264 82.092 626.841
NO+ 1 982.140 -

Ar 1 15.76 -6.197 -
Ar+ 6 27.63 1520.572 -

H 2 13.60 211.8 -
H+ 1 - 1530. -

https://www.nist.gov/pml/handbook-basic-atomic-spectroscopic-data
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Constants and Conversions

G.1 Fundamental Physical Constants

co speed of light in a vacuum 2.99792×108 m·s−1

ϵo permittivity of the vacuum 8.85419×10−12 F·m−1

µo permeability of the vacuum 4π×10−7 N·A−2

h Planck constant 6.62607×10−34 J·s
k Boltzmann constant 1.38065×10−23 J·K−1

No Avogadro number 6.02214×1023 molecules·mol−1

e charge on electron 1.60218×10−19 C
amu atomic mass unit 1.66054×10−27 kg
me electron mass 9.10938×10−31 kg
mp proton mass 1.67262×10−27 kg
G universal gravitational constant 6.67430×10−11 m3·kg−1·s−2

σ Stefan-Boltzmann constant 5.67037×10−8 W·m−2K−4

Consistent with the 2018 CODATA adjustment of the fundamental physical constants. For the most recent
values, see NIST Reference on Units and Uncertainty.

G.2 Gases

Universal Gas Constant

R̃ 8314.462 J·kmol−1·K−1

R̃ 8.314462 J·mol−1·K−1

R̃ 82.0575 cm3·atm·mol−1·K−1

R̃ 1.9872 cal·mol−1·K−1

Gas Properties at 273.15 K and 1 atm

pressure 101325 Pa
volume of 1 kmol 22.414 m3

number of molecules per unit volume 2.25×1025 m−3

collision frequency at 273.15 K and 1 atm 4.3×109 s−1

mean free path in N2 at 273.15 K and 1 atm 74 nm

313

http://physics.nist.gov/cuu/Reference/contents.html
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G.3 Our Atmosphere

composition (mol fractions)
0.7808 N2

0.2095 O2

0.0093 Ar
0.0004 CO2

Sea level

P pressure 1.01325×105 Pa
ρ density 1.225 kg/m3

T temperature 288.15 K
c sound speed 340.29 m/s
R gas constant 287.05 m2/s2-K
W molar mass 28.96 kg/kmol
µ viscosity (absolute) 1.79×10−5 kg/m-s
k thermal conductivity 2.54×10−3 W/m-K
cp heat capacity 1.0 kJ/kg-K

30 kft

P pressure 3.014×104 Pa
ρ density 0.458 kg/m3

T temperature 228.7 K
c sound speed 303.2 m/s

Based on the U.S. Standard Atmosphere, Minzer et al. (1975).
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G.4 Unit Conversions

Engineering

2.54 cm ≡ 1.00 in
1 m ≡ 3.2808 ft
0.3048 ft ≡ 1 m
1 lb (force) ≡ 4.452 N
1 lb (mass) ≡ 0.454 kg
1 btu ≡ 1055.06 J
1 hp ≡ 745.7 W
1 hp ≡ 550 ft-lbf ·s−1

1 mile (land) ≡ 1.609 km
1 mph ≡ 0.447 m·s−1

1 mile (nautical) ≡ 1.852 km

mechanical equivalent of heat

1 cal ≡ 4.184 J

Molecular

1 eV ≡ 1.602176×10−19 J
1 eV ·molecule−1 ≡ 96.485 kJ·mol−1

1 eV ≡ 11604.52 K
1 cm−1 ≡ 1.43877 K
1 cm−1 ≡ 11.9627 J·mol−1

1 kJ·mol−1 ≡ 120.272 K

For on-line units conversions, see NIST Links.

http://physics.nist.gov/cuu/Reference/unitconversions.html
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