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1 The Conservation Equations in Integral Form

Inertial frame of reference.

1.1 Material Volume V ∗ (Surface S∗)

Figure 1. Notation for a material volume

Mass :
d

dt

∫
V ∗

ρ dV = 0

Momentum :
d

dt

∫
V ∗

ρ u dV =
∫

V ∗
ρB dV +

∫
S∗

F dS

Energy :
d

dt

∫
V ∗

ρ

(
e +

u2

2

)
dV =

∫
V ∗

ρB · u dV +
∫

S∗
F · u dS −

∫
S∗

q̇ · n dS +
∫

V ∗
ρQ dV

Entropy :
d

dt

∫
V ∗

ρs dV +
∫

S∗

q

T
· n dS −

∫
V ∗

ρ
Q

T
dV ≥ 0

(1.1)

These equations are forms of the conservation of mass, Newton’s laws of motion, the first law of thermo-
dynamics and the second law of thermodynamics, respectively.
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1.1.1 Variables and dimensions

The units of every term in each of these equations are as follows,

Mass :
M
T

Momentum :
ML
T2

= F

Energy :
ML2

T3

Entropy :
ML2

T3θ

(1.2)

Thus the units of B are acceleration, and of F are pressure. The units of q are energy per unit area per
unit time. In particular,

ρ density M
L3 u velocity L

T

B specific body force
L
T2 F traction force

M
LT2

e specific internal energy
L2

T2 q heat flux vector
M
T3

(
watts
m2

)
s specific entropy

L2

θT2 Q specific volumetric energy addition
L2

T3

1.2 Reynolds Transport Theorem

For a control volume V moving relative to material (Surface S, ṡ 6= u), the Reynolds Transport Theorem
is

d

dt

∫
V

f dV =
∫

V

∂f

∂t
dV +

∫
S

f ṡ · n dS , (1.3)

where ṡ = velocity of surface S. In general, the conservation laws are of the form

d

dt

∫
V ∗

f dV =
∫

V ∗
g dV +

∫
S∗

h dS , (1.4)

which, using Eq. 1.3, is ∫
V ∗

∂f

∂t
dV +

∫
S∗

fu · n dS =
∫

V ∗
g dV +

∫
S∗

h dS , (1.5)

Taking V ∗ and V to instantaneously coincide and adding Eqs. 1.3 and 1.5,

d

dt

∫
V

f dV +
∫

S
f(u − ṡ) · n dS =

∫
V

g dV +
∫

S
h dS (1.6)
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1.3 Moving (Non-Material) Control Volume V (Surface S, ṡ 6= u)

Mass :
d

dt

∫
V

ρ dV +
∫

S
ρ(u − ṡ) · n dS = 0

Momentum :
d

dt

∫
V

ρ u dV +
∫

S
ρu (u − ṡ) · n dS =

∫
V

ρB dV +
∫

S
F dS

Energy :
d

dt

∫
V

ρ

(
e +

u2

2

)
dV +

∫
S

ρ

(
e +

u2

2

)
(u − ṡ) · n dS =∫

V
ρB · u dV +

∫
S

F · u dS −
∫

S
q · n dS

(1.7)

1.4 Fixed Control Volume V (Surface S, ṡ = 0)

Mass :
d

dt

∫
V

ρ dV +
∫

S
ρu · n dS = 0

Momentum :
d

dt

∫
V

ρ u dV +
∫

S
ρu u · n dS =

∫
V

ρB dV +
∫

S
F dS

Energy :
d

dt

∫
V

ρ

(
e +

u2

2

)
dV +

∫
S

ρ

(
e +

u2

2

)
u · n dS =∫

V
ρB · u dV +

∫
S

F · u dS −
∫

S
q · n dS

Entropy :
d

dt

∫
V

ρs dV +
∫

S
ρs u · n dS +

∫
S

q

T
· n dS −

∫
V

ρ
Q

T
dV ≥ 0

(1.8)

1.5 Scaling: Non-dimensional numbers

It is useful to be able to compare the magnitude of terms in an equation. This is done by scaling. Because
of the equality expressed by an equation, at least two terms must be of the same order of magnitude (unless
there is only one term, in which case it is trivially equal to zero). The order of magnitude of the size of
terms in Eqs. 1.8 are expressed by characteristic quantities (L, T, ρ, U, etc). The body force term is
scaled by the acceleration of gravity g. The traction force has a pressure contribution which scales with
pressure changes ∆p through the flow, and a viscous contribution scaled by µU

L , where µ is a viscosity and
the scaling is patterned after the Newtonian viscous shear model. In the energy equation the characteristic
internal energy is denoted by e, which in turn is scaled by a specific heat cp and temperature θ and also
an acoustic speed squared c2,

e ∼ cpθ ∼ c2 . (1.9)

The heat flux is modeled by the Fourier heat conduction law, k θ
L , where k is the thermal conductivity.

The equations of motion then suggest the following balances:

Mass :
ρL3

T︸︷︷︸
1

ρUL2︸ ︷︷ ︸
2

= 0

2
1

=
UT

L

(1.10)
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Momentum :
ρUL3

T︸ ︷︷ ︸
3

ρU2L2︸ ︷︷ ︸
4

= ρgL3︸ ︷︷ ︸
5

∆pL2︸ ︷︷ ︸
6

µUL︸ ︷︷ ︸
7

4
5

=
U2

gL
= Fr

4
7

=
UL

ν
= Re

Re · 5
7

=
Re2

Fr
=

gL3

ν2
= Gr

(1.11)

Energy :
ρeL3

T︸ ︷︷ ︸
8

ρU2L3

T︸ ︷︷ ︸
9

ρeUL2︸ ︷︷ ︸
10

ρU3L2︸ ︷︷ ︸
11

= ρgUL3︸ ︷︷ ︸
12

∆pUL2︸ ︷︷ ︸
13

µU2L︸ ︷︷ ︸
14

kθL︸︷︷︸
15

8
9

=
e

U2

gases∼ 1
M2

14
15

=
µU2

kθ
∼ Pr

U2

e

10
15

=
ρeUL

kθ
∼ UL

κ
= Pe = RePr ,

(1.12)

where we have taken
e ∼ cp θ ; ν =

µ

ρ
; κ =

k

cpρ
; Pr =

ν

κ
(1.13)

The pressure may balance with one other term. For example,

6
4

=
∆p

ρU2

gases∼ ∆ρ

ρ

1
M2

6
5

=
∆p

ρgL

6
7

=
∆p L

µU

(1.14)

ρU2 is the dynamic pressure, ρgL is the hydrostatic pressure and µU/L is the viscous pressure drop. From
the last, it follows that viscous drag must be of order µUL.

We have not accounted for the fact that the fluid may be a mixture of substances, the conservation of
each one of which may have to be accounted for. In this case each component satisfies an equation like
the first of Eqs. 1.1, say, for its concentration C (same units as ρ), except that there will be source terms
on the right hand side. Chemical reactions cause volumetric changes and diffusion causes flux across the
boundaries,

d

dt

∫
V ∗

C dV =
∫

V ∗
Ckc dV +

∫
S∗

Cud dS , (1.15)
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where kc is the chemical reaction rate with units 1/T, and ud is the diffusive flux velocity. The latter is
modeled to order of magnitude by (see Fick’s Law)

Cud = D
C

L
, (1.16)

where D is the diffusion coefficient, [D] = L2/T. This leads to two more nondimensional numbers,

Le =
D

κ
(1.17)

Sc =
ν

D
. (1.18)

1.6 Control Volume Analysis – Mass and Momentum

In this section we illustrate how the above ideas can be used to solve even rather difficult problems.
Usually, the control volume boundary in internal (channel) flows is placed at locations where the flow
conditions can be assumed uniform, so the surface integrals reduce to algebraic expressions.

The rocket equation. A rocket accelerates vertically upward in a vertical gravitational field. We write the
equations of motion in the inertial frame fixed with the earth (Fig. 2). In that coordinate system the fluid

Figure 2. Schematic of a rocket moving parallel to the gravity vector

velocity is u and the velocity of the control volume is ṡ, while the velocity relative to the rocket is v. That
is,

v = u − ṡ . (1.19)

The integral equation for the conservation of mass is

d

dt

∫
V

ρ dV = −
∫

Se

ρ(u − ṡ) · n dS . (1.20)

Defining the total mass of the rocket M , and evaluating the integrals gives

dM

dt
= −ρeveSe , (1.21)
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where Se is the nozzle exit area.

The momentum equation is

d

dt

∫
V

ρu dV +
∫

Se

ρu(u − ṡ) · n dS =
∫

V
ρg dV +

∫
S

F dS (1.22)

By symmetry the net contribution from the pressure acting on the solid body to the last term is a vertical
force downward of magnitude p0Se. Writing the equation for the vertical momentum, and splitting the
first term into the momenta of the masses moving (combustion products) and fixed (e.g., the unburned
propellant) with respect to the rocket casing, respectively,

d

dt

∫
Vfix

(ρṡ)fix dV +
d

dt

∫
Vmove

(ρv)move dV + ρe(ve + ṡ)veSe = −Mg + (pe − p0)Se − D , (1.23)

where D is the contribution of the vicous traction forces. Throughout most of the trajectory the momentum
of the gases in the rocket chamber and nozzle (the second term) is small compared to the momentum of
the solid components of the rocket. With the definition of M ,

dMṡ

dt
− Ṁ(ve + ṡ) = −Mg + (pe − p0)Se − D . (1.24)

Partially differentiating the fist term and cancelling results in the so-called rocket equation

M
dU

dt
= Ṁve − Mg − (p0 − pe)Se − D . (1.25)

The thrust is defined by
T ≡ Ṁve . (1.26)

Optimal performance results when the exit pressure is matched to the ambient, pe = p0, typically at
high altutude. At sea level (p0 > pe), there is a performance penalty. At very high altitude, where the
atmosphere is rarefied,

M
dU

dt
= T − Mg + peSe . (1.27)

Losses at area changes in pipes – pressure recovery. Control surface analysis can be used to analyze the
effects of losses on pressure recovery across a sudden enlargement of a pipe in the flow of an incompressible
fluid, as shown in Fig. 3. It is assumed that the incoming stream is uniform and the control volume is long

Figure 3. Control surface for area expansion in a pipe

enough that the flow across station 1 is also uniform. For simplicity, viscous forces are neglected. The flow
is steady. That means that, though there may be large fluctuations internally, the flows in and out are
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steady, so the integral quantities do not vary in time, d/dt = 0. It will emerge that one further piece of
information is required to close the problem. We use the fact that the fluid by the vertical section at the
area change can communicate very well with the region on the left (1), so the pressure pb on the vertical
section at the area change is constant and equal to p1.

The control volume is fixed, so the mass equation gives that

u2A2 = u1A1 . (1.28)

The flow slows down. The integral momentum equation in the horizontal direction states that the change
of momentum flux between 1 and 2, ρu2

2A2 − ρu2
1A1, is balanced by the pressure forces acting in the

downstream direction. Using the continuity equation and pb = p1,

ρu2A2(u2 − u1) = p1A1 + p1(A2 − A1) − p2A2 . (1.29)

Thus the pressure increase is

p2 − p1 = ρu2(u1 − u2) ,

Cp = 2
A1

A2

(
1 − A1

A2

) (1.30)

where Cp ≡ (p2 − p1)/1
2ρu2

1.

If the area change were very gradual, so there were no losses, the flow would satisfy the Bernoulli
equation, p + 1

2ρu2 = const, with the result

Cp = 1 −
(

A1

A2

)2

(1.31)

These two results are compared in Fig. 4. The estimate based on pb = p1 gives considerably lower pressure
recovery, but they both agree for very small changes of area, where in any case the process is nearly ideal.

1.7 The Stress Tensor

The force F depends on the orientation of the surface S. This means that in order to express the force,
we need 3 components for each component of the outward normal, i.e., a tensor of rank 2, called the stress
tensor σ (see figure, drawn for 2 dimensions). In terms of the stress tensor the traction force is expressed

F = σ n ; Fi = σij nj (Cartesian tensor notation) (1.32)

Splitting the Stress Tensor:
The concept of the stress tensor is very general, and applies to all substances. The stress and strain δ

experienced by a general substance can be thought of as divided into two parts

σ = σelastic + σplastic

cold part+ fluid-like+
thermal part memory, hysteresis

δ = δelastic + δplastic .

(1.33)
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Figure 4. Comparison of Bernoulli flow with model flow with losses

Figure 5. Components of the stress in 2D

We consider only the simplest fluids and solids at stresses greater than about 1 Mbar = 100 GPa, in which
case the stress can be split into the isotropic normal contribution which is finite when there is no motion
(the pressure p), and a viscous contribution (the viscous stress tensor τ).

σ = −pI + τ ; σij = −p δij + τij , (1.34)

where δij is the Kronecker delta; δij =
{

1 if i = j
0 if i 6= j

. Here, the pressure is taken to be the thermodynamic

pressure, i.e., it is a thermal quantity. The traction force is thus expressed in terms of the stress tensor as

F = −pn + τn ; Fi = −pni + τijnj . (1.35)
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1.8 The Flux of Momentum Tensor ρ uu

Where a vector multiplies a scalar dot product in the equations, it can be replaced by a tensor multi-
plying a vector, as justified by the Catresian tensor form. For example,

ρu (u · n) = (ρu u)n ; ρui (ujnj) = (ρuiuj) nj (1.36)

1.9 Summary of Equations

Thus, summarizing for a stationary control volume (ṡ = 0),

Mass :
d

dt

∫
V

ρ dV +
∫

S
ρ u · n dS = 0

Momentum :
d

dt

∫
V

ρ u dV +
∫

S
(ρuu)n dS = −

∫
S

p n dS +
∫

V
ρB dV +

∫
S

τ n dS

Energy :
d

dt

∫
V

ρ

(
e +

u2

2

)
dV +

∫
S

ρ

(
e +

u2

2

)
u · n dS =

−
∫

S
pu · n dS +

∫
V

ρB · u dV +
∫

S
τu · n dS −

∫
S

q · n dS +
∫

V
ρQ dV

Entropy :
d

dt

∫
V

ρs dV +
∫

S
ρs u · n dS +

∫
S

q

T
· n dS −

∫
V

ρ
Q

T
dV ≥ 0

(1.37)
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2 The Equations of Motion in Differential Form

The surface integrals in the conservation equations (Eqs. 1.8) can be transformed to volume integrals
by using the Divergence (Gauss’) Theorem. Then the limit lim

V →0
can be taken, with some corresponding

constraints, to transform the equations into differential form.

2.1 The Divergence Theorem

The definition of the divergence is, for any “density” variable,

∇ · f = lim
V →0

1
V

∫
S

fn dS (2.1)

This forms the basis for the Divergence Theorem,∫
S

fn dS =
∫

V
∇ · f dV (2.2)

f can be a scalar, vector or tensor, because any operation on a vector f can be written in terms of the
equivalent skew-symmetric tensor

f =

 0 −f3 f2

f3 0 −f1

−f2 f1 0

 . (2.3)

Writing the various surface integrals that appear in the equations of motion in terms of the divergence
theorem illustrates how it applies to scalars, vectors and tensors:

I.
∫
S ρu · n dS =

∫
V ∇ · (ρu) dV

II.
∫
S ρu(u · n) dS =

∫
S(ρuu)n dS =

∫
V ∇ · (ρuu) dV

III.
∫
S F dS =

∫
S σn dS =

∫
V ∇ · σ dV

IV.
∫
S F · u dS =

∫
S(σn) · u dS =

∫
S(σu) · n dS =

∫
V ∇ · (σu) dV

V.
∫
S q · n dS =

∫
V ∇ · q dV .

(2.4)

2.2 The Equations of Motion

Eqs. 2.4 transform the equations of motion to a form which contains only volume integrals. Then, with
the definition of the partial with respect to time,

∂f

∂t
≡ lim

V →0

1
V

d

dt

∫
V

f dV , (2.5)

10 April 23, 2001



Ae/APh/CE/ME 101 Notes

we can take the limit V → 0, yielding the equations of motion in differential form.

Mass :
∂ρ

∂t
+ ∇ · ρu = 0

∂ρ

∂t
+

∂ρuj

∂xj
= 0

Momentum :
∂ρu

∂t
+ ∇ · (ρu u) = ρB + ∇ · σ

∂ρui

∂t
+

∂ρuiuj

∂xj
= ρBi +

∂σij

∂xj

Energy :
∂ρ

(
e + u2

2

)
∂t

+ ∇ · ρ
(

e +
u2

2

)
u = ρB · u + ∇ · (σu) −∇ · q + ρ Q

∂ρ
(
e + u2

2

)
∂t

+
∂ρ

(
e + u2

2

)
uj

∂xj
= ρBjuj +

∂σijui

∂xj
− ∂qj

∂xj
+ ρ Q

(2.6)

Splitting the stress tensor according to Eq. 1.34 and using ∇ · (pI) = ∇p , i.e.,
∂pδij

∂xj
=

∂p

∂xj
, gives for the

momentum and energy equations

∂ρu

∂t
+ ∇ · (ρu u) = −∇p + ρB + ∇ · τ (2.7)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+ ρBi +

∂τij

∂xj

∂ρ
(
e + u2

2

)
∂t

+ ∇ · ρ
(

e +
u2

2

)
u = −∇ · (pu) + ρB · u + ∇ · (τu) −∇ · q + ρ Q (2.8)

∂ρ
(
e + u2

2

)
∂t

+
∂ρ

(
e + u2

2

)
uj

∂xj
= −∂pui

∂xi
+ ρBjuj +

∂τijui

∂xj
− ∂qj

∂xj
+ ρ Q

2.3 The Convective Derivative

The convective derivative expresses the changes in time of a density quantity f following a fluid particle.
The location x(ξ, t) of any fluid particle at time t in a given flow is uniquely defined by its initial position

ξ and t. The local velocity at the point is u =
∂x(ξ,t)

∂t . Thus, the convective derivative of f is

Df

Dt
≡ ∂f(x(ξ, t), t)

∂t
=

∂f

∂t
+

∂f

∂x

∂x

∂t
=

∂f

∂t
+ u ∇f

Df

Dt
= uj

∂f

∂xj
.

(2.9)

For scalars:
Df

Dt
=

∂f

∂t
+ u · ∇f ;

Df

Dt
=

∂f

∂t
+ uj

∂f

∂xj
(2.10)

For vectors:
Df

Dt
=

∂f

∂t
+ u ∇f ;

Dfi

Dt
=

∂fi

∂t
+ uj

∂fi

∂xj
(2.11)
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The latter is usually expressed with the vector notation

Df

Dt
=

∂f

∂t
+ (u · ∇) f (2.12)

The convective derivative (sometimes called substantial or total derivative) expresses how quantities change
following a fluid particle, i.e., along a streamline.

2.4 Convective Form of the Equations of Motion

A new form of the continuity equation is obtained by partially differentiating it and using Eq. 2.9,

Dρ

Dt
+ ρ∇ · u = 0

Dρ

Dt
+ ρ

∂uj

∂xj
= 0

(2.13)

This expresses the fact that, necessarily, any change of fluid density in a fluid particle must be accompanied
by a divergence of the velocity field. In a flowing incompressible fluid the velocity is divergence free,

Dρ

Dt
= 0 ; ∇ · u = 0 . (2.14)

A further operation on the convective derivative is necessary to treat the remaining equations of motion.
Multiplying Eq. 2.9 by ρ and adding the continuity equation times f (= 0) gives

ρ
Df

Dt
=

∂ρf

∂t
+ ∇ · (ρuf) ; ρ

Df

Dt
=

∂ρf

∂t
+ ∇ · (ρu f) . (2.15)

This directly transforms the LHS of the momentum, energy and entropy equations to convective form.

ρ
Du

Dt
= −∇p + ρB + ∇ · τ (2.16)

ρ
Dui

Dt
= − ∂p

∂xi
+ ρBi +

∂τij

∂xj

ρ
D

(
e + u2

2

)
Dt

= −∇ · pu + ρB · u + ∇ · (τu − q) + ρ Q (2.17)

ρ
D

(
e +

ujuj

2

)
Dt

= −∂puj

∂xj
+ ρBjuj +

∂

∂xj

(
τijui − qj

)
+ ρ Q

ρ
Ds

Dt
+ ∇ ·

( q

T

)
− ρ

Q

T
≥ 0 (2.18)

ρ
Ds

Dt
+

∂qj/T

∂xj
− ρ

Q

T
≥ 0

2.5 Alternative Forms of the Conservation Equations

2.5.1 Mechanical Energy Equation

The mechanical energy equation is derived by dotting the momentum equation into u.

ρ
Du2

2

Dt
= −∇p · u + ρB · u + (∇ · τ) · u (2.19)
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2.5.2 Internal Energy Equation

The internal energy equation is derived by subtracting the mechanical energy equation (2.19) from the
energy equation (2.17).

ρ
De

Dt
= −p∇ · u + Φ −∇ · q + ρ Q (2.20)

Φ ≡ τ ∇u

∇u is the velocity gradient tensor, which, for example, appears in the definition 2.9 of Du/Dt, and Φ is
the dissipation. Eq. 2.20 is valid even when body forces B are present.

2.5.3 Equation for Total Enthalpy – The Bernoulli Equation

Other forms of the energy equation can be derived by substituting

−∇p · u = −Dp

Dt
+

∂p

∂t
(2.21)

and, from Eq. 2.13,

−p∇ · u =
p

ρ

Dρ

Dt
, (2.22)

and combining into D(p/ρ)/Dt. Similarly, for body forces that are conservative, that is, work done by the
force on a body is independent of path, a potential G can be defined such that

ρB · u = −ρ∇G · u = −ρ
DG

Dt
+ ρ

∂G

∂t
. (2.23)

We take ∂G/∂t = 0 (neglect gravity waves).

In the total energy equation Eq. 2.17, letting h = e + p/ρ gives

ρ
D

(
h + u2

2 + G
)

Dt
=

∂p

∂t
+ ∇ · (τu − q) + ρQ . (2.24)

For steady flow (∂/∂t = 0), and if the fluid is inviscid and nonheatconducting,

D(h + u2

2 + G)
Dt

= Q , (2.25)

and for Q = 0,

h +
u2

2
+ G ≡ H = const along a streamline. (2.26)

This is the form of the Bernoulli equation for steady compressible flow. In this sense the Bernoulli “con-
stant” H is a generalized total enthalpy. The potential G includes the effects of gravity and rotation.
For incompressible flow, by Eq. 2.20 De/Dt = 0. Therefore,

p + 1
2ρu2 + ρG = const along a streamline, (2.27)

the incompressible form of the Bernoulli equation for steady flow. Here the Bernoulli equation has been
derived from the enrgy equation. Later, in the Crocco Theorem (Eq. 3.21) we will see how it also comes
from the momentum equation, establishing a connection between vorticity and entropy.
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2.5.4 Entropy Equation

The internal energy equation Eq. 2.20 provides a form independent of the body forces, since they only
increase mechanical energy. Using the relation (2.21) gives immediately

ρ

(
De

Dt
+ p

D1/ρ

Dt

)
= Φ −∇ · q + ρ Q . (2.28)

With the thermodynamic identity

T ds = de + p d
1
ρ

, (2.29)

(2.28) becomes

ρT
Ds

Dt
= Φ −∇ · q + ρ Q . (2.30)

This equation is valid even when body forces B are present, because they do not serve to increase the
entropy. In order for it to be consistent with the second law Eq. 2.18, it must be that Φ − q

T
∇T > 0. We

will come back to this question later.

Gases: The potential temperature. From thermodynamics, variations of the entropy can be expressed in
terms of p and T , i.e., s(p, T ),

ds =
(

∂s

∂T

)
p

dT +
(

∂s

∂p

)
T

dp . (2.31)

Using cp ≡ T (∂s/∂T )p and the Maxwell relation(
∂s

∂p

)
T

= −
(

∂v

∂T

)
p

= −αv , (2.32)

derived from the differential dg = v dp− s dT of the Gibbs free energy, g = h− Ts, where α is the thermal
coefficient of expansion, gives

ds =
cp

T
dT − α

ρ
dp , (2.33)

or
ds

cp
=

dT

T
− αp

cpρ

dp

p
. (2.34)

For a perfect gas, α = 1/T and p = ρRT , so

αp

cpρ
=

γ − 1
γ

, (2.35)

where γ = cp/cv = const. Thus the logarithmic derivatives in Eq. 2.34 combine to form the potential
temperature θ,

ds

cp
=

dθ

θ
, (2.36)

where

θ ≡
(

p

p0

)− γ−1
γ

T , (2.37)

with the result that
θ

θ0
= e

s−s0
cp . (2.38)
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So the potential temperature is really just the entropy. θ is the temperature which a fluid particle, initially
at T , aquires when the pressure changes from p to p0 isentropically. Correspondingly, there is the potential
density,

ρθ ≡
(

p

p0

)− 1
γ

ρ . (2.39)

In terms of θ the entropy equation (2.30) becomes

Dθ

Dt
=

θ

cpT

(
Φ
ρ
− 1

ρ
∇ · q + Q

)
. (2.40)

As would be expected from the definition of θ, it changes along a particle path only if entropy-altering
processes, indicated on the right hand side, are active. In particular, the potential temperature of a fluid
particle is constant in an isentropic flow.

A stationary atmosphere (u = 0), for which the z-momentum equation gives

dp

dz
= ρ g , (2.41)

gives for the temperature gradient (2.34)

1
T

dT

dz
=

γ − 1
γ

1
p

dp

dz
= −γ − 1

γ

ρg

p
. (2.42)

That is, (
dT

dz

)
ad

= − g

cp
. (2.43)

This is so-called the adiabatic lapse rate for a stationary atmosphere. It describes the temperatures acquired
by the reversible adiabatic (isentropic) motion of a fluid particle. Such a motion is used to test the stability
of an atmosphere. If such a fluid particle finds itself at the same density as its surroundings, then the
atmospher is neutrally stable. If, upon being elevated, it finds itself lighter than the surroundings because
dT/dz > (dT/dz)ad then the atmosphere is unstable, while if it is heavier because dT/dz < (dT/dz)ad, the
atmosphere is stable. In summary, if dθ/dz = 0 the atmosphere is neutrally stable.

Temperature energy equation. Now, finally, an equation can be derived for how the temperature varies in
a flow. From Eq. 2.34, the entropy equation Eq. 2.30 can be written

ρcp
DT

Dt
= αT

Dp

Dt
+ Φ −∇ · q + ρ Q . (2.44)

The energy equation for liquids. With the flow of liquids at modest velocities the changes of entropy
(density) by heating

(
∂s
∂T

)
p
dT may be large compared to the changes due to dynamical changes of pressure(

∂s
∂p

)
T

dp. That is,

αT
Dp

Dt
¿ ρcp

DT

Dt
. (2.45)

With ∆p ∼ ρU2, and to order of magnitude ∆T ∼ T , the condition becomes

αU2

cp
= αT

U2

cpT
¿ 1 . (2.46)
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For water, this requires that U ¿ 2000 m/s. Then, changes of density are due to heating, that is ρ = ρ(T ),
and the energy equation becomes

DT

Dt
=

1
cp

(
Φ
ρ
− 1

ρ
∇ · q + Q

)
, (2.47)

or
Dρ

Dt
= −αρ0

cp

(
Φ
ρ
− 1

ρ
∇ · q + Q

)
. (2.48)

For constant α, ρ(T ) is given by the familiar formula

ρ

ρ0
= 1 − α(T − T0) , (2.49)

but, near 4C in water, α actually changes sign.

Again, note that all these equations apply when there are body forces, even though they don’t appear
in these forms.

2.6 Control Volume Analysis – Energy

A global form of Bernoulli’s equation can be derived by control-volume analysis of the energy equation,
Eq. 1.37. Consider a volume V contained in surface S (see Fig. 6) containing a steady flow subject to
drag elements D, heat addition Q̇ from the external system, work Ẇ powered from an external source,
and a body force g which can be expressed in terms of a potential −g = −∇G. One effect of viscosity,

Figure 6. Schematic diagram of possible processes affecting energy in a control volume.

namely the no-slip boundary condition at solid surfaces, is explicitly invoked. This “lumped parameter”
approach is used to simplify an otherwise complicated problem. All of the viscous and pressure traction
forces on fixed surfaces which depend on the configuration of the flow, and thus on its detailed solution, are
represented by D, which we won’t calculate, but assume is given. Those acting on moving surfices, which
do work, are represented by Ẇ , which we won’t calculate, but assume is given. Energy addition by heat
flux accross boundaries and by volumetric heat addition are represented by Q̇, also assumed given. The
drag contribution D disappears from the energy equation because of the no-slip condition. This means
that the only surviving surface area term on the right hand side of Eq. 1.37 is the contribution of pressure
on surfaces S1,2. Similarly, the lhs has nonzero velocity contributions only from S1,2. Thus, the energy
equation is ∫

S1,2

ρ

(
e +

u2

2

)
u · n dS = −

∫
S1,2

pu · n dS −
∫

V
∇G · ρu dV + Ẇ + Q̇ . (2.50)
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Now, ∇G · ρu = ∇ · (ρGu) − G∇ · ρu, and the continuity equation for steady flow says that ∇ · ρu = 0
everywhere in the volume. The consequence of the resulting form of the body-force term is that the volume
integral can be converted to a surface integral by the divergence theorem. Thus, grouping terms,∫

S1,2

ρ

(
e +

u2

2
+

p

ρ
+ G

)
u · n dS = Ẇ + Q̇ . (2.51)

Defining the control volume so that flow quantities are uniform across S1,2 gives

Ṁ

[
h +

u2

2
+ G

]2

1

= Ẇ + Q̇ , (2.52)

where Ṁ ≡ ρ2u2S2 = ρ1u1S1 and [ ]21 ≡ ( )2−( )1. This is a general form of the energy equation. It yields
an integral form of the Bernoulli Equation when Ẇ = Q̇ = 0. Subject to the assumptions made here,
the actual Bernoulli Equation, as derived earlier, may be obtained by letting the control volume become a
stream tube.

2.7 The Rate of Deformation Tensor and Vorticity

∂ui

∂xj︸︷︷︸
velocity
gradient
tensor

=
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
︸ ︷︷ ︸

rate of deformation tensor

+
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
︸ ︷︷ ︸
vorticity tensor

≡ 1
2εij + 1

2ωij

=
1
2


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 +
1
2


0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0


(2.53)

=
1
2


2
∂u

∂x

∂u

∂y
+

∂v

∂x

∂u

∂z
+

∂w

∂x
∂v

∂x
+

∂u

∂y
2
∂v

∂y

∂v

∂z
+

∂v

∂y
∂w

∂x
+

∂u

∂z

∂w

∂y
+

∂v

∂z
2
∂w

∂z

 +
1
2


0

∂u

∂y
− ∂v

∂x

∂u

∂z
− ∂w

∂x
∂v

∂x
− ∂u

∂y
0

∂v

∂z
− ∂w

∂y
∂w

∂x
− ∂u

∂z

∂w

∂y
− ∂v

∂z
0



∇u = 1
2 defu + 1

2 ω

2.8 Vorticity

A second order skew symmetric tensor has 3 independent components and so represents a vector in
three dimensions. In particular, the vorticity vector ω is defined by

ω1 = ω32 ; ω2 = ω13 ; ω3 = ω21 . (2.54)
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That is,

ωij = −εijk ωk ; ωi = −1
2
εijk ωjk = −1

2
εijk

(
∂uj

∂xk
− ∂uk

∂xj

)
, (2.55)

where εijk is the permutation operator1. From the last relation,

ω =
(

∂w

∂y
− ∂v

∂z

)
ex +

(
∂u

∂z
+

∂w

∂x

)
ey +

(
∂v

∂x
− ∂u

∂y

)
ez =

∣∣∣∣∣∣∣∣∣∣
ex ey ez

∂

∂x

∂

∂y

∂

∂z

u v w

∣∣∣∣∣∣∣∣∣∣
= curl u (2.56)

Thus the vorticity vector ω is normal to the velocity u. In view of the second of Eqs. 2.55,

ωi = εijk
∂uk

∂xj
. (2.57)

As we will see later, because
∇ · (∇× u) = ∇ · ω = 0 (2.58)

there is no such thing as a point source of vorticity.

2.8.1 The vorticity equation

The vorticity equation is derived by taking the curl of the momentum equation, Eq. 2.16. First, the
convective derivative is modified by using the vector identity

u · ∇u = (∇× u) × u + ∇u2

2
, (2.59)

so,
∂u

∂t
+ u · ∇u =

∂u

∂t
+ ∇u2

2
+ ω × u (2.60)

When the curl is taken and the identities curl grad = 0, div curl = 0 and

∇× (u × v) = (v · ∇)u − v∇ · u + u∇ · v − (u · ∇)v (2.61)

are used, the result is

∂ω

∂t
+ (u · ∇)ω + ω(∇ · u) − (ω · ∇)u = (2.62)

Dω

Dt
+ ω(∇ · u) − (ω · ∇)u = −∇×

(
1
ρ
∇p

)
+ ∇×

(
1
ρ
∇ · τ

)
Now, rewriting in terms of the specific vorticity, ξ = ω/ρ

ρ
Dξ

Dt
+ ξ

Dρ

Dt
+ ρ ξ(∇ · u) − (ω · ∇)u = −∇×

(
1
ρ
∇p

)
+ ∇×

(
1
ρ
∇ · τ

)
(2.63)

1 εijk =


0 if 2 of the indices (ijk) are equal
1 if (ijk) is an even permutation of (123)

−1 if (ijk) is an odd permutation of (123)
. The cross product is given by (a × b)i = εijkajbk.

Vector identities are easily proven in this notation, with the help of the identity εijkεilm = δjlδkm − δjmδkl.
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Using the continuity equation and expanding the pressure and viscous terms leads finally to

ρ
Dω/ρ

Dt
= ω · ∇u︸ ︷︷ ︸

vortex
stretching

−
(
∇1

ρ

)
×∇p︸ ︷︷ ︸

baroclinic
generation

+
1
ρ
∇×∇ · τ︸ ︷︷ ︸
viscous
decay

+
(
∇1

ρ

)
×∇ · τ︸ ︷︷ ︸

variable density
viscous decay

. (2.64)

With dh = T ds + 1
ρ dp, the baroclinic generation term can be written in alternative form,

−
(
∇1

ρ

)
×∇p = −∇×

(
1
ρ
∇p

)
= ∇× (T∇s) = ∇T ×∇s , (2.65)

so

ρ
Dω/ρ

Dt
= ω · ∇u + ∇T ×∇s + ∇×

(
1
ρ
∇ · τ

)
. (2.66)

For an inviscid, constant-density fluid,

Dω

Dt
= ω · ∇u Helmholtz Equation (2.67)

In 2D flow there are no velocity gradients parallel to the vorticity vector, so there is no vortex stretching,
and

Dω

Dt
= 0 . (2.68)
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3 Viscous Stresses and Heat Flux

3.1 Newtonian fluid

In establishing a constitutive law relating stress to strain, it is first hypothesized that the viscous
stress τ depends on changes of velocity. The simplest Gallilean invariant measure of changes is ∇u. The
Newtonian approximation is that the relationship is linear,

τij = µijkl
∂uk

∂xl

= µijkl(εkl + ωkl) ,

(3.1)

where µijkl are the (89) viscosity coefficients. The complexity of the material properties is drastically
reduced when the fluid behaves isotropically (there is no preferred direction), i.e., both the stress and the
strain are isotropic. Therefore, necessarily so is µijkl. The basic isotropic tensor is the Kronecker delta, so
a 4th-order isotropic tensor can be constructed from products of pairs of deltas,

µijkl = µ1 δijδkl + µ2 δikδjl + µ3 δilδjk . (3.2)

So the 89 coefficients are reduced to 3! There are many non-isotropic fluids, so beware. However, τ is
symmetric, so, from Eq. 3.1 µijkl is symmetric in (i, j). Thus,

µijkl = µ1 δijδkl + 2µ2 δikδjl . (3.3)

Furthermore, from this result it can be seen that µijkl is also symmetric in (k, l), which eliminates the ωkl

term, which is antisymmetric, from Eq. 3.1. Thus,

τij = µ1 δijδkl εkl + 2µ2 δikδjl εkl

= µ1δij εkk + 2µ2 εij .
(3.4)

εkk is 2∂uk
∂xk

, so we redefine the two viscosities (µ1, µ2) → (λ, µ), such that

τij = λ
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
τ = λ ∇ · u I + µ def u

Φ = τ ∇u = 1
2 τε

(3.5)

The last equality is true because the stress tensor is symmetric. λ is called the compressive viscosity and
µ the shear viscosity, but note that there are not only shear stress terms but also normal-stress terms in
defu. The compressive viscosity has effect only in compressible flow.

3.2 Bulk viscosity

The average normal viscous stress is given by the 1/3 of the trace of the stress tensor.
(Note: δii = 3.)

τii = (3λ + 2µ)
∂ui

∂xi
(3.6)
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The average stress is taken to be proportional to the bulk viscosity

tr τ

3
= η ∇ · u (3.7)

η = λ +
2
3
µ (3.8)

so,

τ = η∇ · u I + µ(defu − 2
3
∇ · u)

τij = η
∂uk

∂xk
δij + µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

) (3.9)

3.3 Heat flux vector (Fourier’s law)

q = −k ∇T (3.10)

3.4 The Equations of Motion - Newtonian Fluid

In the equations of motion ∇ · τ becomes

∇ · τ = ∇(λ ∇ · u) + ∇ · (µ defu) , (3.11)

so

Momentum : ρ
Du

Dt
= −∇p + ρB + ∇(λ ∇ · u) + ∇ · (µ defu)

ρ
Dui

Dt
= − ∂p

∂xi
+ ρBi +

∂

∂xi

(
λ

∂uk

∂xk

)
+

∂

∂xj

[
µ

(
∂ui

∂xj
+

∂uj

∂xi

)] (3.12)

Energy : ρ
De

Dt
= −p∇ · u + Φ + ∇ · (k∇T )

Φ = λ(∇ · u)2 +
µ

2
(defu)2

ρ
De

Dt
= −p

∂uj

∂xj
+ Φ +

∂

∂xj
k

∂T

∂xj

Φ = λ
∂uk

∂xk
δij

∂ui

∂xj
+ µ

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj

=
(

η − 2
3
µ

) (
∂uj

∂xj

)2

+
µ

2

(
∂ui

∂xj
+

∂uj

∂xi

)2

=
1
4

[(
η − 2

3
µ

)
ε2ii + 2µ ε2ij

]

(3.13)

From Eq. 2.44,

ρ cp
DT

Dt
= αT

Dp

Dt
+ Φ + ∇ · (k∇T ) (3.14)
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3.4.1 Vorticity equation - Isothermal fluid

If the temperature is constant p = p(ρ), so the pressure and density gradients are parallel. This is
called barotropic flow. It holds when any single thermodynamic variable is constant throughout. An added
side benefit of the isothermal case is that µ(T ) = const. Then Eq. 2.64 becomes

ρ
Dω/ρ

Dt
= ω · ∇u + ν∇× (∇ · defu) + µ∇1

ρ
×∇ · defu + λ∇1

ρ
×∇(∇ · u) , (3.15)

where ν = µ/ρ is the kinematic viscosity and the fact that curl grad = 0 has been used. From the vector
identity curl div def = div grad curl,

ρ
Dω/ρ

Dt
= ω · ∇u + ν ∇2ω + µ∇1

ρ
×∇ · defu + λ∇1

ρ
×∇(∇ · u) , (3.16)

The last 3 terms are all second order derivatives and so act to diffuse vorticity. This can be most easily
seen in constant-density, two-dimensional plane flow, where there are no velocity gradients parallel to the
vorticity and so there is no vortex stretching, and where the density gradient terms vanish,

Dω

Dt
= ν ∇2ω . (3.17)

Viscosity is a “diffusion coefficient” that diffuses vorticity. In order to preclude pathological behavior
overall diffusion must be down the vorticity gradient. In the simple case where there is only one diffusive
term (Eq. 3.17) the viscosity had better be positive to insure this, µ > 0.

3.4.2 Constant viscosity and heat conductivity

For constant viscosity and heat conductivity, from Eq. 3.12, since ∇ · defu = ∇(∇ · u) + ∇2u

∇ · τ = (λ + µ)∇(∇ · u) + µ∇2u , (3.18)

so,
Du

Dt
= −1

ρ
∇p + B + ν ∇2u +

(
η

ρ
+ 1

3ν

)
∇(∇ · u) . (3.19)

From Eq. 2.44

ρ cp
DT

Dt
= αT

Dp

Dt
+ Φ + k∇2T ; Φ = τ · ∇u (3.20)

3.5 Crocco’s Theorem

Another form of the momentum equation Eq. 2.16 can be derived by using the modified form of
the convective derivative given in Eq. 2.60. Using the form (3.11) for ∇ · τ , and taking B = −∇G,
dh = T ds + 1

ρ dp and λ = η − 2
3µ gives

ρ

(
∂u

∂t
+ ω × u + ∇H

)
= ρT ∇s + ∇ [(

η − 2
3µ

) ∇ · u]
+ ∇ · (µ defu) (3.21)

where H was defined in Eq. 2.26. For steady, inviscid flow

ω × u + ∇H = T ∇s . (3.22)
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a. If s = constant everywhere (homentropic), then H = constant everywhere if

ω × u = 0 . (3.23)

In this case either the flow must be irrotational (ω = 0) or ω and u must be parallel, which is a very
limited class of flows called Beltrami flow.

b. On the other hand, if the flow is irrotational, then

∇H = T ∇s . (3.24)

While Eq. 2.25 deals with behavior along a streamline, these results apply throughout the flow, and
are valid in general for steady inviscid irrotational flow.

For constant viscosity, using the form (3.18) for ∇ · τ permits use of the vector identity

∇2u = ∇(∇ · u) −∇× ω , (3.25)

to give
∂u

∂t
+ ω × u + ∇H = T ∇s +

(
η

ρ
+ 4

3ν

)
∇(∇ · u) − ν∇× ω . (3.26)

In irrotational flow only the dilatational contributions to viscous stress act. Note that nowhere in this
paragraph has constant density been assumed.

3.6 Incompressible fluid

Dρ/Dt = 0 and α = 0:

∇ · u = 0 (3.27)

ρ
Du

Dt
= −∇p + ρB + µ∇2u (3.28)

ρ cp
DT

Dt
= Φ + k∇2T ; Φ = τ · ∇u (3.29)

Again, with the vector identities Eqs. 3.25 and 2.59, and taking B = −∇G, another form of the momentum
equation is

∂u

∂t
+ ω × u + ∇H = −ν∇× ω , (3.30)

where H now is of the incompressible form

H =
u2

2
+

p

ρ
+ G (3.31)

and the ρ has been brought inside the ∇p because it is constant. Compare with Eqs. 3.26 and 2.27.

For irrotational flow (ω = 0), this is the Bernoulli equation for nonsteady incompressible flow.

The term u × ω in the momentum equation is analogous to the Coriolis force and is related to the
so-called Magnus effect, in which a normal velocity imposed upon a vortex line is resisted by a force, the
“lift”. On airfoils this is the Kutta-Joukowski theorem.
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4 Summary: Other Forms of the Equations of Motion

4.1 Cartesian Tensor Notation

Momentum equation.

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= − ∂p

∂xi
+

∂

∂xi

(
η − 2

3
µ

)
∂uj

∂xj
+

∂

∂xj
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.1)

Energy Equation.

ρ cp

(
∂T

∂t
+ uj

∂T

∂xj

)
= αT

Dp

Dt
+ Φ +

∂

∂xj
k

∂T

∂xj
(4.2)

Φ =
(

η − 2
3
µ

) (
∂uj

∂xj

)2

+ µ

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
(4.3)

4.2 2 Dimensional Plane Flow: Cartesian Coordinates

Continuity equation:
∂ρu

∂x
+

∂ρv

∂y
= 0 (4.4)

x-momentum equation:

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂x

(
η − 2

3
µ

) (
∂u

∂x
+

∂v

∂y

)
+ 2

∂

∂x

(
µ

∂u

∂x

)
+

∂

∂y
µ

(
∂u

∂y
+

∂v

∂x

)
(4.5)

y-momentum equation:

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+

∂

∂y

(
η − 2

3
µ

) (
∂u

∂x
+

∂v

∂y

)
+ 2

∂

∂y

(
µ

∂v

∂y

)
+

∂

∂x
µ

(
∂u

∂y
+

∂v

∂x

)
(4.6)

Energy equation:

ρ cp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= αT

(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y

)
+ Φ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
(4.7)

Φ =
(

η − 2
3
µ

) (
∂u

∂x
+

∂v

∂y

)2

+ µ

[
2

(
∂u

∂x

)2

+ 2
(

∂v

∂y

)2

+
(

∂u

∂y
+

∂v

∂x

)2
]
(4.8)

4.3 Cylindrical Coordinates

(r, θ)(u, v) ( ∂
∂z = 0)

Continuity equation:
∂ρ

∂t
+

1
r

∂ ρur

∂r
+

1
r

∂ ρv

∂θ
= 0 (4.9)

r-momentum equation:

ρ

(
Du

Dt
− v2

r

)
= −∂p

∂r
+

1
r

∂ rτrr

∂r
+

1
r

∂τrθ

∂θ
− τθθ

r
(4.10)

θ-momentum equation:

ρ

(
Dv

Dt
+

uv

r

)
= −1

r

∂p

∂θ
+

1
r2

∂ r2τrθ

∂r
+

∂τθθ

∂θ
(4.11)
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τrr = 2µ
∂u

∂r
+ η∇ · u (4.12)

τrθ = µ

(
1
r

∂u

∂θ
+ r

∂v/r

∂r

)
(4.13)

τθθ = 2µ
(

1
r

∂v

∂θ
+

u

r

)
+ η∇ · u (4.14)

∇ · u =
1
r

∂ru

∂r
+

1
r

∂v

∂θ
(4.15)

D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
(4.16)

Energy equation:

ρcv
DT

Dt
= −p

(
1
r

∂ru

∂r
+

1
r

∂v

∂θ

)
+ Φ +

1
r

∂

∂r

(
kr

∂T

∂r

)
+

1
r2

∂

∂θ

(
k
∂T

∂θ

)
(4.17)

Φ =
1
4

(
η − 2

3
µ

)
(∇ · u)2 + 2µ

[(
∂u

∂r

)2

+
1
2

(
1
r

∂u

∂θ
+ r

∂

∂r

v

r

)2

+
(

1
r

∂v

∂θ
+

u

r

)2
]

(4.18)

4.4 2 Dimensional Axisymmetric Flow: Cylindrical Polar Coordinates

(z, r)(u, v) ( ∂
∂θ = 0)

Continuity equation:
∂ρ

∂t
+

∂ρu

∂z
+

1
r

∂ ρvr

∂r
= 0 (4.19)

z-momentum equation:

ρ
Du

Dt
= −∂p

∂z
+

∂τzz

∂z
+

1
r

∂ rτzr

∂r
(4.20)

r-momentum equation:

ρ
Dv

Dt
= −∂p

∂r
+

1
r

∂ rτrr

∂r
+

∂τzz

∂z
(4.21)

τzz = 2µ
∂u

∂z
+ η∇ · u (4.22)

τrr = 2µ
∂v

∂r
+ η∇ · u (4.23)

τrz = µ

(
∂u

∂r
+

∂v

∂z

)
(4.24)

∇ · u =
∂u

∂z
+

1
r

∂ rv

∂r
(4.25)

D

Dt
=

∂

∂t
+ u

∂

∂z
+ v

∂

∂r
(4.26)

Energy equation:

ρcv
DT

Dt
= −p

(
∂u

∂z
+

1
r

∂rv

∂r

)
+ Φ +

∂

∂z

(
k
∂T

∂z

)
+

1
r

∂

∂r

(
kr

∂T

∂r

)
(4.27)

Φ =
1
4

(
η − 2

3
µ

)
(∇ · u)2 + 2µ

[(
∂u

∂z

)2

+
1
2

(
∂u

∂z
+

∂v

∂r

)2

+
(

∂v

∂r

)2
]

(4.28)

Vorticity:

∇× u = ωθ =
∂v

∂z
− ∂u

∂r
(4.29)
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4.5 2 Dimensional Flow: Spherical Polar Coordinates

(r, φ)(u, v) ( ∂
∂θ = 0)

r-momentum equation:

ρ

(
Du

Dt
− v2

r

)
= −∂p

∂r
+

1
r2

∂

∂r

(
r2τrr

)
+

1
r sin φ

∂

∂φ
(τrφ sinφ) − τφφ

r
(4.30)

φ-momentum equation:

ρ

(
Dv

Dt
+

uv

r

)
= −∂p

∂φ
+

1
r2

∂

∂r

(
r2τrφ

)
+

1
r sin φ

∂

∂φ
(τφφ sinφ) +

τrφ

r
(4.31)

τrr = 2µ
∂u

∂r
+ η∇ · u (4.32)

τφφ = 2µ

(
1
r

∂v

∂φ
+

u

r

)
+ η∇ · u (4.33)

τrφ = µ

(
1
r

∂u

∂φ
+ r

∂

∂r

v

r

)
(4.34)

∇ · u =
1
r2

∂ r2u

∂r
+

1
r sinφ

∂

∂φ
(v sinφ) (4.35)

D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂φ
(4.36)

Vorticity:

∇× u = ωθ =
1
r

∂rv

∂r
− 1

r

∂u

∂φ
(4.37)

4.5.1 Stream Function

u =
1

r2 sinφ

∂Ψ
∂φ

, v = − 1
r sinφ

∂Ψ
∂r

(4.38)
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5 Dimensions

L length meter (m)
M mass kilogram (kg)
T time second (s)
θ temperature Kelvin (K)
I current Ampere (A)

5.1 Some derived dimensional units

force Newton (N) MLT−2

pressure Pascal (Pa) ML−1T−2

bar = 105 Pa
energy Joule (J) ML2T−2

frequency Hertz (Hz) T−1

power Watt (W) ML2T−3

viscosity (µ) Pa s ML−1T−1

5.2 Conventional Dimensionless Numbers

Reynolds Re ρUL/µ

Mach Ma U/c

Prandtl Pr µcP /k = ν/κ

Strouhal St fL/U

Knudsen Kn Λ/L

Peclet Pe UL/κ

Schmidt Sc ν/D

Lewis Le D/κ

Rayleigh Ra
gL3

νκ

Reference conditions: U , velocity; µ, vicosity; D, mass diffusivity; k, thermal conductivity; L, length scale;
f , frequency; c, sound speed; Λ, mean free path; cP , specific heat at constant pressure.

5.3 Parameters for Air and Water

Values given for nominal standard conditions 20 C and 1 bar.

Air Water
dynamic viscosity µ (kg/ms) 1.8×10−5 1.00×10−3

kinematic viscosity ν (m2/s) 1.5×10−5 1.0×10−6

thermal conductivity k (W/mK) 2.54×10−2 0.589
thermal diffusivity κ (m2/s) 2.1×10−5 1.4×10−7

specific heat cp (J/kgK) 1004. 4182.
sound speed c (m/s) 343.3 1484
density ρ (kg/m3) 1.2 998.
gas constant R (m2/s2K) 287 462.
thermal expansion α (K−1) 3.3×10−4 2.1×10−4

isentropic compressibility κs (Pa−1) 7.01×10−6 4.5×10−10

Prandtl number Pr .72 7.1
Fundamental derivative Γ 1.205 4.4
ratio of specific heats γ 1.4 1.007
Grüneisen coefficient G 0.40 0.11
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6 Thermodynamics

6.1 Thermodynamic potentials and fundamental relations

The first thermodynamic potential derives from the first law

dq = de + dw

= de + p dv
(6.1)

and the definition of entropy
dq = T ds , (6.2)

namely,

energy e(s, v)

de = T ds − p dv (6.3)(
∂e

∂s

)
v

= T ;
(

∂e

∂v

)
s

= −p (6.4)

Then, others follow from the definitions of new state variables,

enthalpy, h(s, p) = e + pv

dh = T ds + v dp (6.5)(
∂h

∂s

)
p

= T ;
(

∂h

∂p

)
s

= v (6.6)

Helmholtz free energy, f(T, v) = e − Ts

df = −s dT − p dv (6.7)(
∂f

∂T

)
v

= −s ;
(

∂f

∂v

)
T

= −p (6.8)

Gibbs free energy, g(T, p) = h − Ts

dg = −s dT + v dp (6.9)(
∂g

∂T

)
p

= −s ;
(

∂g

∂p

)
T

= v (6.10)

6.2 Maxwell relations

(
∂T

∂v

)
s

= −
(

∂p

∂s

)
v

(6.11)(
∂T

∂p

)
s

=
(

∂v

∂s

)
p

(6.12)(
∂s

∂v

)
T

=
(

∂p

∂T

)
v

(6.13)(
∂s

∂p

)
T

= −
(

∂v

∂T

)
p

(6.14)
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Thermodynamic differentials:
Given that f(x, y, z) = 0, then

x(y, z) : dx =
(

∂x

∂y

)
z

dy +
(

∂x

∂z

)
y

dz (6.15)

y(x, z) : dy =
(

∂y

∂x

)
z

dx +
(

∂y

∂z

)
x

dz (6.16)

Eliminating dy,

dx

(
1 −

(
∂x

∂y

)
z

(
∂y

∂x

)
z

)
= dz

((
∂x

∂z

)
y

+
(

∂x

∂y

)
z

(
∂y

∂z

)
x

)
(6.17)

so (
∂x

∂y

)
z

=
1(

∂y
∂x

)
z

(6.18)

(
∂x

∂z

)
y

= −
(

∂x

∂y

)
z

(
∂y

∂z

)
x

(6.19)

6.3 Reciprocity relations and the equations of state

The thermal equation of state is a relation fnc(p, v, T ) = 0. The caloric equation of state is a relation
fnc(e, v, T ) = 0 or fnc(h, p, T ) = 0. From the thermodynamic identity Eq. 6.5,

ds =
1
T

dh − v

T
dp . (6.20)

Considering h to be h(p, T ), expanding the differential dh in terms of partials and substituting, gives

ds =
1
T

(
∂h

∂T

)
p

dT +
1
T

[(
∂h

∂p

)
T

− v

]
dp . (6.21)

Now, treating s(p, T ) and expanding, we can identify(
∂s

∂T

)
p

=
1
T

(
∂h

∂T

)
p

(6.22)(
∂s

∂p

)
T

=
1
T

[(
∂h

∂p

)
T

− v

]
. (6.23)

Performing the same steps on Eq. 6.3 with e(v, T ), s(v, T ) gives(
∂s

∂T

)
v

=
1
T

(
∂e

∂T

)
v

(6.24)(
∂s

∂v

)
T

=
1
T

[(
∂e

∂v

)
T

+ p

]
. (6.25)

Eqs. 6.22 – 6.25 are the reciprocity relations. Cross differentiating the LHS of Eqs. 6.22 and 6.23 and
Eqs. 6.24 and 6.25, respectively, permits the elimination of s, resulting in relations between the thermal
and caloric equations of state, (

∂h

∂p

)
T

= v − T

(
∂v

∂T

)
p

(6.26)(
∂e

∂v

)
T

= T

(
∂p

∂T

)
v

− p (6.27)

29 April 23, 2001



Ae/APh/CE/ME 101 Notes

Given an empirical determination of the (p, v, T ) behavior of a substance, these equations permit the
construction of the caloric EOS by integration along appropriate paths.

6.4 Various defined quantities

The specific heat is defined as

c ≡ dq

dt
. (6.28)

At constant pressure,

cp = T

(
∂s

∂T

)
p

=
(

∂h

∂T

)
p

. (6.29)

where Eq. 6.5 has been used for for the second step. Similarly,

cv = T

(
∂s

∂T

)
v

=
(

∂e

∂T

)
v

. (6.30)

Thus,

specific heat at constant volume cv ≡
(

∂e

∂T

)
v

(6.31)

specific heat at constant pressure cp ≡
(

∂h

∂T

)
p

(6.32)

ratio of specific heats γ ≡ cp

cv
(6.33)

sound speed c ≡
√(

∂p

∂ρ

)
s

(6.34)

coefficient of thermal expansion α ≡ 1
v

(
∂v

∂T

)
p

(6.35)

isothermal compressibility kT ≡ −1
v

(
∂v

∂p

)
T

(6.36)

isentropic compressibility ks ≡ −1
v

(
∂v

∂p

)
s

=
1

ρa2
(6.37)

Specific heat relationships

kT = γks or
(

∂p

∂v

)
s

= γ

(
∂p

∂v

)
T

(6.38)

cp − cv = −T

(
∂p

∂v

)
T

(
∂v

∂T

)2

p

(6.39)

Sound speed (squared)

a2 ≡
(

∂p

∂ρ

)
s

(6.40)

= −v2

(
∂p

∂v

)
s

(6.41)

=
v

ks
(6.42)

= γ
v

kT
(6.43)
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Fundamental derivative

Γ ≡ v3

2a2

(
∂2p

∂v2

)
s

(6.44)

=
a4

2v3

(
∂2v

∂p2

)
s

(6.45)

= 1 +
ρ

2a2

(
∂2p

∂ρ2

)
s

(6.46)

= 1 +
ρ

a

(
∂a

∂ρ

)
s

=
ρ

a

(
∂ρa

∂ρ

)
s

(6.47)

= 1 + ρa

(
∂a

∂p

)
s

(6.48)

=
1
2

(
v2

a2

(
∂2h

∂v2

)
s

+ 1
)

(6.49)

≡ β + 1 (6.50)

Grüneisen Coefficient

G ≡ v

(
∂p

∂e

)
v

(6.51)

=
v

T

(
∂p

∂s

)
v

(6.52)

= − v

T

(
∂T

∂v

)
s

(6.53)

=
vα

cpks
=

αa2

cp
(6.54)

=
vα

cvkT
(6.55)

6.5 Perfect Gas Equations of State

Thermally perfect gas:
p = ρ RT (6.56)

Calorically perfect gas:
cp, cv = const (6.57)

so,

γ =
cp

cv
= const (6.58)

R = cp − cv = const (6.59)

Therefore,

h = cp T + const (6.60)

e = cv + const (6.61)
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Entropy:

ds =
de + p dv

T
= cv

dT

T
+ R

dv

v
(6.62)

s − s0 = cv ln
T

T0
+ R ln

v

v0
, (6.63)

and, from the dh identity,

s − s0 = cp ln
T

T0
− R ln

p

p0
. (6.64)

For constant entropy
dT

T
= −R

cv

dv

v
=

R

cp

dp

p
, (6.65)

so
dp

p
= γ

dρ

ρ
; p ∼ ργ (6.66)

Canonical Equation of State
From the last equation

s ∼ cp ln
(

T p
− R

cp

)
(6.67)

e
s

cp ∼ T p
− R

cp (6.68)

With
h = cp T (6.69)

we get

h(s, p) = const cp e
s

cp p
R
cp (6.70)

e(s, v) = const cv e
s

cv v
R
cv (6.71)

Other equations (
∂p

∂ρ

)
s

= γ

(
∂p

∂ρ

)
T

= γRT (6.72)

a2 = γRT = γ
p

ρ
(6.73)

Γ =
γ + 1

2
; β =

γ − 1
2

(6.74)

G = γ − 1 . (6.75)
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7 Quasi-onedimensional flow

The quasi-1D model is a useful approximation for describing many fluid flows. The flow is taken to be
“mostly” in the x direction, and gradients in the y direction are assumed much smaller than those in the
x direction. A control volume is shown in Fig. 7. A is the cross-sectional area and S is the area of the

Figure 7. Control volume for quasi-1D flow.

control volume. Tx is the viscous traction force, and Q̇ is the energy loss per unit area per unit time.

The equations are
d

dt

∫
V

ρ dV − ρ1u1A1 + ρ2u2A2 = 0 (7.1)

d

dt

∫
V

ρu dV − ρ1u
2
1A1 + ρ2u

2
2A2 = p1A1 − p2A2 +

∫
p dA + TxdS (7.2)

d

dt

∫
V

ρ

(
e +

u2

2

)
dV − ρ1

(
e1 +

u2
1

2

)
u1A1 + ρ2

(
e2 +

u2
2

2

)
u2A2 = p1u1A1 − p2u2A2 −

∫
Q̇ dS (7.3)

From the definitions of the areas,

dV = A dx (7.4)

dS = P dx (7.5)

dA =
dA

dx
dx , (7.6)

where P is the perimeter of the channel. To get the equations in differential form the volume is shrunk in
a limiting process to the one shown hatched. The various integrals and differences become,∫

f dV −→ f dV = fA dx (7.7)

d

dt

∫
f dV −→ ∂

∂fA
t dx (7.8)

f2 − f1 −→ df =
∂f

∂x
dx (7.9)∫

f dA −→ f
dA

dx
dx (7.10)∫

f dS −→ f P dx , (7.11)
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with the result
∂ρA

∂t
+

∂ρuA

∂x
= 0 (7.12)

∂ρuA

∂t
+

∂ρu2A

∂x
+

∂pA

∂x
− p

dA

dx
= PTx (7.13)

∂ρ
(
e + u2

2

)
A

∂t
+

∂ρ
(
e + u2

2

)
uA

∂x
+

∂puA

∂x
= −Q̇P (7.14)

Differentiate the nonsteady and convective terms on the left hand side of all equations and use the continuity
equation in the momentum and energy equations. But, first, in the energy equation combine the pua term
with the first x derivative, setting ht = e + p/rho + u2/2, and arrange to get the same form in the
time derivative by adding and subtracting A∂p/∂t. Further, assume that the area does not vary in time,
A = A(x). Then, there results,

∂ρ

∂t
+

∂ρu

∂x
= −ρu

A

dA

dx
(7.15)

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+ f (7.16)

Dht

Dt
=

∂ht

∂t
+ u

∂ht

∂x
=

1
ρ

∂p

∂t
− Q̇P

ρA
, (7.17)

where f = PTx/ρA is the friction force per unit mass.

These equations apply to general substances. The continuity equation now contains a source term,
induced by changes of area.

7.1 The Euler equations

Strictly 1D flow (dA/dx = 0) with f = Q̇ = 0 is governed by Euler’s equations for an inviscid,
nonheatconducting fluid in 1D flow. In convective form,

∂ρ

∂t
+

∂ρu

∂x
= 0 (7.18)

Du

Dt
= −1

ρ

∂p

∂x
(7.19)

Dht

Dt
=

1
ρ

∂p

∂t
. (7.20)

7.2 Steady flow

dρuA

dx
= 0 (7.21)

u
du

dx
+

1
ρ

dp

dx
= f (7.22)

dh

dx
+ u

du

dx
= −q̇ , (7.23)

where q̇ = PQ̇/ρuA, the energy loss per unit mass per unit length of channel.
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7.2.1 Quasi-1D Steady Euler flow

f = q̇ = 0.

d(ρuA) = 0 (7.24)

dp + ρu du = 0 (7.25)

dh + u du = 0 (7.26)

ds = 0 . (7.27)

The continuity and energy equations integrate immediately

ρuA = ṁ = const (7.28)

h +
u2

2
= ht = const , (7.29)

but the momentum equation doesn’t. Note that the energy integral is actually more general than this and
applies in the steady flow of an inviscid nonheatconducting fluid in any dimensionality along a streamline
(Eq. 2.26).

The momentum equation says
dp = −ρu du , (7.30)

so ρu is a form of impedance.

With
Tds = dh − 1

ρ
dp (7.31)

and Eq. 7.25, Eq. 7.26 gives
ds = 0, (7.32)

so Euler flow is isentropic. Then, the definition (∂p/∂ρ)s = a2 gives

dp = a2 dρ . (7.33)

Using this in the momentum equation gives

dρ

ρ
= −M2 du

u
(7.34)

Dependence on the area is introduced by considering the continuity equation. Differentiating the continuity
equation logarithmically and eliminating ρ from Eq. 7.34 yields,

du

u
=

1
M2 − 1

dA

A
. (7.35)

This shows that in subsonic flow a fluid acclerates in a converging channel, while in supersonic flow it
accelerates in a diverging channel.

The material property β is (Eq. 6.50) (
∂a

∂p

)
s

≡ β

ρa
. (7.36)
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Thus,
da

a
= β

dp

ρa2
= β

dρ

ρ
. (7.37)

Then, from the momentum equation, for this isentropic flow

da

a
= −β M2 du

u
. (7.38)

Note the significance of β = 0. From the logarithmic differentiation of the definition of Mach number,
there results,

dM

M
= (1 + βM2)

du

u
(7.39)

and, with (7.35),
dA

A
=

M2 − 1
1 + βM2

dM

M
=

M2 − 1
ΓM2 − (M2 − 1)

dM

M
. (7.40)

With monatonically changing M , dA must change sign at M = 1. Whether A is minimum or maximum
depends on the derivative of Eq. 7.40 at M = 1,

1
A

(
d2A

dx2

)
M=1

=
2
Γ

(
dM

dx

)2

, (7.41)

where Γ = β + 1 is the “fundamental derivative” (Eq. 6.44). Thus, whether the throat is convergent or
divergent depends on the sign of Γ.

Eq. 7.40 can be used in the above relations to show how (u, ρ, h) depend on M ,

du

u
=

1
1 + βM2

dM

M
(7.42)

dρ

ρ
= − M2

1 + βM2

dM

M
(7.43)

dh

2(h − ht)
=

1
1 + βM2

dM

M
, (7.44)

where the last expression is obtained from the energy equation

dh = −u du = −u2 du

u
= 2(h − ht)

du

u
, (7.45)

where ht = h + u2/2. Also, from dh = T ds + v dp we have(
∂h

∂p

)
s

=
1
ρ

, (7.46)

so, from the definition of β,

dh =
1
β

a da (7.47)
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7.3 Constant β (or Γ) fluid

So far, differential relations have been written for a general fluid in terms of the material properties β

and Γ. If they are constant, the equations may be integrated. This approximation holds for local regions
in p-v space far from a zero of Γ. Integrating Eq. 7.47 gives,

a2 = 2βh , (7.48)

which may be compared to a2 = γRT for a perfect gas.

With constant β, Eq. 7.37 integrates to give

a

at
=

(
ρ

ρt

)β

, (7.49)

Eq. 7.43 to give
ρt

ρ
=

(
1 + βM2

) 1
2β , (7.50)

and Eq. 7.40 to give (
A

A∗

)2

=
1

M2

(
1 + βM2

1 + β

) 1+β
β

. (7.51)

With Eq. 7.49,
at

a
=

(
1 + βM2

) 1
2 , (7.52)

and with Eq. 7.48,
ht

h
= 1 + βM2 . (7.53)

Finally, we get the pressure from the definition of sound speed,

dp

ρta2
t

=
ρa2

ρta2
t

dρ

ρ
. (7.54)

Substituting Eq. 7.43 and integrating gives

p − pt

ρta2
t

=
1

2β + 1

{(
1 + βM2

)− 2β+1
2β − 1

}
(7.55)

If outside of the region −1
2 < β < 0 where the exponent (2β + 1)/2β is negative, we require that

limM→+∞ p = 0, then from that limit Eq. 7.55 gives

pt =
1

2β + 1
ρta

2
t , (7.56)

so,
pt

p
=

(
1 + βM2

) 2β+1
2β (7.57)
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7.4 Perfect Gas

Relations for Quasi-1D flow of a perfect gas are directly obtained by substituting β = (γ − 1)/2,

ht

h
= 1 +

γ − 1
2

M2 . (7.58)

at

a
=

(
1 +

γ − 1
2

M2

) 1
2

, (7.59)

ρt

ρ
=

(
1 +

γ − 1
2

M2

) 1
γ−1

, (7.60)

pt

p
=

(
1 +

γ − 1
2

M2

) γ
γ−1

(7.61)

u

at
=

u

a

a

at
=

{
M2

1 + γ−1
2 M2

} 1
2

(7.62)

A

A∗ =
1
M

{
2

γ + 1

(
1 +

γ − 1
2

M2

)} γ+1
2(γ−1)

. (7.63)

For high Mach number flow (M −→ ∞) and fixed stagnation conditions,

h, a, ρ, p −→ 0 (7.64)

u −→
√

2
γ − 1

at =
√

2 ht ≡ um (7.65)

A

A∗ −→ ∞ (7.66)

At sonic conditions (M = 1),
ht

h∗ =
γ + 1

2
(7.67)

at

a∗
=

(
γ + 1

2

) 1
2

(7.68)

ρt

ρ∗
=

(
γ + 1

2

) 1
γ−1

(7.69)

pt

p∗
=

(
γ + 1

2

) γ
γ−1

= 1.893 =
1

0.528
for γ =

7
5

(7.70)

u∗

at
=

a∗

at
=

√
2

γ + 1
< 1 (7.71)

um =
√

γ + 1
γ − 1

a∗ (7.72)

ṁ∗ = ρ∗ u∗ A∗ =
(

2
γ + 1

) γ+1
2(γ−1)

ρt at A∗ (7.73)
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From Eqs. 7.59and 7.68,
a∗

a
=

[
1 +

γ − 1
γ + 1

(M2 − 1)
] 1

2

. (7.74)

Dynamic pressure.

q ≡ 1
2

ρ u2 (7.75)

=
γ

2
M2 p , (7.76)

q

pt
=

γ

2
M2

(
1 +

γ − 1
2

M2

)− γ
γ−1

(7.77)

Note:
p + q

pt
=

1 + γ
2M2(

1 + γ−1
2 M2

) γ
γ−1

6= 1 (7.78)

Fig. 8 shows the progression A−→B−→C that takes place as the exit pressure pe is decreased, starting

Figure 8. Pressure profiles in compressible channel flow as the exit pressure is reduced.

at pe = pt, with pt held constant. Condition B is called the shock-in-nozzle configuration.
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8 Normal Shock Waves

8.1 Steady Frame

Constant area, adiabatic, frictionless flow.
Shock waves are discontinuities, so we must use an integral formulation to see how they behave. The
control volume shown in Fig. 9 yields the following equations for the conservation of mass, momentum,

Figure 9. Control volume for calculating the shock jump conditions.

energy and entropy,

ρ2 u2 = ρ1 u1 = ṁ (8.1)

p2 − p1 = ρ1 u2
1 − ρ2 u2

2 (8.2)

h2 − h1 =
u2

1

2
− u2

2

2
(8.3)

s2 − s1 > 0 (8.4)

Other forms of the continuity equation are

∆u

u1
= −∆ρ

ρ2
=

∆v

v1
. (8.5)

Combining mass and momentum,

p2 − p1 = ρ1 u1(u1 − u2) (8.6)

∆p = −ṁ ∆u . (8.7)

The following useful forms result,

∆p

∆ρ
= u1 u2 (8.8)

∆p

∆v
= −ṁ2 (8.9)

∆p∆v = −(∆u)2 , (8.10)

Compare Eq. 8.9 with (
∂p

∂v

)
s

= −ρ2 a2 (8.11)

Combining with the energy equation gives,

∆h = v∆p (8.12)

∆e = −p∆v , (8.13)
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where ( ) ≡ [( )2 + ( )1]/2. Compare with (
∂h

∂p

)
s

= v (8.14)(
∂e

∂p

)
s

= −p (8.15)

Fig. 10 shows the graphical interpretation of some of these results. The chord between the upstream and

Figure 10. Graphical interpretation of the shock jump conditions.

downstream states is known as the Rayleigh Line.

8.1.1 Calculating Shock Conditions for Real Fluids

Useful forms of the equations for use in iterative numerical calculations on substances with complex
equations of state are,

p2 = p1 + ρ1u1

(
1 − ρ1

ρ2

)
(8.16)

h2 = h1 +
u2

1

2

[
1 −

(
ρ1

ρ2

)2
]

. (8.17)

The approach is to guess ρ1/ρ2, calculate p2 and h2 and then calculate a new value of ρ1/ρ2 from the
equations of state.

8.1.2 Expansion about the upstream state (weak shocks)

General fluid.
An important constraint on the entropy can be obtained by expanding

∆e = −p∆v = −∆p

2
∆v − p1∆v (8.18)

about the upstream state ( )1. Taking e(s, v),

∆e =
(

∂e

∂v

)
s

∆v +
(

∂2e

∂v2

)
s

∆v2

2
+

(
∂3e

∂v3

)
s

∆v3

6
+ · · · +

(
∂e

∂s

)
v

∆s + · · · (8.19)
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=̇ −p∆v −
(

∂p

∂v

)
s

∆v2

2
−

(
∂2p

∂v2

)
s

∆v3

6
+ T∆s , (8.20)

the substitutions for the thermodynamic derivatives being derived from Eq. 6.3. Similarly, with p(s, v),

∆p =
(

∂p

∂v

)
s

∆v +
(

∂2p

∂v2

)
s

∆v2

2
+ · · · , (8.21)

so,
∆p

2
∆v =̇

(
∂p

∂v

)
s

∆v2

2
+

(
∂2p

∂v2

)
s

∆v3

4
. (8.22)

Using Eqs. 8.20 and 8.22 in 8.18 yields

T∆s = − 1
12

(
∂2p

∂v2

)
s

∆v3 + · · · . (8.23)

Therefore,

T1∆s =̇ − Γ1

6
a2

1

∆v3

v3
1

. (8.24)

The entropy increase is third order in the shock strength. For Γ > 0 (“normal” fluids) the second law
requires that shock waves be compression shocks, for Γ < 0, expansion shocks.

With this information, we can now qualitatively construct the locus of downstream states ©2 for shocks,
known as the shock adiabat, or the Hugoniot. The shock adiabat has the same slope and curvature as the
isentrope through the upstream state ©1 . When isentropes are concave up (normal fluids), the Hugoniot
near the upstream state (weak shocks) must also be concave up, and vice versa. Fig. 11 shows how the
Hugoniot looks compared to the isentropes and the Rayleigh line for 4 different cases, depending on the
signs of Γ (Eq. 6.44) and G (Eq. 6.52).

8.1.3 Perfect gas

For a perfect gas the enthalpy h in terms of p and v is

h =
γ

γ − 1
pv , (8.25)

so eliminating h from Eq. 8.12 gives the Hugoniot explicity,

p2

p1
=

γ + 1
γ − 1

− v2

v1

γ + 1
γ − 1

v2

v1
− 1

(8.26)

Fig. 12 shows its behavior. Note the intercept vint = (γ + 1)/(γ − 1) on the x-axis and the asymptote
vmin = (γ − 1)/(γ + 1) for large p2/p1. The isentrope, p ∼ v−γ , through (1,1) is the long-dashed line.

Another form of (8.26) is

∆v

v1
= −

2∆p
p1

2γ + (γ + 1)
∆p

p1

, (8.27)

which, with
∆p

p1
= −γ M2

1

∆v

v1
, (8.28)
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Figure 11. Qualitative behavior of the shock adiabat for general fluids.

Figure 12. The shock Hugoniot for a perfect gas.

gives
p2

p1
= 1 +

2γ

γ + 1
(M2

1 − 1) (8.29)

From the other equations of this section, there follows a series of relations for the important parameters
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for perfect gases in terms of M2
1 ,

∆u

a1
= − 2

γ + 1
M2

1 − 1
M1

(8.30)

ρ2

ρ1
=

M2
1

1 + γ−1
γ+1(M2

1 − 1)
(8.31)

h2

h1
=

T2

T1
= 1 +

2(γ − 1)
(γ + 1)2

(M2
1 − 1)(1 + γM2

1 )
M2

1

(8.32)

M2
2 =

1 + γ−1
γ+1(M2

1 − 1)

1 + 2γ
γ+1(M2

1 − 1)
(8.33)

For strong shocks (M2
1 À 1),

p2

p1
−→ 2γ

γ + 1
M2

1 (8.34)

u2

a1
−→ γ − 1

γ + 1
M1 (8.35)

ρ2

ρ1
−→ γ + 1

γ − 1
(8.36)

h2

h1
−→ 2γ(γ − 1)

(γ + 1)2
M2

1 (8.37)

M2
2 −→ γ − 1

2γ
(8.38)

For weak shocks (M2
1 − 1 ¿ 1),

∆p

p1
=̇

2γ

γ + 1
(M2

1 − 1) (8.39)

∆u

a1
=̇ − 2

γ + 1
(M2

1 − 1) (8.40)

∆ρ

ρ1
=̇

2
γ + 1

(M2
1 − 1) (8.41)

∆T

T1
=̇

2(γ − 1)
γ + 1

(M2
1 − 1) (8.42)

1 − M2
2 =̇ M2

1 − 1 (8.43)

Prandtl’s relation. For a perfect gas

h =
a2

γ − 1
. (8.44)

Thus the energy equation can be written

u2
1

2
+

a2
1

γ − 1
=

u2
2

2
+

a2
2

γ − 1
= ht . (8.45)

With
ht

h∗ =
γ + 1

2
and

h∗

a∗2
=

1
γ − 1

, (8.46)
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ht can be written

ht =
γ + 1

2(γ − 1)
a∗2 . (8.47)

Thus
a2

1 =
γ + 1

2
a∗2 − γ − 1

2
u2

1

a2
2 =

γ + 1
2

a∗2 − γ − 1
2

u2
2 .

(8.48)

Here ( )∗ is the fictitious state that is arrived at by compressing (expanding) state 1 (2) isentropically to
sonic conditions. The momentum equation

p2 − p1 = ρ1u
2
1 − ρ2u

2
2 (8.49)

can be rewritten

u1 − u2 =
p2

ρ2u2
− p1

ρ1u1
=

a2
2

γu2
− a2

1

γu1
(8.50)

Substituting (8.48) into (8.50) gives, after cancelation,

u1 u2 = a∗2 (8.51)

For weak shock waves, a∗ is very close to a1 = a2, so the left hand side must be also. Thus weak shocks
move at the speed of sound and in the limit are acoustic waves. It follows that for shocks of finite strength,
one of the velocities must be supersonic and the other must be subsonic. For perfect gases we have seen that
only compression shocks satisfy the second law, so u1 is supersonic and u2 is subsonic. It can be shown
that the supersonic-subsonic relation is required by basic considerations of causality, for all materials.

8.2 Nonsteady Frame

General fluid.
’Til now, we have treated shocks in a steady frame. However, by a Galilean transformation the shock jump
conditions can be expressed in a general, nonsteady frame. The conserved velocities are:

1. ∆u the change of fluid (particle) velocity across the shock.

2. uS the velocity of the shock relative to the fluid ahead.

The correspondence between the notation in the two frames is:

Steady Nonsteady
u1 uS

u1 − u2 ∆u

For the “shock-tube” frame, in which the fluid ahead of the shock is at rest (see Fig. 13), ∆u = u2.
Convenient forms of the equations of motion for a general nonsteady frame are,

∆u

uS
=

∆ρ

ρ2
= −∆v

v1
; (∆u)2 = −∆p ∆v (8.52)

∆p = ρ1uS ∆u (8.53)

∆h = v ∆p , (8.54)

where ( )1 and ( )2 refer to the thermodynamic states ahead of and behind the wave, respectively.
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8.2.1 Reflected shock waves

When a shock reflects from the solid end of a tube, the interaction is shown in space-time in Fig. 13.
The important result implied by the boundary condition u5 = 0 imposed by the presence of the wall is

Figure 13. Schematic of a shock wave reflecting from a solid wall

that the fluid velocity jump across both waves is the same, ∆uR = ∆uS = u2. For the incident wave, from
Eq. 8.52,

u2

uS
=

ρ2 − ρ1

ρ2
(8.55)

and for the reflected wave
u2

uR + u2
=

ρ5 − ρ2

ρ5
. (8.56)

From the last equation, we get uR in terms of the unknown ρ5,

uR =
u2

ρ5

ρ2
− 1

. (8.57)

From the momentum equation for the reflected shock

p5 − p2 = ρ2(uR + u2)u2 (8.58)

Using continuity,

p5 = p2 +
ρ5 u2

2
ρ5

ρ2
− 1

, (8.59)

and, from the energy equation,

h5 − h2 =
v2 + v5

2
(p5 − p2) (8.60)

=
ρ5 + ρ2

2ρ2

u2
2

ρ5

ρ2
− 1

, (8.61)

so,

h5 = h2 +
u2

2

2

ρ5

ρ2
+ 1

ρ5

ρ2
− 1

(8.62)

These relations can be used to calculate the reflected shock jump conditions for any equation of state.
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Perfect gas. From the last form of Eq. 8.52 a p-v relation can be derived,

(p5 − p2)(v5 − v2) = (p2 − p1)(v2 − v1) , (8.63)

or, in terms of pressure ratios PR = p5/p2 and PS = p2/p1,

(PR − 1)
∆vR

v2
=

(PS − 1)
∆vS

v1

PS

(
∆vS

v1
+ 1

) , (8.64)

with the introduction of obvious temporary notation. With use of Eq. 8.27 ∆v for both the incident and
reflected waves can be eliminated to yield a remarkably simple relationship between pressure ratios,

p5

p2
=

(3γ − 1)
p2

p1
− (γ − 1)

(γ − 1)
p2

p1
+ (γ + 1)

. (8.65)

Other simple results include

M2
1R − 1
M1R

=
a1

a2

M2
S − 1
MS

(8.66)

uR + u2

uS
= M−2

S

p2

p1
(8.67)

p5 − p2

p2
= γ

ρ2 − ρ1

ρ1
(8.68)

uS − u2

a2
=

a2

uS + uR
(8.69)

uR

a1
=

1 + 2γ−1
γ+1(M2

S − 1)

MS
(8.70)

p5 − p1

p1
= 2

p2 − p1

p1

1 +
(

1
2 + γ−1

γ+1

)
(M2

S − 1)

1 + γ−1
γ+1(M2

S − 1)
(8.71)

T5 − T1

T1
= 4

γ − 1
γ + 1

M2
S − 1
MS

[
1 +

(
1
2

+
γ − 1
γ + 1

)
(M2

S − 1)
]

(8.72)

where M1R = (uR + u2)/a2.
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9 Frictional Flow – Fanno Flow

Constant area, one-dimensional adiabatic flow. This treatment can be taken as a model for compressible
flow in a pipe when the pipe is small enough that viscous friction becomes important.

The equations of motion are

d(ρu) = 0 (9.1)

u du +
1
ρ

dp = f dx (9.2)

dh + u du = 0 (9.3)

f = PTx/ρA is the force per unit mass. The Fanning skin friction coefficient Cf is defined by Tx = 1
2ρu2Cf ,

so another form for f is

f = 2 Cf
u2

D
, (9.4)

where D is the hydraulic diameter. The Darcy friction factor is

λ = 4 Cf . (9.5)

To analize Fanno flow, the “good” equations, mass and energy, are used to write a relation between
thermodynamic variables. They may be integrated to yield

ρu = ṁ (9.6)

h +
u2

2
= ht , (9.7)

or,

h +
ṁ2v2

2
= ht . (9.8)

Thus, for frictional flow we are interested in the h-v plane. Eq. 9.8 is sketched in Fig. 14.

Figure 14. The h-v plane for a Fanno Flow, ṁ, ht = const.

From the dh thermodynamic identity we can obtain an expression for ds,

T ds = dh − v dp (9.9)

= −u du + u du − f dx (9.10)
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The second law says that the entropy must increase. Therefore,

ds

dx
= − f

T
≥ 0 . (9.11)

Thus, f < 0 . In order to satisfy the 2nd law, the traction force must act as a drag.

9.1 dh/dv and tangency

Combining the continuity and energy equation gives a relation for dh/dv, the slope of the Fanno process
on the h-v plane.

du

u
=

dv

v
(9.12)

dh = −u2 du

u
, (9.13)

so,
dh

dv
= −u2

v
. (9.14)

Compare with (
∂h

∂v

)
s

=
(

∂h

∂p

)
s

(
∂p

∂v

)
s

= −a2

v
. (9.15)

Thus, if an isentrope is tangent to h(v) for a Fanno flow, as indicated in Fig. 14. the flow must be sonic
there. This point is indicated by the star in Fig. 14.

9.2 Curvature of the isentropes in the h-v plane

The criterion for isentrope curvature is of course different in (h, v) than in (p, v),(
∂2h

∂v2

)
s

=
∂

∂v

(
v

∂p

∂v

)
(9.16)

=
(

∂p

∂v

)
s

+ v

(
∂2p

∂v2

)
s

. (9.17)

Therefore,

v2

2a2

(
∂2h

∂v2

)
s

=
v3

2a2

(
∂2p

∂v2

)
s

− 1
2

(9.18)

= Γ − 1
2

(9.19)

= β +
1
2

. (9.20)

Thus, the isentrope shown in Fig. 14 is for Γ > 1
2 . A straight-line isentrope tangent at ∗ would have Γ = 1

2 .

9.3 Entropy

In order to see what direction the flow moves with positive dx on the h-v plane, we obtain a relevant
expression for the entropy and use the 2nd law. From

T ds = dh + v dp (9.21)
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and

dp =
(

∂p

∂v

)
s

dv +
(

∂p

∂s

)
v

ds (9.22)

we get [
T + v

(
∂p

∂s

)
v

]
ds = −(u2 − a2)

dv

v
. (9.23)

With (
∂p

∂s

)
v

= −
(

∂p

∂v

)
s

(
∂v

∂T

)
v

(
∂T

∂s

)
p

(9.24)

=
T

v

αa2

cp
=

T

v
G , (9.25)

where G is the Grüneisen parameter, (9.23) becomes

T ds = −u2 − a2

1 + G

dv

v
(9.26)

Thus, for α > 0, in order to have ds/dx > 0 in the subsonic region dv > 0, and in the supersonic region
dv < 0. This result is indicated schematically in Fig. 14 by the arrows. Friction in a pipe flow forces the
flow toward choking, either from the subsonic or the supersonic side.
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10 Flow with Heat Addition – Rayleigh Flow

Constant area, one-dimensional frictionless nonadiabatic flow.
Now the equations of motion are

d(ρu) = 0 (10.1)

u du +
1
ρ

dp = 0 (10.2)

dh + u du = −q dx (10.3)

q = PQ̇/ρuA is the heat lost per unit mass per unit length of channel. The Stanton number St is defined
by

St ≡ − Q̇

ρuh
=

Aq

hP
=

D

4h
q , (10.4)

where, again, D is the hydraulic diameter.

The “good” equations are now mass and momentum. Integrating,

ρu = ṁ ; u = ṁ v (10.5)

(ρu)u + p = I , (10.6)

so
p = I − ṁ2 v . (10.7)

The Rayleigh flow executes a straight line in the p-v plane, the Rayleigh line, indicated in Fig. 15.

Figure 15. p-v plane for a Rayleigh process

10.1 Tangency

Differential relations given by continuity and momentum are

du

u
= −dρ

ρ
(10.8)

dp = −ρu1 du

u
. (10.9)

Therefore,
dp

dρ
= u2 ;

dp

dv
= −u2

v2
(10.10)
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Compare with (
∂p

∂ρ

)
s

= a2 . (10.11)

Thus, again, where an isentrope is tangent to the Rayleigh line, there is a sonic point, indicated by the ∗.

10.2 Entropy

Taking s(p, v),

ds =
(

∂s

∂p

)
v

dp +
(

∂s

∂v

)
p

dv . (10.12)

With the chain rule for (∂s/∂p)v, dp/dv = −u2/v2 and (∂p/∂v)s = −a2/v2, we get

ds = −
(

∂s

∂v

)
p

(M2 − 1) dv . (10.13)

Now (
∂s

∂v

)
p

=
(

∂s

∂T

)
p

(
∂T

∂v

)
p

=
cp

αvT
, (10.14)

so finally

T ds =
a2 − u2

G

dv

v
. (10.15)

Increasing entropy causes the flow to progress in the direction on the p-v plane indicated by the arrows.
That is, increasing entropy tends to choke a nonadiabtic pipe flow.

Whether the entropy is actually increasing or decreasing in the flow direction is determined by the sign
of the heat flow in this problem. We have

T ds = dh − v dp = −q dx (10.16)
ds

dx
= − q

T
. (10.17)

With heat addition (q < 0), ds/dx > 0, and vice versa. As with friction, heat addition tends to choke a
flow in a pipe.

10.3 The Mollier Diagram

Both Fanno flow and Rayleigh flow flow toward a maximum entropy in (h, s) space (see Fig. 16).

Figure 16. Rayleigh process on a Mollier Diagram
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However, in a Rayleigh process there may also be a maximum in enthalpy. From the energy and mass
equations,

dh = −u du − q dx (10.18)

= −u2 dv

v
− q dx (10.19)

Substituting from Eq. 10.15,

dh = u2 αT

cp

ds

M2 − 1
− q dx (10.20)

With α > 0, for large enough heat addition (q < 0), or M close enough to unity, dh > 0. At the maximum,
dh/ds = 0; after a little algebra,

M2 =
1

1 + a2α
cp

. (10.21)

For a perfect gas, α = 1/T , so the enthalpy is maximum at

M2 =
1
γ

. (10.22)
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11 Detonation Waves in One Dimension

Detonation waves are driven by the release of chemical energy in a combustion process at a sharp front.
They move supersonically into a combustible mixture and self ignite. As a consequence, the uspstream
substance is thermodynamically distinct from the combustion products downstream, so the Hugoniot does
not pass smoothly through the initial point. The two possible cases are shown in the sketch. Note that

by Eq. 8.9 the cross-hatched portion of the Hugoniot is not possible. The equations of motion for this
discontinuity are Eqs. 8.52 – 8.54. Here we consider the case when the Hugoniot falls above the initial
state.

It is useful to study differential changes of the downstream state. Differentiating the momentum
equation Eq. 8.9,

dp2

∆p
− dv2

∆v
= 2

dṁ

ṁ
, (11.1)

or,
dṁ

dv
=

ṁ

2∆p

(
dp2

dv2
− ∆p

∆v

)
. (11.2)

This shows that a tangency condition may arise; namely, the Rayleigh line may be tangent to the Hugoniot,
at which point the mass flux is stationary, dṁ = 0. This is shown on the sketch below.
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Differentiating the energy equation Eq. 8.54 and using it again to eliminate ∆h,

dh2 = v dp2 +
∆p

2
dv2 . (11.3)

Substituting this into the dh2 thermodynamic identity gives

T2
ds2

dv2
=

∆v

2

(
∆p

∆v
− dp2

dv2

)
. (11.4)

Therefore, at the same tangency the entropy is stationary, so the isentrope is also tangent there! A
consequence of this fact is that the downstream flow is sonic relative to the wave; in the steady frame,

∆p

∆v
= −u2

2

v2
2

;
(

∂p

∂v

)
s

= −a2
2

v2
2

, (11.5)

so,
M2 = 1 . (11.6)

This is indicated by the ∗ on the sketch. This important state is called the Chapman-Jouget (C-J) point.

By inspecting the geometry at the point indicated by (2), it can be seen that M2 < 1 there; detonations
falling above the ∗ are called strong detonations. Correspondingly, final states below the ∗ have supersonic
downstream states, M2 > 1, and are called weak detonations. Because of the supersonic condition they
violate causality and are not dynamically realizable states.

Waves that expand and depressurize the flow are called deflagrations, and are not discussed here.

11.1 2-γ model of detonation waves

Perfect gas.
We assume that the upstream and downstream fluids are different perfect gases, such that

h1 = cp1T1 + q ; h2 = cp2T2

p1 = ρ1R1T1 ; p2 = ρ2R2T2

cp1 =
γ1

γ1 − 1
R1 ; cp2 =

γ2

γ2 − 1
R2 ,

(11.7)

where q is the heat of reaction. Using

h1 =
γ1

γ1 − 1
p1v1 + q (11.8)

h2 =
γ2

γ2 − 1
p2v2 (11.9)

in Eq. 8.12 in the same manner as for deriving Eq. 8.26, gives the detonation Hugoniot

p2

p1
=

γ1 + 1
γ1 − 1

− v2

v1
+ 2γ1

q

a2
1

γ2 + 1
γ2 − 1

v2

v1
− 1

. (11.10)

Evaluating at v2/v1 = 1,
p2

p1
=

γ2 − 1
γ1 − 1

[
1 + γ1(γ1 − 1)

q

a2
1

]
(11.11)
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shows that for γ2 < γ1, which is usually the case, the Hugoniot is below the upstream state, while for q > 0,
appropriate for the necessary exothermic reaction to make a detonation wave, it is above. It turns out that
with real fuels the latter effect always dominates, i.e.,

q

a2
1

>
γ1 − γ2

γ1(γ1 − 1)(γ2 − 1)
. (11.12)

11.2 Equations in the steady frame

The momentum equation Eq. 8.2 can be written

p2

(
1 +

ρ2

p2
u2

2

)
= p1

(
1 +

ρ1

p1
u2

1

)
, (11.13)

so,
p2

p1
=

1 + γ1M
2
1

1 + γ2M2
2

. (11.14)

The continuity equation Eq. 8.1 can be written

ρ2

p2
u2 =

ρ1

p1
u1

p1

p2
(11.15)

γ2M
2
2

u2
=

γ1M
2
1

u1

p1

p2
, (11.16)

so,
u2

u1
=

v2

v1
=

γ2M
2
2

γ1M2
1

1 + γ1M
2
1

1 + γ2M2
2

. (11.17)

The energy equation Eq. 8.3 becomes

γ2

γ1 − 1
R2T2

(
1 +

γ2 − 1
2

M2
2

)
=

γ1

γ1 − 1
R1T1

(
1 +

γ1 − 1
2

M2
1

)
+ q , (11.18)

so,

T2

T1
=

R1

R2

γ1

γ2

γ2 − 1
γ1 − 1

1 +
γ1 − 1

2
M2

1 + (γ1 − 1)
q

a2
1

1 +
γ2 − 1

2
M2

2

(11.19)

Finally, from the thermal EOS
p2

p1

v2

v1
=

R2

R1

T2

T1
. (11.20)

Using this to combine all the equations gives

M2
2

(
1 +

γ2 − 1
2

M2
2

)
(
1 + γ2M2

2

)2 =
(

γ1

γ2

)2 γ2 − 1
γ1 − 1

M2
1

(
1 +

γ1 − 1
2

M2
1 + (γ1 − 1)

q

a2
1

)
(
1 + γ1M2

1

)2 . (11.21)

This is a quadratic equation for M2
2 . The two real roots give the weak and strong detonation waves. A

quantitative plot of the solution for γ2 = γ1 is shown in the sketch below. The 45◦ line is the trivial
solution M2 = M1 and applies for q = 0. The hyperbola passing through (1,1) for q = 0 is the shock wave
solution. To the right of (1,1) in the 4th quadrant it is a compression shock (M1 > 1, M2 < 1), while to
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the left in the 2nd quadrant it is an expansion shock, impossible for these perfect gases. In the first and
third quadrants are the weak solutions, bordering on M2 = M1, and in the 2nd and 4th quadrants are the
strong solutions, bordering on the shock. In the 1st quadrant, below the 45◦ line q > 0 (detonation waves)
and above q < 0 (refrigeration waves?), etc.

A case for γ2 < γ1 is shown in the last sketch. Note that q/a2
1 ' 2 gives essentially the adiabatic shock

conditions for a single-γ gas.
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12 Nonsteady Flows

12.1 One-dimensional inviscid nonheatconducting flow

Eqs. 7.18 and 7.19, with
Ds

Dt
= 0 or

Dρ

Dt
=

1
a2

Dp

Dt
(12.1)

(see Eq. 2.30) apply to these flows. Rewriting the continuity and momentum equations, taking the conti-
nuity equation in terms of pressure,

∂p

∂t
+ u

∂p

∂x
+ ρa2 ∂u

∂x
= 0 (12.2)

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0 . (12.3)

Multiplying the momentum equation by a and adding and subtracting the two equations gives two more
equations, in so-called characteristic form, plus the entropy equation,[

∂

∂t
+ (u ± a)

∂

∂x

]
p ± ρa

[
∂

∂t
+ (u ± a)

∂

∂x

]
u = 0 (12.4)

(
∂

∂t
+ u

∂

∂x

)
s = 0 (12.5)

The operators in square brackets are wave operators and define curves of constant phase (α, β),

∂

∂α
=

∂

∂t
+ (u + a)

∂

∂x
;

∂

∂x
=

1
2a

(
∂

∂α
− ∂

∂β

)
(12.6)

∂

∂β
=

∂

∂t
+ (u − a)

∂

∂x
;

∂

∂t
=

1
2a

[
−(u − a)

∂

∂α
+ (u + a)

∂

∂β

]
, (12.7)

or, with α(x, t), β(x, t) and x(α, β), t(α, β),

dα =
1
2a

(dx − (u − a)dt) ; dx = (u + a)dα + (u − a)dβ (12.8)

dβ =
1
2a

(−dx + (u + a)dt) ; dt = dα + dβ . (12.9)

Constant phase means

β = const along
dx

dt
= u + a (12.10)

α = const along
dx

dt
= u − a . (12.11)

Eqs. 12.4 and 12.5 state that

dp ± ρa du = 0 along
dx

dt
= u ± a (12.12)

ds = 0 along
dx

dt
= u . (12.13)

Compare Eq. 12.12 with Eq. 7.25, the momentum equation in quasi-1D steady flow. The difference between
the two is in the “impedance,” ρa vs. ρu. The two flows in some sense trade behavior between subsonic
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and supersonic flow. Expressed in this way, the relation between dp and du, and the geometry on which
they occur are transparent. However, u and a are unknowns, so, though the mathematical approach to
getting a solution is evident, a closed form analytical solution is not possible.

Formally integrating, ∫
dp

ρa
± u = P

Q
along

dx

dt
= u ± a . (12.14)

P and Q are the Riemann invariants.

12.2 Homentropic flow

If the entropy is the same everywhere,
s = s0 , (12.15)

then the number of variables is reduced by one, and we can write

dp

ρa
=

(
∂p

∂a

)
s

da

ρa
. (12.16)

With Eq. 6.48, Eq. 12.14 becomes∫
da

Γ(a) − 1
± u = P

Q
along

dx

dt
= u ± a (12.17)

There are now 2 unknowns (u, a) and 2 equations.

Uniform Flow. In uniform flow the characteristics are straight, dx/dt = u ± a = const.

12.3 Simple waves

A nonuniform flow bordered on one side in (x, t) space by a uniform flow is a “simple wave.” Fig. 17
shows a simple wave bordered on the left by a uniform flow, a “left-facing simple wave.” The simplifying

Figure 17. A nonsteady wave flow with unifom conditions on its left

thing here is that all of the P characteristics carry the same value of the P Riemann invariant, say, P0.
Thus, ∫

da

Γ(a) − 1
+ u = P0 everywhere (12.18)∫

da

Γ(a) − 1
− u = Q along

dx

dt
= u − a . (12.19)

59 April 23, 2001



Ae/APh/CE/ME 101 Notes

Therefore, ∫
da

Γ(a) − 1
=

P0 + Q

2

u =
P0 − Q

2

 along
dx

dt
= u − a , (12.20)

which proves that

u, a = const along
dx

dt
= u − a , (12.21)

in turn showing that the Q characteristics are straight lines, as shown in Fig. 17.

We have, then, that

du = ∓ da

Γ − 1
; left

right facing wave (12.22)

dx

dt
= u ∓ a ; Q

P
straight characteristic (12.23)

d

(
dx

dt

)
= du ∓ da

= ∓ Γ
Γ − 1

da

 ; Q
P

straight characteristic , (12.24)

the last expression indicating how the slope of the straight set of characteristics changes from the head
to the tail of the wave. Using these relations, we can build up Table 1 to describe the behavior of all
the different cases: Cases 1 and 2 are representative of the behavior of perfect gases. In cases 3 and 4,
even though the fluid is “normal,” the sound speed varies oppositely to what we are used to in fluids
with positive β; it increases in expansion waves and decreases in compression waves. Cases 2 and 3 give
compression shocks after a certain propagation distance and case 6 gives expansion shocks because of the
convergence of the characteristics.

12.4 Perfect gas

In a perfect gas Γ = (γ + 1)/2, so Eq. 12.17 can be integrated to give

a ± γ − 1
2

u = P
Q

along
dx

dt
= u ± a (12.25)

12.4.1 Simple Waves

For left
right waves propagating into a fluid at rest (u1 = 0),

a ± γ − 1
2

u = a1 ;
1
a1

dx

dt
= ∓1 +

γ + 1
2

u

a1
(12.26)

a

a1
= 1 ∓ γ − 1

2
u

a1
=

1
1 ± γ−1

2 M
(12.27)

T

T1
=

(
1 ∓ γ − 1

2
u

a1

)2

=
1(

1 ± γ−1
2 M

)2 (12.28)
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Table 1. Twelve cases for continuous nonsteady flow

da
dp
dρ

du d

(
dx

dt

)

1. Γ > 1
β > 0 < 0 < 0 (expansion) > 0

< 0
> 0
< 0

2. > 0 > 0 (compression) < 0
> 0

< 0
> 0

3. 0 < Γ < 1
β < 0 < 0 > 0 (compression) < 0

> 0
< 0
> 0

4. > 0 < 0 (expansion) > 0
< 0

> 0
< 0

5. Γ < 0
β < 0 < 0 > 0 (compression) < 0

> 0
> 0
< 0

6. > 0 < 0 (expansion) > 0
< 0

< 0
> 0

ρ

ρ1
=

(
1 ∓ γ − 1

2
u

a1

) 2
γ−1

=
1(

1 ± γ−1
2 M

) 2
γ−1

(12.29)

p

p1
=

(
1 ∓ γ − 1

2
u

a1

) 2γ
γ−1

=
1(

1 ± γ−1
2 M

) 2γ
γ−1

(12.30)

12.4.2 Centered Waves

Impulsive expansion of a fluid, e.g. by the impulsive acceleration of a piston, produces a centered wave,
as in the Fig. 18. It is possible for compression waves to be centered, also. In the former case, the
discontinuity in flow properties at t = 0 immediately disintegrates and the flow becomes continuous. The
flow shown in Fig. 18 is a centered left-facing simple wave with straight Q characteristics. In centered
waves the flow properties have a simple “conical” dependence on space and time (x, t). The equation for
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Figure 18. A left-facing centered wave

the Q characteristics is
x

a1t
=

u − a

a1

=
2

γ − 1

(
1 − γ + 1

2
a

a1

)
=

1 − M

1 ± γ−1
2 M

,

(12.31)

or,
a

a1
=

2
γ + 1

(
1 − γ − 1

2
x

a1t

)
. (12.32)

Centered waves have the interesting property that, if the flow has a vertical characteristic through the
origin, then the flow is sonic there, u = a, a = 2/(γ + 1)a1. Thus, the time axis in a centered nonsteady
wave plays the role of the throat in a quasi-1D steady flow. However because of the difference in the
impedances (see above) the flow behavior is different. For example,

Nonsteady Steady

T1

T
=

(
1 +

γ − 1
2

M

)2 Tt

T
= 1 +

γ − 1
2

M2 .

(12.33)

In fact, since the total temperature is defined for every flow, including these nonsteady flows, we can
combine the two Eqs. 12.33 and compare the local total temperature Tt with the “reservoir temperature”
T1,

Tt

T1
=

1 + γ−1
2 M2(

1 + γ−1
2 M

)2 . (12.34)

This function is plotted vs. the local Mach number M in Fig. 19. For large enough M , Tt can be
substantially greater than the reservoir temperature, a useful feature of nonsteady flow resulting from
nonsteady pressure work (see Eq. 7.20).
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Figure 19. Total temperature in nonsteady flow

12.4.3 Complete expansion

If the piston recedes fast enough, the flow thermal energy can be converted entirely to kinetic energy,
when a, ρ, p = 0. Then,

Nonsteady Steady

ue

a1
=

2
γ − 1

um

at
=

√
2

γ − 1
.

(12.35)

ue is known as the escape velocity. The steady result shown above is Eq. 7.65, an analogous result from the
same conversion of thermal energy to kinetic energy. However, owing to the effects of nonsteady pressure
work, it is not as large as for nonsteady flow.

12.5 Wave interactions – The shock-tube equation

The shock jump conditions, in particular Eq. 8.29 and Eq. 8.30, can be plotted together with the
corresponding relation for expansion waves, Eq. 12.30, in a form useful for the graphical solution of wave
interaction problems (see Fig. 20).

For example, the solution of the classic problem of gasdynamics called the shock tube problem, is shown
in Fig. 21. At time t = 0 a partition dividing a high-pressure region (4, the driver) from a low pressure
chamber (1, the driven section) is instantaneously removed, generating a shock wave moving to the right
and an expansion (rarefaction) wave moving to the left. The moving boundary (dashed line) between the
shock-processed fluid and the expanded fluid is called a “contact surface,” and it supports no waves. Thus,
p3 = p2 and u3 = u2. The solution to this problem is shown graphically in Fig. 22. The pressure between
the two waves is intermediate between the initial high and low pressures. The gas between is moving to
the right.
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Figure 20. ∆p/p1 vs. ∆u/a1 for shocks (∆p/p1 > 0) and for expansion waves (∆p/p1 < 0).

Figure 21. The shock-tube problem

We obtain an analytical expression for the solution as follows. Expanding the pressure ratio p4/p1,

p4

p1
=

p4

p3

p3

p2

p2

p1
, (12.36)

and substituting Eq. 12.30 for p3/p4, Eq. 8.29 for p2/p1, with p3 = p2 and u3 = u2, and then substituting
Eq. 8.30 for u2/a1, gives

p4

p1
=

1 +
2γ1

γ1 + 1
(M2

s − 1)(
1 − γ4 − 1

γ1 + 1
a1

a4

M2
s − 1
Ms

) 2γ4
γ4−1

(12.37)

The γ’s have been subscripted to allow for the fact that different gases may initially occupy the driver
and driven regions. This result shows that even with an infinite pressure ratio p4/p1 only a finite strength
shock will be generated, owing to the finite escape velocity when the driver gas has been expanded to zero
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Figure 22. The shock tube problem solved in p-u space, for γ1 = γ4 = 1.4, p4/p1 = 80 and a4/a1 = 4.

pressure. ue is greater for high-sound-speed gases, so the limiting Mach number is larger for large a4,

M2
s − 1
Ms

−→ a4

a1

γ1 + 1
γ4 − 1

(12.38)
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13 Steady Two-Dimensional Flow

Ray tracing has demonstrated that, in general, wave fronts become curved by reflection, refraction
and diffraction. Therefore, the study of shock waves and their interactions in two or three dimensions is
an important endeavor. A propagating shock which encounters a sloping wall may reflect regularly, as
shown in the sketch. The problem may be transformed to a locally steady one by superimposing a negative

Figure 23. Nonsteady and steady shock reflection.

velocity parallel to the wall, to stop the reflection point, as shown at the bottom of the sketch. Then the
flow behind the incident shock is pointing down toward the wall and the refelcted shock is required to bend
it back parallel to the wall. Both of these waves are therefore oblique to the incoming flow, and are called
“oblique waves.”

13.1 Oblique shock waves

When a supersonic stream encounters a sharp obstacle, such as a wedge (Fig. 24), it is observed that
an oblique shock wave emanates from the leading edge, and the flow behind is usually supersonic. Thus,
the supersonic-subsonic relation of normal shocks does not generally hold for oblique shocks. The reason
is that the oblique shock wave has the added feature that there is a flow commponent parallel to the shock
front, that is not altered upon passing through the shock. In fact, all properties of normal shocks must
hold for the normal component of the velocity. Thus, to analyze these flows we decompose the velocity
into normal and tangential components. The notation is shown in Fig. 24. The flow is deflected through

Figure 24. Notation for oblique shock waves.

the angle θ, and the shock angle with the upstream flow is β.

For the infinite wedge there is no characteristic length, so the flow is conical. Conditions are constant
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along radii centered at the tip of the cone.

The preservation of the parallel flow component is expressed by

u1 cos β = u2 cos(β − θ) . (13.1)

The continuity, momentum and energy equations are Eqs. 8.1–8.3 applied to the normal component of the
velocities,

ρ1u1 sinβ = ρ2u2 sin(β − θ) (13.2)

p2 − p1 = ρ1u
2
1 sin2 β − ρ2u

2
2 sin2(β − θ) (13.3)

h2 − h1 =
u2

1 sin2 β

2
− u2

2 sin2(β − θ)
2

(13.4)

Because the equations are fundamentally the same, we can pass immediately to the perfect gas case,
Eqs. 8.29, 8.31 and 8.32. Substituting the correct form for the normal component gives

p2

p1
= 1 +

2γ

γ + 1
(M2

1 sin2 β − 1)

ρ2

ρ1
=

M2
1 sin2 β

1 + γ−1
γ+1(M2

1 sin2 β − 1)

h2

h1
= 1 +

2(γ − 1)
(γ + 1)2

(M2
1 sin2 β − 1)(1 + γM2

1 sin2 β)
M2

1 sin2 β
.

(13.5)

These equations determine the unknowns p2, ρ2 and h2 in terms of the unknown β and the knowns θ, p1,
ρ1 and h1. An equation for M2 is given by Eq. 13.2,

M2
2 sin2(β − θ) =

M2
1 sin2 β
ρ2

ρ1

p2

p1

, (13.6)

so that,

M2
2 sin2(β − θ) =

1 + γ−1
γ+1(M2

1 sin2 β − 1)

1 + 2γ
γ+1 (M2

1 sin2 β − 1)
. (13.7)

Finally, Eq. 13.1 can be used to determine β. Dividing it into (13.2),

ρ1 tanβ = ρ2 tan(β − θ) (13.8)

and expanding the tangent of the difference between two angles gives

tan θ =
1

tanβ

M2
1 sin2 β − 1

γ+1
2 M2

1 − (M2
1 sin2 β − 1)

. (13.9)

Eq. 13.9 shows that θ can be 0 if β = sin−1 1
M1

≡ µ, the Mach angle, or β = π
2 . In the latter case sin β = 1,

and all the above equations reduce to those for normal shocks (Sec. 8). θ carries the sign of β, which can
be either positive (for shocks of the + family) or negative (− family).

Fig. 25 shows the “shock polar”, p2/p1 vs. θ (the first of Eqs. 13.5 with 13.9) for several different
upstream Mach numbers M1. For given wedge angle θ there are two solutions, known as the weak
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Figure 25. The shock polar, shown for several different upstream Mach numbers M1. ∗, sonic condition.

solution and the strong solution. The asterisks mark the “sonic condition,” below which the downstream
flow is supersonic (the weak solution) and above which it is subsonic (the strong solution). Thus, for
θ = 0 there is either no disturbance or a normal shock wave. There is a maximum θ, beyond which there
is no solution at all for each upstream Mach number. This is the “maximum deflection angle” or the
“detachment angle,” beyond which the shock detaches from the wedge. The sonic condition happens to
occur very close to the maximum deflection angle, but not precisely at it.

When the wedge angle increases beyond the maximum deflection angle, the body becomes a bluff body,
and experiments show that the fact that the body must really be of finite transverse size controls the flow.
That is, there is a characteristic length, the body diameter D. The shock jumps out to a distance of order
D ahead of the body, and is normal on the axis of symmetry, the stagnation streamline, as is shown in the
sketches of Fig. 26. The figure shows a compilation of shock standoff distance for several different body
shapes (Liepmann & Roshko 1957). The standoff distance gets very large as the upstream Mach number
M1 → 1.

13.2 Weak shocks

For small θ and ∆p = p2 − p1, M2
1 sin2 β − 1 ¿ 1, and the shocks are weak, though the Mach number

itself might be large. Then,

sinβ =̇
1

M1
(13.10)

tanβ =̇
1√

M2
1 − 1

, (13.11)
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Figure 26. Experimental measurements of shock stand off for several different body shapes, as compiled by Liepmann
& Roshko (1957).

so,

θ =̇
√

M2
1 − 1

2
γ + 1

M2
1 sin2 β − 1

M2
1

(13.12)

∆p

p
=̇

2γ

γ + 1
(M2

1 sin2 β − 1) . (13.13)

Thus,
∆p

p
=̇

γM2
1√

M2
1 − 1

θ (13.14)

This function of M1 is large for both small and large M1, and is minimum for M1 =
√

2, independent of
γ. This behavior explains why the shock polars in the above sketch first expand and then get thinner as
M − 1 increases.

Another important weak shock relation is obtained from Eq. 13.1; expanding the cosine of the difference
of two angles, and using the above approximation for tanβ gives

∆u

u1
=̇ − θ√

M2
1 − 1

. (13.15)
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The change of Mach number can be obtained by multiplying the approximate velocity ratio by the sound
speed ratio, and substituting for the latter,

M2

M1
=̇

a1

a2

(
1 − θ√

M2
1 − 1

)
(13.16)

a2

a1
=̇ 1 +

γ − 1
2

M2
1√

M2
1 − 1

θ , (13.17)

with the result
∆M

M1
=̇ −

(
1 +

γ − 1
2

M2
1

)
θ√

M2
1 − 1

. (13.18)

13.3 Continuous flows – Prandtl-Meyer expansion

The weak-shock relations can be generalized to describe local changes in continuous 2-dimensional
isentropic flow. In particular, for a continuous process Eq. 13.18 can be written

dθ = −
√

M2 − 1
1 + γ−1

2 M2

dM

M
, (13.19)

and integrated to give
−θ + const = ν(M) , (13.20)

where

ν(M) =
√

γ + 1
γ − 1

tan−1

√
γ − 1
γ + 1

(M2 − 1) − tan−1
√

M2 − 1 (13.21)

is the Prandtl-Meyer function, shown in Fig. 27 It gives the Mach number change with the flow deflection

Figure 27. The Prandtl-Meyer Function ν(M).

angle. The thermodynamic variables follow from Eqs. 7.58–7.62. As with shock waves, the Mach number
decreases with either increasing or decreasing θ, depending on which family of waves is present. Similarly
for expansions. (See below.)
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Note that ν(1) = 0 and ν(∞) = π
2

(√
γ+1
γ−1 − 1

)
; the maximum turning angle results from expanding

from M = 1 to M = ∞, and is predicted to be greater than 180◦ for γ < 5/4!

In the (p, θ) plane, Prandtl-Meyer expansion waves (∆p/p0 < 0) join smoothly with the shock polar,
as shown in Fig. 28. The compressive branch (∆p/p0 > 0) falls nearly on the shock polar, for weak

Figure 28. Comparison of compression (∆p/p0 > 0) and expansion (∆p/p0 < 0) Prandtl-Meyer flows with the shock
polar for one upstream Mach number.

shocks. The Prandtl-Meyer curve with positive slope represents the positive family of waves, and the one
with negative slope the negative. Compression members of the positive family increase the flow defelction
angle, while the opposite is true of the opposite family.

13.4 The hodograph

Useful geometrical insight can be obtained by examining solutions in the hodograph plane (ux, uy).

Oblique shocks. The sketch below shows the shock polar for oblique waves. The tigonometry of the similar

triangles establishes the following relations,

u‖
u1⊥

=
u2y

u1 − u2x
(13.22)
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u‖
u1

=
u2y

u1⊥ − u2⊥
(13.23)

u2
1 = u2

1⊥ + u2
‖ (13.24)

u2
2 = u2

2⊥ + u2
‖ . (13.25)

The Prandtl relation, Eq. 8.51, was derived using the energy equation, and so doesn’t transform trivially
to the oblique flow. The energy equations Eq. 8.48 now becomes

u2
1⊥ +

2
γ − 1

a2
1 = u2

2⊥ +
2

γ − 1
a2

2 =
γ + 1
γ − 1

a∗2 − u2
‖ , (13.26)

with the consequence that, after incorporating the momentum equation, the Prandtl relation becomes

u1⊥ u2⊥ = a∗2 − γ − 1
γ + 1

u2
‖ . (13.27)

It is convenient to normalize all velocities with a∗, M∗ ≡ u/a∗, because, for example, when M → ∞,
M∗ is finite,

M∗2 =
M2

1 + γ−1
γ+1(M2 − 1)

. (13.28)

Eliminating the perpendicular and parallel velocities from the Prandtl relation using Eqs. 13.22–13.25 gives
the shock polar in the hodograph plane,

M∗2
2y =

(M∗
1 − u2x)2 (M∗

1 M∗
2x − 1)

2
γ+1 M∗2

1 − (M∗
1 M∗

2x − 1)
. (13.29)

This result is the epicycloid curve plotted in the sketch above (for M∗
1 = 2).

Prandtl-Meyer function. Written in terms of M∗, the Prandtl-Meyer function, Eq. 13.21 becomes

ν(M∗) =
√

γ + 1
γ − 1

tan−1

√
M∗2 − 1

γ+1
γ−1 − M∗2 − tan−1

√
γ + 1
γ − 1

√
M∗2 − 1

γ+1
γ−1 − M∗2 (13.30)

This function plots onto the hodograph as shown below. M∗ continuously increases from M∗ = 1 to

M → ∞ at νmax, which depends on γ. The above sketch is for γ = 1.4 and the sketch below shows the
strophoid for several values of γ. It shows turning angles greater than 180◦ for small γ. For flows with
M1 > 1, the strophoid is rotated so that the initial M∗ coincides with the initial θ, and changes from the
initial state are then followed in the direction appropriate for compressions or expansions.
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13.5 Wave interactions

With the tools developed in this section, arbitrarily complex wave interactions can be solved. First,
we treat the simplest reflection problem, the reflection of an incident oblique shock from a plane wall.
Fig. 29 illustrates a quantitative case in which the upstream Mach number is M1 = 5, and θ is measured
relative to the upstream flow direction. The lowest polar shows the incident shock, and the point

Figure 29. p-θ diagram and quantitative sketch of a regular reflection. θ1 = 17.84◦. β2 = 27.38◦. β3 = −33.88◦.

∆p/p1 = 5.0, θ = 17.84◦ depicts the downstream state, from which the reflected shock polar begins. Two
solution points are marked by the pluses. The one of interest here is the left one where the flow deflection
angle is 0.

Often the reflection is such that the point of maximum flow deflection falls to the right of the θ = 0
axis, as in Fig. 30. In this case there is no solution with θ = 0. Experiments show that, in fact, Mach
reflection occurs, such that the solution indicated by the + is realized locally, in a configuration indicated
in the sketch on the right. The p-θ curve originationg at conditions ©1 gives the two waves 1–2 and 1–3,

73 April 23, 2001



Ae/APh/CE/ME 101 Notes

Figure 30. p-θ diagram and quantitative sketch of a Mach reflection. θ1 = 14.12◦. β2 = 44.18◦. θ2 = 3.07◦.
β3 = −71.8◦. β4 = −81.1◦.

and the one originating at condition ©2 gives 1–4.

13.6 Natural Coordinates

We now make a slight diversion in order to simplify the general treatment of supersonic flow in two
dimensions. We rederive the equations of motion in terms of motions down streamtubes, the “natural”
coordinate system of Crocco. Fig. 31 shows the geometry. s is in the streamwise direction, n is normal to s.

Figure 31. Definition of the natural coordinate system

We use the notation ∆n and ∆s temporarily, and, later, pass to the limit where they become differentials.
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From the geometry of the figure (viz. dashed lines)

tan
∂θ

∂n
∆n

.=
∂θ

∂n
∆n =

∂∆n

∂s
(13.31)

tan
∂θ

∂s
∆s

.=
∂θ

∂s
∆s =

∂∆s

∂n
. (13.32)

By definition, since the volume is infinitesimal, the equations of quasi-onedimensional flow apply exactly.
However, they must be improved to account for the fact that fluid tends to slosh outward on a curve, i.e.,
they must be augmented for transverse curvature effects.

The continuity equation is
ρ u ∆n = const , (13.33)

which, differentiated logarithmically becomes

1
ρ

∂ρ

∂s
+

1
u

∂u

∂s
+

1
∆n

∂∆n

∂s
= 0 . (13.34)

Using Eq. 13.31,
1
ρ

∂ρ

∂s
+

1
u

∂u

∂s
+

∂θ

∂n
= 0 . (13.35)

The s-momentum equation is

ρu
∂u

∂s
+

∂p

∂s
= 0 . (13.36)

The new equation required is derived from the fact that the infinitesimal volume of Fig. 31 is not
an inertial system, but is rotating. There are no velocities in the transverse direction, so the normal
momentum equation is simply a hydrostatic force balance between a pressure gradient and a “body force”
resulting from the centripetal acceleration Ω2R, where R = ∆s

∆θ is the radius of curvature. Here,

Ω =
∆θ

∆t
= u

∆θ

∆s
−→ u

∂θ

∂s
. (13.37)

The last equality is obtained by expressing ∆θ and ∆s as differentials. With reference to Eq. 2.16, the
n-momentum equation is

−ρΩ2R − ∂p

∂n
= 0 , (13.38)

or,

ρu2 ∂θ

∂s
+

∂p

∂n
= 0 . (13.39)

The energy equation will give a useful condition for ensuring isentropic flow. We begin by making the
minimum assumption, namely, adiabatic flow.

h +
u2

2
= ht(n) ; dh = dht − u du . (13.40)
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The total enthalpy can vary normal to the streamlines because of upstream conditions. The following
thermodynamic identity gives

T dS = dh − 1
ρ

dp (13.41)

= dht −
(

u du +
1
ρ

dp

)
. (13.42)

Decomposed into the two directions s and n, it gives,

T
∂S

∂s
= 0 (13.43)

T
∂S

∂n
= −u

(
∂u

∂n
− u

∂θ

∂s

)
+

dht

dn
, (13.44)

where in each equation the corresponding momentum equation has been used to eliminate p. This can be
put in terms of vorticity ω. The vorticity can be written down from its definition, or it can be derived
from Kelvin’s Theorem. The circulation Γ is defined as

Γ ≡
∮

u · d` =
∫

S
ω · dS , (13.45)

where the last equality follows from Stokes Theorem. Now, the circulation around the infinitesimal volume
of Fig. 31 has contributions from only the bottom and top legs,

Γ = u ∆s − (u +
∂u

∂n
∆n)(∆s +

∂∆s

∂n
∆n)

=
(

u
∂θ

∂s
− ∂u

∂n

)
∆s∆n ,

(13.46)

where Eq. 13.32 has been used. Thus

ω = u
∂θ

∂s
− ∂u

∂n
, (13.47)

so the energy equation is

T
∂S

∂n
= uω +

dht

dn
. (13.48)

This is the inviscid 2D form of Crocco’s theorem, Eq. 3.22.

13.7 The Equations in Characteristic Form

Homentropic flow, which we consider from here on, is obtained by the assumptions ω = 0 and ht =
const. The equations can be put in characteristic form in the same way as with nonsteady flow; multiply
Eq. 13.35 by a2 = dp/dρ, eliminate dρ in favor of dp. However, here we prefer to write equations for (u, θ),
so we eliminate p by subtracting Eq. 13.36 to obtain

(M2 − 1)
1
u

∂u

∂s
− ∂θ

∂n
= 0

∂u

∂n
− u

∂θ

∂s
= 0 .

(13.49)

The last equation is the irrotationality condition, ω = 0.
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These equations can be simplified by replacing u by ν(M) from Eq. 13.15,

dθ ≡ −dν(M) = −
√

M2 − 1
du

u
(13.50)

or
dν = cot µ

du

u
. (13.51)

Substituting into the above equations gives

∂ν

∂s
− tanµ

∂θ

∂n
= 0 (13.52)

tanµ
∂ν

∂n
− ∂θ

∂s
= 0 . (13.53)

Now they can be put directly into charcteristic form by adding and subtracting,

∂

∂s
(ν ∓ θ) ± tanµ

∂

∂n
(ν ∓ θ) = 0 , (13.54)

or, in words,

θ ∓ ν = P
Q along

dn

ds
= ± tanµ . (13.55)

13.7.1 The Method of Characteristics

These equations form the basis for numerical calculations by the method of characteristics. It can easily
be extended to non-homentropic (but isentropic) flows, with some additional computational complexity.
For this purpose, the equations can at this stage be transformed from natural coordinates back into (x, y)
almost trivially, simply by inspection of Fig. 31,

θ ∓ ν = P
Q along

dy

dx
= tan(θ ± µ) . (13.56)
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14 Acoustics

Acoustics is the small-amplitude approximation to gas-dynamics. Because entropy changes are third
order in shock strength, acoustic fields are isentropic.

14.1 Plane Waves I

Uni-directional propagation. One-way propagation (say, in the x-direction) can be derived from the shock
relation Eq. 8.7 by approximating the changes as differentials,

dp = ρa du , (14.1)

where ρ and a are the values for the undisturbed ambient medium. This is of course the Riemann invariant
for an infinitesimal right-facing wave.

Bidirectional propagation. The equation for general one-dimensional acoustic fields can be derived by
linearizing Eq. 12.4 with the substitution

p = p0 + p′ (14.2)

ρ = ρ0 + ρ′ (14.3)

a = a0 + a′ (14.4)

u = u′ . (14.5)

( )0 refers to the ambient medium. Dropping all but the first-order terms gives

∂p

∂t
+ a0

∂p

∂x
+ ρ0a0

(
∂u

∂t
+ a0

∂u

∂x

)
= 0 (14.6)

∂p

∂t
− a0

∂p

∂x
− ρ0a0

(
∂u

∂t
− a0

∂u

∂x

)
= 0 , (14.7)

where the primes have been dropped from the perturbation quantities. Adding and subtracting the two
equations recovers the original forms of the continuity and momentum equations,

∂p

∂t
+ ρ0a

2
0

∂u

∂x
= 0 (14.8)

∂p

∂x
+ ρ0

∂u

∂t
= 0 . (14.9)

Differentiating the first with respect to t, multiplying the second by a2
0 and differentiating with respect to

x, and subtracting from the first gives the wave equation

∂2p

∂t2
− a2

0

∂2p

∂x2
= 0 . (14.10)

Factoring the operators exhibits again the bi-directional structure of the equation,(
∂

∂t
+ a0

∂

∂x

) (
∂

∂t
− a0

∂

∂x

)
p = 0 , (14.11)

the solution to which is
p = f(x − a0t) + g(x + a0t) . (14.12)

In a uniform medium (a0 = const) acoustic waves propagate along straight lines dx/dt = ±a0 in (x, t).
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14.2 Acoustics in multi dimensions

The wave equation for multi-dimensional flow follows by applying the same procedure to Eqs. 2.13-2.17.
The linearized continuity equation is

∂ρ′

∂t
+ ρ0 ∇ · u′ = 0 , (14.13)

Substituting

a2
0 =

(
∂p

∂ρ

)
s0

(14.14)

to eliminate dρ gives
∂p

∂t
+ ρ0a

2
0 ∇ · u = 0 , (14.15)

where now the primes have been dropped. The linearized momentum equation is

ρ0
∂u

∂t
+ ∇p = 0 . (14.16)

Dividing Eq. 14.15 by a2
0, differentiating it with respect to time and subtracting ∇· times Eq. 14.16 gives

∂2p

∂t2
− a2

0 ∇2p = 0 , (14.17)

the multi-dimensional version of Eq. 14.10.

Likewise, a wave equation can be derived for u. In fact, defining a velocity potential

u = ∇φ , (14.18)

the momentum equation, Eq. 14.16, becomes

∇
(

ρ0
∂φ

∂t
+ p

)
= 0 , (14.19)

which is solved by

p = −ρ0
∂φ

∂t
, (14.20)

where the arbitrary time function from the integration has been absorbed into φ because it doesn’t change
u = ∇φ. Conveniently, φ gives both the acoustic pressure and the acoustic velocity. Substituting Eqs. 14.18
and 14.20 into Eq. 14.15 results directly in a wave equation for φ,

∂2φ

∂t2
− a2

0 ∇2φ = 0 , (14.21)

Energy. To linearize Eq. 2.17 express e(s, v) and Taylor expand the perturbation,

e′ = e − e0 =
(

∂e

∂v

)
s0

v′ +
1
2

(
∂2e

∂v2

)
s0

v′2 + · · · . (14.22)

Using Eqs. 6.4, 6.41 and

v′ =
(

∂p

∂v

)
s

p′ , (14.23)
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gives

e +
u2

2
= e0 + e′ +

u′2

2
=̇ e0 − p0v

′ +
1
2

p′2

ρ2
0a

2
0

+
u′2

2
. (14.24)

With linearization, the convective derivative becomes simply the time derivative. The first term on the
right of Eq. 2.17 (all the rest are zero in this inviscid theory) linearizes to p0∇ · u′ +∇ · p′u′, so the energy
equation is

−p0ρ0
∂v′

∂t
+ ρ0

∂

∂t

(
1
2

p′2

ρ2
0a

2
0

+
u′2

2

)
+ p0∇ · u′ + ∇ · p′u′ = 0 . (14.25)

Eq. 14.13 can be written

− 1
v0

∂v′

∂t
+ ∇ · u′ = 0 , (14.26)

so, combining with (14.25),

ρ0
∂

∂t

(
1
2

p2

ρ2
0a

2
0

+
u2

2

)
+ ∇ · pu = 0 , (14.27)

where now the primes have been dropped.

In a left- or right-facing wave,
p = ±ρ0a0 u , (14.28)

so
1
2

p2

ρ2
0a

2
0

=
1
2

pu

ρ0a0
=

u2

2
. (14.29)

That is, the acoustic energy is equi-partitioned between potential and kinetic energy. Eq. 14.27 can then
be written

1
a0

∂pu

∂t
+ ∇ · pu = 0 , (14.30)

which is an equation in conservative form,

∂

∂t
density = ∇ · flux . (14.31)

We have,

E ≡ energy density =
pu

a0

F ≡ energy flux = pu = a0 E
u

u

(14.32)

The last equality shows that acoustic energy in this non-dispersive medium is carried with the sound speed
a0.

14.3 Plane waves II

For plane-waves the solution to Eq. 14.21 is

φ = f

(
t − x · n

a0

)
+ g

(
t +

x · n
a0

)
, (14.33)

where
n =

u

u
(14.34)
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is the unit vector in the direction of propagation. Thus

u = ∇φ = − 1
a0

(f ′ − g′)n

p = −ρ0
∂φ

∂t
= −ρ0(f ′ + g′) ,

(14.35)

where here the primes denote differentiation with respect to the argument.

Harmonic plane waves. The velocity potential for harmonic plane waves is conventionally taken to be

φ = fnc(x) e−iωt . (14.36)

Then the solution, (14.33), becomes

φ =
(
Aeik·x + Be−ik·x

)
e−iωt

= A ei(k·x−ωt) + B e−i(k·x+ωt) ,

(14.37)

where the wave vector k is
k =

ω

a0
n . (14.38)

Thus,

p = −ρ0
∂φ

∂t
= ρ0 iω

(
Aeik·x + Be−ik·x

)
e−iωt

u = ∇φ = ik
(
Aeik·x − Be−ik·x

)
e−iωt .

(14.39)

As with any plane-wave field, this solution can be rewritten to show that it is a summation of a standing
wave and a travelling wave, either left-facing or right-facing,

φ = 2A cos(k · x) e−iωt − (A − B) e−i(k·x+ωt) (14.40)

= 2B cos(k · x) e−iωt + (A − B) ei(k·x−ωt) (14.41)

When A = B, it is a pure standing wave.

Energy. The magnitude of the energy flux for progressive harmonic waves, say, B = 0, is

F = pu = ρ0a0 u2 = ρ0a0 k2 A2 =
ρ0

a0
ω2 A2 , (14.42)

where the last two equalities follow from Eq. 14.39. It follows from Eq. 14.32 that the energy density is

E =
ρ0

a2
0

ω2 A2 . (14.43)

Measures of sound amplitude – Decibels. The sound pressure level is defined as

SPL = 20 log10

|p|
2 × 10−5 Pa

, (14.44)

where the units of SPL are called deciBels (dB). Roughly speaking, 0 dB is the limit of human hearing.
The particle velocity in air induced by the least audible sound (2 × 10−5 Pa) is about 4 × 10−8 m/s, and
the energy flux is approximately 10−12 w/m2. An increase of SPL by 100 dB implies an increase of rms
pressure by a factor of 105, so SPL = 100 dB is p = 2 Pa, and SPL = 200 dB is p = 2 × 105 Pa = 2 bar!
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14.4 Refraction

The refraction of plane waves φ = f(t − n·x
a ) at a discontinuous interface is easy to work out, and

applies locally to curved waves incident on curved interfaces, so long as the interface can be taken to be
discontinuous. We take the wave incident from above (y > 0) onto an interface aligned with the x axis.
The notation is defined in Fig. 32. The arrows are the normals to the phase fronts and are called rays. The

Figure 32. Refraction of plane waves.

potential function of the field in region ©1 is the superposition of the incident and reflected waves, while
in region ©2 it is just the reflected wave,

φ1 = φi + φr (14.45)

φ2 = φt , (14.46)

The boundary conditions are that the pressure and vertical component of the velocity be continuous across
the interface, and that the phases of φi,r,t all be equal. The phase η is

η = t − nxx + nyy

a
(14.47)

= t − x sin θ ± y cos θ

a
, (14.48)

where the sign expresses whether the wave is propagating in the positive or negative y direction. Thus,
the phase condition at the interface is

t − x sin θi

a1
= t − x sin θr

a1
= t − x sin θt

a2
, (14.49)

which give the familiar results

θi = θr

sin θt

a2
=

sin θi

a1
.

(14.50)

The last equation is Snell’s Law. Total reflection occurs when θt = π/2, i.e., when

sin θi =
a1

a2
< 1 ; Total reflection (14.51)
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That is, total reflection can only occur in fast-slow refraction. The velocity vtr along the interface of the
intersection of a phase front with the interface is known as the trace velocity,

vtr =
a1

sin θi
> a1

=
a2

sin θt
.

(14.52)

For real wave propagation the trace velocity must be supersonic. For total reflection vtr becomes just sonic
relative to region ©2 ,

vtr = a2 ; Total reflection , (14.53)

so wave propagation does not occur below the interface.

The wave amplitudes are determined by the dynamical boundary conditions at the interface,

u2y = u1y

∂φ2

∂y
=

∂φ1

∂y

φ′
t

cos θt

a2
= φ′

i

cos θi

a1
− φ′

r

cos θr

a1

p2 = p2

ρ2
∂φ2

∂t
= ρ1

∂φ1

∂t

ρ2φ
′
t = ρ1(φ′

i + φ′
r) ,

(14.54)

where the primes denote differentiation with respect to the argument. The last two equations determine
φ′

r/φ′
i and φ′

t/φ′
i,

φ′
r

φ′
i

=
2ρ1a2 cos θi

ρ2a2 cos θi + ρ1a1 cos θt
(14.55)

φ′
t

φ′
i

=
ρ2a2 cos θi − ρ1a1 cos θt

ρ2a2 cos θi + ρ1a1 cos θt
. (14.56)

The pressures and velocities are

pr

pi
=

ρ2a2 cos θi − ρ1a1 cos θt

ρ2a2 cos θi + ρ1a1 cos θt
; (14.57)

pt

pi
=

2ρ2a2 cos θi

ρ2a2 cos θi + ρ1a1 cos θt
;

ut

ui
=

2ρ1a1 cos θt

ρ2a2 cos θi + ρ1a1 cos θt
(14.58)

This gives an interesting case where there is no reflected pressure field, perhaps “total refraction,”

tan2 θi =

(
ρ2a2

ρ1a1

)2

− 1

1 −
(

a2

a1

)2 > 0 . (14.59)

This condition can be realized in either slow-fast or fast-slow configurations, and is unique to acoustics.

14.5 Spherical waves

In spherical coordinates the wave equation is

∂2φ

∂t2
− a2

0

r2

∂

∂r

(
r2 ∂φ

∂r

)
= 0 . (14.60)
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The substitution
φ =

κ

r
(14.61)

reduces the wave equation to the one-dimensional form,

∂2κ

∂t2
− a2

0

∂2κ

∂r2
= 0 , (14.62)

so
κ = f(r − a0t) + g(r + a0t) , (14.63)

or,

φ =
f(r − a0t)

r
+

g(r + a0t)
r

. (14.64)

The pressure disturbance is

p = −ρ0
∂φ

∂t
=

ρ0a0

r
(f ′ − g′) , (14.65)

and the velocity perturbation in the radial direction is

u =
∂φ

∂r
=

1
r
(f ′ + g′) − 1

r2
(f + g) . (14.66)

For the important case of a wave system propagating outward from a point source, g = 0, and

p = ρ0a0
f ′

r

u =
f ′

r
− f

r2
.

(14.67)

The fact that u now has two terms distinquishes a “far field” solution, r À 0,

u =̇
f ′

r
(14.68)

p =̇ ρ0a0 u , (14.69)

for which (14.69) implies that the behavior in the far field is plane-wave-like, and a near field solution,
r ¿ a0t,

u =̇ − f(−a0t)
r2

. (14.70)

The latter can be expressed in terms of the volume flux from the origin (source strength)

Q(t) = lim
r→0

4πr2u = −4π f(−a0t) , (14.71)

i.e.,

f(η) = −
Q

(
− η

a0

)
4π

; f ′(η) =
Q′

(
− η

a0

)
4πa0

. (14.72)
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Thus, in terms of the source strength the outgoing wave is

φ(r, t) = − 1
4π

Q
(
t − r

a0

)
r

p(r, t) =
ρ0

4π

Q′
(
t − r

a0

)
r

u(r, t) =
1
4π

Q
(
t − r

a0

)
r2

+
Q′

(
t − r

a0

)
a0r

 .

(14.73)

The important properties of this solution are,

• Q = const −→ no nonsteadiness, so no wave propagation.
Incompressible, steady source.

• (a → ∞) −→ no delay, no distiction between near and far fields, i.e., no wave propagation.
Incompressible, non-steady source.

• In the far field p and u are derivatives of the source strength.
In the absence of attenuation, high frequencies are enhanced.
Acoustics is a differentiator (analog computer).

• The source strength attenuated by 1/r2 measures the departure of the wave field from plane waves,

u(r, t) − p(r, t)
ρ0a0

=
Q

(
t − r

a0

)
4πr2

. (14.74)

Source of finite duration. (Wave system of finite spatial extent.)
In this case both p and u (f and f ′) are zero ahead of and behind the wave, so the integral of f ′ (that is,
p) through the wave is zero, ∫ ∞

−∞
p(r, t) dt = 0 . (14.75)

The area under the positive parts of the pressure disturbance is equal to that under the negative parts,
and the total impulse is zero. The implications for the damaging effect of blast waves are important.

14.6 Cylindrical waves

For cylindrical waves the wave equation is simpler,

1
a2

0

∂2φ

∂t2
− 1

r

∂

∂r

(
r
∂φ

∂r

)
= 0 , (14.76)

but the solution is more complicated. It can be constructed by summing an array of spherical sources of
uniform strength q aligned along the z-axis,

φ(r, t) = − 1
4π

∫ ∞

−∞

q
(
t − R

a0

)
R

dz , (14.77)

where R is the distance from a source element at point (0, 0, z) to the observer in the x-y plane,

R2 = r2 + z2 (14.78)

r2 = x2 + y2 . (14.79)
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Grouping the contributions of pairs of points symmetric about z = 0 and rewriting the integral in terms
of the retarded time

τ = t − R

a0
, (14.80)

such that
z2 = a2

0(t − τ)2 − r2 , (14.81)

gives

φ(r, t) = − 1
2π

∫ t− r
a0

−∞
q(τ)√

(t − τ)2 − r2

a2
0

dτ . (14.82)

The upper limit is the contribution from the nearest point on the z-axis (z = 0) and is retarded by the
travel time. The lower limit shows that cylindrical waves have an infinite tail, even if the source is of finite
duration. For example, if the source is only on for 0 < τ < T , then

φ(r, t) = − 1
2π

∫ T

0

q(τ)√
(t − τ)2 − r2

a2
0

dτ . (14.83)

and, for large time

φ(r, t) =̇ − 1
2π

∫ T
0 q(τ) dτ

t
(14.84)

p =̇ − ρ0

2π

∫ T
0 q(τ) dτ

t2
. (14.85)

The pressure dies off only algebraically at large time.

The integral in Eq. 14.82 has the unfortunate property that the integrand blows up at the upper limit,
so the singular part must be removed. This is done most easily with the transformation

τ = t − r

a0
cosh σ

dτ = − r

a0
sinhσ dσ

= −
√

(t − τ)2 − r2

a2
0

dσ .

(14.86)

After switching the limits of integration the solution becomes

φ(r, t) = − 1
2π

∫ ∞

0
q

(
t − r

a0
cosh σ

)
dσ . (14.87)

The singularity is removed and subsequent calculations are simplified. For example, the pressure turns out
to be given simply by the differential of the source strength with respect to its argument, and the velocity
yields a multiplicative term which is the r-derivative of the argument in the transformed equation,

p =
ρ0

2π

∫ t− r
a0

−∞
q′(τ) dτ√

(t − τ)2 − r2

a2
0

(14.88)

u =
1

2πr

∫ t− r
a0

−∞
q′(τ)(t − τ) dτ√

(t − τ)2 − r2

a2
0

(14.89)
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14.7 General acoustic field from superposition of sources

Flow fields can in general be constructed by superposing distributions of point sources, such that the
result satisfies the specified initial and boundary conditions. We first consider the simple case of point
volume sources f(r, t). To conserve mass, they must be represented in the continuity equation, Eq. 14.13.

∂ρ′

∂t
+ ρ0 ∇ · u′ = ρ0 q(r, t) . (14.90)

Eliminating ρ′ from the first term with Eq. 6.40 and using the equations for (p, u) in terms of the velocity
potential, Eq. 14.35, there results a wave equation for φ,

1
a2

0

∂2φ

∂t2
−∇2φ = −q(r, t) , (14.91)

The solution is obtained by summing the effects observed by an observer at r of all the sources located at
ξ, where the separation distance is R = r − ξ,

φ(r, t) = − 1
4π

∫ ∞

−∞

q
(
ξ, t − R

a0

)
R

dξ , (14.92)

(Born & Wolf, Principles of Optics, Pergammon, Ch. 2). φ is called the retarded potential.

From this solution, so-called fundamental solutions can be constructed for later superposition:

14.7.1 Impulsive point source.

An impulsive point source is
q(r, t) = δ(r) δ(t) , (14.93)

where δ is the Dirac delta function. The solution g to the equation

1
a2

0

∂2g

∂t2
−∇2g = −δ(r) δt (14.94)

is, from Eq. 14.92,

g(r, t) = − 1
4π

∫ ∞

−∞

δ(ξ) δ
(
t − R

a0

)
R

dξ (14.95)

= − 1
4π

δ
(
t − r

a0

)
r

. (14.96)

g is a Green’s function. The Green’s functions are spherically symmetric, i.e., don’t depend on the direction
of r.

The radial velocity induced by this source is

u =
∂g

∂r
=

1
4π

δ
(
t − r

a0

)
r2

+
δ′

(
t − r

a0

)
a0r

 , (14.97)
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which, with2

δ′(x) = −δ(x)
x

, (14.98)

gives

u =
δ′

(
t − r

a0

)
4πa0r

. (14.99)

This equation has only one term, the 1/r term, and so exhibits far-field behavior everywhere, as would be
expected of a point source.

14.7.2 General solution obtained from a distribution of impulsive point sources

. The solution to a general source distribution f(r, t) follows from

f(r, t) = f(ξ, τ) δ(r − ξ) δ(t − τ) , (14.100)

by summing the corresponding Green’s functions, namely,

φ(r, t) =
∫ ∫ ∞

−∞
f(ξ, τ) g(|r − ξ|, t − τ) dξ dτ . (14.101)

Note that this is the convolution of the Green’s function with the source distribution.

14.7.3 Harmonic point source.

The harmonic point source is
f(r, t) = δ(r)e−iωt , (14.102)

the Green’s function for which is, from Eq. 14.92,

g(r, t) = − 1
4π

∫ ∞

−∞

δ(ξ) e
−iω

(
t− R

a0

)
R

dξ (14.103)

= − 1
4π

e
−iω

(
t− r

a0

)
r

= − 1
4π

ei(kr−ωt)

r
, (14.104)

where k is the wave number,
k =

ω

a0
. (14.105)

2Properties of the delta function can be proven by operating on test functions, say f(x). In this case it is convenient to
expand f(x) at the origin, f(x) = f(0) + xf ′(0) + . . ., and to consider the operation∫ ∞

−∞
f(x)

δ(x)

x
dx = f(0)

∫ ∞

−∞

δ(x)

x
dx + f ′(0)

∫ ∞

−∞
δ(x) dx + . . .

=

∫ ∞

−∞
f ′(x)δ(x) dx

= f(x)δ(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f(x)δ′(x) dx

The first term on the right side of the top equation is zero because δ(x)/x is an odd function, the second equation results from
the definition

∫ ∞
−∞ f(x)δ(x) dx = f(0), and the first term of the third equation is zero because δ(x) only has a contribution at

x = 0. Thus, Eq. 14.98 is proven.
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The acoustic velocity and pressure induced by the point harmonic source are

u =
∂g

∂r
=

1
4πr

(
1
r
− ik

)
ei(kr−ωt)

p = −ρo
∂g

∂t
= −ρ0 iω

4πr
ei(kr−ωt) .

(14.106)

In the far field they are,

u =̇ − 1
4π

ik

r
ei(kr−ωt)

p =̇ −ρ0a0

4π

ik

r
ei(kr−ωt)

(14.107)

so, again, nearly plane-wave behavior results,

p =̇ ρ0a0 u . (14.108)

The acoustic energy flux is

F = |pu| =
1

(4π)2
ρ0a0

ω2

r2
. (14.109)

14.7.4 General solution for harmonic waves

. The solution to a general source distribution,

f(r, t) = f(r) e−iωt , (14.110)

such that
f(r, t) = f(ξ) δ(r − ξ) e−iωt , (14.111)

is

φ(r, t) =
∫ ∞

−∞
f(ξ) g(|r − ξ|, t) dξ , (14.112)

again, the convolution of the Green’s function with the source distribution. Substituting from Eq. 14.104
yields the harmonic retarded potential,

φ = − 1
4π

∫ ∞

−∞
f(ξ)

ei(kR−ωt)

R
dξ . (14.113)

14.8 Harmonic dipoles and quadrupoles

In this section we construct higher-order singularities from simple ones.

14.8.1 Dipole source

A dipole can be constructed by superposing two point sources of equal magnitude A and opposite sign
separated by an infinitesimal distance δ (Fig. 33). For this calculation they are aligned with the z-axis.
The acoustic field resulting from the superposition is

φd = lim
δ→0

[
Ag δ

2
− Ag− δ

2

]
δ

δ = A′ ∂g

∂z

∣∣∣
0

, (14.114)
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Figure 33. Schematic diagram for the construction of a dipole oriented with the z-axis.

where, in order to get a finite dipole strength A′, the source strength must become infinite such that
Aδ → A′. Writing the z derivative

∂

∂z
=

z

r

∂

∂r
;

z

r
= cos φ , (14.115)

gives

φd = − A′

4πr
ik cos φ

(
1 +

i

kr

)
ei(kr−ωt) . (14.116)

Use of notation φ for both the velocity potential and an angle should cause no confusion because the angle
always occurs in a trigonometric function. For a dipole aligned in any arbitrary direction, A′ is assigned
that direction, and

φd = −i
A′ · k
4πr

(
1 +

i

kr

)
ei(kr−ωt) . (14.117)

In the far field

φd =̇ − A′

4π

ik cos φ

r
ei(kr−ωt) , (14.118)

and

u =̇
A′

4π

k2 cos φ

r
ei(kr−ωt) (14.119)

p =̇ ρ0a0
A′

4π

k2 cos φ

r
ei(kr−ωt) , (14.120)

showing once again the plane-wave behavior, and

F = |pu| = ρ0a0

(
A′

4π

)2 k4 cos2 φ

r2
. (14.121)

14.8.2 Quadrupole source

A quadrupole is constructed from two dipoles displaced, say, in the x-direction (Fig. 34).

φq = A′′ ∂φd

∂x
, (14.122)
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Figure 34. Schematic diagram for the construction of a quadrupole from two dipoles displaced along the x-axis.

where A′δ → A′′. Writing
∂

∂x
=

x

r

∂

∂r
, (14.123)

gives

φq =
A′′

4πr
k2 xz

r3

[
1 +

3i

kr
− 3

(kr)2

]
e(kr−ωt) . (14.124)

Now,
z

r
= cos φ ;

x

R
= cos θ ;

R

r
= sinφ , (14.125)

so,

φ =
A′′

4πr

k2

r
sinφ cos φ cos θ

[
1 +

3i

kr
− 3

(kr)2

]
e(kr−ωt) . (14.126)

14.9 Radiation from a plane

A classic problem in acoustics is the sound generated by sources in a plane, with application to loud-
speakers, transducers, etc. The geometry is shown in Fig. 35. The acoustic field at the point r generated
by all the patches at ρ in the x-y plane, distance R from r, is the summation of a distribution of spherical
waves,

φ = − 1
4π

e−iωt

∫
f(ρ)

eikR

R
dρ . (14.127)

Now,

ρ2 = ξ2 + η2 (14.128)

r2 = x2 + y2 + z2 (14.129)

R2 = (x − ξ)2 + (y − η)2 + z2 (14.130)

= r2 + ρ2 − 2(xξ + yη) (14.131)

= r2

[
1 +

ρ2

r2
− 2

xξ + yη

r2

]
. (14.132)

From the sketch,
xξ + yη

r
=

r̃ · ρ
r

= sinφ
r̃ · ρ
r̃

. (14.133)
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Figure 35. Geometry for radiation from a plane

For the purpose of approximating the phase kR, Eq. 14.132 is expanded as

R = r

1 +
ρ2

2r2︸︷︷︸
Fraunhofer

−xξ + yη

r2
− 1

2

(
xξ + yη

r2

)2

︸ ︷︷ ︸
Fraunhofer

 + O
(

ρ3

r2

)
︸ ︷︷ ︸
Fresnel

, (14.134)

where the underbraces denote the terms, and smaller, neglected for

Fresnel Diffraction ;
kρ3

r2
¿ 2π (14.135)

Fraunhofer Diffraction ;
kρ2

r
¿ 2π . (14.136)

In the latter approximation, using Eq. 14.133,

kR =̇ kr − k sinφ
r̃ · ρ
r̃

. (14.137)

Define the wave vector
k ≡ k

R

R
=̇ k

r

r
. (14.138)

It’s projection in the x-y plane is

κ = k sinφ
r̃

r̃
, (14.139)

so
kR =̇ kr − κ · ρ . (14.140)

Thus, the Fraunhofer approximation to Eq. 14.127 is

φ = −ei(kr−ωt)

4πr

∫ ∞

−∞
f(ρ) e−iκ·ρ dρ . (14.141)
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This can be simplified by recognizing that the 2D spatial Fourier Transform is

F(k) =
1
2π

∫ ∞

−∞
f(ρ) e−ik·ρ dρ , (14.142)

so

φ = −ei(kr−ωt)

2r
F(κ) . (14.143)

The resulting acoustic field consists of a spherical wave with a directional dependence which depends
on the source distribution in the source plane. Acoustic propagation takes the Fourier transform of the
distribution in the source plane. This result is the origin of the field called “Fourier optics.”

Acoustically compact source If the extent a of the source in the transverse plane is small, in the sense
that ka ¿ 1, then the exponential evaluates to unity and

F(k) =
S

2π

1
S

∫ ∞

−∞
f(ρ) dρ =

fS

2π
, (14.144)

where S is the surface area of the volume occupied by the source and f is the mean source strength. The
velocity potential is

φ = −fS
ei(kr−ωt)

4πr
. (14.145)

14.10 Aero-acoustics

Aero-acoustics is the production of noise by nonsteady fluid flow, usually turbulent flow, but also
periodically varying flows, etc. In the 1950’s a model equation for generation of noise by flow was derived
from the equations of motion by M. J. Lighthill. The advent of jet noise produced by modern jet-powered
aircraft stimulated rapid growth of the field in the 1960’s.

Allowing for mass sources in the continuity equation,

∂ρ

∂t
+ ∇ · ρu = m , (14.146)

and vector forces in the inviscid momentum equation,

∂ρu

∂t
+ ∇ · ρuu + ∇p = F , (14.147)

eliminating the pressure by (6.40), differentiating the continuity equation w.r.t. t, taking the divergence of
the momentum equation, and subtracting the latter from the former, yields a wave equation for ρ,

1
a2

0

∂2ρ

∂t2
− ∇2ρ = − 1

a2
0

(
−∂m

∂t
+ ∇ · F −∇ · ∇ · ρuu

)
. (14.148)

Treating the rhs as known, Eq. 14.148 is in the form of Eq. 14.91, so the solution is formally, say, Eq. 14.112,

ρ =
1
a2

o

∫ ∞

−∞
(−ṁ + ∇ξ · F −∇ξ · ∇ξ · ρuu) g(|r − ξ|, t) dξ . (14.149)

The integral is over the entire source region, so if the surface containing the volume of integration is outside
all sources, then by the divergence theorem∫

g∇ · F dξ = −
∫

F · ∇g dξ , (14.150)
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so the force term yields a dipole source. Similarly, the rate of strain tensor term transforms to a quadrupole
source, and so in Cartesian tensor notation

ρ =
1
a2

o

∫ ∞

−∞

(
−ṁg − Fi

∂g

∂ξi
+ ρuiuj

∂2g

∂ξi∂ξj

)
dξ . (14.151)

This equation is suggestive, and has been the basis for 4 decades of work on aerodynamic noise. However,
the approach is not unique, and other possible models have not been thoroughly investigated.

14.10.1 Scaling of jet noise

To get an idea of the velocity dependence of jet noise, we model the dilatational effect of pressure
perturbations in a turbulent jet as sources of mass. Consider a subsonic turbulent jet of velocity U as
shown in Fig. 36. By dimensional reasoning, in turbulent flow pressure fluctuations are of order of the

Figure 36. Model of the noise generated by a turbulent jet

turbulent energy,
p′ ∼ ρ0u′2 , (14.152)

and a characteristic noise-producing scale of the turbulence is of the order of the diameter of the jet, or
smaller, say, the so-called integral scale λ ∼ D. The convection time,

τ ∼ λ

U
, (14.153)

fixes a typical period of the turbulence. The dilatational effect is obtained by transforming the pressure
fluctuations to density fluctuations by Eq. 6.40,

ρ′ ∼ p′

a2
0

∼ ρ0
u′2

a2
0

, (14.154)

and the mass-flux fluctuation is a consequence of the density fluctuation ocurring for a time τ in a volume
λ3,

ṁ′ ∼ ρ′λ3

τ
. (14.155)
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This in turn implies a volume source strength

q ∼ ṁ′

ρ0
, (14.156)

which finally gives us the forcing function for the acoustic waves,

q ∼ u′2

a2
o

λ3

τ
. (14.157)

Propagation to the far field has, to order of magnitude, the effect of a point source, Eqs. 14.73, and
differentiates the source strength. The acoustic pressure is given by the second of Eqs. 14.73, where
q′ ∼ q/τ , so

p ∼ ρ0
u′2

a2
o

λ3

τ2

1
r

. (14.158)

The acoustic energy flux (intensity) is therefore

F = |pu| =
p2

ρ0a0
∼ ρ0

(
u′2

)2

a5
0

λ6

τ4

1
r2

. (14.159)

In jets, u′ ∼ U . With Eq. 14.153, the total flux integrated over the entire sphere in the far field is

F r2 ∼ ρ0
λ2 U8

a5
0

, (14.160)

a very strong dependence on the jet velocity.

14.11 Geometrical acoustics

High-frequency limit. Geometrical acoustics is an intuitive way to treat wave-propagation in nonuniform
media, and has application to the sonic boom problem. A plane wave in such a medium is taken to have
amplitude and phase varying slowly, that is over distances large compared to the wavelength,

φ(x, t) = A(x, t) eiΨ(x,t) , (14.161)

where Ψ is the phase function or eikonal. Over small distances and time the phase changes according to
the Taylor expansion

Ψ =
∂Ψ
∂x

xi +
∂Ψ
∂t

t . (14.162)

Comparing with Eq. 14.35 for an outgoing wave, there results

k = ∇Ψ

ω = −∂Ψ
∂t

(14.163)

We consider problems in which
∂ω

∂t
= 0 , (14.164)
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so
ω = f(k, x) = a0(k, x) k . (14.165)

That is,

−∂Ψ
∂t

= f(k, x) . (14.166)

Taking the gradient of (14.166) and changing the order of differentiation on the lhs,

−∂ki

∂t
=

∂f

∂kj

∂ki

∂xj
+

∂f

∂xi
, (14.167)

where also the order of differentiation of ∂ki/∂xj has been changed because

∂kj

∂xi
=

∂2Ψ
∂xi∂xj

=
∂2Ψ

∂xj∂xi
. (14.168)

Thus, in view of Eq. 14.165,
∂ki

∂t
+

∂ω

∂kj

∂ki

∂xj
= − ∂ω

∂xi
. (14.169)

This equation is in the form of a one-way wave equation where the propagation speed is

U =
∂ω

∂kj
, (14.170)

the “group velocity.” That is,

dk

dt
= −∇ω along

dx

dt
= U =

∂ω

∂k
. (14.171)

This is the ray equation, prescribing how the rays of the wavefronts are traced.

In a nondispersive medium, a0 = a0(x) and

dx

dt
=

∂ω

∂k
= a0(x)

k

k
. (14.172)

Uniform medium In a uniform dispersive medium dispersive a0 = a0(k), so ω = f(k) and ∇ω = 0.
Therefore,

dk

dt
= 0 along

dx

dt
=

∂ω

∂k
. (14.173)

In a nondispersive medium, Eq. 14.172 holds, so

dk

dt
= 0 along

dx

dt
= a0

k

k
. (14.174)

In a uniform nondispersive medium the rays are straight and the direction of propagation is parallel to k.

By tracing rays generated by accelerating and maneuvering aircraft according to the requirement that
the ray angle to the flight path be π

2 − β, where β is the Mach angle, one can show how the fronts tend to
focus and form cusps at the foci. The first sketch shows the rays and one wavefront generated by an aircraft
flying from left to right, initially at M = 1, and steadily accelerated until reaching the marked point with
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the emphasized ray, whereupon it maintains steady speed. A wavefront corresponding to a time near the
end of the path is shown thickened. The second sketch above shows a map view of a supersonic aircraft
which flies straight and then enters a left turn of constant radius at constant speed. Two wavefronts are
shown, one half way through the maneuver and one near the end. It can be seen how the front folds
twice, the first, proceeding from the aircraft, at a circular caustic and the second not at a crossing of
rays, but owing to the fact that the post-focus wave joins with the unfocused wave from the straight-flying
pre-maneuver trajectory. At the cusp a “super-boom” occurs. The figure below shows just one of many
results obtained in French tests of aircraft maneuvers during the 1970’s. The traces are pressure vs. time
on an array of microphones. The incident shock starts at t = 0 with an N-wave (microphone 25) and the
superboom occurs on microphone 15. Note the change of wave form on the post-focus fold of the front.
On microphones 11–14 a “rumble” in the evanescent region is seen (see below).

Non-uniform non-dispersive medium. In a non-uniform non-dispersive medium

ω(k, x) = a0(x) k (14.175)

∇ω = ∇a0 k (14.176)
∂ω

∂k
= a0(x)

k

k
, (14.177)

so
dk

dt
= −k∇a0 along

dx

dt
= a0

k

k
. (14.178)

Stratified atmosphere. A relatively simple non-uniform medium is a stratified atmosphere, a0 = a0(y).

ω = a0(y) k (14.179)

k2 =
ω2

a2
0(y)

= k2
x + k2

y . (14.180)

Therefore, from the ray equation,
dkx

dt
= 0 ; kx = k sin θ = const (14.181)97 April 23, 2001
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Wanner et al., J. Acoust. Soc. Am., 52, 13 (1972)

ky = ±
√

ω2

a2
0(y)

− k2
x , (14.182)

where θ is the angle between the k vector and the vertical, and the rays are

dx

dt
= a0(y)

kx

k
(14.183)

dy

dt
= a0(y)

ky

k
(14.184)

or,
dx

dy
=

kx

ky
= ±

√
ω2

a2
0(y)k2

x

− 1 , (14.185)

The sketch shows the consequences for a point source in an atmosphere in which the sound-speed gradient
points down vertically. The rays propagating upward have positive slope (the + sign in Eq. 14.185) and
experience a decreasing sound speed, so the slope increases. The rays propagating downward have negative
slope (the − sign in Eq. 14.185) and experience an increasing sound speed, so the slope decreases negatively,
i.e., it also increases. At the minima there is the possibility that the signs change to +, in which case the
behavior is the same as in the positive half-plane (solid lines), or the sign does not change and ky becomes
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imaginary (dashed lines). The effect of this can be understood by considering what happens to a plane
wave when ky becomes imaginary,

φ = A ei(kxx+kyy−ωt) = ei(kx−ωt) e−kyy . (14.186)

Thus, the wave decays rapidly in the y-direction. It is called an “evanescent” wave. The details of the
geometrical acoustics of shadow regions and diffracted waves is elegantly described by the “geometrical
theory of diffraction” (see for example Sekler & Keller, J. Acoust. Soc. Am. 31, 192, 1952).
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15 Potential Flow

Multi-dimensional nonsteady flow of an inviscid, non-heat conducting fluid.

15.1 Bernoulli equation for nonsteady flow

The Bernoulli equation for nonsteady flow is derived by introducing the definition of the velocity
potential, u = ∇φ into the momentum equation, Eq. 2.16,

∂∇φ

∂t
+

1
2
∇(∇φ)2 +

1
ρ(p)

∇p = 0 . (15.1)

How the second term was obtained can be understood in terms of Cartesian tensor notation. It is

uj
∂ui

∂xj
=

∂φ

∂xj

∂2φ

∂xi∂xj
(15.2)

=
1
2

∂

∂xi

(
∂φ

∂xj

∂φ

∂xj

)
. (15.3)

Differentiating (15.1) w.r.t. time gives

∂2∇φ

∂t2
+

1
2

∂

∂t
∇(∇φ)2 + ∇

(
1
ρ
∇p

)
= 0 , (15.4)

where the last term is obtained by partially differentiating

∂

∂t

(
1
ρ
∇p

)
=

∂1/ρ

∂p
∇p

∂p

∂t
+

1
ρ
∇∂p

∂t
(15.5)

=
(
∇1

ρ

)
∂p

∂t
+

1
ρ
∇∂p

∂t
(15.6)

= ∇
(

1
ρ

∂p

∂t

)
. (15.7)

The ∇ can be taken outside every term of (15.4) and the equation integrated w.r.t. x. The resulting
arbitrary function of time is absorbed into φ. Thus

∂2φ

∂t2
+

1
2

∂

∂t
(∇φ)2 +

1
ρ

∂p

∂t
= 0 . (15.8)

This equation can then be integrated w.r.t. time to finally give the non-steady Bernoulli equation,

∂φ

∂t
+

(∇φ)2

2
+

∫
dp

ρ(p)
= const . (15.9)

15.2 The potential equation

The potential equation for this isentropic flow is derived from the mechanical energy equation Eq. 2.19
with B = τ = 0, and Bernoulli’s equation. The pressure gradient term in (2.19) can be written as part of
a convective derivative, which can be converted to to the convective derivative of ρ by the definition of the
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sound speed,

1
ρ
u · ∇p =

1
ρ

Dp

Dt
− 1

ρ

∂p

∂t
(15.10)

=
a2

ρ

Dρ

Dt
− 1

ρ

∂p

∂t
(15.11)

= −a2∇ · u − 1
ρ

∂p

∂t
, (15.12)

where the last equality is obtained by using the continuity equation. Thus the mechanical energy equation
becomes

∂u2/2
∂t

+ u · ∇u2

2
− a2∇ · u − 1

ρ

∂p

∂t
= 0 . (15.13)

Eq. 15.8 is used to eliminate the pressure from Eq. 15.13, with the result

∂2φ

∂t2
+

∂

∂t
(∇φ)2 +

1
2
∇φ · ∇(∇φ)2 − a2∇2φ = 0 . (15.14)

For steady flow, in terms of velocities in Cartesian tensor notation the equation is

1
2

uj
∂u2

i

∂xj
= a2 ∂ui

∂xi
. (15.15)

Note that:

i. When a → ∞ the equation becomes
∇2φ = 0 , (15.16)

the Laplace equation, valid for incompressible, nonsteady irrotational flow of an ideal (inviscid, non-
heatconducting) fluid. The irrotationality follows from the existence of the velocity potential.

ii. For small amplitude motions, neglecting the nonlinear terms, the equation becomes

∂2φ

∂t2
− a2

0 ∇2φ = 0 , (15.17)

the wave equation.

iii. The dot-product nonlinear term in Cartesian tensor notation is, from the original form of the me-
chanical energy equation

1
2
uj

∂u2
i

∂xj
= uiuj

∂ui

∂xj
(15.18)

so in these terms for steady flow, the equation becomes

uiuj
∂ui

∂xj
= a2 ∂ui

∂xi
. (15.19)

This form illustrates how the coefficient of the nonlinear term “balances” a2 to determine the super-
sub-sonic behavior.
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15.3 Small disturbance theory

We consider steady isentropic irrotational flow of a perfect gas, with uniform inflow from the left of
velocity U and sound speed a∞.

15.3.1 Energy equation for steady flow

In steady flow the total enthalpy is conserved,

a2 +
γ − 1

2
u2 = a2

∞ +
γ − 1

2
U2 . (15.20)

The velocity components are (U + u, v, w). Substituting,

a2 = a2
∞ − γ − 1

2
(
2Uu − u2 − v2 − w2

)
. (15.21)

15.3.2 The potential equation

Using this result in Eq. 15.19 and multiplying out gives[
a2
∞ − γ − 1

2
(
2Uu − u2 − v2 − w2

)](
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
(15.22)

= (U + u)2
∂u

∂x
+ v2 ∂v

∂y
+ w2 ∂w

∂z
+ (U + u)v

(
∂v

∂x
+

∂u

∂y

)
+ (U + u)w

(
∂w

∂x
+

∂u

∂z

)
+ vw

(
∂v

∂z
+

∂w

∂y

)
. (15.23)

The above equations are exact. For small disturbances like those generated by slender bodies,
(u, v, w) ¿ U . If we now multiply out and keep terms of O(1) (lhs) and O(u) (rhs) in the coefficients of
the velocity derivatives, we get(

1 − M2
∞

) ∂u

∂x
+

∂v

∂y
+

∂w

∂z
= M2

∞

[
(γ + 1)

u

U

∂u

∂x
+ (γ − 1)

u

U

(
∂v

∂y
+

∂w

∂z

)
(15.24)

+
v

U

(
∂v

∂x
+

∂u

∂y

)
+

w

U

(
∂u

∂z
+

∂w

∂x

)]
. (15.25)

The terms on the rhs may become important when M∞ → 1, in particular the term in ∂u/∂x. Thus, an
equation valid for subsonic, transonic or supersonic flow is(

1 − M2
∞

) ∂u

∂x
+

∂v

∂y
+

∂w

∂z
= M2

∞(γ + 1)
u

U

∂u

∂x
, (15.26)

or, in terms of the perturbation potential, (u, v, w) = ∇φ,

(
1 − M2

∞
) ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
=

M2∞(γ + 1)
U

∂φ

∂x

∂2φ

∂x2
. (15.27)

For subsonic and supersonic flow only,

(
1 − M2

∞
) ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 . (15.28)
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In cylindrical polar coordinates,where

ux =
∂φ

∂x

ur =
∂φ

∂r
(15.29)

uθ =
1
r

∂φ

∂θ
,

(
1 − M2

∞
) ∂2φ

∂x2
+

1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂2φ

∂θ2
= 0 . (15.30)

15.3.3 Pressures.

The pressure coefficient is

Cp =
p − p∞
1
2ρ∞U2

=
2

γM2∞

p − p∞
p∞

, (15.31)

where the last equality holds for a perfect gas. For isentropic flow,

p

p∞
=

(
a

a∞

) 2γ
γ−1

, (15.32)

which, with Eq. 15.21, gives

p

p∞
=

[
1 − γ − 1

2
M2

∞

(
2u

U
+

u2 + v2 + w2

U2

)] 2γ
γ−1

. (15.33)

Thus,

Cp =
2

γM2∞

{[
1 − γ − 1

2
M2

(
2u

U
+

u2 + v2 + w2

U2

)] γ
γ−1

− 1

}
(15.34)

From Eq. 15.21 we also have

ρ

ρ∞
=

(
T

t∞

) 1
γ−1

=
[
1 − γ − 1

2
(
2Uu − u2 − v2 − w2

)] 1
γ−1

. (15.35)

Now, for small disturbances expand to quadratic terms. After some cancellations there results

Cp =̇ −
(

2u

U
+

(
1 − M2

∞
) u2

U2
+

v2 + w2

U2

)
(15.36)

ρ

ρ∞
=̇ 1 − M2

∞
u

U
+

v2 + w2

a2∞
. (15.37)

For plane flow it suffices to take just the linear term, but for axisymmetric flow because of the fact that ur

gets very large near the axis it turns out to be necessary to include the quadratic term in ur (see below),

Planar body : Cp =̇ −2
u

U

Slender body of revolution : Cp =̇ −2
u

U
− u2

r

U2

(15.38)

103 April 23, 2001



Ae/APh/CE/ME 101 Notes

15.3.4 Boundary conditions – body.

The boundary condition on the body is that the flow be tangent to the body.

Plane Flow. For an airfoil with small surface deflections

vb

U + ub
=̇

dyb

dx
, (15.39)

so approximately
vb

U
=̇

dyb

dx
. (15.40)

For a slender body the boundary conditions can be applied at y = 0,

v(x, 0) = U
d yb(x)

dx
. (15.41)

The result can be extended to nearly planar 3-dimensional flow, i.e., for a slender wing, in which case the
convention is to take y to be the spanwise coordinate and z to be vertical up,

w(x, y, 0) = U
∂zb(x, y)

∂x
. (15.42)

Axisymmetric Flow. Because the continuity equation must balance it implies an important scaling for
ur near r = 0,

1
r

∂ur r

∂r
∼ ∂u

∂x
. (15.43)

Since the last term must be well behaved we have that

ur ∼ 1
r

as r −→ 0 . (15.44)

Therefore, the boundary condition should be multiplied by r and written

(r ur)0 = UR
dR(x)

dx
. (15.45)

15.3.5 Solution – Plane slender body

The equations are

Subsonic :
(
1 − M2

∞
) ∂2φ

∂x2
+

∂2φ

∂y2
= 0

Supersonic :
(
M2

∞ − 1
) ∂2φ

∂x2
− ∂2φ

∂y2
= 0

(15.46)
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Supersonic case. By comparing the last equation with Eq. 14.21 we can immediately write down the
solution from Eq. 14.33 by setting

x

a0
−→

√
M2∞ − 1 y ≡ λy (15.47)

t −→ x , (15.48)

i.e.,

φ = f
(
x −

√
M2∞ − 1 y

)
+ g

(
x +

√
M2∞ − 1 y

)
(15.49)

The perturbation velocities and pressures are

u =
∂φ

∂x
= f ′ + g′ (15.50)

v =
∂φ

∂y
= −λ(f ′ − g′) (15.51)

v

U
= − λ

U

(
f ′ − g′

)
(15.52)

Cp = −2
u

U
= − 2

U

(
f ′ + g′

)
. (15.53)

Example. Diamond airfoil.
The surfaces of a slender diamond airfoil at angle of attack are

Figure 37. Diamond airfoil at angle of attack

yu = 2δ
x

c
− αx ; x <

c

2

= 2δ
(
1 − x

c

)
− αx ; x >

c

2

yl = −2δ
x

c
− αx ; x <

c

2

= −2δ
(
1 − x

c

)
− αx ; x >

c

2
.

(15.54)
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Thus the boundary conditions v/U = dyb/dx are as follows, and their relationship to the pressure coefficient
is established through Eqs. 15.52 and 15.53,

vu

U
=

dyu

dx
=

2δ

c
− α

−2δ

c
− α

= − λ

U
f ′(x − λyu) =

λ

U

U

2
Cpu

; x <
c

2

; x >
c

2

vl

U
=

dyl

dx
=

−2δ

c
− α

2δ

c
− α

=
λ

U
g′(x − λyl) = − λ

U

U

2
Cpl

; x <
c

2

; x >
c

2

.

(15.55)

Thus the pressure coefficients and their relations to lift and drag are

Cpu =

2
λ

(
2δ

c
− α

)

− 2
λ

(
2δ

c
+ α

) =
−dCLu

−dCLu

=

1
2δ
c − α

dCDu

− 1
2δ
c + α

dCDu

; x <
c

2

; x >
c

2

Cpl =

2
λ

(
2δ

c
+ α

)

− 2
λ

(
2δ

c
− α

) =
dCLl

dCLl

=

1
2δ
c + α

dCDl

− 1
2δ
c − α

dCDl

; x <
c

2

; x >
c

2

,

(15.56)

where the factors multiplying dCD are the cosecants of the angles of the surface elements, ı.e., their
projections in the streamwise direction.

Integrating the lift we get

CLu = − 2
λ

(
2δ

c
− α

)
c

2
+

2
λ

(
2δ

c
+ α

)
c

2

CLl =
2
λ

(
2δ

c
+ α

)
c

2
− 2

λ

(
2δ

c
− α

)
c

2
,

(15.57)

so

CL =
4c

λ
α . (15.58)

Of course there is no lift for α = 0, and the lift is proportional to α.

The factors in
(

2δ
c ± α

)
in the drag multiply to give squares, which after multiplying out and canceling

give

CD =
4c

λ

[(
2δ

c

)2

+ α2

]
. (15.59)
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Thus

• The drag is second order in δ.

• There is drag even for α = 0. This is “wave drag” and is a consequence of the fact that the body
makes first order disturbances far out into the fluid.

• The “drag due to lift” is of order α2.

15.3.6 Solution – Slender body of revolution

The equations are

Subsonic :
(
1 − M2

∞
) ∂2φ

∂x2
+

1
r

∂

∂r

(
r
∂φ

∂r

)
= 0

Supersonic :
(
M2

∞ − 1
) ∂2φ

∂x2
+

1
r

∂

∂r

(
r
∂φ

∂r

)
= 0

(15.60)

By comparing these equations with Eq. 14.76 we can immediately write down the solution from Eq. 14.82
by setting

r

a0
−→

√
M2∞ − 1 r ≡ λr ; Supersonic case

√
1 − M2∞ r ≡ mr ; Subsonic case

(15.61)

t −→ x (15.62)

τ −→ ξ , (15.63)

namely,

φ(x, r) = − 1
2π

∫ x−λr

−∞
f(ξ) dξ√

(ξ − x)2 − λ2r2
; Supersonic case (15.64)

= − 1
4π

∫ ∞

−∞

f(ξ) dξ√
(ξ − x)2 + m2r2

; Subsonic case . (15.65)

This is a solution for the velocity potential in terms of an as-yet undetermined source distribution f . For
the subsonic case a form of Eq. 14.82 before the integration limits were changed to the semi-infinite range
is used.

Supersonic case. This solution has the same structure as cylindrical acoustic waves, with the consequence
that there is a disturbance (wake) downstream of the body, algebraically decaying to infinity. Again,
the singular behavior of the integrand at the upper limit requires that the finite part of the integrals be
determined. We use the same transformation as in acoustics,

ξ = x − λ r cosh σ , (15.66)
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so that
λ r sinhσ =

√
(ξ − x)2 − λ2r2 , (15.67)

and

d ξ = −λ r sinhσ dσ (15.68)

= −
√

(ξ − x)2 − λ2r2 dσ . (15.69)

We limit the range of integration by taking the body to start at x = 0. Then the solution transforms into

φ = − 1
2π

∫ cosh−1 x
λ r

0
f(x − λ r cosh σ) dσ . (15.70)

Now differentiation to get the velocities proceeds smoothly. We take that the body is sharp at the nose,
f(0) = 0, so the term from the differential at the upper limit is zero. Then,

u =
∂φ

∂x
= − 1

2π

∫ cosh−1 x
λ r

0
f ′(x − λ r cosh σ) dσ

= − 1
2π

∫ x−λr

0

f ′(ξ) dξ√
(ξ − x)2 − λ2r2

ur ≡ v =
∂φ

∂r
=

1
2π

∫ cosh−1 x
λ r

0
λ cosh σf ′(x − λ r cosh σ) dσ

=
1

2πr

∫ x−λr

0

(ξ − x)f ′(ξ) dξ√
(ξ − x)2 − λ2r2

.

(15.71)

From the last equation it can be seen that

lim
r→0

2π rv = f(x) , (15.72)

so we see that the source distribution is given in terms of the boundary condition applied at r = 0,

f(x) = 2π U
(rv

U

)
0

. (15.73)

In view of the boundary condition Eq. 15.45, the source strength can be written in terms of the cross-
sectional area S = πR2 of the body of revolution,

f(x) = U
dS

dx
. (15.74)

Example. Slender cone of half angle δ.
For the cone,

dR

dx
= δ (15.75)

dS

dx
= 2πR

dR

dx
= 2π δ2 x , (15.76)
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so

f(x) = 2π U δ2 x (15.77)

f ′(x) = 2π U δ2 , (15.78)

and

u

U
= −δ2

∫ cosh−1 x
λ r

0
dσ (15.79)

= −δ2 cosh−1 x

λ r
(15.80)

= −δ2 ln

(
x

λ r
+

√
x2

λ2 r2
− 1

)
. (15.81)

Similarly,

v

U
= δ2λ

∫ cosh−1 x
λ r

0
cosh σ dσ (15.82)

= δ2λ
√

cosh2 σ − 1
∣∣∣cosh−1 x

λ r

0
(15.83)

= δ2λ

√( x

λ r

)2 − 1 . (15.84)

The solutions come out in terms of the “similarity” variable x/r, because there is no characteristic length
in this problem. All flow quantities are constant along x/r = const, rays from the origin. Clearly, the
original equations could have been transformed to eliminate one of the independant variables and become
ordinary differential equations for x/r and the solution obtained by solving the resulting equations. That
is one approach for finding an exact solution to the cone problem.

Note that there is no change of flow deflection angle at the leading characteristic (v/U(x/λr = 1) = 0),
in contrast to the plane-flow case. This is because of azimuthal “leakage” in the flow over a body of
revolution.

For the flow on or near the body, where r is small, for cases in which λ is not too large (supersonic but
not hypersonic flow) x/λr À 1, and the results can be simplified. In particular, on the body x/λr = 1/λδ,
so

u

U
= −δ2 ln

2
λδ

v

U
= δ .

(15.85)

It was originally proposed that the quadratic term in Eq. 15.38 for bodies of revolution is necessary, and
we now find that because u ∼ δ2 while v ∼ δ that is indeed the case

Cp = −2
u

U
− v2

U2
(15.86)

= δ2

(
2 ln

2
λδ

− 1
)

. (15.87)
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15.4 Similarity rules for compressible flow

Rules can be derived for converting results from one flow to another flow over a body of the same family
of shapes at different Mach number and in a different perfect gas.

15.4.1 Plane flow – subsonic case

Consider flow 1, φ(x, y), at free-stream Mach number M1 over a body characterized by a thickness ratio
τ1 yb

c
= τ1 f(

x

c
) . (15.88)

The equation of motion is Eq. 15.28 written for plane flow, and the boundary conditions and pressures are(
∂φ

∂y

)
0

= U1τ1f
′
(x

c

)
(15.89)

Cp1 = − 2
U1

(
∂φ

∂x

)
0

. (15.90)

Transform to flow 2, Φ(ξ, η), by

x = ξ (15.91)√
1 − M2

1 y =
√

1 − M2
2 η (15.92)

φ(x, y) = A
U1

U2
Φ(ξ, η) . (15.93)

The arbitrary constant on the rhs of Eq. 15.93, which arises because the differential equation is homogeneous
in φ, is chosen for convenience. The equation of motion transforms to the same form

(
1 − M2

2

) ∂2Φ
∂x2

+
∂2Φ
∂y2

= 0 , (15.94)

and the boundary condition transforms to(
∂φ

∂y

)
0

=

√
1 − M2

1

1 − M2
2

A
U1

U2

(
∂Φ
∂η

)
0

, (15.95)

where (
∂Φ
∂η

)
0

= U2τ2f
′
(

ξ

c

)
. (15.96)

Thus, from Eq. 15.89 the boundary condition transforms unchanged if

τ2 = τ1

√
1 − M2

2

1 − M2
1

1
A

(15.97)

and f ′ is the same. That is, the body shapes are the same though the thickness varies. The pressure
coefficient transforms to

Cp1 = − 2
U1

(
∂φ

∂x

)
0

= − 2
U2

A

(
∂Φ
∂ξ

)
0

. (15.98)

Comparing with Eq. 15.90 shows that

Cp2 =
1
A

Cp1 . (15.99)
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This scaling can be summarized in the following functional form,

Cp

A
= fnc

(
τ

A
√

1 − M2∞

)
. (15.100)

A is an arbitrary parameter, various choices of which give commonly used similarity laws (see Table 3).
For example, if we choose A to cancel the Mach numbers in Eq. 15.97, then we are comparing to different
flows over the same body, τ2 = τ1. The first 3 entries are known as the Prandtl-Glauert similarity laws,

Table 3. Subsonic and Supersonic Compressible Flow Similarity Laws

A

1 1 Cp = fnc

(
τ√

1 − M2∞

)

2
1√

1 − M2∞
Cp =

1√
1 − M2∞

fnc (τ)

3 τ Cp = τ fnc
(√

1 − M2∞
)

4
1

1 − M2∞
Cp =

1
1 − M2∞

fnc
(
τ
√

1 − M2∞
)

and the last is the Göthert similarity law, applicable also to bodies of revolution (see below).

15.4.2 Supersonic flow

The same derivation goes through for the suppersonic form of the potential equation. One need only
replace (1−M2∞) with (M2∞−1) in the results. Results valid for both cases can be written using |(M2∞−1)|.

15.4.3 Axisymmetric flow – subsonic case

The equation of motion is Eq. 15.60. In this case it is necessary to be careful to avoid any problems
that might arise from applying the boundary condition on the axis. In fact, to get the scaling laws it
is easiest to simply apply the boundary conditions exactly on the body, R/c = τ1f(x/c). This will add
another condition, which will fix A. The boundary condition is(

∂φ

∂r

)
b

= U1τ1 f ′
(x

c

)
, (15.101)

and the pressure is

Cp1 = − 2
U1

(
∂φ

∂x

)
0

− 1
U2

1

(
∂φ

∂r

)2

0

. (15.102)

The transformation is

φ = A
U1

U2
Φ(ξ, ρ) (15.103)
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x = ξ (15.104)√
1 − M2

1 r =
√

1 − M2
2 ρ . (15.105)

The boundary condition transforms to(
∂φ

∂r

)
r=τ1cf(x/c)

=

√
1 − M2

1

1 − M2
2

A
U1

U2

(
∂Φ
∂ρ

)
ρ=

√
1−M2

1
1−M2

2
τ1cf(x/c)

, (15.106)

where we require (
∂Φ
∂ρ

)
ρ=τ2cF (ξ/c)

= U2τ2 F ′
(

ξ

c

)
. (15.107)

In order to have the radii at which the boundary conditions are applied comparable, the bodies must be
of the same family, F = f and

τ2 =

√
1 − M2

1

1 − M2
2

τ1 . (15.108)

Substituting Eq. 15.107 into 15.106 and equating to Eq. 15.101 gives

A =

√
1 − M2

2

1 − M2
1

. (15.109)

Thus, for axisymmetric flow the arbitrary constant is fixed by the requirement that the boundary conditions
transform. We know what the flow will be at a different Mach number only on a body whose thickness
is determined by the new M∞. Even though the pressures coefficients are given in terms of two terms,
applying the transformation gives again Eq. 15.99. Thus the symmetry properties can be summarized by

Cp

(
1 − M2

∞
)

= fnc
(√

1 − M2∞ τ
)

, (15.110)

the Göthert similarity law, entry #4 in the table above.
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16 Incompressible Flow

The transition from compressible flow to incompressible flow can be derived from our previous results
by simply taking the limit a∞ → ∞, or λ, m → 1. Here, in addition, we take a somewhat more general
point of view.

Fluid flow is often constructed by superposing a distribution of singularities to satisfy boundary con-
ditions, or to otherwise represent in simplified form bodies or sources of vorticity. From a mathematical
point of view, this is because any vector field can be represented in terms of the gradient of a scalar poten-
tial φ and the curl of a vector potential B; we will see that these represent volume and vorticity sources,
respectively. In addition, in fluids there can exist a pure straining motion with no change of volume and
no rotation, so this adds some additional flexibility in the flow which in general must be accounted for.
In this chapter we construct velocity fields whose divergence and curl have specified values, and later in
some examples we see how these can be translated to or from boundary conditions. Velocities ue induced
by expansion and velocities uv induced by vorticity are given by

1) ∇ · ue = f ; ∇× ue = 0 (16.1)

2) ∇ · uv = 0 ; ∇× uv = ω (16.2)

In terms of the potentials the velocities are

ue = ∇φ (16.3)

uv = ∇× B . (16.4)

The equations satisfied by φ and B are therefore

∇2φ = f (16.5)

∇×∇× B = −∇2B = ω . (16.6)

The last equality of the second equation results if ∇ · B = 0, which is valid if the velocities go to zero at
infinity and a suitable limiting procedure is adopted at boundaries (Batchelor 1967).

Now, getting back to the pure straining motion, if a velcity field u is consistent with both (16.1) and
(16.2), then v = u−ue−uv must be both divergence and curl free, and so in general is the purely straining
motion satisfying

3) ∇ · v = 0 ; ∇× v = 0 . (16.7)

Flows driven by some simple, frequently utilized singularities are given later in this chapter. They
in turn can be used to construct more complex structures by summing two equal and opposite elements
spaced 2δ apart and then letting δ → 0. In general, the limiting process is as follows (see Fig. 38). Given
that

φ = −A f(r) , (16.8)

summation of two such singularities gives

φ = −A [f(r − δ) − f(r + δ)] . (16.9)

Multiplying and dividing by δ and applying the limit δ → 0; Aδ → A′ gives

φ = A′ · ∇f(r) . (16.10)

This result is used below.
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Figure 38. Construction of a higher-order singularity

16.1 The stream function

The stream function identically satisfies the continuity equation, so it has important physical signifi-
cance. It arises in flows which have symmetries reducing the number of independent variables from 3 to 2,
so that B has only one component, perpendicular to u. That component is related to the stream function
ψ. This section gives some examples. For completeness we also show the appropriate forms of the gradient
of the velocity potential for obtaining the velocity components.

Cartesian coordinates (x, y, z): Plane flow; ∂
∂z = 0. The vector potential is perpendicular to u, so in 2D

flow has only a z component, which we call ψ,

B = (0, 0, ψ) . (16.11)

Now from Eq. 16.4

u = i
∂ψ

∂y
− j

∂ψ

∂x
, (16.12)

so

u =
∂ψ

∂y
=

∂φ

∂x

v = −∂ψ

∂x
=

∂φ

∂y
.

(16.13)

From Eq. 16.6, ψ satisfies a Poisson equation

∂2ψ

∂x2
+

∂2ψ

∂y2
= ωz , (16.14)

as does φ (Eq. 16.5)
∂2φ

∂x2
+

∂2φ

∂y2
= f . (16.15)

Cylindrical coordinates (r, θ, z): Plane flow; ∂
∂z = 0. As before,

B = (0, 0, ψ) . (16.16)

From Eq. 16.4

u = er

1
r

∂ψ

∂θ
− eθ

∂ψ

∂r
, (16.17)
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so

ur =
1
r

∂ψ

∂θ
=

∂φ

∂r

uθ = −∂ψ

∂r
=

1
r

∂φ

∂θ
.

(16.18)

The corresponding Poisson equations to be solved are

∂

∂r

(
r
∂ψ

∂r

)
+

∂

∂θ

(
1
r

∂ψ

∂θ

)
= −ωz . (16.19)

∂

∂r

(
r
∂φ

∂r

)
+

∂

∂θ

(
1
r

∂φ

∂θ

)
= f . (16.20)

Cylindrical coordinates (r, θ, z): Axisymmetric flow; ∂
∂θ = 0. In this case B has only a θ component which,

to insure that ψ satisfies the continuity equation, we take to be

B = (0,
ψ

r
, 0) . (16.21)

Then
u = −er

1
r

∂ψ

∂z
+ ez

1
r

∂ψ

∂r
, (16.22)

so

ur = −1
r

∂ψ

∂z
=

∂φ

∂r

uz =
1
r

∂ψ

∂r
=

∂φ

∂z
,

(16.23)

and, with the vorticity in the θ direction, ψ satisfies the equation

1
r

∂

∂r

(
r
∂ψ/r

∂r

)
+

∂2ψ/r

∂z2
= −ωθ , (16.24)

and φ satisfies
1
r

∂

∂r

(
r
∂φ

∂r

)
+

∂2φ

∂z2
= f . (16.25)

Spherical coordinates (r, φ, θ): Axisymmetric flow; ∂
∂θ = 0. Again B has only a θ component, in this case

B = (0, 0,
ψ

r sinφ
) . (16.26)

In this case, ψ is called the Stokes Stream Function. Then

u = er

1
r2 sinφ

∂ψ

∂φ
− eφ

1
r sinφ

∂ψ

∂r
, (16.27)
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so

ur =
1

r2 sinφ

∂ψ

∂φ
=

∂φ

∂r

uφ = − 1
r sinφ

∂ψ

∂r
=

1
r

∂φ

∂φ
,

(16.28)

and, again with the vorticity in the θ direction,

1
r2

∂

∂r

(
r2 ∂ψ/r sin φ

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂ψ/r sinφ

∂φ

)
= −ωθ . (16.29)

while
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂φ

∂φ

)
= −ωθ . (16.30)

Alternartively, for ψ
1

sinφ

∂2ψ

∂r2
+

1
r2 sinφ

∂

∂φ

(
sin φ

∂ψ/ sinφ

∂φ

)
= −r ωθ . (16.31)

Physical interpretation of the stream function. The difference of the values of the stream function at two
points in a flow is defined as being the volume flow between streamlines through the two points. From
Fig. 39 it is seen that in a Cartesian system the incremental change of volume flux between the two points

Figure 39. Geometry for computing volume fluxes from the stream function

is
dψ = −v dx + u dy (16.32)

while in a polar coordinate system it is

dψ = −uθ dr + ur r dθ (16.33)

Thus, as we have seen

Cartesian Coords Polar Coords

u =
∂ψ

∂y
rur =

∂ψ

∂θ
(16.34)

v = −∂ψ

∂x
uθ = −∂ψ

∂r
. (16.35)

In the examples of simple flows given below, we derive the stream function from the velocity components
for the appropriate symmetry as shown above.
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16.2 Complex notation for plane flow

For plane flow, equations for the velocity components (u, v),

∂φ

∂x
=

∂ψ

∂y
(16.36)

∂φ

∂y
= −∂ψ

∂x
, (16.37)

form Cauchy Riemann conditions establishing an analytic function

F (z) = φ + i ψ (16.38)

of the complex variable
z = x + i y = r eiθ , (16.39)

such that its derivative
dF

dz
=

∂φ

∂x
+

∂ψ

∂y
(16.40)

is the complex velocity w

w = u − i v . (16.41)

In the examples of simple plane (2D) flows given below, we include expressions for the complex potential.

16.3 Flows with volume sources

Eq. 16.1 with 16.3 gives
∇2φe = f . (16.42)

We already have the solution for this equation by setting a0 = ∞ (k = ω = 0) in accoustics (Eq. 14.104)
or m = λ = 1 in potential flow (Eq. 15.65),

φe(r) = − 1
4π

∫ ∞

−∞

f(ξ) dξ

R
(16.43)

ue(r) = ∇φe = − 1
4π

∫ ∞

−∞
∇ 1

R
f(ξ) dξ (16.44)

=
1
4π

∫ ∞

−∞
R

R3
f(ξ) dξ , (16.45)

where R = r − ξ. This gives the irrotational velocity field resulting from a distribution of volume sources.
No dilatation occurs anywhere in the field except at the singularities.

Point source (3D). f(x) = qδ(x).

φe = − q

4πr

ue =
q

4π

r

r3

ψ = − q

4π
cos φ .

(16.46)

This is the near-field result (since a0 = ∞) for a steady acoustic source.
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Point source (2D). 3D point sources can be distributed along a straight line (z-axis) to form a line source.
R is the distance from the sourcelet at ξ = z on the z-axis to the observer at (r, θ) in the (x, y) plane,
R2 = z2 + r2. Thus

ue =
q

4π

∫ ∞

−∞
r

R3
dz (16.47)

and there results

ue =
q

2π

r

r2

φe =
q

2π
ln r

ψ =
q

2π
θ

F =
q

2π
ln z .

(16.48)

Dipole (3D). Summing two equal and opposite 3D point sources by the prescription given by Eq. 16.10
gives

φe =
1
4π

µ · ∇1
r

, (16.49)

or

φe = − 1
4π

µ · r

r3

ue =
1
4π

(
− µ

r3
+ 3

µ · r
r5

r
)

.

(16.50)

In spherical coordinates (r, φ, θ), with the dipole oriented along the z-axis,

φ = − µ

4π

cos φ

r2

ur =
µ

2π

cos φ

r3

uθ =
µ

4π

sinφ

r3

ψ =
µ

4π

sin2 φ

r
.

(16.51)

Dipole (2D). Summing two equal and opposite 2D point sources gives by Eq. 16.10

φe = − 1
2π

µ · ∇ln r , (16.52)
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or

φe = − 1
2π

µ · r

r2

ue =
1
2π

(
− µ

r2
+ 2

µ · r
r4

r
)

.

(16.53)

In polar coordinates (r, θ), with the dipole oriented along the x-axis,

φ = − µ

2π

cos θ

r

ur =
µ

2π

cos θ

r2

uθ =
µ

2π

sin θ

r2

ψ =
µ

2π

sin θ

r

F = − µ

2πz
.

(16.54)

If the dipole were oriented along the y-axis the complex potential would simply read

F = −i
µ

2πz
. (16.55)

The 2D dipole could also have been constructed by summing the stream functions of two sources,

Figure 40. Construction of a 2D dipole by superposition

ψ =
q

2π
(θ+ − θ−) =

q∆
2π

, (16.56)

and noting from the geometry of Fig. 40 that the curves ψ = const. (∆ = const.) are circles through both
singularities such that

sin∆ =
δ

d
, (16.57)
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where d is the diameter of the circle. In the limit δ → 0, we have

θ+ ≈ θ− ≡ θ (16.58)
δ

sin ∆
≈ r

sin θ
, (16.59)

so,

ψ =
µ

2π

sin θ

r
(16.60)

16.4 Flows with sources of vorticity

Formally, the solution of Eq. 16.6 is

B =
1
4π

∫ ∞

−∞

ω(ξ) dξ

R
(16.61)

uv(r) = ∇× B =
1
4π

∫ ∞

−∞
∇× ω

R
dξ (16.62)

= − 1
4π

∫ ∞

−∞
R × ω

R3
dξ . (16.63)

Applying the divergence theorem shows that in fact ∇ · B = 0 if ω · n = 0 on all boundaries of the fluid.

Point sources of vorticity do not exist because ∇ · ω = 0. Thus, as with magnetic fields, one thinks in
terms of vortex lines or filaments, continuous lines everywhere parallel to ω. By the divergence theorem∫

ω · n dA on the area defined by any closed curve completely surrounding the same vortex lines must be
the same. The closed curves and the vortex lines form a vortex tube. By Stokes theorem∫

ω · n dA =
∮

u · dl = Γ . (16.64)

These results imply the

16.4.1 Helmholtz vortex theorems

1. The strength of a vortex filament is constant along its length.

2. A vortex filament can not end in a fluid; it must extend to the boundaries of the fluid or must form
a closed path.

3. For an inviscid fluid,

(a) In the absence of rotational external forces, a fluid that is initially irrotational remains irrota-
tional.

(b) In the absence of rotational external forces, if the circulation around a path enclosing a definite
group of particles is initially zero, it will remain zero.

(c) In the absence of rotational external forces, the circulation around a path that encloses a tagged
group of elements is invariant.
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16.4.2 Biot-Savart Law

A curved vortex is a singularity formed by shrinking a vortex tube to zero diameter such that∫
δξ

ω dξ = Γ δl , (16.65)

giving, from Eq. 16.63,

uv = − Γ
4π

∫
R × dl

R3
, (16.66)

the Biot-Savart Law.

Line vortex. A line vortex (as distinct from a vortex line) is made by integrating the Biot-Savart law along
a straight line, say the z-axis. From the geometry of Fig. 41, it is seen that R × dl = rdz, R2 = r2 + z2,

Figure 41. Effect in the x-y plane of a vortex element on the z-axis

and that the induced velocity is only in the θ direction. Thus, integrating Eg. 16.66,

uθ = − Γ
4π

∫ ∞

−∞
r dz

(r2 + z2)3/2
(16.67)

=
Γ
4π

z

r (r2 + z2)1/2

∣∣∣∣∣
∞

−∞
, (16.68)

so,

uθ =
Γ

2πr

φ =
Γ
2π

θ

ψ = − Γ
2π

ln r

F = −i
Γ
2π

ln z

w = −i
Γ

2πz
.

(16.69)
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Vortex doublet. The vortex doublet is constructed by Eq. 16.10, where say, Γδ → λ,

ψ =
1
2π

λ · ∇ ln r , (16.70)

so,

ψ =
1
2π

λ · r
r2

. (16.71)

In polar coordinates, with the doublet aligned along the y-axis,

ψ =
λ sin θ

2π r

ur =
λ

2π

cos θ

r2

uθ =
λ

2π

sin θ

r2

φ = − λ

2π

cos θ

r

F = − λ

2πz
.

(16.72)

Note that this field is identical to that induced by a 2D dipole oriented at 90◦ to the vortex doublet,
Eqs. 16.54.
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Infinite Vortex Sheet. An infinite vortex sheet can be constructed from the superposition of vortex lines
of constant strength ω, as shown in Fig. 42. The circulation per unit length γ is defined from

Figure 42. Construction of an infinite vortex sheet by superposition

dΓ = ω · dS = ω dη dξ = γ dξ , (16.73)

where γ ≡ ω dη. At each point y > 0 the contribution to the x-component of velocity from the two
symmetric points shown is

du+ = −2
y

r

dΓ
2πr

= −γ

π

y dξ

r2
, (16.74)

while by symmetry dv = 0. Here, r2 = y2 + ξ2. Integrating over 0 < ξ < ∞, for γ = const.,

u+ = −γ

π
tan−1 ξ

y

∣∣∣∣∣
∞

0

= −γ

2
(16.75)

For y < 0 we get the result u− = γ/2, so across the sheet

∆u ≡ u+ − u− = −γ . (16.76)

Written in terms of the velocity potential, Eq. 16.75 is

∂φ+

∂x
= −1

2
dΓ
dx

, (16.77)

A similar relation, with a change of sign, holds for φ−, so if we take pairs of points above and below the
vortex sheet

∂∆φ

∂x
= −dΓ

dx
, (16.78)

where ∆φ = φ+ − φ−. If the vortex sheet is of finite extent, the total circulation Γ is finite and Eq. 16.78
can be integrated to yield

Γ = −∆φ . (16.79)

16.4.3 General vortex sheet – Lift

Consider a 3-D (curved) vortex sheet of circulation γ per unit length in an otherwise uniform flow with
velocity U− below the sheet. The vorticity imposes a velocity change u+ = −γ/2 on the top, and a change
u− = +γ/2 on the bottom thus causing velocity U+ on the top (see Fig. 43). All of the vectors shown
in the sketch lie in the tangent plane to the sheet. To accommodate a bound vortex sheet we allow for

123 April 23, 2001



Ae/APh/CE/ME 101 Notes

Figure 43. Vector diagram for a vortex sheet with convective velocity in the plane of the sheet

forces on it, namely, a pressure difference between the top p+ and the bottom p−. The mean velocity is
U = 1

2(U+ + U−).

By Bernoulli’s equation,

p0+ = p+ +
1
2
ρU2

+ ; p0− = p− +
1
2
ρU2

− , (16.80)

so,

∆p ≡ p+ − p− = ∆p0 +
1
2
ρ(U2

− − U2
+) , (16.81)

where ∆p0 = p0+ − p0−. From the construction in the sketch, we have

U2
− − U2

+ = −2Uu−(cos θ− − cos θ+) (16.82)

= 4Uu+ sin
θ− + θ+

2
sin

θ− − θ+

2
(16.83)

= 2Uγ sin ψ , (16.84)

where 2ψ = θ− − θ+. Thus, from Eq. 16.81 we have the result

∆p = ∆p0 + ρ U sinψ γ , (16.85)

where U sinψ = Un is just the component of the convective velocity normal to the vorticity. We now apply
Eq. 16.85 to three cases:

i. Trailing vortex sheet.
Typically behind a wing the flow on each side of the sheet has approximately the same total pressure
so ∆p0 = 0. Since the sheet is free, it cannot support any pressure difference, so ∆p = 0. Thus,
ψ = 0, so any imposed “mean flow” U is aligned with γ, and the vortex sheet does not convect.

ii. Edge of a separated flow (bubble).
Dissipation acts in the recirculation region of a separated flow, so in general ∆p0 6= 0. However, since
the sheet is free, ∆p = 0. Therefore, in this case ψ 6= 0, and the sheet is convected by the mean
velocity.
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iii. Bound vortex sheet.
In this case, a force must be present, ∆p 6= 0, while for a thin wing ∆p0 ≈ 0. We are free to choose
U , and if we take it to be Un, the free stream velocity of a flow over an airfoil swept at angle ψ, then

∆p = ρUnγ . (16.86)

This is the Kutta-Joukowski Theorem for the lift force (actually the negative of lift). When
integrated over the entire bound vortex sheet representing an airfoil, it gives the result

L = −ρUnΓ , (16.87)

where L is the force in the positive z direction.

16.5 Uniform flow, (x, y)

Uniform flow in the x-direction with velocity U is given by,

Plane flow

φ = Ux (16.88)

ψ = Uy (16.89)

F = Uz . (16.90)

In an incompressible fluid, if a body moves with constant velocity U , and fluid particles move only as a
consequence of the body motion, then

∂

∂t
= −(U · ∇) . (16.91)

Axisymmetric flow (Flow now in the z-direction.)
Polar coordinates, (r, θ, z), ∂

∂θ = 0.

φ = Uz (16.92)

ψ =
Ur2

2
(16.93)

Spherical coordinates, (r, φ.θ), ∂
∂θ = 0.

ψ =
U

2
r2 sin2 φ (16.94)

ur = U cos φ (16.95)

uθ = −U sinφ . (16.96)

16.6 Flow over a lifting cylinder

Uniform flow + dipole + vortex.
To examine the flow over what is perhaps the simplest closed lifting body, consider the superposition of a
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uniform flow U , a dipole oriented upstream −µ, and a vortex Γ. The stream function is, from Eqs. 16.89,
16.54 and 16.69,

Ψ = Ur sin θ − µ sin θ

2πr
− Γ

2π
ln

r

a
(16.97)

= Ur sin θ
(
1 − µ

2πUr2

)
− Γ

2π
ln

r

a
, (16.98)

where a is an arbitrary constant of integration which has been added for use in Eq. 16.100. Thus,

ur =
1
r

∂Ψ
∂θ

= U cos θ
(
1 − µ

2πUr2

)
. (16.99)

Note that the radial velocity vanishes on a circle,

r =
√

µ

2πU
≡ a , (16.100)

and, since by the above choice the stream function is zero on r = a, we have derived the flow over a cylinder
of radius a and circulation Γ. To summarize, the velocities in the field are

ur =
1
r

∂Ψ
∂θ

= U cos θ

(
1 − a2

r2

)
, (16.101)

uθ = −∂Ψ
∂r

= −U sin θ

(
1 +

a2

r2

)
+

Γ
2πr

. (16.102)

On the cylinder the tangential velocity is

uθ = −2U sin θ +
Γ

2πa
. (16.103)

The sense of the contributions of the first term is sketched on the left of Fig. 44 and of the second on the

Figure 44. Sense of the contributions of terms in Eq. 16.103

right. These motions move the stagnation points ur = uθ = 0 on the body. From Eq. 16.101 we see that
ur = 0 when r = a or θ = ±π/2. In the first case, uθ = 0 when

sin θ = Γ/4πUa . (16.104)

Curves of constant ψ (streamlines) for one such case are shown in Fig. 45. When Γ/4πUa > 1 there is
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Figure 45. Streamlines around a circular cylinder for U = 1, µ = 3 and Γ = 5 (a = 0.691)

a problem, because sin < 1; the stagnation points move off the body and the condition θ = −π/2 holds.
Then, the zero of Eq. 16.102 is at

r =
Γ

4πU

1 +

√
1 −

(
4πUa

Γ

)2
 . (16.105)

Streamlines for one such case are shown in Fig. 46.

That the lift force on the cylinder satisfies the Kutta-Joukowski Theorem (Eq. 16.87) can be verified
by integrating the pressure acting on the cylinder using Bernoulli’s Equation:

p +
ρu2

2
= p∞ +

ρU2

2
(16.106)

p − p∞ =
ρU2

2

[
1 −

( u

U

)2
]

(16.107)

On the body, u = uθ(r = a), so

p − p∞ =
ρU2

2

[
1 − 4 sin2 θ −

(
Γ

2πUa

)2

+
2Γ

πUa
sin θ

]
. (16.108)

The infinitesimal contributions to lift and drag are (Fig. 47)

dL = −(p − p∞)a sin θ dθ (16.109)

dD = −(p − p∞)a cos θ dθ (16.110)
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Figure 46. Streamlines around a circular cylinder for U = 1, µ = 3 and Γ = 9 (a = 0.691)

Figure 47. Orientation of lift and drag forces

The cosine multiplying every term in the drag formula insures that the integral from θ = 0 to 2π of each
term is zero. In the lift formula, the only contribution comes from terms with even powers of the sine, that
is, only from the term with Γ. Integrating that term confirms that L = −ρUΓ.

This example has not addressed how the cylinder might acquire circulation. In fact, attempts to realize
this configuration, called the Flettner Rotor, have not met with total success. The key requirement is to
control the location of separation, a very important example of flow control. In the next section we will see
how an airfoil with a sharp trailing edge generates circulation. It then remains to calculate the circulation
of a given shape airfoil. That is the subject of airfoil theory.
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16.7 The Kutta condition

1. The way in which circulation is established about airfoils to generate lift is one of the great accom-
plishments of aerodynamic design, and one of the earliest successes in flow control. Of course, the
magnitude of the accomplishment is somewhat mitigated by the fact that birds had developed the
technology much earlier, and, to unlock the secret, all humans had to do was look up.

2. The Kutta condition states that the flow leaves the trailing edge of an airfoil smoothly, and that the
velocity there is finite.

3. When an inviscid irrotational fluid is set into motion, the resulting flow is irrotational.

4. Thus, the shape of a lifting body must be such that viscosity is forced to initially play a crucial role in
establishing circulation, but later, after the flow is established, the effects of viscosity should be small.

Figure 48. The consequences of adding viscous effects near a body, namely separation, to the global flow field

The left column of Fig. 48 shows three different flows as they would be established in a perfect (inviscid)
fluid. They are;

1. flow over a flat plate at small incidence to the free stream,

2. flow normal to a flat plate,

3. two streams at different velocities and total pressure flowing parallel to a flat plate.

The common feature of all three flows is that the bodies have sharp edges.

In all cases there is no circulation, so both the lift and drag are zero.

Helmholtz (1868) first established that, in fact, vortex sheets trail downstream from sharp edges; that
is, that sharp edges force separation. Kutta (1902) showed that if the flow leaves the trailing edge of a wing
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smoothly i.e., if the trailing edge is sharp (the Kutta Condition), then perfect-fluid theory (potential
flow theory) can be used to calculate the lift.

The right column of Fig. 48 shows that the three flows manifest the effects of viscosity in three funda-
mentally different ways.

1. In the first one, at the initial instant the plate sheds a “starting vortex” which forces the Kutta
condition on the flow. The trailing vortex sheet maintains the separation thereafter. The miracle of
lift is that a starting vortex is generated of just the right strength Γ to provide the required force.

2. In flow normal to a plate a large vortex pair forms downstream of the plate and remains there forever,
forcing the Kutta condition.

3. In order for the flow parallel to the plate to separate smoothly, it is necessary for vortices to be
continually shed from the plate for all time.
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17 Airfoil theory

17.1 Flat plate airfoil

The lift generated by a flat plate at angle of attack can be represented by a bound vortex sheet γ(x),
subject to the Kutta condition γ(c) = 0. If the angle of attack is small the vortex sheet can to an
approximation be placed on the x-axis. The unknown vortex strength γ(x) is determined by requiring that
the flat plate be a streamline, that is, that the velocity normal to the plate be zero. From Eq. 16.69, the
tangential velocity induced by an infinitesimal element dξ at point (ξ, 0) is

duθ =
γ dξ

2π
√

(x − ξ)2 + y2
. (17.1)

On the axis the induced velocity is vertical,

dv =
γ dξ

2π(x − ξ)
. (17.2)

The component of the free stream normal to the plate is U sinα. Making the small angle approximation,
and adding up the effects of all the elements and the free stream, we get

v =
1
2π

∫ c

0

γ(ξ)
x − ξ

dξ + Uα . (17.3)

Setting this expression to 0 to satisfy the requirement of streamline flow,

1
2π

∫ c

0

γ(ξ)
x − ξ

dξ = −Uα . (17.4)

Integrals with singularities at x = ξ appear often in wing theory, and in such cases it should always be
understood that reference is to the principal value.

Using the transformation

ξ =
c

2
(1 − cos θ) (17.5)

x =
c

2
(1 − cos φ) , (17.6)

Eq. 17.4 and the Kutta condition become

1
2π

∫ π

0

γ(θ) sin θ dθ

cos θ − cos φ
= −Uα (17.7)

γ(π) = 0 . (17.8)

The distribution that satisfies Eqs. 17.7 and 17.8 is

γ(θ) = −2αU
1 + cos θ

sin θ
(17.9)

Proof: In order to prove Eq. 17.9 it is necessary to show that∫ π

0

1 + cos θ

cos θ − cos φ
dθ = π . (17.10)
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First, consider the first term,∫ π

0

dθ

cos θ − cos φ
=

∫ φ−ε

0

dθ

cos θ − cos φ
+

∫ π

φ+ε

dθ

cos θ − cos φ
(17.11)

=
1

sinφ
ln

sin φ+θ
2

sin φ−θ
2

∣∣∣∣∣
φ−ε

0

+
1

sin φ
ln

sin θ+φ
2

sin θ−φ
2

∣∣∣∣∣
π

φ+ε

(17.12)

=
1

sinφ

[
ln sin

(
φ − ε

2

)
− ln sin

ε

2
− ln

sin φ
2

sin φ
2

]
(17.13)

+
1

sinφ

[
ln

sin π+φ
2

sin π−φ
2

− ln sin
(
φ +

ε

2

)
+ ln sin

ε

2

]
(17.14)

=
1

sinφ

[
ln

sin
(
φ − ε

2

)
sin

(
φ + ε

2

)]
−→ 0 . (17.15)

For the second term it follows that∫ π

0

cos θ

cos θ − cos φ
dθ =

∫ π

0

(
1 +

cos φ

cos θ − cos φ

)
dθ = π . (17.16)

Therefore, Eq. 17.10 is proven.

From Eqs. 17.9 and 17.6, the vortex distribution is

γ(x) = −2Uα

√
c − x

x
, (17.17)

and it is seen that the vortex distribution is singular at x = 0 and is zero at x = c. Fig. 49 shows the
variation of γ(x).

Figure 49. Vortex distribution for a flate plat airfoil

i) Lift. The lift is the integral of the pressure over the body, so, from Eqs. 16.86 and 17.5

L = −
∫ c

0
∆p(ξ) dξ = −ρUc

2

∫ π

0
γ(θ) sin θ dθ . (17.18)
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The non-dimensional lift is the section lift coefficient,

C` =
L

1
2ρU2c

, (17.19)

so
C` = −

∫ π

0

γ(θ)
U

sin θ dθ . (17.20)

From Eq. 17.9, for an uncambered thin airfoil we get

C` = 2πα . (17.21)

The section lift coefficient slope is
C`α = 2π . (17.22)

The lift increases linearly with angle of attack with a slope of 2π.

ii) Moment. The clockwise moment about the leading edge of the airfoil (x = 0) is the moment of the
pressure on the airfoil, so from Eqs. 16.86 and 17.5

M0 =
∫ c

0
∆p ξ dξ =

ρUc2

4

∫ π

0
γ(θ)(1 − cos θ) sin θ dθ . (17.23)

The non-dimensional moment, the sectional moment coefficient, is

Cm0 =
M0

1
2ρU2c2

, (17.24)

so,

Cm0 =
1
2

∫ π

0

γ(θ)
U

(1 − cos θ) sin θ dθ . (17.25)

From Eq. 17.9, for an uncambered thin airfoil

Cm0 = −π

2
α = −C`

4
(17.26)

iii) Center of pressure. The center of pressure xc.p. is centroid of the lift distribution, and, therefore, is the
point about which the moment is zero

M0 + L xc.p. = 0 , (17.27)

so

xc.p. = −cCm0

C`
=

c

4
. (17.28)

iv) Comment. Consistent with potential flow theory, we obtain a value for lift, the force perpendicular to
the free-stream direction, while the drag is zero (Fig. 50). In this case the result is remarkable because it is
known that the only force exerted on a body by an inviscid fluid is the normal pressure force P . Thus, in
order to resolve the resultant force L, there must be a thrust S

.= Lα parallel to the plate. The source of
this force is the infinite leading edge suction pressure caused by the infinite velocity at the infinitesimally
thick leading edge!

Eqs. 17.21 and 17.26 are actually good first approximations to the performance of real thin uncambered
airfoils, because by careful design of rounded leading edges it is possible to recover virtually all of the
leading-edge suction.

133 April 23, 2001



Ae/APh/CE/ME 101 Notes

Figure 50. Vector diagram for the forces on a flate plate airfoil

17.2 The Joukowski Transformation

The earliest successful attempts to study airfoil sections analytically made use of the tools of complex
analysis and conformal transformations. Joukowski experimented with the transformation which maps a
circle of unit radius into a straight line,

ζ = z +
1
z

. (17.29)

The inverse transformation is

z =
ζ

2
±

√
ζ

2

2

− 1 . (17.30)

The scale parameter of the transformation dζ/dx = 1−1/ζ2 shows that the points ±1 map uncomformably;
the unit circle maps to the line ξ = 2 cos θ, η = 0. In terms of the real and imaginary parts (ξ, η) of ζ,
Eq. 17.29 is

ξ =
(

r +
1
r

)
cos θ (17.31)

η =
(

r − 1
r

)
sin θ . (17.32)

This transformation is important because it maps the flow over a cylinder of unit radius, F (z) = U(z+1/z)
into the flow over a flat plate at zero incidence F (ζ) = Uζ. The flat plate can be put at angle of attack α

by first rotating the flow over the cylinder through the angle α

ζ ′ = zeiα , (17.33)

with the result that

F (ζ ′) = U cos α

(
ζ ′ +

1
ζ ′

)
− iU sinα

(
ζ ′ − 1

ζ ′

)
, (17.34)

and then using the inverse transformation Eq. 17.30 to write ζ ′(ζ), to obtain

F (ζ) = U cos α ζ ∓ iU sinα
√

ζ2 − 4 . (17.35)

The signs in Eq. 17.35 apply to the upper and lower surfaces, respectively. This is an extension of the
results of Sec. 17.1.

134 April 23, 2001



Ae/APh/CE/ME 101 Notes

The Joukowski transformation maps circles with r = r0 > 1 to ellipses

ξ2

(r2
0 + 1)2

+
η2

(r2
0 − 1)2

=
1
r2
0

(17.36)

with foci at ξ = ±2. The sketch shows a graphical construction of the transformation. The circles ζ and

1/ζ are shown; representative points ζ (squares) and 1/ζ and the points on the ellipse to which their sum
maps are connected by straight-line segments. Joukowski used the fact that a short line segment through
(+1, 0) maps to a fold to devise shapes with sharp trailing edges. A circle of radius larger than unity
with center at (xc, yc) which passes through the point (+1, 0) transforms to a shape which has a nearly
elliptical front edge and a sharp trailing edge. For yc = 0 the resulting airfoil is symmetric and for yc > 0
it is cambered (see next sketch).

A circle with center at (0, yc) which passes through both of the points (±1, 0) transforms to a circular
arc (i.e., it has two sharp ends and zero thickness; a flat plate which is bowed up) which forms the so-
called ‘skeleton’ of the above airfoil. It results because of the property that the Joukowski Transformation,
Eq. 17.29, has the alternative form

ζ − 2
ζ + 2

=
(z − 1)2

(z + 1)2
. (17.37)

The skeleton is an approximation to the camber line for small (xc, yc).

The next sketch shows the graphical construction for a circle with center at (-0.1, 0.1). Lift is
generated by by applying circulation to the cylinder and rotating the flow to satisfy the Kutta condition at
the trailing edge. When circulation is applied the stagnation point moves downward on the body (Fig. 44)
to the position given by Eq. 16.104. The Kutta condition is satisfied by rotating the velocity vector counter
clockwise until the rear stagnation point moves back up to the point (+1, 0). From the geometry of the
sketch α = θ − φ. Therefore,

Γ = 4πUa sin(α + φ) , (17.38)

where
φ = tan−1 yc

1 − xc
; a = (1 − xc) sec φ . (17.39)

From Eq. 16.87 and Eq. 17.19, we have

C` = 8π
a

c
sin(α + φ) , (17.40)
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where, since for the transformation chosen c = 4,

a

c
=

1 − xc

4
sec φ . (17.41)

Using the trigonometric addition formulas gives,

C` = 2π(1 − xc)
(

sinα +
yc

1 − xc
cos α

)
, (17.42)

C`α = 2π(1 − xc)
(

cos α − yc

1 − xc
sinα

)
. (17.43)

In reality, lift is limited by stall, an effect of viscosity, rather than any limitations of the value of sinα in
Eq. 17.42 and Eq. 17.43, so it is valid to take the small angle approximation, with the result

C` = 2π(1 − xc)
(

α +
yc

1 − xc

)
,

C`α = 2π(1 − xc)
(

1 − yc

1 − xc
α

)
.

(17.44)

136 April 23, 2001



Ae/APh/CE/ME 101 Notes

Finite camber (yc 6= 0) gives a shape-dependent contribution to lift, and finite thickness (xc 6= 0) modifies
the lift curve slope from the thin-airfoil value of 2π.
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18 Wing Theory

In this section we consider the modifications to airfoil theory that must be made to treat wings of finite
span (see Fig. 51). As with 2-dimensional sections, the Kutta condition establishes circulation around the

Figure 51. An airfoil of finite span is a wing

wing which can be represented as one or more bound vortex lines. With finite wings there is a problem
with this model, because the Helmholtz vortex theorems state that vortex lines can not end in a fluid.
The bound vorticity must connect to trailing free vortices at their ends. The simplest picture is a single
horseshoe vortex, as indicated in the Fig. 52. This model expresses the fact that the fluid on the bottom

Figure 52. A single horseshoe vortex

high-pressure surface of the wing tends to wash up to the low-pressure top surface creating vorticity in the
sense shown.

The loading at any section is ∆p ∼ γ, and we expect that it must go to zero smoothly at the wing tips.
Thus, a more realistic model involves a continuous distribution of infinitesimal horseshoe vortices arranged
so that the total strength is maximum at the wing centerline.
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18.1 Induced Drag

The trailing vortices of a horseshoe vortex system contain kinetic energy. Work must be done to
generate that energy, so it is reasonable to expect that drag will be connected with the kinetic energy
of the wake. Treating the horseshoe vortex as a model of a finite-span wing, the downwash distribution
induced by the vortices in the plane of the wing centerspan is shown schematically by the dashed line in
Fig. 53. The incident flow apparent to the airfoil is inclined downward by the downwash, so the force

Figure 53. Notation for downwash and induced angle of attack

exerted by the bound vortex, which by the Kutta-Joukowski theorem is always at right angles to the
incident flow, is now inclined backward. Since here we are taking Γ to be given, Fig. 53 does not show the
angle of attack of the wing and other details about how Γ is generated, by the Kutta condition, etc. The
figure is an “overlay” on such detail to show the effects of Γ. Note that

U = U ′ cos αi

w0 = U sinαi

L = L′ cos αi

D = L′ sinαi .

(18.1)

The Kutta-Joukowski Theorem (incompressible flow) now gives for the lift

L′ = −ρ∞U ′Γ , (18.2)

so,

L = −ρ∞ U ′ Γ cosαi = −ρ∞ U Γ ; ⊥ to U

D = −ρ∞ U ′ Γ sinαi = −ρ∞ w0 Γ ; ‖ to U .
(18.3)

The lift remains perpendicular to the free-stream, and the drag is parallel to it. This is the induced drag
Di. From the above,

Di

L
=

w0

U
. (18.4)

Luckily for the airframe industry, which otherwise wouldn’t exist, the drag is of smaller order than the lift.
Because the fluid at the point where the lift and drag act (x = 0) sees only a semi-infinite vortex pair,
while that far downstream sees an infinite one, w0 is half of the downwash far downstream, w1,

w0 =
w1

2
. (18.5)

The same result holds if the vorticity is distributed across the span.

Table 5 summarizes the fundamental’s that have been learned in this and the previous chapters.
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Table 5. Summary of Airfol and Wing Theories

Airfoil: α −→
Kutta

Γ −→ L

D = 0
(D’Alembert’s Paradox)

Wing: Γ −→
Trailing
vorticies

w0 −→ αi −→ L

Di

18.2 Control Volume Analysis of the Forces on a Wing

Figure 54. Control volume for calculating forces on a wing

In this section we calculate the forces acting on a wing by equating them to the momentum flux through
the faces of a large control volume, as indicated in Fig. 54. The conservation of momentum Eq. 1.8 states
that in steady flow the force on the airfoil (the negative of the force on the fluid) is

F = −
∫
S

∆p dS −
∫
S

ρ(U + u) (U + u) · dS , (18.6)

where the surface S includes all 6 faces of the rectangular control volume. Velocities are represented as the
sum of the undisturbed free-stream velocity U , which, being constant, where it appears first in Eq. 18.6
integrates out to zero, and the disturbance velocities u. The upstream plane normal to the flow direction is
placed so far upstream that there are no disturbance velocities on it. The downstream plane normal to the
flow direction, called the Trefftz plane (TP), is placed so far downstream that the disturbance velocities
are vanishingly small except in the wake, but not so far downstream that the wake deviates much from
planar; the vortex sheet is not rolled up. This may eliminate consideration of one class of wings, delta
wings, where the vortices are rolled up right over the wing. However, the analysis is sufficiently general to
include high-speed flight, where compressibility effects may be important.

We consider a body symmetric about the x-z plane, so there are no side forces. The vertical component
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of the force in Eq. 18.6 is by definition the lift,

L = −
∫

TP

ρw(U + u)︸ ︷︷ ︸
x=∞

dy dz

−
∞∫

−∞
dx

 ∞∫
−∞

∆p + ρw2︸ ︷︷ ︸
z=±∞

dy +

∞∫
−∞

ρwv︸︷︷︸
y=±∞

dz

 , (18.7)

where (x = ∞) indicates the TP, (y = ±∞) denotes the two side faces of the control volume, and (z = ±∞)
denotes the top and bottom faces. The horizontal force is the drag,

D = −
∫

TP

∆p + ρu(U + u)︸ ︷︷ ︸
x=∞

dy dz (18.8)

−
∞∫

−∞
dx

 ∞∫
−∞

ρuw︸︷︷︸
z=±∞

dy +

∞∫
−∞

ρuv︸︷︷︸
y=±∞

dz

 , (18.9)

We take the surfaces of the control volume to be so far away that squares of the disturbance velocities are
negligible. Furthermore, in the TP the only important disturbance velocities are those induced by the lift
in the transverse direction; u is negligible. Then,

L = −
∫

TP

ρUw︸︷︷︸
x=∞

dy dz −
∞∫

−∞
dx

∞∫
−∞

∆p︸︷︷︸
z=±∞

dy , (18.10)

D = −
∫

TP

∆p︸︷︷︸
x=∞

dy dz . (18.11)

18.3 Pressures

Using the Bernoulli equation, the pressures can be represented in terms of velocities. We take the fluid
to be a perfect gas, and so treat compressible flow. From Eq. 15.36

∆p =̇ − ρ∞Uu − 1
2
ρ∞(u2 + v2 + w2) . (18.12)

From Eq. 15.37, in the TP, where u = 0, but not (v, w), to first order

ρTP =̇ ρ∞ . (18.13)

18.4 Lift

Substituting Eqs. 18.12 and 18.13, evaluated to first order, into Eq. 18.10, gives

L = ρ∞U

∞∫
−∞

dy

−
∫

TP

w︸︷︷︸
x=∞

dz +

∞∫
−∞

u︸︷︷︸
z=±∞

dx

 . (18.14)

Now, w = ∂φ/∂z and u = ∂φ/∂x, so the arguments in the last two integrals are perfect differentials.
The z and x integrations are along the strip shown by dashed lines in Fig. 54. By symmetry, the only
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contribution can come from the discontinuity in φ at the wake (see Eq. 16.79). Thus, the integral in y only
has contributions from −b < y < b, where b is the semi-span, so

L = ρ∞U

b∫
−b

TP

∆φ(y) dy . (18.15)

A major result is that both the lift (Eq. 18.15) and drag (Eq. 18.11) can be computed by considerations
in the TP only. Of course, this does not make their determination any simpler, because the configuration
of the wake in the TP may not be straightforward to determine.

18.5 Drag

In the Trefftz plane streamwise perturbations u and u2 are taken to be smaller than lateral perturbations
w2 and v2. Since for drag we are concerned with second-order quantities (energy), the Bernoulli equation
Eq. 18.12 must be used correct to second order. Thus, as expected from the energy considerations of
Sec. 18.1, the drag is a second-order quantity. Substituting Eq. 18.12 into Eq. 18.11, gives

D =
1
2
ρ∞

∫
TP

(
∂φ

∂y

)2

+
(

∂φ

∂z

)2

︸ ︷︷ ︸
x=∞

 dy dz . (18.16)

Now, the further assumption that not only u = 0 but also ∂u/∂x = 0 in the TP reduces the equation
satisfied by the velocity potential for perfect-fluid flow to

∂2φ

∂y2
+

∂2φ

∂z2
= 0 . (18.17)

Thus, the flow in the TP is two-dimensional. Then, using Green’s Theorem to convert the surface integral
to a line integral around the wake, with Eq. 18.17, gives

D =
1
2
ρ∞

∮
φ

∂φ

∂n
ds . (18.18)

The integral is along the strip −b < y < b. Taking pairs of points at z = (0+, 0−) and the same y, gives

D =
1
2
ρ∞

b∫
−b

TP

∆φ w1 dy . (18.19)

18.6 Constant Downwash

In oreder to proceed further, we consider a special case. A flat (untwisted) high-aspect-ratio wing
produeces a uniform downwash distribution w1(y) = const. Furthermore, it was shown by Munk in 1919
that this case yields minimum drag, so it is an important subcase. With constant downwash, w1 in Eq. 18.19
comes out of the integral, so, with Eq. 18.15,

D =
1
2

w1

U
L . (18.20)
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It remains to determine the velocity potential φ in the wake. In this case the flow in the TP looks like the
flow over a flat plate at 90◦ incidence with a uniform vertically upward free stream velocity w1. Thus the
velocity potential can be obtained directly from results for a flat plate airfoil with U = w1 and α = π/2.

∆φ = 2w1b

√
1 −

(y

b

)2
. (18.21)

Substituting into Eq. 18.15 gives

L = 2ρ∞Uw1b

b∫
−b

√
1 −

(y

b

)2
dy , (18.22)

The distribution of load on the wing is elliptic, and the total lift is

L = πρ∞Uw1b
2 . (18.23)

With CL = L/1
2ρU2S, where S is the planform area, and AR = 4b2/S,

CL =
π

2
AR

w1

U
(18.24)

Eliminating w1/U from Eqs. 18.24 and 18.20,

CD =
1

πAR
C2

L (18.25)

Again, the drag is second order in the lift; a plot of CD(CL) is a concave-up parabola. Only for two-
dimensional airfoils (AR → ∞) is the drag zero (d’Alembert’s Paradox). Even when the lift is negative,
the drag is positive; there’s no way to avoid drag!

18.7 Vortex Distribution and Circulation on the Wing

From Eq. 16.78 we have in the Trefftz plane

∂φ+

∂y
= −1

2
dΓ
dy

= −γTP (y) , (18.26)

where Γ(y) is the total circulation of the sheet, and γTP (y) is the vorticity at point y. With Eq. 18.21 we
get

γTP = 2w1
y/b√

1 − (y/b)2
. (18.27)

Helmholtz’ Vortex Theorems state that the trailing vortex sheet contains the same vorticity as does
the bound vortex on the wing, so they provide the mechanism for studying more about the actual flow
over the wing. This is done most directly if AR >> 1 and the wing is untwisted, because in that case it
can be assumed that the sheet is flat all the way from the wing to the TP. Then, in the TP

Γ(y) = −∆φ(y) = −2w1b

√
1 −

(y

b

)2
, (18.28)

and this result applies also to the wing. If we wish to apply it to the Kutta-Joukowski Theorem in order
to determine the lift, we must apply the further restriction that the fluid is incompressible.
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18.8 Spanwise Loading – Planform

The ‘section lift’ (lift per unit span) was treated in Section 17. In terms of the total lift, the section
lift `(y) is `(y) = dL/dy. The Kutta-Joukowski theorem is

`(y) = −ρ∞ U Γ(y) = 2ρ∞Uw1b

√
1 −

(y

b

)2
. (18.29)

The section lift coefficient C` = l(y)/1
2ρU2c(y) is,

C`(y) = 4
w1

U

b

c(y)

√
1 −

(y

b

)2
. (18.30)

Using Eq. 18.24 ro eliminate w1/U , the differential form of Eq. 18.22 is derived,

C`(y) c(y) =
8b

πAR
CL

√
1 −

(y

b

)2
. (18.31)

This result exhibits the elliptic loading explicitly.

For large AR wings, the flow over the wing can be treated as locally two-dimensional, except near the
tips. In that case, for a wing with no twist and with constant section parameters the section lift is constant
and approximately equal to CL (see below),

C`(y) = const = CL . (18.32)

For such a wing, from Eq. 18.31 the planform is elliptic,

c(y) =
8b

πAR

√
1 −

(y

b

)2
. (18.33)

The maximum chord cmax is at y = 0, and cmax = 8b/πAR. This rather strange looking result is a
consequence of the fact that for an elliptic wing

CD =
cmax

b
C2

L (18.34)

As shown in Fig. 53, the constant downwash w0 induces an angle of attack αi,

αi =
w0

U
=

w1

2U
. (18.35)

From Eq. 18.24,

αi =
CL

πAR
(18.36)

Approximating the behavior of large AR wings by the linearized results of thin airfoil theory, we have

CL =̇ C` = C`α αe , (18.37)

144 April 23, 2001



Ae/APh/CE/ME 101 Notes

where αe = α − αi. Using Eqs. 18.37 and Eq. 18.36,

α =
CL

C`α

(
1 +

C`α

πAR

)
, (18.38)

or,

CLα =
C`α

1 +
C`α

πAR

. (18.39)

The wing lift curve slope is less than the section lift curve slope due to the effect of finite aspect ratio. For
an uncambered thin airfoil, C`α = 2π, so

CLα

C`α

=
AR

2 + AR
. (18.40)

In Eq. 18.40 C`α = 2π.
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19 Parallel Viscous Flows

The equations of motion for 2D plane, incompressible flow with µ = const (and no body force) are

∂u

∂x
+

∂v

∂y
= 0 (19.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(19.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(19.3)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= +ν

(
∂2ω

∂x2
+

∂2ω

∂y2

)
(19.4)

To study the basic physics of viscous flow, we first consider flows in which the velocity is in one direction
only, u(x, y, t), v = 0. From Eq. 19.1 ∂u/∂x = 0, and it follows from Eq. 19.3 that ∂p/∂y = 0

19.1 Viscous waves

Consider first a semi-infinite domain bounded by one solid surface.

Infinite flat plate oscillating parallel to itself. The plate motion is

u(x, 0, t) = u0 eint

v(x, 0, t) = 0 ,
(19.5)

where in this section n is the frequency. As we will see, despite the fact that the fluid is assumed incom-
pressible, this motion produces transverse waves.

In the x-momentum equation only the nonsteady term survives from the left hand side and, with
constant viscosity, the only term from µ∇2u is µ∂2u/∂y. The result is

∂u

∂t
= ν

∂2u

∂y2
, (19.6)

a diffusion equation. The vorticity ω = −∂u/∂y satisfies the same equation,

∂ω

∂t
= ν

∂2ω

∂y2
. (19.7)

We expect u = f(η)eint, where η is the “similarity variable.” Here we choose the characteristic time to be
the period of the motion, and the corresponding similarity variable to be η = y

√
n/2ν. As a consequence.

the diffusion equation reduces to an o.d.e.

However, here we are trying to find waves, so we assume

u(y, t) = u0 ei(ky−nt) , (19.8)

and obtain a dispersion relation

k = ±(1 + i)
√

n

2ν
. (19.9)
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To exclude exponentially growing solutions we select the + sign. Thus

u = u0 e−η ei(η−nt) . (19.10)

This solution shows that the velocities die off exponentially away from the wall in distance δ =
√

2ν/n

and that the phase velocity a = n/k is
a =

√
2νn , (19.11)

while the group velocity c = ∂n/∂k is
c = 4νk = 2a . (19.12)

The vorticity is
ω(y, t) = −ik u(y, t) (19.13)

and the circulation is
Γ =

∫
ω dS = −∆x

∫
∂u

∂y
dy

= ∆x u(0, t)
(19.14)

Γ = u0 ∆x e−int . (19.15)

Since the circulation only depends on the wall motion, it is clear that the total vorticity only changes as
the wall adds and subtracts vorticity from the fluid. The average circulation is null, because equal and
opposite amounts of vorticity are added in each cycle.

A physically useful measure of the distance that the disturbance created by the plate extends into the
fluid is the so-called vorticity thickness,

ω(0, t) δω(t) ≡
∫ ∞

0
ω(y, t) dy = −

∫ ∞

0

∂u

∂y
dy (19.16)

δω = i(1 − i)
√

ν

2n
(19.17)

Only the magnitude of δ is of interest, so

δω =
√

ν

n
. (19.18)

The disturbance is confined closer to the wall as the frequency increases. Compared to the amplitude of
the plate motion,

δω n

u0
∼ 1√

Ren
, (19.19)

where

Ren =
u2

0

νn
. (19.20)

The layer is thin when the Reynolds number is large.
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19.2 Rayleigh problem

The impulsive acceleration of a flat plate to velocity U parallel to itself in incompressible flow.

Here we take for the similarity variable

η =
y

2
√

νt
, (19.21)

and substutute
u

U
= f(η) (19.22)

into the diffusion equation, giving the result

f ′′ + 2η f ′ = 0 ;
f(0) = 1

f(∞) = 0
(19.23)

The soution is
f = erfcη , (19.24)

where erfcη = 1 − erfη, and

erfη =
2√
π

∫ η

0
e−x2

dx . (19.25)

The vorticity is

ω = −Uf ′ 1
2
√

νt
= U

e−η2

√
πνt

, (19.26)

so

ω(0, t) =
U√
πνt

. (19.27)

The vorticity thickness, defined in Eq. 19.16, is

δω =
√

πνt . (19.28)

If we normalize δω with L = Ut, the distance the plate has traveled, then

δω

L
=

1√
ReL

, (19.29)

where ReL = UL/ν. The circulation is

Γ =
∮

u · d` = U∆x . (19.30)

In this flow the total vorticity is constant for all time! All of the vorticity is deposited into the fluid by the
plate at time t = 0 and all that happens after that is that the vorticity diffuses.

Arbitrary plate velocity. The motion induced by an arbitrary plate velocity U(t) can be built up by the
superposition of small impulsive motions. The motion at time t resulting from one such small impulse at
time τ is

du(t) = dU(τ) erfc
y

2
√

ν(t − τ)
. (19.31)

Therefore the complete flow is given by the Stieltjes integral

u(t) =
∫ t

0

dU(τ)
dτ

erfc
y

2
√

ν(t − τ)
dτ . (19.32)
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19.3 Flows with Heat Transfer; Couette flow

Compressible, steady flow. (Liepmann & Roshko, 1957)
In Couette flow, the fluid is driven by a top plate moving parallel to itself, while the bottom plate is at
rest. Now the simplifications are great enough that problems with heat transfer can easily be solved. From
the problem specification, ∂/∂t = 0 and ∂/∂x = 0. The continuity equation gives ρv = const, which with
the bottom plate boundary condition, and the requirement ρ 6= 0 again gives v = 0. The y-momentum
equation gives the same result for p, while the entire lhs of the x-momentum equation is now 0, so

∂τ

∂y
= 0

τ = τw .
(19.33)

Because the lhs is gone, the density ρ does not appear (no inertia). The velocity profile follows from
τ = µ∂u/∂y,

u(y) = τw

∫ y

0

dy

µ(T (y))
, (19.34)

where T is the temperature. Compressibility in Couette flow appears only as variable viscosity µ(T ). The
velocity profile depends on the temperature distribution, which is determined by the energy equation.

The lhs of the energy equation (Eq. 2.24) similarly goes away, so all that remains is

d

dy
(τxyu − q) = 0

uτ − q = −qw .
(19.35)

With τ = µ du/dy and q = −k dT/dy this becomes

du2

2

dy
+

1
Pr

dh

dy
= −qw

µ
, (19.36)

where Pr = cpµ/k and dh = cp dT have been used. This equation can be integrated providing that Pr

= const. Substituting Eq. 19.34 to eliminate the indefinite integral gives an exact integral of the energy
equation

hw − h = Pr

(
u2

2
+

qw

τw
u

)
. (19.37)

This is the energy integral. It relates h and u. Note that hw is the enthalpy of the fluid at the wall
temperature, not the enthalpy of the wall. Assuming cp = const permits evaluation of the temperature at
the top wall, ( )∞,

Tw − T∞ =
Pr

cp

(
U2

2
+

qw

τw
U

)
. (19.38)

Adiabatic wall. The wall temperature required to insure qw = 0 is Tw ≡ Tr,

Tr = T∞ +
Pr

2cp
U2 . (19.39)

Assuming a perfect gas and using the perfect gas equation of state gives

Tr

T∞
= 1 + Pr

γ − 1
2

M2
∞ , (19.40)
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which looks something like Eq. 7.58. In fact, combining the two equations gives the recovery factor,

Tr − T∞
Tt − T∞

≡ r = Pr . (19.41)

Another form of Eq. 19.38 is

Tw = Tr +
qw

cpτw
Pr U τw , (19.42)

which relates the heat flux to the wall shear,

qw =
cp(Tw − Tr)

U Pr
τw . (19.43)

Defining the Stanton number and skin friction coefficient

St ≡ qw

ρ∞Ucp(Tw − Tr)
(19.44)

Cf ≡ τw
1
2ρ∞U2

, (19.45)

Eq. 19.43 gives the Reynolds Analogy

St =
Cf

2Pr
. (19.46)

19.4 Poiseuille flow

If the two parallel plates are fixed, distance h apart, a flow can nevertheless be driven if there is a
pressure gradient dp/dx in the fluid. To generate a flow with positive velocity, the pressure gradient must
be negative. The flow is assumed to be incompressible. In this parallel flow, as before, ∂/∂t = 0, ∂u/∂x = 0
and ∂p/∂y = 0. In the x-momentum equation the entire lhs again goes away, and what’s left is two terms
on the rhs.

Channel flow – plane flow. The channel is of height 2h, and y = 0 lies at mid-channel. For constant
viscosity and plane flow

0 = −dp

dx
+ µ

∂2u

∂y2
;

u(−h) = u(h) = 0(
du

dy

)
h=0

= 0 (19.47)

This equation is easily integrated to give, first, the shear stress,

τ = µ
du

dy
=

dp

dx
y (19.48)

τw = −dp

dx
h , (19.49)

where the constant of integration has been evaluated by the symmetry condition at y = 0. The shear stress
on the wall determines the pressure drop in the pipe. For a control volume of length ∆x and covering
0 < y < h, the above equation gives

τw ∆x = −h ∆p , (19.50)
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which is just what would be derived from the integral form of the momentum equation. For the same area
the circulation is

Γ =
∫

ω dS

= −∆x

∫ h

0

du

dy
dy

= umax ∆x .

(19.51)

Next, the velocity profile can be calculated,

u(y) =
1
µ

(
−dp

dx

)
h2 − y2

2
. (19.52)

The maximum velocity is

umax =
1
µ

(
−dp

dx

)
h2

2
, (19.53)

so the wall friction and velocity profile can be expressed as

τw = 2µ
umax

h
(19.54)

u

umax
= 1 −

(y

h

)2
. (19.55)

In nondimensional terms,

Cf =
4

Reh
, (19.56)

where here Cf ≡ 2τw/ρu2
m and Reh ≡ umaxh/ν.

Pipe flow. In this case,

0 = −dp

dx
+ µ

1
r

∂

∂r

(
r
∂u

∂r

)
;

u(−R) = u(R) = 0(
du

dr

)
r=0

= 0 (19.57)

Again using the symmetry condition, one integration gives

τ = µ
du

dr
=

dp

dx

r

2
(19.58)

τw = −dp

dx

R

2
, (19.59)

and a second gives

u(r) = −dp

dx

R2 − r2

4µ
. (19.60)

The skin friction coefficient is conventionally defined with u the mean velocity, and the Reynolds number
with u and the diameter d,

Cf =
τw

1
2ρu2

(19.61)

Re =
ρud

µ
. (19.62)
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The volume flux is

Q =
∫ R

0

∫ 2π

0
ur dr dθ (19.63)

= −dp

dx

π R4

8 µ
. (19.64)

Thus the mean velocity is

u ≡ Q

πR2
= −dp

dx

R2

8µ
, (19.65)

so
Cf =

8µ

ρuR
, (19.66)

Cf =
16
Re

. (19.67)
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20 Thin-Layer Flows

In fluid mechanics there are situations in which the effects of viscosity are confined to very thin layers
adjacent to the body, and the rest of the flow is given by irrotational considerations. In this section we
derive what the conditions are for thin viscous layers to occur. For simplicity we consider plane flow of an
incompressible fluid. Because the layer is thin, the coordinates are set up so that the x-coordinate follows
the body surface, no matter what the body shape, and the y-coordinate is normal to the body surface. We
scale the velocities and spatial coordinates as follows,

u ∼ U v ∼ V (20.1)

x ∼ x y ∼ δ . (20.2)

If the layer is thin, then δ/x ¿ 1 . Correspondingly, the velocity V must be small, and we take V/U ∼ δ/x .

x-momentum equation. The momentum equation, and the magnitude of the various terms are given
below. The nonsteady term is assumed to scale with the convective ones, and the pressure is considered
later.

ρ
∂u

∂t
+ ρu

∂u

∂x︸ ︷︷ ︸
ρU2

x

+ ρv
∂u

∂y︸ ︷︷ ︸
ρUV

δ
=

ρU2

x

= −∂p

∂x
+ µ

(
∂2u

∂x2︸ ︷︷ ︸
µU

x2

+
∂2u

∂y2

)
︸ ︷︷ ︸
µU

δ2

(20.3)

The last term on the right is much larger than the first. To balance the left side with the viscous term on
the right, it must be that

Ux

ν

(
δ

x

)2

= O(1) , (20.4)

or
δ

x
∼ 1√

Rex
¿ 1 , (20.5)

where Rex = Ux/ν. Thus the condition for thin viscous layers is Rex À 1 . The fact that Re must be
large for these flows raises a question about the uniqueness of the solutions to be obtained. Laminar flow
with thin layers holds in a limited Reynolds number regime between Stokes flow and turbulent flow.

y-momentum equation. Scaling of the y-momentum equation gives

ρ
∂v

∂t
+ ρu

∂v

∂x︸ ︷︷ ︸
ρUV

x

+ ρv
∂v

∂y︸ ︷︷ ︸
ρV 2

δ
=

ρUV

x

= −∂p

∂y
+ µ

(
∂2v

∂x2︸ ︷︷ ︸
µV

x2

+
∂2v

∂y2

)
︸ ︷︷ ︸
µV

δ2

. (20.6)

Every term in the y-momentum equation is smaller than in the x-momentum equation, so ∂p/∂y must be
correspondingly small. In this approximation, it is

∂p

∂y
= 0 ; p(x) = p∞(x) . (20.7)

The pressure doesn’t vary across the layer, and is “imposed” by whatever the behavior of the outer potential
flow is. Thus, the x-momentum equation becomes, in the thin-layer approximation

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −dp∞

dx
+ µ

∂2u

∂y2
(20.8)
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Two important simplifications have resulted,

1. One higher order derivative has been removed, so the equations have been changed from elliptic-type
to parabolic-type, the latter having diffusion-equation behavior. Parabolic equations can be solved
by time-marching (x-marching) schemes.

2. The pressure field is now a given, not one of the unknowns.

Mechanical Energy equation.

ρ
∂u2/2

∂t
+ ρu

∂u2/2
∂x

+ ρv
∂u2/2

∂y
= −u

dp∞
dx

+ µu
∂2u

∂y2
. (20.9)

Energy equation. Thermal energy may diffuse at a different rate (k) than momentum (µ), so we allow for
a separate thermal y-scale, δT . First, consider the dissipation in plane flow (Eq. 4.8),

Φ =
(

η − 2
3
µ

) (
∂u

∂x︸ ︷︷ ︸
µU2

x2

+
∂v

∂y

)2

︸ ︷︷ ︸
µV 2

δ2
=

µU2

x2

+µ

[
2

(
∂u

∂x

)2

︸ ︷︷ ︸
µU2

x2

− 2
(

∂v

∂y

)2

︸ ︷︷ ︸
µV 2

δ2
=

µU2

x2

+
(

∂u

∂y︸ ︷︷ ︸
µU2

δ2

+
∂v

∂x

)2
]

︸ ︷︷ ︸
µV 2

x2

(20.10)

The largest term is µU2/δ2, so in the thin-layer approximation

Φ = µ

(
∂u

∂y

)2

. (20.11)

The energy equation (Eq. 4.7) scales as

∂T

∂t
+ u

∂T

∂x︸ ︷︷ ︸
UT

x

+v
∂T

∂y
=

αT

ρ cp

(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y

)
︸ ︷︷ ︸

UT

x

α

cpρ
x

dp∞
dx

+
Φ

ρ cp︸︷︷︸
µU2

cpρδ2
T

+κ

(
∂2T

∂x2︸ ︷︷ ︸
κ

T

x2

+
∂2T

∂y2

)
︸ ︷︷ ︸
κ

T

δ2
T

(20.12)

The magnitude of the pressure-work term depends on p∞(x). As before, the next to last term on the right
side is small compared to the last. In order for this equation to balance, it must be that

κ

δ2
T

∼ U

x
=

Ux

ν

ν

x2
=

ν

δ2
. (20.13)

Therefore,
δT

δ
∼ 1√

Pr
. (20.14)

It remains to consider dissipation. The ratio of dissipation to heat conduction is

Pr
U2

cp∆T
. (20.15)
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For low velocities the dissipation is small. That large Pr may cause an increase of dissipation is often not
a consideration because Pr À 1 usually also means high viscosity and therefore low Re, so the thin-layer
assumption may not be appropriate in those problems. Thus, the thin-layer form of the energy equation is

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

αT

ρ cp

(
∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y

)
+

Φ
ρ cp

+ κ
∂2T

∂y2
. (20.16)

The energy equation in terms of total enthalpy is

ρu
∂ht

∂x
+ ρv

∂ht

∂y
=

∂

∂y
(τu − q) =

∂2

∂y2

(
µ

u2

2
+ kT

)
, (20.17)

where the last equality holds, again, for constant µ and k.

20.1 Round Laminar Jet

Consider a steady round laminar jet (Fig. 55). At first we take the jet fluid to be compressible, because
general results can easily be derived. Assume that the thin layer approximation holds, and that the

Figure 55. Schematic sketch of a round jet

ambient fluid is uniform, so dp∞ = const. Then the continuity equation (Eq. 4.19) is

∂ρu

∂x
+

1
r

∂ρvr

∂r
= 0 . (20.18)

In the x-momentum equation (Eq. 4.20), the derivative of τxx is smaller in the thin layer approximation
than first term in the derivative of τrx = µ(∂u/∂r + ∂v/∂x). Thus, written in conservation form which is
convenient for integrating, the x-momentum equation is

∂ρu2

∂x
+

1
r

∂ρuvr

∂r
=

1
r

∂rτrx

∂r
, (20.19)

where
τrx = µ

∂u

∂r
. (20.20)
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20.1.1 Integral relations

To get the total x-momentum flux we multiply the momentum equation by 2πr dr and integrate with
respect to r from r = 0 to r = δ (Fig. 55),∫ δ(x)

0

∂ρu2

∂x
2πr dr +

∫ δ(x)

0

∂ρuvr

∂r
2π dr =

∫ δ(x)

0

∂rτ

∂r
2π dr . (20.21)

The x-derivative can be taken outside, in accordance with the rules for partial differentiation of an integral,
and the r integrations can be carried out,

d

dx

∫ δ(x)

0
ρu22πr dr − (ρu22πr)δ

dδ

dx
+ 2πρuvr

∣∣∣δ
0

= 2πrτ
∣∣∣δ
0

. (20.22)

In order to evaluate the limits shown, the limit δ → ∞ is taken with the following requirements for how
fast the velocity components must approach zero as r → ∞,

lim
r→∞ ρu2r = 0 (20.23)

lim
r→∞ ρuvr = 0 (20.24)

lim
r→∞ rτ = 0 . (20.25)

Thus, the result is
dJ

dx
= 0 ; J ≡ 2π

∫ δ(x)

0
ρu2r dr (20.26)

So, the total momentum flux in the jet remains constant, J = const. . Note that all fluid, including the
ambient, is treated in this analysis; the jet extends to ∞. It does not exert a “drag” on the outer fluid, or
vice versa; the momentum flux does not change.

However, there is a displacement effect; the jet entrains. This is shown by the continuity equation
Eq. 20.18, Integrating as before, ∫ δ(x)

0

∂ρu

∂x
2πr dr +

∫ δ(x)

0

∂ρvr

∂r
2π dr = 0 (20.27)

d

dx

∫ δ(x)

0
ρu2πr dr − (ρu2πr)δ

dδ

dx
+ 2πρvr

∣∣∣δ
0

= 0 . (20.28)

In taking the limit δ → ∞, we now require

lim
r→∞ ρur = 0 , (20.29)

but it is not possible to constrain ρvr at r = ∞, because the mass flux in the jet can not be constant if
the momentum flux is. Thus,

dm

dx
= −2π(ρvr)∞ ; m ≡ 2π

∫ δ(x)

0

∂ρu

∂x
r dr (20.30)

The jet acts like a pump, pulling in fluid from far away, and continually increasing the mass flux.
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20.1.2 Scaling

The x-dependence of the solution of the equations for a laminar jet can be deduced by scaling. Again, for
the characteristic lengths and velocities we take (x, δ) and (U, V ). From now on we consider incompressible
flow with µ = const.

From the thin-layer approximation,
V

U
∼ δ

x
, (20.31)

which is in conformity with the scaled continuity equation, Eq. 20.18. The r-momentum equation is
Eq. 4.21 which scales as follows

u
∂v

∂x︸︷︷︸
UV

x

+ v
∂v

∂r︸︷︷︸
V 2

δ

= ν

[
∂

∂r

(
2
r

∂rv

∂r

)
︸ ︷︷ ︸

νV

δ2

+
∂2u

∂x∂r︸ ︷︷ ︸
νU

xδ

+
∂2v

∂x2

]
︸ ︷︷ ︸
νV

x2

. (20.32)

The first and third terms on the rhs are of the same size, while the last term is smaller in the thin-layer
approximation. Equating the second term on the lhs with the first on the rhs gives

V δ

ν
∼ 1 , (20.33)

while equating the first and third terms gives

δ

x
∼ 1

Reδ
¿ 1 , (20.34)

where Reδ = Uδ/ν. From Eq. 20.26
J

ρ
∼ U2δ2 , (20.35)

so, combining this result and Eq. 20.34 gives

δ ∼ νx√
J/ρ

U ∼ J/ρ

νx

V ∼
√

J/ρ

x

δV ∼ ν

(20.36)

The jet grows linearly with distance (in contrast to what Fig. 55 showed!), the axial velocity decreases as
x−1, the transverse velocity is independent of ν, and the rate of mass entrainment (the right hand side of
Eq. 20.30) is simply proportional to µ.
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20.1.3 Similarity.

Solutions to the equations of motion can be obtained by assuming a similarity form,

u

U(x)
= F (η) ; η =

r

δ(x)
. (20.37)

U is now the maximum velocity (on the centerline). Similarity, as expressed in the above formula, is
possible, when there is no characteristic length from the geometry of the problem, for example the orifice
diameter. Therefore, the problem as expressed here is for a point source jet in a plane wall (point source
of momentum). It is equivalent to a point force applied to the fluid. Put in other terms, the similarity
solution is valid far downstream of the orifice. This reduces the equations to linear o.d.e.’s, which can
solved analytically, as described by Schlichting (1955). A stream function is defined by

ψ = νx F (η) , (20.38)

resulting after an integration in an o.d.e. of the form

ηF ′′ + (F − 1)F ′ = 0 , (20.39)

which has the solution

F =
η2

1 + 1
4η2

. (20.40)

The streamlines ψ = const are shown in Fig. 56. As a measure of the thickness of the jet the dashed lines
trace approximately the points of closest approach of the streamlines to the axis of symmetry. Inside the
dashed lines the streamlines diverge slightly as the jet grows. The results for the parameters discussed

Figure 56. Streamlines of a round laminar jet
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above are

δ =

√
16π

3
νx√
J/ρ

U =
3
8π

J/ρ

νx

m = 8π µx

dm

dx
= 8π µ

(vr)∞ = −4 ν

(20.41)

The last of Eqs. 20.41 is proportional the volume entrainment rate. In fact, the pumping action of the jet
is

dV̇

dx
= 8π ν , (20.42)

independent of how large or small J is. This equation explains the extreme effectiveness of diffusion pumps
for vacuum, which are nothing other than jets of low-vapor-pressure oil vapor. At extremely low pressure
(low ρ), the volume rate is huge.

20.1.4 Point source of momentum

The above solution can be compared with another one for a point source of momentum in an infinite
fluid (no wall) described by Batchelor (1973). In this case, the flow is an exact solution of the Navier-
Stokes equations, and does not rely on the thin-layer approximation. Thus, in this flow the pressure varies
through the jet. In spherical coordinates the stream function is written

ψ = rν f(ξ) , (20.43)

where ξ = cos φ, and after an integration the resulting o.d.e. is

f2 − 2(1 − ξ2)f ′ − 4ξf = 0 . (20.44)

The solution is

f(ξ) =
2(1 − ξ2)
1 + c − ξ

, (20.45)

where c is related to the momentum of the jet or the force applied to the fluid. The force F applied by the
singularity at the origin to fluid contained in any sphere surrounding the origin is given by the difference
between the momentum flux out of the sphere and stresses acting on the sphere. It turns out to be given
solely in terms of c, or, equivalently, the spreading angle of the jet φ0, defined as the locus of points of
closest approach of the streamlines to the axis of symmetry. They are related by

cos φ0 =
1

1 + c
. (20.46)

The force is given by

F

2πρν2
=

32
3

cos φ0

sin2 φ0
+

4
cos2 φ0

ln
(

1 − cos φ0

1 + cos φ0

)
+

8
cos φ0

. (20.47)

The streamlines are shown in Fig. 57, and the jet edge is indicated by dashed lines drawn at the angle φ0.
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Figure 57. Streamlines of a point source of momentum

20.2 Plane Laminar Wake

The wake of a body is similarly caused by the force applied by the body on the fluid, in this case the
drag D. This implies that drag can be measured by measuring the velocity profile of the wake, and vice
versa, the wake profile depends on the drag. Fig. 58 shows a control volume for which surfaces 1–3 are far
from the body. the fourth plane is a plane of symmetry, so there is no flux across it. Its (large) height is

Figure 58. Control volume for the laminar wake

h. Far away from the body the departure u′ of the velocity from U is small,

u′ = U − u ¿ U . (20.48)
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20.2.1 Drag.

There is a mass loss out of ©2, given by the difference between the fluxes through ©1 and ©3 ,

Mass Lost︸ ︷︷ ︸
2

=
∫ h

0
ρU dy︸ ︷︷ ︸
1

−
∫ h

0
ρ(U − u′) dy︸ ︷︷ ︸

3

(20.49)

=
∫ h

0
ρu′ dy︸ ︷︷ ︸
3

. (20.50)

This mass flux carries its momentum ρU out ©2 . That momentum loss must balance the fluxes through
the vertical surfaces, and half of the drag, since we are considering only the top half plane,

D

2
=

∫ h

0
ρU2 dy︸ ︷︷ ︸
1

−
∫ h

0
ρUu′ dy︸ ︷︷ ︸

2

−
∫ h

0
ρ(U − u′)2 dy︸ ︷︷ ︸

3

(20.51)

= U

∫ h

0
ρu′ dy︸ ︷︷ ︸
3

. (20.52)

Taking the limit h → ∞, and accounting for both half planes,

D = U

∫ ∞

−∞
ρu′ dy . (20.53)

This result holds for compressible fluids providing that the assumption of uniform flow at the boundaries
(no shock waves) is satisfied. With multiplication by the appropriate (2πr)’s it holds for axisymmetric flow
also.

20.2.2 Similarity.

From now on we consider plane incompressible flow. The x-momentum equation is written under the
thin-layer assumption for ©3 , where it is assumed that the free-stream fluid is uniform (p∞ = const.),

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
. (20.54)

Far downstream we take u = U + u′, where the velocity defect is small, u′ ¿ U , to give

U
∂u′

∂x
= ν

∂2u′

∂y2
. (20.55)

Similarity in the form

u′ = U
f(η)
δ(x)

; η =
y

δ
, (20.56)

is assumed, where δ is the viscous length scale

δ =
√

νx

U
(20.57)
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and f has the dimensions of length. The scale of the body doesn’t enter because only the far wake is
being considered, where the body looks like a point. The unusual multiplicative factor 1/δ in Eq. 20.56 is
required to make the drag independent of x: From Eqs. 20.53 and 20.56,

D = ρU2

∫ ∞

−∞
f(η) dη , (20.58)

which, as required, is constant. The derivatives of u′ in Eq. 20.55 are obtained from the similarity form
Eq. 20.56 as

∂u′

∂x
= U

(
f

d1/δ

dx
+

1
δ

∂f

∂x

)
, (20.59)

where

d1/δ

dx
= − 1

2δx
(20.60)

∂f

∂x
= −1

2
η

x

∂f

∂η
, (20.61)

so

U
∂u′

∂x
= − U2

2δx
(f + ηf ′) (20.62)

ν
∂2u

∂y2
=

Uν

δ

f ′′

δ2
. (20.63)

Combining and canceling gives the o.d.e.

f ′′ +
η

2
f ′ +

f

2
= 0 , (20.64)

which can be integrated twice to give

f = Ke−
η2

2 . (20.65)

Now the integral in Eq. 20.58 can be evaluated to give

K =
D

2
√

πρU2
=

L

4
√

π
CD , (20.66)

where now we have introduced the length scale L of the body to define the drag coefficient,

CD ≡ D
1
2ρU2L

. (20.67)

Finally, written out in terms of (x, y), the perturbation velocity is

u′

U
=

CD

4
√

π

√
ReL

√
L

x
e−

y2U
4νx . (20.68)
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Figure 59. Schematic diagram of a flat plate boundary layer

Figure 60. Thin boundary layer on a curved body

20.3 Boundary Layers

We now consider thin layers adjacent to bodies within which the effects of viscosity are confined, called
boundary layers. The simplest case is the flat plate boundary layer (see Fig. 59). For a thin flat plate,
the flow far away is uniform, so p∞ = const. For a curved body, such as a cylinder or a sphere (Fig. 60),
in general the pressure outside the boundary layer varies. The flow there is inviscid, and to first order is
parallel, so the x-momentum equation is, in the present notation,

dp∞
dx

= −ρ∞U
dU

dx
. (20.69)

The external pressure and velocity fields are related.

20.3.1 Integral relations

First we consider some integral properties, in particular, the behavior of the boundary-layer thickness.
These analyses can be carried out for a general compressible fluid and an arbitrarily shaped body, but we
limit consideration to steady flow.

Mass Thickness (Displacement Thickness)
Integrating the continuity equation Eq. 4.4 from y = 0 to δ gives,

ρδvδ = −
∫ δ

0

∂ρu

∂x
dy . (20.70)
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Add and subtract the x derivative of ρ∞U to the integrand on the rhs,

ρδvδ =
∫ δ

0

∂(ρ∞U − ρu)
∂x

dy −
∫ δ

0

d ρ∞U

dx
dy . (20.71)

The x-derivative can be taken outside of the first term with no contribution from the derivative of the
upper limit, because it has just been arranged that the integrand be zero at the upper limit as δ → ∞.
The derivative in the second term on the right is not a function of y, so it integrates immediately,

ρδvδ =
dρ∞Uδ∗

dx
− δ

d ρ∞U

dx
, (20.72)

where, taking the limit,

δ∗ =
∫ ∞

0

(
1 − ρu

ρ∞U

)
dy . (20.73)

Now, far from the body, the fact that v∞ is not zero (the “displacement effect”) is expressed in the
continuity equation,

d ρ∞U

dx
= −

(
∂ρv

∂y

)
∞

. (20.74)

This allows us to simplify Eq. 20.72 by “extrapolating” ρδvδ to the wall,

ρδvδ ≡ ρ0v0 + δ

(
∂ρv

∂y

)
∞

. (20.75)

This, together with Eq. 20.74, transforms Eq. 20.72 to

ρ0v0 =
dρ∞Uδ∗

dx
. (20.76)

For the flat plate, d U/dx = 0, this becomes

v∞ = U
dδ∗

dx
. (20.77)

The growth of the displacement thickness measures the velocity normal to the body induced by the presence
of the boundary layer. The only effect of a thin viscous layer on the outer flow is a displacement effect.
The effect of viscosity is to slightly displace the fluid outward from the body. Beyond that, there is no
friction or heating exerted on the outer flow; as we shall see, only the fluid in the boundary layer feels the
effects of friction and heating.

Momentum Thickness
The integrated momentum equation yields a connection between the velocity profile and wall friction in
boundary layers. In Eq. 20.8, written in conservation form, U is subtracted and added on the l.h.s., as
follows

∂ρu(u − U)
∂x

+
∂ρv(u − U)

∂y
+ ρu

dU

dx
= ρ∞U

dU

dx
+

∂τ

∂y
. (20.78)

Integrating and taking the x-derivative out, as with the continuity equation, gives

d

dx

∫ δ

0
ρu(u − U) dy +

dU

dx

∫ δ

0
(ρu − ρ∞U) dy = −τw . (20.79)
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Thus, taking the limit δ → ∞,
dρ∞U2θ

dx
+ ρ∞U

dU

dx
δ∗ = τw , (20.80)

where the momentum thickness θ is

θ =
∫ ∞

0

ρu

ρ∞U

(
1 − u

U

)
dy . (20.81)

Nondimensionalizing Eq. 20.80 by dividing through by ρ∞U2, and differentiating out the first term, gives

Cf

2
=

dθ

dx
+

θ

U

dU

dx

(
2 +

δ∗

θ

)
. (20.82)

H = δ∗/θ is the “shape factor.” The skin friction at any station x can be measured by measuring and
integrating the velocity profile there. For a flat plate (dU/dx = 0), the result is

Cf

2
=

dθ

dx
. (20.83)

Mechanical Energy Thickness
Performing the now-familiar operations, this time on Eq. 20.9, leads one to subtract U2 from the terms on
the left-hand side,

∂ρu(u2 − U2)
∂x

+
∂ρv(u2 − U2)

∂y
+ ρu

dU2

dx
= ρ∞u

dU2

dx
+ 2u

∂τ

∂y
. (20.84)

Integrating, trading derivatives in the last term on the r.h.s. by partial differentiation, and taking the limit
gives

d ρ∞U3δme

dx
= ρ∞U

dU2

dx
δρ + δΦ , (20.85)

where integrals have been represented by some pretty non-standard “thicknesses,”

δme =
∫ ∞

0

ρu

ρ∞U

(
1 − u2

U2

)
dy

δρ =
∫ ∞

0

(
ρ

ρ∞
− 1

)
u

U
dy

δΦ =
∫ ∞

0
Φ dy .

(20.86)

For an incompressible fluid, δρ = 0, and δme measures the total dissipation in the boundary layer.

Energy Thickness
The energy thickness is obtained by integrating Eq. 20.17 in its general form (first equality). Subtracting
ht∞ from the terms on the l.h.s. and integrating gives∫ δ

0

∂ρu(ht − ht∞)
∂x

dy +
dht∞
dx

∫ δ

0
ρu dy = −qw . (20.87)
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The second term on the l.h.s. is troublesome because it doesn’t integrate to a finite value in the limit
δ → ∞. Therefore this analysis can only be carried out for dht∞/dx = 0 . In that case,

dρ∞Uht∞δht

dx
= qw , (20.88)

where

δht =
∫ ∞

0

ρu

ρ∞

(
1 − ht

ht∞

)
dy . (20.89)

20.3.2 Wall Fluxes

At the wall, the x-momentum equation gives

dp∞
dx

=
(

∂τ

∂y

)
w

; τ = µ
∂u

∂y

= µw

(
∂2u

∂y2

)
w

+
(

∂µ

∂y

)
w

(
∂u

∂y

)
w

.

(20.90)

Thus the curvature of the velocity profile near the wall is

µw

(
∂2u

∂y2

)
w

=
dp∞
dx

−
(

∂u

∂y

)
w

(
∂µ

∂y

)
w

. (20.91)

It is affected by both the pressure gradient and any variation of the viscosity. For a flat plate and constant-
viscosity fluid, the curvature is zero. Qualitative profiles are shown in Fig. 61. Profiles with positive

Figure 61. Schematic of velocity profiles for different pressure gradients

curvature have smaller shear, exhibit an inflection point, and tend to be less stable. The limit when
the shear goes to zero is incipient separation (reverse velocities). So-called “adverse” pressure gradients
(dp∞/dx > 0) induce positive curvature. Similarly, cooling the wall for a liquid or heating the wall for a
gas is equivalent to an adverse pressure gradient. The subcases are indicated in the table.

Vorticity Flux
The diffusive flux of vorticity is

Fω = −ν
∂ω

∂y
, (20.92)

which can be seen by writing the vorticity equation Eq. 3.17 in conservation form

Dω

Dt
+

∂Fω

∂y
= 0 . (20.93)
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∂2u/∂y2 F−ωw τw dp∞/dx (∂µ/∂y)w Substance

> 0 < 0 low > 0 (adverse) < 0 liquid: cold wall
gas: hot wall

< 0 > 0 high < 0 (favorable) > 0 liquid: hot wall
gas: cold wall

In the thin layer approximation ω = −∂u/∂y and is negative in the boundary layer on the top of a body,
so the flux of negative vorticity is

F−ω = −ν
∂2u

∂y2
. (20.94)

Near the wall, using Eq. 20.91

F−ωw = − 1
ρw

dp∞
dx

+
1
ρw

(
∂u

∂y

)
w

(
∂µ

∂y

)
w

. (20.95)

The vorticity flux behaves just the same as the curvature, except for the sign, and has been included in the
table above. For a flat plate, there is no flux of vorticity from the wall! It is all deposited at the leading
edge, and simply diffuses as the flow progresses downstream. On the other hand, a favorable pressure
gradient adds further negative vorticity to the fluid in the downstream flow, while an adverse gradient
adds vorticity of the opposite sign.

20.3.3 Energy equation

Flows with Heat Transfer.

The thin-layer energy equation in the form of Eq. 20.17 describes flows with heat transfer. Written in
conservation form for non-constant density and viscosity, it is

∂ρuht

∂x
+

∂ρvht

∂y
=

∂

∂y
(uτ − q) (20.96)

=
∂

∂y
µ

(
∂u2/2

∂y
+

1
Pr

∂h

∂y

)
. (20.97)

For Pr = 1, which we henceforth assume, the equation simplifies to

∂ρuht

∂x
+

∂ρvht

∂y
=

∂

∂y
µ

∂ht

∂y
. (20.98)

Adiabatic Wall. One immediate solution of Eq. 20.98 is ht = const. A consequence from Eq. 20.17 and
the boundary conditions at y = ∞ is

uτ = q . (20.99)

Dissipation is balanced by heat flux everywhere through the boundary layer. This is the same result as in
Couette flow, but that result was for any constant Pr, while here it is restricted to Pr = 1. For Pr = 1,
by scaling the two layers have the same thicknes, δT = δ.

The solution obtained is

h +
u2

2
= hw = h∞ +

U2

2
. (20.100)
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Differentiating shows that (
∂h

∂y

)
w

=
(

cp
∂T

∂y

)
w

= 0 , (20.101)

that is, qw = 0 . There is no heat flux to the wall. Hence the name “adiabatic wall.” By definition, the
wall temperature with qw = 0 is the recovery temperature. Tw = Tr, with the corresponding enthalpy
hw = hr.

Crocco Integral. Another simple solution is ht ∼ u, that is, ht = hw + Cu, where C is a constant of
integration. Again differentiating at y = 0(

µ
∂h

∂y

)
w

= Pr

(
k
∂T

∂y

)
w

= C

(
µ

∂u

∂y

)
w

, (20.102)

so for Pr = 1
C = −qw

τw
. (20.103)

Thus, the Crocco Integral, valid for Pr = 1, is

h +
u2

2
= hw − qw

τw
u . (20.104)

It can be verified that this solution satisfies the energy equation by substituting it into Eq. 20.98. The
resulting equation rfeduces to the momentum equation! Evaluating the Crocco Integral at y = ∞ provides
another useful relation

hw = hr +
qw

τw
U , (20.105)

which then suggests rewriting the Crocco Integral as

h +
u2

2
= hw + (hr − hw)

u

U
. (20.106)

Furthermore, it gives
qw = (hw − hr)

τw

U
, (20.107)

which can be nondimensionalized with the Stanton number and the skin-friction coefficient to give

St =
Cf

2
; Pr = 1 . (20.108)

This Reynolds Analogy is the same as the one obtained for Couette flow (assuming Pr = const) in the
case Pr = 1.

An empirical relation for arbitrary Pr that is often used is (see below)

St =
Cf

2 Pr
2
3

. (20.109)
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20.3.4 Lighthill’s formula

The fact that integrals are generally insensitive to slight inaccuracies of the integrand can often be
exploited to derive powerful analytical approximations to general, complex nonlinear behavior3. The
integral of the energy equation can be used to express the dependence of the wall heat flux on the parameters
of the flow under rather general circumstances. The case considered here is that studied by Liepmann (JFM
3, 357 1950);

i. Pr = const 6= 1.

ii. h∞ = const, for simplicity

iii. Subsonic compressible flow; neglect dissipation, and u2/2 in ht.

iv. Variable Tw(x), ρ, µ.

Then the enrgy equation simplifies to

∂ρuh

∂x
+

∂ρvh

∂y
= −∂q

∂y
. (20.113)

Multiplying by dy and integrating over the boundary layer, having manipulated terms to avoid problems
at the upper limit, and taking the limit δ → ∞ gives

d

dx

∫ ∞

0
ρu(h − hw) dy = qw (20.114)

d

dx
(ρUh∞θh) = −qw

θh =
∫ ∞

0

ρu

ρ∞U

(
1 − h

h∞

)
dy

(20.115)

Now, the strategy is to consider the velocity profile in Eq. 20.114 to be a function of h, u(h). Then
the integrand becomes a universal function which integrates to a constant. u(h) can be expressed with
enough accuracy for substitution into the integral, which by its averaging property is insensitive to any
small inaccuracies, by evaluating near the wall,

u =̇
(

∂u

∂y

)
w

y =
τw

µw
y

h − hw =̇
(

∂h

∂y

)
w

y = −cpqw

kw
y

h − hw = −Pr
qw

τw
u

(20.116)

3For example, Weyl’s method can be used to estimate the Blasius function (Sec. 20.3.5). It approximates the exact first
integral of the Blasius equation Eq. 20.143

f ′′ = f ′′(0) exp

(
−

∫ η

0

f dη

)
(20.110)

by substituting a Taylor series expansion of f at the wall, f = f(0) + f ′(0) + f ′′(0)η2/2, which after satisfying the wall
boundary conditions yields ∫ η

0

f dη = f ′′(0)
η3

6
(20.111)

with the result

f ′(η) = f ′′(0)

∫ η

0

e−
f′′(0)η3

6 dη . (20.112)
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This looks like the Crocco integral without u2 terms, but with the Prandtl number. Substituting into
(20.114) gives

− 1
Pr

d

dx

τw

qw

∫ ∞

0
ρ(h − hw)(h − h∞) dy = qw , (20.117)

which, after dividing by dh/dy = − cp

k q, becomes

1
Pr

d

dx

τw

qw

∫ h∞

hw

ρµ

Pr

(h − hw)(h − h∞)
q

dh = qw . (20.118)

This rewritten into the following universal form

1
Pr2

d

dx

ρwµwτw(h∞ − hw)3

q2
w︸ ︷︷ ︸

f(x)

∫ 1

0

ρµ

ρwµw

h−hw
h∞−hw

h−hw+hw−h∞
h∞−hw

q/qw
d

h − hw

h∞ − hw︸ ︷︷ ︸
1
α

= qw , (20.119)

such that α integrates to a constant and the equation for f is

2
3

df
3
2

dx
=

Pr2

α

√
ρwµwτw(h∞ − hw)3 . (20.120)

The equation can easily be integrated. After re-expanding the result, we get Lighthill’s formula for the
heat flux

qw =
(

2
3

) 1
3 √

ρwµwτw(h∞ − hw)3
α

1
3

Pr
2
3

(∫ x

0

√
ρwµwτw(h∞ − hw)3 dx

)− 1
3

. (20.121)

In terms of nondimensional coefficients, where St is now conveniently normalized with (h∞ − hw),

St =
qw

ρ∞U(h∞ − hw)
(20.122)

it is

St =
(

2
3
α

) 1
3

Pr−
2
3

√
ρwµw

ρ∞µ∞
Cf

2
∆h

(∫ Rex

0

√
ρwµw

ρ∞µ∞
Cf

2
∆h3 dRex

)− 1
3

. (20.123)

This is the Reynold’s Analogy, showing explicitly the dependence on Pr, the ρµ product, and the enthalpy
difference ∆h = h∞ − hw.

20.3.5 Flat-plate boundary layer

We now seek the solution of the equations of motion for dp/dx = 0. For simplicity we assume ρ, µ

= const. (‘Compressible’ boundary layers can be treated by similar methods, and, in the case of µ ∼ T ,
exactly as here.) The flow is a plane flow so the equations to be solved are

Mass :
∂u

∂x
+

∂v

∂y
= 0 (20.124)

x−momentum : u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2

(20.125)
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The continuity equation is satisfied by using the stream function,

u =
∂ψ

∂y
(20.126)

v = −∂ψ

∂x
. (20.127)

The momentum equation becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (20.128)

Similarity is assumed in the form

ψ ≡ Uδ(x) f(η) (20.129)

η =
y

δ(x)
(20.130)

δ(x) =

√
2νx

U
. (20.131)

Differentiating to get u gives

u =
∂ψ

∂y
= U f ′ , (20.132)

or,

f ′ =
u

U
;

f ′(0) = 0

f ′(∞) = 1
(20.133)

Other derivatives that are needed are
∂

∂y
=

1
δ

∂

∂η
(20.134)

dδ

dx
=

1
2

δ

x
(20.135)

∂η

∂x
= −η

δ

dδ

dx
= − η

2x
(20.136)

∂ψ

∂x
= U

(
f

dδ

dx
+ δf ′ ∂η

∂x

)
(20.137)

= U
δ

2x
(f − ηf ′) (20.138)

∂2ψ

∂x∂y
= − U

2x
ηf ′′ (20.139)

∂2ψ

∂y2
= U

f ′′

δ
(20.140)

∂3ψ

∂y3
= U

f ′′′

δ2
. (20.141)

Substituting in to Eq. 20.128 gives

−Uf ′ U
2x

ηf ′′ − Uδ

2x
(f − ηf ′)U

f ′′

δ
= νUf ′′′ U

2νx
. (20.142)
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After cancelations the Blasius Equation results

f ′′′ + ff ′′ = 0 ;


f ′(0) = 0
f(0) = 0
f ′(∞) = 1

(20.143)

This nonlinear equation can be compared to the linear ones derived for the Rayleigh problem Eq. 19.23
and the wake Eq. 20.64, which have similarities. Note that f ′′′(0) = 0; the curvature of the velocity profile
at the wall is zero, as we have already seen.

The system of equations and boundary conditions comprises a two-point boundary-value problem. It
can be solved as an initial-value problem by the shooting method, which converges by trial and error on
a value f ′′(0) assuring the boundary condition at ∞. The result is f ′′(0) = 0.46952 and the solution,
labeled n = 0, is shown in Fig. 62. The shear stress at the wall is given by

Figure 62. Velocity profiles for different pressure gradients

τw = µ

(
∂u

∂y

)
w

= µU

√
U

2νx
f ′′(0) . (20.144)

In terms of the skin friction coefficient, it is

Cf =
τw

1
2ρU2

=

√
2ν

Ux
f ′′(0) (20.145)

Cf =
0.66411√

Rex
. (20.146)
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20.3.6 Boundary Layers on Curved Bodies

The x-momentum boundary-layer equation for a general body is

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
. (20.147)

In terms of the stream function the momentum equation is

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= U

dU

dx
+ ν

∂3ψ

∂y3
(20.148)

In order to calculate such a boundary layer it is first necessary to solve the outer potential flow and
determine the velocity history U(x) at the surface. Simple plane flows can be solved by complex variable
mapping techniques. Otherwise, CFD numerical solution methods are used. In incompressible flow a
stagnation point gives, U ∼ x. Incompressible flow over an infinite wedge of half angle n

n+1π gives U ∼ xn.

It turns out that the power-law behavior U ∼ xn admits similarity of the form,

ψ = U(x)δ(x) f(η) (20.149)

η =
y

δ(x)
(20.150)

δ(x) =

√
2

n + 1
νx

U(x)
(20.151)

U(x) = K xn (20.152)

Substituting into the momentum equation results in the following nonlinear ordinary differential equation
for f :

f ′′′ + ff ′′ +
2n

n + 1
(
1 − f ′2) = 0 ; Faulkner − Skan Equation (20.153)

Results:

δ(x) ∼
√

νx

U(x)
∼ x

1−n
2 (20.154)

Cf =

√
2(n + 1)

Rex
f ′′(0) ∼ x−n+1

2 (20.155)

f ′′′(0) = − 2n

n + 1
(20.156)

n = −0.0904 =⇒ f ′′(0) = 0 (20.157)

Velocity profiles for 3 different values of n are given in Fig. 62.
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21 Turbulent boundary layers

We describe the effort that has been made over many decades to origanize a purely emprical science,
the study of incompressible turbulent boundary layers. Experiments show that the velocity profile u(y)
has two regions, an inner and an outer. Fig. 63 shows the latest experimental data for the velocity profile
of a pipe boundary layer measured to better than 5% accuracy over a very large range of Reynolds number
in the same facility (Zagarola et al. 1997). Data upon which earlier interpretations and evaluation of

Figure 63. Data of Zagarola et al. 1997

the coefficients to be derived are shown in Fig. 64. The variables at a given streamwise station x that

Figure 64. Compendium of early data on turbulent boundary layers

characterize the flow are:

1. the velocity profile u(y)
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2. the free-stream velocity U

3. the boundary layer thickness δ(x)
4. the wall stress τw(x)
5. the fluid properties ρ, η, and ν = η/ρ

6. the independent variable y.

In the inner region the velocity depends only on y the distance from the wall, the shear stress and the fluid
properties,

u = fnc(y, τw, ρ, ν) . (21.1)

In order to nondimensionalize, the characteristic velocity in the near-wall region is the friction velocity,

uτ =
√

τw

ρ
, (21.2)

and the corresponding length is the friction length ν/uτ . Defining

u+ =
u

uτ
; y+ =

yuτ

ν
, (21.3)

the nondimensional form of the inner behavior is

u+ = f(y+) ; y+ −→ 0 . (21.4)

This is the Law of the Wall, which is associated with the names Prandtl, von Karman and Nikuradse, who
obtained the experimental data on which the classical form is based. Note that at the wall

u =̇
τw

µ
y , (21.5)

so
u+ = y+ ; y+ → 0 . (21.6)

In the outer region the effect of the wall is to cause a velocity defect, as in a wake, which does not
depend on the viscosity. The characteristic length there is the boundary layer thickness δ (R for a pipe)
and we take again as the characteristic velocity uτ (u for a pipe). Thus,

U − u = fnc(y, δ, uτ ) . (21.7)

The nondimensional distance from the wall is η = y/δ, so

U − u

uτ
= F (η) ;

y ∼ δ
y −→/ 0

(21.8)

This is the Defect Law, and is due to von Karman.

The objective is to deduce a universal law for the velocity profile in a region of overlap where both
Eqs. 21.4 and 21.8 are applicable. The derivation is due to Millikan (1938). For each region there is an
appropriate Reynolds number based on the boundary layer thickness,

Re+ =
δuτ

ν
(21.9)

Re =
δU

ν
, (21.10)
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so y+ and η are related by
y+ =

yuτ

ν
= Re+ η . (21.11)

In the overlap region, we expect

u

uτ
= G

(
y+, η

)
= G(Re+η, η) . (21.12)

At y = δ this becomes
U

uτ
= G1(Re+) . (21.13)

This is an implicit equation for τw(U, δ, ρ, ν), so it is the skin friction law for turbulent boundary layers.
Note that Cf = 2/G2

1. From Fig. 63 it can be seen that the overlap region is larger at higher Reynolds
number. In the above-defined notation, the Law of the Wall and the Defect Law become

u

uτ
= f(Re+ η) ; η −→ 0 (21.14)

u

uτ
= G1(Re+) − F (η) ≡ h(Re+, η) ; η −→/ 0 . (21.15)

“Overlap” implies the following equality

f(Re+η) = G1(Re+) − F (η) , (21.16)

suggesting that in some sense the variables are separable. To make this precise, differentiate f in two
different ways and use Eq. 21.16,

∂f

∂Re+
= f ′η = G′

1

∂f

∂η
= f ′Re+ = −F ′ .

(21.17)

The primes denote differentiation with respect to the arguments, which are different for each function.
Solving for f ′ gives

G′
1Re+︸ ︷︷ ︸

fnc(Re+)

+ = −F ′η︸ ︷︷ ︸
fnc(η)

= const ≡ 1
κ

. (21.18)

κ is the Karman constant. Integrating G1 and F separately in Eq. 21.18 gives

G1(Re+) =
1
κ

lnRe+ + C (21.19)

F (η) = −1
κ

ln η + D ; η −→/ 0 , (21.20)

where C and D are constants of integration. These two equations are of completely different natures,
because the first involves only constants at each x location, while the second deals with y variations.
Because of that fact, C is strictly constant and the friction law Eq. 21.13 becomes

U

uτ
=

1
κ

lnRe+ + C . (21.21)
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On the other hand, because of the limited range of the result (21.20), D may not in general be constant
for all η, so set

D = −g∗(η) . (21.22)

Now, to determine what f and h are, we try a simple sum which will be forced to behave properly at
the wall and at the edge,

u

uτ
= G(Re+η, η) = f(Re+η) + h(Re+, η) . (21.23)

That is, it is required that
lim
η→0

h(Re+, η) = 0 . (21.24)

From Eqs. 21.19 and 21.20 we have for the Defect Law (Eq. 21.15)

u

uτ
=

1
κ

lnRe+ + C +
1
κ

ln η + g∗(η) (21.25)

=
1
κ

lnRe+η + C + g∗(η) . (21.26)

Thus, the required behavior results if we separately take f and h to be

f(Re+η) =
1
κ

ln Re+η + C +g∗(0) (21.27)

h(Re+, η) = g∗(η) −g∗(0) , (21.28)

where the last terms in each equation have been added and subtracted to insure Eq. 21.24. In Eq. 21.27
we let E = C + g∗(0). Simplifying the results, we get

Overlap
u

uτ
=

1
κ

lnRe+η + φ(η)

Wall u+ =
1
κ

ln y+ + φ(0)

Friction
U

uτ
=

1
κ

lnRe+ + φ(1)

Overlap
U − u

uτ
= −1

κ
ln η − φ(η) + φ(1) ,

(21.29)

where φ(η) = g∗(η) − g∗(0) + E. Zagarola et al. (1997) fitted their data in the wall region to get

u+ =
1

0.436
ln y+ + 6.13 . (21.30)

Thus the Karman constant is κ = 0.436 . In terms of the primitive variables, the results are

Overlap
u

uτ
=

1
κ

ln
(yuτ

ν

)
+ φ

(y

δ

)
Wall

u

uτ
=

1
κ

ln
(yuτ

ν

)
+ φ(0)

Friction
U

uτ
=

1
κ

ln
(

uτδ

ν

)
+ φ(1)

Overlap
U − u

uτ
= −1

κ
ln

(y

δ

)
− φ

(y

δ

)
+ φ(1) ,

(21.31)
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The thickness δ is not well defined, so it is better to express, say, the Friction Law in terms of integral
definitions of thickness, such as the momentum thickness Θ (Coles, 1954),

Θ =
∫ δ

0

u

U

(
1 − u

U

)
dy , (21.32)

and the displacement thickness,

δ∗ =
∫ δ

o

(
1 − u

U

)
dy . (21.33)

Then
U − u

uτ
= −1

κ
ln

RΘ

c1 − c2(uτ/U)
+ φ(1) , (21.34)

where RΘ is the Reynolds number

RΘ =
UΘ
ν

, (21.35)

and c1 and c2 are

c1 =
U

uτ

δ∗

δ
=

U

uτ

∫ 1

0

(
1 − u

U

)
dη =

∫ 1

0
F (η) dη

c2 =
(

U

uτ

)2 (
δ∗ − Θ

δ

)
=

(
U

uτ

)2 ∫ 1

0

(
1 − u

U

)2
dη =

∫ 1

0
F 2(η) dη

(21.36)

c1,2, which are functions of the unknown uτ , are evaluated from the first integral, where the experimental
profile data are integrated using a consistent definition of the upper limit δ.
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22 Low Reynolds Number Flow

22.1 Stokes flow – Creeping flow

Low Reynolds number, incompressible flow.
The Navier Stokes equation for incompressible flow (constant viscosity), Eq. 3.28, becomes in the limit of
low Re,

∇p = µ ∇u2 , (22.1)

with the continuity equation
∇ · u = 0 . (22.2)

Because
∇2u = ∇(∇ · u) −∇× (∇× u) , (22.3)

the momentum equation is
∇p = −µ ∇× ω . (22.4)

Note that these equations do not depend on the density of the fluid. Inertia, and therefore the density, play
no role in Stokes flow. Thus, if L is a characteristics size of the body, and U is the free-stream velocity, by
dimensional reasoning the drag must go as

D ∝ µUL . (22.5)

Because the Laplacian is interchangable with both the grad and curl operators, when the divergence of
Eq. 22.1 is taken, there results

∇2p = 0 , (22.6)

(having used ∇ · u = 0), and when the curl is taken the result is

∇2ω = 0 (22.7)

(having used curl grad = 0).

The classical solution for Stokes flow, which we now outline, is for the motion of a sphere of radius R

moving at constant velocity U in the z direction in a uniform fluid (see Fig. 65). Various derivations of the
solution can be found in standard fluid mechanics texts, such as Batchelor (1973), Landau & Lifshitz (1959)
and Lamb (1945). The vorticity generated by the motion of the sphere is azimuthal, in the form of vortex
rings with axes falling on the z-axis, ω = ωθ. In spherical symmetry the pressure and vorticity can be
expressed in terms of spherical harmonics, and the only one with the required symmetry about the z axis
is the dipole aligned with the z axis,

p − p∞
µ

= C
U · r
r3

. (22.8)

The vorticity is an axial vector, and the only way this can be constructed from the two polar vectors
available, U and r, is by crossing them,

ω = C
U × r

r3
. (22.9)

An axisymmetric velocity field in spherical coordinates (r, φ, θ) is expressed in terms of the Stokes Stream
Function Eq. 16.27, while the vorticity, with the symmetry ∂/∂θ = 0, is

ωθ =
1
r

∂rv

∂r
− 1

r

∂u

∂φ
. (22.10)
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Figure 65. Schematic sketch of a sphere moving at velocity U in the z-direction, with the spherical polar co-ordinate
system defined.

Eqs. 22.9 and 22.10 give
∂2ψ

∂r2
+

sinφ

r2

∂

∂φ

(
1

sin φ

∂ψ

∂φ

)
= C

U sin2 φ

r
. (22.11)

In view of the rhs, trying the solution
ψ = U sin2 φ f(r) (22.12)

gives

f ′′ − 2f

r2
= −C

r
, (22.13)

the solution of which is
f(r) =

C

2
r +

L

r
+ Mr2 . (22.14)

The normal-velocity boundary condition u(R) = U cos φ requires f(R) = R2/2. At r → ∞, the velocity

(stream function) is zero
f

r2
→ 0. These two conditions determine L and M . The no-slip tangential-velocity

condition leads to C = 3
2R. This immediately gives the pressure

p − p∞ = −3
2
µR

U · r
r3

, (22.15)

and the stream function is (Batchelor, 1973)

ψ =
UR2 sin2 φ

4

(
3

r

R
− R

r

)
(22.16)

Note that the stream function does not depend on µ. The streamlines at the instant the sphere is at the
origin are shown in Fig. 66. At every instant before and after, the instantaneous streamlines are different,
following the body as it moves. The pathlines differ from the instantaneous streamlines, and tend to close
on themselves. The “flow” inside the sphere is of course fictitious, but interesting. The flow is symmetric
fore and aft owing to the linearity. Thus, there is no “wake;” the vorticity diffuses equally in all directions.

180 April 23, 2001



Ae/APh/CE/ME 101 Notes

Figure 66. Streamlines for moving sphere in low Reynolds number (Stokes) flow.

The steady stream lines in the system in which the sphere is fixed and the velocity in the free stream is
Uk is shown in Fig. 67.

In the latter system the r and φ components of the velocity are (Landau & Lifshitz, 1959)

u = U cos φ

(
1 − 3R

2r
+

R3

2r3

)
(22.17)

v = −U sinφ

(
1 − 3R

4r
− R3

4r3

)
. (22.18)

In vector notation the velocity field is given by (Lagerstrom, 1964)

u = Uk − 3
2

UR

r
k +

UR

4
∇

(
R2 ∂1/r

∂z
+ 3

z

r

)
, (22.19)

where k is the unit vector in the z-direction. The first term is the free-stream velocity. The second is the
only rotational contribution, and therefore is the only term which contributes to the viscous stress and the
drag. It gives the 1/r term in Eq. 22.17 and twice the 1/r term in Eq. 22.18. The first and third terms
are irrotational.

The drag is calculated by integrating the z-component of the normal pressure and viscous stresses and
the tangential viscous forces,

D =
∫

(−p cos φ + τrr cos φ − τrφ sinφ) dS . (22.20)
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Figure 67. Streamlines for fixed sphere in low Reynolds number (Stokes) flow with freestream velocity U .

It turns out that the pressure integrates out, and the viscous stresses give a force in the z direction that is
at every point the same,

τw =
3µU

2R
k , (22.21)

so the total drag results from simply multiplying by the surface area,

D = 6π R µ U , (22.22)

or, defining CD = D/1
2ρU2A, with the frontal area A = πR2,

CD =
24
Re

; Re =
UD

ν
. (22.23)

A comparison of flow visualization of a sphere moving in a tube at Re = 0.1, and the stream function
of the body-fixed system is given in Fig. 68. The streamlines near the body agree very well, but far from
the body the constraint of the tube limits the curvature of the flow.

Stokes flow over a cylinder is impossible. Repeating the above analysis in a cylindrical polar coordinate
system appropriate for low Reynolds number flow over a cylinder, i.e., assuming the form of the solution
analogous to Eq. 22.12,

ψ = U sin2 φ f(r) , (22.24)

gives, instead of Eq. 22.13

f ′′ +
f ′

r
− f

r2
= −C

r
, (22.25)
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Figure 68. Calculated streamlines in Stokes flow overlaid on a streak photograph of a sphere in a tube, the latter
from Van Dyke, 1982.

and, for the velocity field,

u = U + CU

(
−1

2
ln

r

R
− 1

4
+

R2

4r2

)
+ Cr

U · 2r

r2

(
1 − R2

r2

)
, (22.26)

where the constant C would have to be evaluated from the boundary condition at r → ∞. But this can’t
be carried out because of the logarithmic term. Thus, there is no solution for Stokes flow over a cylinder.
Because the flow over a cylinder doesn’t “escape” around the ends, as with a sphere, the very large extent
of the perturbation induced by Stokes flow just becomes impossibly large for a cylinder.

Integration of the forces on the body gives the drag in terms of C,

D = 2πµU C . (22.27)

Other bodies. The drag for bodies of other shapes has been calculated. For example, a disk aligned
perpendicular, or parallel, to the direction of motion has drag

CD = 16 µ U R (22.28)

CD =
32
3

µ U R , (22.29)

respectively. Thus, in creeping flow the drag does not depend much on the shape or orientation of the
body.

Balance between inertial and viscous forces. In the coordinate system in which the body is stationary, the
velocity far away from the origin can be approximated by the linearizing assumption

u = Uk + u′ , (22.30)

183 April 23, 2001



Ae/APh/CE/ME 101 Notes

where u′ ¿ U . From the solution the order of magnitude of the velocity components is

u′ ∼ UR

r
. (22.31)

Thus in the solution the size of the inertial and vicous terms are

ρu · ∇u ∼ ρU · ∇u′ ∼ ρU2 R

r2
(22.32)

µ∇2u′ ∼ µ
UR

r3
, (22.33)

and their ratio is
Inertia
Viscous

∼ Re
r

R
. (22.34)

This result says that in low Reynolds number flow the effect of the body is felt very far from the body,
and, in fact, the solution is not uniformly valid over the entire domain. Thus, though the solution is good
close to the body (in particular, the drag), far away it is erroneous. Corrections can be made as described
later.

22.2 The Oseen equations

The Stokes equations are linear, and, as such, can be considered as linearizations of the Navier-Stokes
equations about u = 0. An improvement can be made for the behavior in the far field if, instead, the
equations are linearized about the velocity U . The resulting solution will not be as good near the body,
but for low Re flow the intertial terms there will be negligible anyway. This approach also make it possible to
obtain a solution for low Reynolds number flow over a cylinder, not possible in the Stokes approximation.
In the system in which the sphere is moving, providing the motion is steady, Eq. 16.91 holds for the
nonsteady inertial term, and the convective term is quadratic and smaller, the Oseen equations become

−ρU · ∇u = −∇p + µ∇2u . (22.35)

This equation is linear, and as yet no restrictions on Re have been made. However, a closed-form solution
is not available, and only approximate solutions for small Re can be found, which is what was desired,
anyway. Because of the linearization about the free-stream velocity, the solution should not be very good
near the body where, in fact, in the body-fixed coordinate system the velocity must go to zero. However,
for low Re it turns out that the solution there is almost as good as the Stokes solution. The stream function
resulting from an analysis similar to that above for Stokes flow about a sphere is (Batchelor, 1973)

ψ = UR2

{
− R

4r
sin2 φ +

3(1 − cos φ)
Re

[
1 − e−Re r

4R
(1+cos φ)

]}
, (22.36)

where Re = UD/ν. In this solution, the fore-and-aft symmetry of Stokes flow is lost, and the beginnings
of a “wake” appear. The distortion of the instantaneous steamlines is shown in Fig. 69, in which a body
is moving from right to left with velocity U . The instantaneous streamlines follow the body as it moves.
Note that the fluid appears to be convecting through the body, apparently an artifact of the approximate
nature of the solution near the body, where the convection isn’t quite right. In Fig. 70, a uniform velocity
U from the left has been added, which fixes the sphere. In both views the “wake” on the right is seen.

The problem of computing the flow over a cylinder can now be resolved by taking the Oseen solution
for the cylinder, which is valid far away from the body, and requiring it to match with the Stokes solution
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Figure 69. Oseen flow over a moving sphere.

Eq. 22.26 near the body. The result is that (Lamb, 1945)

C =
2

1
2 − γ − ln

(
Re
8

) , (22.37)

where γ is Euler’s constant = 0.57722, so (Batchelor, 1973)

CD =
8π

Re ln
(

7.4
Re

) (22.38)

22.3 Drag at higher Reynolds numbers – D vs. Re.

Eq. 22.23 gives the drag for low Re, but that covers only a small part of the range of Re that is impor-
tant for fluid mechanics applications. The remainder can only be treated by experimental measurement.
Figure 71 gives the drag coefficient over a large range of Re, obtained from both theory and experiment
(Lagerstrom, 1964, Fig. B,16b). The so-called “drag-crisis” at about Re = 3 × 105 is a notable effect
unpredictable by any theory, which has important applications in technology, such as baseball and cricket.

22.4 Lubrication theory

The objective of a mechanical bearing is to support a large load with minimal losses. To understand the
mechanisms of lubrication theory we consider the simple linear geometry of a pad bearing (see Fig. 72).

High pressures are developed by the fundamentally important fact that the slot through which the
lubricating fluid flows is not of unifom width, h = h(x). We consider a long pad, L À h, inclined at a
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Figure 70. Oseen flow as seen in a body-fixed coordinate system.

Figure 71. Sphere drag over eight orders of magnitude in Reynolds Number.

small angle α ¿ 1. The combination of a moving block plus a confined channel yields a superposition of
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Figure 72. A pad bearing in plane geometry

Poiseuille and Couette flows,

u(x, y) = − 1
µ

(
−dp

dx

)
y(h − y)

2
+ U

h − y

h
. (22.39)

This solution can be written in terms of the volume flux

Q =
∫ h

0
u dy = −dp

dx

h3

12µ
+

Uh

2
, (22.40)

yielding for the pressure gradient,

dp

dx
(x) = 6µ

(
U

h2(x)
− 2Q

h3(x)

)
. (22.41)

With
α = −dh

dx
(22.42)

the pressure integrates to

p − p1 =
∫ h2

h1

dp

dx

dx

dh
dh =

6µ

α

[
U

(
1
h
− 1

h1

)
+ Q

(
1
h2

− 1
h2

1

)]
. (22.43)

To evaluate the load-carrying pressure that is developed in the bearing, it is necessary to complete the flow
loop. The flow connects over the top where the flow area is large, so there is little resistance, and p1 = p2.
Using this in Eq. 22.43 evaluated at p2 gives

Q = U
h1h2

h1 + h2
. (22.44)

Substituting for Qin Eq. 22.43 gives

p − p1 =
6µU

α

(h1 − h)(h − h2)
h2(h1 + h2)

. (22.45)

As drawn above, h1 > h > h2, so p > p1 . But p1 = p2, so there must be a maximum pressure. From
Eqs. 22.41 and 22.44, it occurs at

h =
2h1h2

h1 + h2
, (22.46)
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with the result

(p − p1)max =
6µU

α

(h1 − h2)2

4h1h2(h1 + h2)
. (22.47)

An optimal bearing design generates a large bearing pressure, so in general

∆h

h1
= O(1) , (22.48)

and
α =

∆h

L
∼ h1

L
. (22.49)

Thus

∆pmax ∼ µUL

h2
1

. (22.50)

An effective bearing runs with large µ, U and L, and small h1. However, more important is its “efficiency,”
that is the bearing load versus the frictional force. The total normal force supported is

Fn =
∫ h2

h1

∆p

α
dh ∼ µUL

h2
1

, (22.51)

while the tangential forces are of order

Ft =
∫ L

0
µ

du

dy
dx ∼ µUL

h1
. (22.52)

Therefore,
Tangential

Normal
∼ h1 , (22.53)

so the relative frictional forces are reduced as the bearing gap is reduced. This explains why bearings must
be machined very accurately to remove roughness and ensure that the surfaces can be very close without
touching.
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23 Turbulence

23.1 Reynolds Averaging

In this section we discuss the equations for incompressible turbulent shear flow, for simplicity, with
a steady mean flow. In an attempt to get managable equations, the flow is decomposed into mean and
fluctuating components

u = u + u′ ; u′ = 0 (23.1)(
∂u

∂x

)
=

∂u

∂x
, (23.2)

etc. We use Cartesian tensor notation.

The continuity equation is
∂(ui + u′

i)
∂xi

= 0 , (23.3)

which, when averaged gives
∂ui

∂xi
= 0 =⇒ ∂u′

i

∂xi
= 0 . (23.4)

The mean and fluctuating components are separately incompressible.

The momentum equation, in conservation form, is

∂(ui + u′
i)

∂t
+

∂(ui + u′
i)(uj + u′

j)
∂xj

= −∂(p + p′)
∂xi

+ ν
∂2(ui + u′

i)
∂xj

2
. (23.5)

When averaged, the first term gives nothing, because the mean flow is steady. The second term is

∂ui uj

∂xj
+

∂uiu
′
j

∂xj
+

∂uju
′
i

∂xj
+

∂u′
iu

′
j

∂xj
. (23.6)

When averaged, only the first and last terms contribute. Thus, the momentum equation becomes

∂ui uj

∂xj
+

∂u′
iu

′
j

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj
2

. (23.7)

A new term and new mechanism for momentum transport arises. When moved to the r.h.s., it becomes a
stress, the Reynolds stress,

τij = u′
iu

′
j . (23.8)

Thus, using the averaged continuity equation,

uj
∂ui

∂xj
= −1

ρ

∂p

∂xi
− ∂u′

iu
′
j

∂xj
+ ν

∂2ui

∂xj
2

. (23.9)

u′
iu

′
j is an unknown quantity involving the product of velocities. An equation for the first moment of

velocity (the momentum) is expressed in in terms of an unknown second moment (velocity2). It can now
be seen that this procedure leads to an endless chain: Each equation, when averaged, will be in terms of
unknown higher-order products. The only recourse is to at some stage make an assumption which closes
the system (or to solve the full Navier-Stokes equations from the outset!).
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A shear flow producing positive vorticity is expected to result in a positive correlation u′
iu

′
j , because

fluctuation flux upward v′ > 0 will carry momentum from high-velocity to low-velcocity regions, u′ > 0.
This is analogous to the way molecules with random thermal velocities convect momentum in shear flows
by molecular diffusion. Splitting the ‘viscous Bernoulli equation’ (Eq. 3.30), in Cartesian tensor notation
there results,

∂ui

∂t
= − ∂

∂xj

(
p

ρ
+

u2

2
+

u′2

2

)
+ εijk (uj ωk + u′

jω
′
k) + ν

∂2ui

∂xj
2

, (23.10)

where εijk is the permutation operator, so that

εijk uj ωk = (u × ω)i . (23.11)

The cross-product terms u′
jω

′
k represent the cross-stream derivatives of the Reynolds stress. For example,

in 2-D flow with 3-D turbulence, they are

v′ω′
z − w′ω′

y =̇ − ∂u′v′

∂y
, (23.12)

where the =̇ means that we neglect normal stress (turbulent ‘pressure’) in favor of shear (Reynolds) stress.
In 2D flow v′ω′

z could be represented in terms of a mixing length and the gradient ∂u/∂y (a ‘mixing length
theory of vorticity transfer’, Tennekes & Lumley, p80), but w′ω′

y would have to be represented by some
out-of-plane gradient, which is impossible in 2D. By differentiating the rhs of Eq. 23.12, represented in
terms of a mixing length, u′`∂u/∂y, it can be seen that the ω′

y term must be associated with ∂`/∂y, i.e.,
with a change of scale, or vortex stretching. This is called the ‘vortex stretching force’ (because the term
is on the rhs of the momentum equation!) (Tennekes & Lumley, p. 80).

Splitting Eq. 2.57 gives the turbulent vorticity equation,

uj
∂ωi

∂xj
= −u′

j

∂ω′
i

∂xj
+

1
2

ω′
jε

′
ij +

1
2

ωj εij + ν
∂2ωi

∂xj
2

(23.13)

= −∂u′
jω

′
i

∂xj
+

∂ω′
ju

′
i

∂xj
+

1
2

ωj εij + ν
∂2ωi

∂xj
2

, (23.14)

where the second form follows because, since (div curl) = 0, the vorticity, both mean and fluctuating, is
divergence free. The first term on the right is analogous to the Reynolds stress, and the second term is the
gain of mean vorticity due to the stretching of fluctuating vorticity by fluctuating strain.

To study vorticity interactions, one needs equations equivalent to the mean and fluctuationg kinetic
energy equations,

uj
∂ 1

2ωi
2

∂xj
= − ∂ωi ω′

iu
′
j

∂xj︸ ︷︷ ︸
transport

+ u′
jω

′
i

∂ωi

∂xj︸ ︷︷ ︸
production

+ ωi ωjεij︸ ︷︷ ︸
stretching

+ ωi ω′
jε

′
ij︸ ︷︷ ︸

stretching

(23.15)

+ ν
∂2 1

2ωi
2

∂xj
2︸ ︷︷ ︸

viscous
transport

− ν

(
∂ωi

∂xj

)2

︸ ︷︷ ︸
viscous

dissipation

.
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uj
∂ 1

2ω′
i

2

∂xj
= − u′

jω
′
i

∂ωi

∂xj︸ ︷︷ ︸
production

+ − 1
2

∂u′
jω

′
i
2

∂xj︸ ︷︷ ︸
transport

+ ω′
iω

′
jε

′
ij︸ ︷︷ ︸

stretching

+ ω′
iω

′
j εij︸ ︷︷ ︸

stretching

+ ωj ω′
iε
′
ij︸ ︷︷ ︸

stretching

(23.16)

+ ν
∂2 1

2ω′
i

2

∂xj
2︸ ︷︷ ︸

viscous
transport

− ν

(
∂ω′

i

∂xj

)2

︸ ︷︷ ︸
viscous

dissipation

.

23.2 Closure – Turbulence Models

We outline the ideas behind two historical simple models.

23.2.1 Eddy Viscosity Model.

The idea behind the eddy viscosity is that, as with molecular transport, turbulent transport is driven
by the mean velocity gradient. This was the first of many gradient-transport models. Thus, in a plane
shear flow,

u′v′ = νT
∂u

∂y
. (23.17)

Clearly, νT must be determined empirically, and, unfortunately, it turns out to be far from constant. For
example, it must go to zero at any wall, where (u′, v′) = 0.

23.2.2 Prandtl’s Mixing Length Theory.

Prandtl exploited the analogy between molecular and turbulent transport, representing the interaction
between two fluid particles as the interaction between two molecules. In a plane shear flow, kinetic theory
states that a molecule moving downward one mean-free-path Λ in its thermal motion from a high-speed
region u + ∆u at y + ∆y to a low-speed region u at y transports excess momentum m∆u, where m is its
mass. The number of molecules doing so per unit time per unit area, on average, is nc/4. Thus, molecular
transport of momentum gives

τ ∼ m∆u
nc

4
. (23.18)

The density is ρ = mn, and ∆u = Λ∂u/∂y, so

τ ∼ ρcΛ
4

du

dy
. (23.19)

Therefore, the molecular kinetmatic viscosity is

ν =
cΛ
4

. (23.20)

Note that, using the relation between collision cross section σ and Λ

Λ =
1

nσ
, (23.21)
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the temperature dependence of µ can be exhibited

µ ∼ mc(T )
4σ(T )

. (23.22)

The application to turbulence comes in associating the vertical thermal velocity with v′ and the mean
free path with a “mixing length” l,

νT = kv′l . (23.23)

23.2.3 Other closure schemes

Another approach to closing the Reynolds averaged equations is to develop equations for higher-order
moments, which can be used to evaluate the Reynolds stress. These equations will, in turn, have even
higher moments, which must be modeled. The hope is that with more equations, and with models for only
very high order correlations, the physics might be represented more accurately. Intuitively, the idea is that
the approximations are being pushed to smaller and smaller scales.

Some of the equations that provide fuel for this activity are given below.

Mean Kinetic Energy

ρ
Du2/2

Dt
+ ρ uj

∂u2

∂xj
=

∂

∂xj

(
−puj︸ ︷︷ ︸

pressure
work

+ η εijui︸ ︷︷ ︸
viscous

transport

− ρ u′
iu

′
j ui︸ ︷︷ ︸

Reynolds
stress

transport

)
− Φ︸︷︷︸

dissipation

+ ρ u′
iu

′
j

εij

2︸ ︷︷ ︸
turbulence
production

(23.24)

Turbulent Kinetic Energy – Steady Flow

ρ uj
∂u′2

∂xj
= − ∂

∂xj

(
−p′uj︸ ︷︷ ︸

pressure
work

+
1
2
ρ u′

i
2uj︸ ︷︷ ︸

turbulent
transport

− η u′
iε
′
ij︸ ︷︷ ︸

viscous
transport

)
− ρ u′

iu
′
j

εij

2︸ ︷︷ ︸
turbulence
production

− η

2
ε′ijε

′
ij︸ ︷︷ ︸

viscous
dissipation

(23.25)

Turbulent dissipation ≡ ε =
η

2
ε′ijε

′
ij (23.26)

Energy Equation

∂T

∂t
+ uj

∂T

∂xj
= −∂u′

jT
′

∂xj
− κ

∂2T

∂xj
2

(23.27)

qj = cpρ u′
jT

′ − k
∂T

∂xj
(23.28)
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23.3 Turbulent Scales

The important scales of turbulence are defined in this section. Integral scale, `

(Example: transport scale transverse to the free-stream)
Size of the “‘eddies,” at which turbulent convection balances inertia (`/L = u′/U).

` =
1

v′2

∫ ∞

0
v′(y + η) v′(y) dη (23.29)

Kolmogorov scale, µ

The smallest (rapidly adjusting) scale of turbulence, at which dissipation occurs.
Dimensional analysis: 2 variables (ν, ε) to make a length (ε = turbulent dissipation; Eq. 23.26).

µ =
(

ν3

ε

) 1
4

, (23.30)

from which,

τ =
(ν

ε

) 1
2 (23.31)

u = (νε)
1
4 (23.32)

Re ≡ µu

ν
= 1 (23.33)

Taylor microscale, λ

Time scale of strain-rate fluctuations (τT ).
Take

ε =
1
ρ

(η

2
ε′ijε

′
ij

)
∼ ν

(
∂u′

∂x

)2

≡ ν
u′2

λ2
, (23.34)

where u′ is a typical velocity fluctuation scale. There is actually no reason to associate the velocity scale
u′ with ε, but the corresponding time,

τT ∼ λ

u′ , (23.35)

is well defined.
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24 Buoyancy Effects

The study of buoyancy effects often specializes to approximations more applicable to atmospheres
(gases) than to oceans (liquids). Thus in this section we talk mostly about gases, but from time to time
write equations applicable also to liquids.

24.1 Hydostatic compressible gas

In a neutrally stable atmosphere with no motion

ds

dz
= 0 . (24.1)

Thus for a perfect gas,
p ∼ ργ ∼ T

γ
γ−1 , (24.2)

or, in terms of a reference state (po, ρθ, θ),

p

po
=

(
ρ

ρθ

)γ

=
(

T

θ

) γ
γ−1

. (24.3)

θ = T

(
p

p0

)− γ−1
γ

(24.4)

ρθ = ρ

(
p

p0

)− 1
γ

(24.5)

ρθ and θ are the potential density and temperature, respectively, and are the density and temperature of
the fluid at pressure p0. In a neutrally stable atmosphere they remain constant when a fluid particle moves
upward or downward (a more precise statement will be made later).

Differentiating Eqs. 24.4 and 24.5, and using the perfect gas equation of state (dρ/ρ = dp/p = −dT/T ),

dθ

θ
=

dT

T
− γ − 1

γ

dp

p
(24.6)

dρθ

ρθ
=

dρ

ρ
− 1

γ

dp

p
(24.7)

= −
(

dT

T
− γ − 1

γ

dp

p

)
, (24.8)

so

1
θ

dθ

dz
= − 1

ρθ

dρθ

dz
=

1
T

dT

dz
− γ − 1

γ

1
p

dp

dz
. (24.9)

The z-momentum equation for a stationary fluid gives dp/dz = −ρg, so

1
θ

dθ

dz
=

1
T

(
dT

dz
+

g

cp

)
. (24.10)
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For a neutrally stable atmosphere, ds/dz = dθ/dz = 0, so

dT

dz
= − g

cp
. (24.11)

This is the so-called adiabatic lapse rate. However, note that the stipulation was that the entropy be
constant. That is a stronger requirement than that any changes be adiabatic (no heat transferred from
outside the system). Constant entropy means that the process be adiabatic and reversible, so the motions
introduced to test the stability must be made reversibly.

For the neutrally stable atmosphere, the temperature profile is

T = T0 − gz

cp
. (24.12)

The density profile is given by

1
ρ

dρ

dz
=

1
γp

dp

dz
= − g

γRT (z)
=

g

a2
, (24.13)

where a is the sound speed. The charcteristic depth a2/g is called the scale height,

Λ =
a2

g
. (24.14)

Small amplitude long wavelength gravity waves travel at a speed c given by Froude number based on depth
(Λ) unity,

Fr =
c√
gΛ

=
c

a
= M = 1 , (24.15)

so the waves also travel at Mach 1 and are therefore also acoustic waves. Substituting the temperature
variation Eq. 24.12 into Eq. 24.13 and integrating gives

ρ = ρ0

(
gz

1 − cpT0

) 1
γ−1

. (24.16)

24.2 Boussinesq approximation (Spiegel &Veronis, 1960)

The Boussinesq approximation applies to a thin layer (much thinner than the scale height of the
system) of compressible fluid within which density fluctuations are no larger than the change of density
due to gravitational effects. Dissipation in a gas scales as M2/Re and so is small for atmospheric motions.

The pressure, density and temperature are represented by sums of the spatial mean value, the hydro-
statically varying component, and the flow-driven component,

p = p + ps(z) + p′(x, y, z, t) (24.17)

ρ = ρ + ps(z) + ρ′(x, y, z, t) (24.18)

T = T + Ts(z) + T ′(x, y, z, t) (24.19)

The scale height for each is, for example,

Λp =
∣∣∣∣1p dps

dz

∣∣∣∣−1

. (24.20)

The Boussinesq approximation is:
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1. The layer thickness D is very small compared to the scale height Λ

D ¿ Λρ (24.21)
D

ρ

dρs

dz
¿ 1 . (24.22)

Integrating this over the layer gives for the gravitational density changes there,

∆ρs

ρ
¿ 1 . (24.23)

2. The perturbation density is no larger than the gravitational changes

ρ′

ρ
≤ ∆ρs

ρ
. (24.24)

24.2.1 Equation of State

ρ(p, t) is expanded in a Taylor series about its mean value

ρ = ρ +
(

∂ρ

∂T

)
p

(T − T ) +
(

∂ρ

∂p

)
T

(p − p) + . . . (24.25)

= ρ
[
1 + kT (p − p) − α(T − T )

]
+ . . . , (24.26)

where the isothermal compressibility and the coefficient of thermal expansion are

kT =
1
ρ

(
∂ρ

∂p

)
T

(24.27)

α = −1
ρ

(
∂ρ

∂T

)
p

. (24.28)

Collecting terms of equal magnitude in the resulting equation,

1 +
ρs + ρ′

ρ
= 1 + kT (ps + p′) − α(Ts + T ′) , (24.29)

gives

ρs = ρ (kT ps − α Ts) (24.30)

ρ′ = ρ (kT p′ − α T ′) , (24.31)

24.2.2 Continuity Equation

The continuity equation (2.13) expands to

∂ρ′

∂t
+ u · ∇(ρs + ρ′) + ρ∇ · u = 0 (24.32)(

∂
∂t + u · ∇)

(ρs + ρ′)
ρ

+
ρ

ρ
∇ · u = 0 . (24.33)

From the inequalities Eqs. 24.23 and 24.24 the first term is small, so there results

∇ · u = 0 (24.34)
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24.2.3 Momentum Equation

For no motion, the vertical component of the momentum equation is

dps

dz
= −gρ − gρs . (24.35)

Thus, in the full momentum equation Eq. 3.19,

∇p = ∇ps + ∇p′ (24.36)

= −gρ − gρs + ∇p′ , (24.37)

where g points in the z-direction. Therefore,

−∇p − gρ = −∇p′ − gρ′ . (24.38)

Using Eqs. 24.34 and 24.38, the momentum equation becomes

ρ
Du

Dt
= −∇p′ − ρ′g + µ∇2u , (24.39)

The gravity term in the momentum equation is actually of a smaller order than the others, but it must
be kept, or there would be no buoyancy effect. It means that the acceleration of gravity is always much
larger than the acceleration of fluid driven by gravity effects.

The vertical component of the pressure and gravity terms in Eq. 24.39 are

−1
ρ

∂p′

∂z
− ρ′

ρ
g

= −1
ρ

[
∂p′

∂z
+ ρkT g p′

]
− αg T ′ .

(24.40)

Now

ρkT g ≡ 1
H

= O
(

1
Λρ

)
(24.41)

is the inverse of a characteristic length, of the order of the scale height. Therefore,

∂p′

∂z
∼ p′

D
À p′

H
, (24.42)

so the vector momentum equation reduces to

Du

Dt
= −∇p′

ρ
− αT ′g + ν∇2u . (24.43)

24.2.4 Energy equation

Eq. 3.13 is expanded, as above. For no flow it is

k∇2Ts + ρQs = 0 . (24.44)

Subtracting this from the full equation gives

ρcv

(
∂T ′

∂t
+ u · ∇T

)
= −p∇ · u + k∇2T ′ + ρQ′ , (24.45)
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where Q′ = Q−Qs, and the dissipation has been neglected. From Eqs. 24.23 and 24.24 we take in the first
term on the right p = p + ps + p′ .= p. To the same approximation, Eq. 24.31 is

ρ′ = −ρ α T ′ . (24.46)

Using that and Eq. 24.30 in 24.32 gives

p∇ · u = −p
D

Dt

[
kT ps − α(Ts + T ′)

]
. (24.47)

Now, since ps = ps(z),
Dktps

Dt
= kT w

dps

dz
= −kT wgρ , (24.48)

where the first approximation to Eq. 24.35 has been used for the last equality. The result is

−p∇ · u = −p
D

Dt

[
α(Ts + T ′)

]
+ pkT wgρ , (24.49)

and Eq. 24.45 becomes

ρ

(
cv +

p α

ρ

) (
∂T ′

∂t
+ u · ∇T

)
+ pkT wgρ = k∇2T ′ + ρQ′ , (24.50)

For gases α = 1/T and kT = 1/p, so the first parentheses is cp, and the result can be written

DT ′

Dt
+ w

(
dTs

dz
+

g

cp

)
= κ∇2T ′ +

Q′

cp
. (24.51)

Note that the adiabatic lapse rate emerges as an important parameter in the dynamical equations.

24.3 Axisymmetric Buoyant Plumes

The simplest plume is generated by a steady point source of heat. We analyze plumes making the
Boussinesq approximation, and assuming constant transport properties, constant ambient temperature
T∞ (but at the same time neutrally buoyant atmosphere), and thin-layer approximation.

The scales of the velocity and thermal fields will in general be different, because the diffusivities of
momentum (viscosity) and heat (conductivity) or mass (diffusion coefficient) are different. In this treatment
we attempt to distinguish these scales as δ and δT , respectively, and also the corresponding entrainment
velocities V and VT . The scale that is largest, δ or δT , will in general set the scale of the flow. Thus for
large Pr (viscous liquids) the scale will be δ and for small Pr (liquid metals) the scale will be δT ,

24.3.1 Laminar Plumes

The equations of motion, and their order of magnitude scaling, are then

∂ru

∂x︸︷︷︸
U
x

+
∂rv

∂r︸︷︷︸
V
δ

= 0 (24.52)
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u
∂u

∂x︸︷︷︸
U2

x

+ v
∂u

∂r︸︷︷︸
UV
δ

= gα(T − T∞)︸ ︷︷ ︸
gαT

+
ν

r

∂

∂r

(
r
∂u

∂r

)
︸ ︷︷ ︸

νU
δ2

(24.53)

u
∂T

∂x︸ ︷︷ ︸
UT
x

+ v
∂T

∂r︸︷︷︸
VT T
δT

=
κ

r

∂

∂r

(
r
∂T

∂r

)
︸ ︷︷ ︸

κT T
δ2
T

. (24.54)

x is vertical, as is the gravity vector, and r is the transverse coordinate. Note that separate lateral scales δ

and δT , and corresponding lateral velocities V and VT , have been assumed for viscous and thermal effects.
The boundary conditions are

r = 0 ; v =
∂

∂r
= 0

r −→ ∞ ; u −→ 0
T −→ T∞

(24.55)

The buoyancy flux (here the heat flux) is defined as

Q ≡
∫ ∞

0
ρcp(T − T∞)u 2πr dr︸ ︷︷ ︸

ρcpTUδ2
T

. (24.56)

It is the constant heat input driving the plume.

The consequences of scaling are:
As with jets, from the continuity equation, the thin-layer scaling,

U

x
∼ V

δ
; (24.57)

from the first and fourth terms in the momentum equation the requirement for high Reynolds number,

Uδ

ν
∼ x

δ
; (24.58)

and a new result from the gravitational term,

gαT ∼ ν2x

δ4
; (24.59)

from the first and third terms in the energy equation,

δT ∼
√

κx

U
∼ Pr−

1
2 δ ; (24.60)

and from the second and third terms,

VT ∼ κ

δT
∼ Pr−

1
2 V . (24.61)
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It is useful to simplify the bookeeping for distinguishing between the large and small Pr cases by
introducing simple interpolation formulas so only one scale need be considered. This is accomplished by
inserting a factor 1 + Pr/Pr at appropriate locations.

δ ∼
(

νx

U

1 + Pr

Pr

) 1
2

V ∼ ν

δ

1 + Pr

Pr
.

(24.62)

Combining Eqs. 24.56, 24.58 and 24.60 gives

Q

cpρ
∼ TUδ2

T ∼ TUδ2 1 + Pr

Pr
∼ Tνx

1 + Pr

Pr
. (24.63)

Thus,

T ∼ Q

cpρ ν x

Pr

1 + Pr
. (24.64)

The temperature perturbation decreases as 1/x. Continuing by applying Eqs. 24.59 to 24.63,

Q

cpρ
∼ ν3

gα

x2

δ4

1 + Pr

Pr
, (24.65)

so

δ

x
∼

(
cpρ

Qα

ν3

g

1 + Pr

Pr

) 1
4

x− 1
2 . (24.66)

The plume diameter increases with the expected parabolic behavior. Now, the Grashof number is

Grx ≡ αTgx3

ν2
. (24.67)

Using the scaling for T , we have, for plumes,

Grx =
gαQ

cpρ

x2

ν3

Pr

1 + Pr
. (24.68)

Thus, Eq. 24.66 is the same thing as
δ

x
∼ (Grx)−

1
4 . (24.69)

It remains to determine the dependence of U(x) and the momentum flux J(x),

J =
∫

ρu2 2πr dr︸ ︷︷ ︸
ρU2δ2

. (24.70)

Putting Eq. 24.66 in 24.58 gives

U ∼
(

gαQg

cpµ

Pr

1 + Pr

) 1
2

. (24.71)
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The characteristic (e.g., centerline) velocity is constant. Thus, the momentum must increase as the plume
grows. Eq. 24.70 gives

J ∼
(

gαQµ

cp

Pr

1 + Pr

) 1
2

x , (24.72)

so the momentum flux increases linearly with x.

A comparison of the behaviors of momentum-driven laminar jets and buoyancy-driven laminar plumes
is given in the table below.

Plume Jet
Conserved Q J

U

(
gαQg

cpµ

Pr

1 + Pr

) 1
2 J/ρ

νx
Entrainment
dm

dx
∼ ρV δ µ

1 + Pr

Pr
µx

J

(
gαQµ

cp

Pr

1 + Pr

) 1
2

x const

Q const —

Similarity.
Define the similarity variable

R =
r

δ(x)
, (24.73)

the stream function
ψ(x, r) = νxf(R) , (24.74)

the nondimensional temperature

θ(R) =
T − T∞

T0(x) − T∞
, (24.75)

and assume the behavior of T0(x)−T∞ given in Eq. 24.64. Then the buoyancy flux becomes (see Eqs. 16.23)

Q = 2πρcp(T0(x) − T∞)νx

∫ ∞

0
θf ′ dR , (24.76)

and the momentum and energy equations reduce to two coupled ordinary differential equations,

f ′′′ + (f − 1)
(

f ′

R

)′
+ Rθ = 0 (24.77)

(Rθ′)′ + Pr (fθ)′ = 0 . (24.78)

Since Pr = const, the energy equation can be integrated twice to give

θ(R) = e−Pr
∫ R
0

f
R

dR . (24.79)

When this is substituted into the momentum equation there results an ordinary integro-differential equa-
tion. After the solution for f is obtained, the lateral velocity is given by

v =
ν

δ(x)

(
f ′

2
− f

R

)
. (24.80)

The solutions will yield the numerical constants multiplying the results of the previous section.
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24.3.2 Buoyancy driven by density variations (e.g., concentration)

Buoyancy can equally well be induced by variations of the concentration of different fluids or con-
stituents. In this case transport of momentum by viscous diffusion is important as above, but replacing the
smoothing of temperature by diffusion of heat, there now arises concentration smoothing by mass diffusion.
The corresponding equation to replace the energy equation is mass conservation of one of the constituents.
If written in terms of the density perturbation ρ∞−ρ that equation can be written down by analogy to the
energy equation, which is what we do here. The only fundamental change is that the diffusivity changes
from κ to D, the diffusion coefficient. The equations in conservation form are,

∂ru

∂x
+

∂rv

∂r
= 0 (24.81)

∂u2

∂x
+

1
r

∂ruv

∂r
= g

ρ∞ − ρ

ρ0
+

ν

r

∂

∂r

(
r
∂u

∂r

)
(24.82)

∂(ρ∞ − ρ)u
∂x

− u
dρ∞
dx

+
1
r

∂r(ρ∞ − ρ)v
∂r

=
D

r

∂

∂r

(
r
∂(ρ∞ − ρ)

∂r

)
. (24.83)

The buoyancy flux is

F =
∫ ∞

0
g
ρ∞ − ρ

ρ0
u 2πr dr (24.84)

24.3.3 Laminar plumes in stratified atmospheres (Morton 1967)

A stratified atmosphere adds sufficient complexity that similarity can no longer be expected. Thus,
the problem is treated by analyzing the integrated equations of motion (see Sec. 20.1). Plumes involve
both viscous diffusion and thermal diffusion, so, as discussed in Sec. 24.3, it is necessary to account for two
lateral scales, δ and δT . In this section we consider the case Pr ≥ 1, so we take δT ∼ δ/

√
Pr. Multiplying

the continuity equation by r dr and integrating across the plume gives (see Eq. 20.18),

d

dx

∫ δ

0
ur dr = −(rv)∞ . (24.85)

The term on the lhs can be written in terms of the stream function ψ = νx f(R), where R = r/δ,∫ δ

0
ur dr = νxf∞ , (24.86)

so the entrainment is
−(rv)∞ = νf∞ . (24.87)

f∞ is thought of as the entrainment coefficient.

Integrating Eq. 24.53, cast into conservation form, gives

d

dx

∫ δ

0
u2r dr =

∫ δT

0
gα(T − T∞)r dr . (24.88)

In the energy equation 24.54 T is the perturbation temperature, which here we write explicitly as T (x, r)−
T∞(x). It is necessary to account for the fact that here the base temperature T∞(x) is a function of x;
doing so, and then using the continuity equation to put in conservation form, Eq. 24.54 becomes

∂u(T − T∞)
∂x

+ u
dT∞
dx

+
1
r

∂rv(T − T∞)
∂r

=
κ

r

∂

∂r

(
r
∂T

∂r

)
. (24.89)
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In integrating this equation we adopt the case dT∞/dx = const, so it comes out of the integral of the
second term, and Eq. 24.86 can be used. Thus,

d

dx

∫ δT

0
u(T − T∞)r dr +

dT∞
dx

f∞νx = 0 . (24.90)

This equation can be integrated wrt x to obtain∫ δT

0
u(T − T∞)r dr =

Q

2πcpρ
− dT∞

dx
f∞ν

x2

2
, (24.91)

where the first term on the right is the constant of integration evaluated using Eq. 24.56.

24.3.4 Approximate Integral Method

Approximate solutions to Eqs. 24.85, 24.88 and 24.91 can be obtained by assuming a form of the
velocity profile u(r) and carrying out the integrations. The simplest profile is the top-hat profile, which
gives for the differential form,

d

dx

uδ2

2
= f∞ν (24.92)

d

dx
u2δ2 = gα(T − T∞)δ2

T (24.93)

d

dx

u(T − T∞)δ2
T

2
= −dT∞

dx
f∞νx , (24.94)

and after integrating wrt x,

u
δ2

2
= f∞νx (24.95)

d

dx
u2δ2 = gα(T − T∞)

δ2

Pr
(24.96)

u(T − T∞)
δ2

Pr
=

Q

πcpρ
− dT∞

dx
f∞νx2 , (24.97)

where δ2
T has been replaced by δ2/Pr, i.e., Pr > 1. Substituting the third equation into the second

equation to eliminate T − T∞, using the first to eliminate δ, and multiplying by ux, gives

ux
dux

dx
=

gα

2f∞ν

(
Q

πcpρ
− dT∞

dx
f∞νx2

)
x , (24.98)

which integrates to

u2 = gα

(
Q

2πcpρf∞ν
− 1

4
dT∞
dx

x2

)
(24.99)

This confirms that similarity is lost, but it has the interesting result that the plume stops at a finite altitude
xm

xm =

(
2Q

πcpρf∞ν dT∞
dx

) 1
2

. (24.100)

u(x) then becomes
u2 = u2

0

[
1 − (x/xm)2

]
, (24.101)
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where

u0 =
(

gαQ

2πf∞cpµ

) 1
2

(24.102)

is the constant velocity of plumes in a uniform atmosphere. Putting u(x) into the continuity equation and
solving for δ gives

δ2 = δ2
0

x/xm

[1 − (x/xm)2]
1
2

;
δ2
0

xm
=

2f∞ν

u0
. (24.103)

Finally, the temperature is given by

T − T∞ =
1
2

dT∞
dx

xm

(
xm

2x
− x

xm

)
(24.104)

The behavior of these parameters is shown in Fig. 73. In the limit when the atmosphere becomes uniform,

Figure 73. Variation of the velocity, radius and temperature of a laminar plume in a stratified atmosphere

xm → ∞, and the results approach those obtained in Sec. 24.3.1.

24.4 Turbulent Plumes (Morton et al. 1956)

At high enough Reynolds numbers plumes become unstable and transition to turbulence. At very
high Re when the turbulence is strong molecular diffusivity is unimportant and is replaced by turbulent
transport. If an eddy viscosity model, or some other possibly more sophisticated gradient-transport model,
us used, the equations integrate to give the same form as in the laminar case. In the laminar case ν and
κ do not appear in the momentum and energy integral equations, only ν in the continuity equation. With
turbulence, it’s the same, so it becomes necessary to model the entrainment term.

After the same procedure as was used above is applied to Eqs. 24.81–24.84, the equations for a top-hat
profile plume are,

d uδ2

dx
= −2(rv)∞ = 2αδu (24.105)
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d u2δ2

dx
= g

ρ∞ − ρ

ρ0
δ2 (24.106)

d (ρ∞ − ρ)uδ2

dx
=

d ρ∞
dx

uδ2 , (24.107)

The last equality in Eq. 24.105 is the entrainment hypothesis, namely, that (rv)∞ is proportional, with
proportionality constant α, to the volume flux per unit length of the plume. This hypothesis is based on
dimensional reasoning and the idea that fluid is ingested into the plume at a rate dependent on the axial
velocity.

24.4.1 Uniform atmosphere

For a uniform atmosphere the term on the right of Eq. 24.107 is zero, so

F = g
ρ∞ − ρ

ρ0
uδ2 = const = F0 . (24.108)

Thus Defining
V = uδ
W = uδ2 ,

(24.109)

The continuity and momentum equations equations become

dW

dx
= 2αV (24.110)

dV 2

dx
=

F0

u
= F0

W

V 2
. (24.111)

Eliminating W from the momentum equation by differentiation gives

d2V 4

dx2
= 4F0αV . (24.112)

This equation can be solved by letting v = V 4 and p = dv/dx, resulting in

dp

dx
= p

dp

dv
= 4F0αv

1
4 . (24.113)

Integrating once to get p(v) = dv/dx and again to get v(x) gives finally for V (x) (and by integration W (x))

V =
(

9
10

F0α

) 1
3

x
2
3 (24.114)

W =
3α

5

(
9
10

F0α

) 1
3

x
5
3 . (24.115)

The original unknowns follow immediately

δ =
3α

5
x

u =
5
3α

(
9
10

F0α

) 1
3

x− 1
3

g′ = g
ρ∞ − ρ

ρ0
=

5F0

3α

(
9
10

F0α

) 1
3

x− 5
3 .

(24.116)

Because of the entrainment term, the turbulent plume behaves very differently than the laminar plume. δ

grows much more rapidly and so the velocity decreases rather than being constant.
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24.4.2 Nonuniform atmosphere

For a nonuniform atmospher there is one more unknown, F (x). The equations become

dW

dx
= 2αV (24.117)

dV 2

dx
=

F0

u
= F0

W

V 2
(24.118)

dF

dx
= −WG . (24.119)

Defining the nondimensional variables

ξ = α
1
2 F

− 1
4

0 G
3
8 x (24.120)

v = F
− 1

2
0 G

1
4 V (24.121)

w = α− 1
4 F

− 3
4

0 G
5
8 W (24.122)

f =
F

F0
, (24.123)

the equations become

dw

dξ
= v (24.124)

dv4

dξ
= fw (24.125)

df

dξ
= −w , (24.126)

which are in the form for numerical computaion. The numerical solution yields the behavior with ξ, and
therefore u(x), δ(x), g′(x) and F (x). The numerical value of ξm at which the velocity vanishes is also a
result of the numerical computation. The dimensional height xm of the plume is given in terms of the
strength F0 of the plume, the atmospheric lapse rate G, and a fundamental fluid mechanical property, the
entrainment coefficient α. Morton et al. (1956) conducted laboratory experiments to determine α, with
the result α = 0.093. Then the computed height of the plume was found to be

xm = 3.79 F
1
4
0 G− 3

8 . (24.127)

24.5 Stratified Flows

24.5.1 Shallow water waves

The theory of shallow water waves describes the motion of a stably stratified thin layer of dense fluid.
“Shallow” means that the layer depth h(x, t) is small compared to the lateral scale of the flow λ. A
consequence is that vertical accelerations must be very small

Dw

Dt
= 0 . (24.128)
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Here we take the fluid to be incompressible (e.g., water), and for simplicity consider a two-dimensional
plane flow (x, z). Also, the fluid is inviscid. We first consider the simple case in which the light overlying
fluid is of zero density. Thus the equations of motion for the dense layer are

∇ · u = 0 (24.129)

ρ
Du

Dt
= −∇p − ρg . (24.130)

or
∂u

∂x
+

∂w

∂z
= 0 (24.131)

ρ
Dw

Dt
= −∂p

∂z
− ρg (24.132)

ρ
Du

Dt
= −∂p

∂x
. (24.133)

The boundary conditions are

p = 0
∂h

∂t
+ u

∂h

∂x
= w

}
z = h (24.134)

w = 0 } z = 0 (24.135)

Because the layer is thin, the lhs of Eq. 24.132 is zero so the pressure is hydrostatic,

∂p

∂z
= −ρg (24.136)

p(x, z, t) = ρg(h(x, t) − z) . (24.137)

Thus ∂p/∂x (and ∂p/∂y) does not depend on z, so neither does Du/Dt. We conclude that if u(x, z, t) is
initially not a function of z, then it never is, so u = u(x, t). Thus integrals of the equations over depth are
easy; they just account for variations of depth h(x, t). Consequently, to get equations for the behavior of
depth h(x, t), we integrate the above equations. For continuity,∫ h

0

∂u

∂x
dz + w

∣∣∣h
0

= 0 (24.138)

∂

∂x

∫ h

0
u dz − u(h)

dh

dx
+ w(h) = 0 , (24.139)

so,
∂uh

∂x
+

∂h

∂t
= 0 , (24.140)

where u is now the mean velocity, and the last term in the last equation has been obtained from the
boundary conditions. Thus

∂h

∂t
+

∂uh

∂x
= 0 . (24.141)

The x-momentum equation is
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0 . (24.142)

Multiplying it through by h, and using the continuity equation, puts it in conservation form

∂uh

∂t
+

∂u2h

∂x
+

1
2

∂gh2

∂x
= 0 . (24.143)
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24.6 Small Amplitude Motions

Linearizing the continuity and momentum equations for small changes of depth and small velocities
gives

∂h

∂t
+ h

∂u

∂x
= 0 (24.144)

∂u

∂t
+ g

∂h

∂x
= 0 . (24.145)

Cross differentiating and subtracting to eliminate u gives the wave equation for h

∂2h

∂t2
− gh

∂2h

∂x2
= 0 . (24.146)

Solutions have the form
h = f(x − ct) + g(x + ct) , (24.147)

where c =
√

gh is the wave speed.

24.7 Hydraulic Jump

The above equations can be directly used to describe the hydraulic jump and the dam break problem.
A jump is a transition of unspecified structure between two uniform states, and so is analogous to a shock
wave. The jump conditions can be derived by a) a control-volume analysis of the above equations, or b)
by integrating them across the jump (wrt x). Integrating the continuity equation through the jump gives

uh = const (24.148)

and evaluating at the two uniform states (1) and (2) gives

u2h2 = u1h1 . (24.149)

Similarly, the momentum equation gives

u2h +
gh2

2
= const (24.150)

through the jump and thus

u2
2h2 +

gh2
2

2
= u2

1h1 +
gh2

1

2
. (24.151)

Using the continuity equation to eliminate u2 from the momentum equation gives(
h2

h1

)2

− 1 − 2u2
1

gh1

(
1 − h2

h1

)
= 0 . (24.152)

Setting F1 = u1/
√

gh1, a given quantity, and H ≡ h2/h1 the unknown, gives

(H − 1)(H2 + H − 2F1) = 0 (24.153)

Beside the trivial solution H = 1, the solution is

H =
√

1 + 8F1 − 1
2

. (24.154)
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Figure 74. Hydraulic jump

Then the downstream velocity is given by

F2

F1
=

1
H3

=
8(√

1 + 8F1 − 1
)3 . (24.155)

The variation of h2 with F1 is shown in Fig. 24.7. In this derivation, the energy equation has not been
used. In fact, the kinetic energy flux is not conserved. The fact that energy must be dissipated is shown
by breaking and turbulence at the front, or, with weak waves, a system of waves that radiates downstream
from the front.

24.8 Flows With No Losses

To describe flows in which no losses occur (because the wave fronts are smooth) requires use of the
Bernoulli equation, which from Eq. 3.30, with ω = 0, is

∂u

∂t
+ ∇

(
u2

2
+

p

ρ
+ G

)
= 0 . (24.156)

We have ∇G = g, so G = gz+ const. Also, for inviscid, incompressible, irrotational flow, u = ∇φ.
Integrating gives

∂φ

∂t
+

u2

2
+

p

ρ
+ gz = const . (24.157)

24.8.1 Steady flow

For steady flow the Bernoulli equation is Eq. 2.25,

u2

2
+

p

ρ
+ gz = H . (24.158)
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Consider a steady inflow from the left of a layer of density ρ1 = ρ0 + ρ′ and thickness h(x) which flows
over an obstacle of shape z0(x) and is overlain by a very thick stagnant layer of density ρ0 (sketch). The
Bernoulli equation applied to each layer on the stream line z = h + z0 (that is, on the interface) is

p0

ρ0
+ g(h + z0) = H0 (24.159)

u2

2
+

p1

ρ1
+ g(h + z0) = H1 . (24.160)

The continuity equation is
uh = Q . (24.161)

On the interface p1 = p0. Eliminating p0 using the Bernoulli equation for the top layer, and u using the
continuity equation gives

Q2

2gh2
+ (h + z0)

(
1 − ρ0

ρ1

)
= H1 − ρ0

ρ1
H0 . (24.162)

Dividing through by 1 − ρ0/ρ1 = ρ′/ρ1, and defining

g′ =
ρ′

ρ1
g , (24.163)

gives
Q2

2g′h2
+ h = H − z0(x) , (24.164)

where H is a redefined Bernoulli constant. The left hand side is plotted in the sketch. It can be shown that
the minimum occurs at F = 1, and to the left is “supercritical” flow, while to the right is “subcritical.”
For any given inflow condition (Q, H), where at inflow z0 = 0, the flow can be in zero or two states, shown
by the square points. As the flow encounters the obstruction, z0(x) > 0, according to Eq. 24.164 the flow
is driven toward critical. It can never pass critical unles just at that point the obstruction reaches its
maximum height and begins to decrease.
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25 Rotating Flows

25.1 Coordinate Systems

Figure 75.

We treat two coordinate systems; an inertial system (X, Y, Z) and a non-inertial system (x, y, z), which
may be accelerating or rotating relative to the inertial system. The distance between the origin of the
inertial axes and the origin of the moving, rotating system is R, and the distance between the origin of the
inertial axes and a point in the rotating system distance r from its origin is s. Thus,

s = R + r , (25.1)

and, differentiating,
u = U + u′ , (25.2)

where u = ds/dt, U = dR/dt, u′ = dr/dt.

Some important results are:

1. The angular velocity ω of the rotating system is unique. It is always possible to decompose any
motion into a translation plus a rotation,

ds = dR + dφ × r . (25.3)

Dividing by dt, there results

u = U + ω × r . (25.4)

The motion consists of the velocity U of the origin (center of mass) plus the rotational velocity ω × r

perpendicular to ω.

For a second rotating system ()′ with origin distance a away but the same point s, such that r = r′+a,

u = U + ω × (r′ + a) , (25.5)
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At the same time, formally,
u = U ′ + ω′ × r′ . (25.6)

It follows that,

U ′ = U+ω×a (25.7)

and

ω′ = ω . (25.8)

Thus, the angular velocity is unique to each rotating system (body). Furthermore, it is always possible
to find an origin which is instantaneously fixed (or at worst translating along the axis of rotation)
such that the “instantaneous axis of rotation” passes through it.

2. For a fixed point in the rotating system, dr as seen in the inertial system is nonzero only because of
rotation. Then for any vector A changing as d′A/dt in the rotating system, the changes seen in the
inertial system are

dA

dt
=

d′A
dt

+ ω × A . (25.9)

In particular,
d

dr
t =

d′r
dt

+ Ω × r , (25.10)

or,

u = u′ + Ω × r . (25.11)

du

dt
=

d′u
dt

+ ω × u . (25.12)

Also, for an angular velocity ω which is itself in a system rotating with angular velocity Ω,

dω

dt
=

d′ω
dt

+ Ω × ω . (25.13)

Substituting Eq. 25.11 into the right hand side of Eq. 25.12 and expanding gives

du

dt
=

d′u
dt

+ 2Ω × u′︸ ︷︷ ︸
Coriolis

acceleration

+ Ω × (Ω × r)︸ ︷︷ ︸
centripetal
acceleration

+
d′Ω
dt

× r .

(25.14)

In geophysics the last term is zero.
The centripetal acceleration (centrifugal force) can be absorbed into the body force B.
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25.2 Momentum equation

The momentum equation was derived in an inertial system. Gradients are unchanged in a rotating
system. Therefore, in a rotating system,

ρ

(
Du

Dt
+ 2Ω × u

)
= −∇p + ∇ · τ (25.15)

ρ
Du

Dt
= −∇p − ρ 2Ω × u︸ ︷︷ ︸

Coriolis
force

+∇ · τ
(25.16)

25.3 Vorticity equation

The vorticity equation was derived in an inertial system. Now,

ω︸︷︷︸
absolute
vorticity

= ω′︸︷︷︸
relative
vorticity

+ 2Ω︸︷︷︸
planetary
vorticity

. (25.17)

But Dω/Dt = Dω′/Dt, so, in the rotating system (see Eq. 2.64),

ρ
Dω′/ρ

Dt
= (ω · ∇)u − ∇1

ρ
×∇p + ∇×

(
1
ρ
∇ · τ

)
. (25.18)

Differentiating the LHS and using the continuity equation yields another form of the vorticity equation,

Dω′

Dt
= (ω · ∇) u − ω∇ · u − ∇1

ρ
×∇p + ∇×

(
1
ρ
∇ · τ

)
. (25.19)

25.3.1 Potential vorticity

The potential vorticity Π is defined by,

Π =
ω′ + 2Ω

ρ
· ∇λ , (25.20)

where λ is a scalar which may have a source Ψ,

Dλ

Dt
= Ψ . (25.21)

To learn about the conservation of Π, take the dot product of ∇λ with 1/ρ times the vorticity equation
(Eq. 25.18), and use the last term of the identity

ω

ρ
· D∇λ

Dt
=

(
ω

ρ
· ∇

)
Dλ

Dt
−

[(
ω

ρ
· ∇

)
u

]
· ∇λ (25.22)
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to substitute for the dot product of ∇λ with the vortex-stretching term on the RHS of 25.18. (Eq. 25.22
can be proven by using Cartesian tensor notation.) The result is,

DΠ
Dt

=
(

ω

ρ
· ∇

)
Dλ

Dt
− ∇λ

ρ
·
(
∇1

ρ
×∇p

)
+

∇λ

ρ
·
(
∇× 1

ρ
∇ · τ

)
(25.23)

The three terms on the RHS of Eq. 25.23 are zero, respectively, when

1. λ is conserved (Ψ = 0),

2. (a) the flow is barotropic, or
(b) λ = fnc(p, ρ) only,

3. the fluid is inviscid.

In case 2b,

∇λ =
∂λ

∂p
∇p +

∂λ

∂ρ
∇ρ , (25.24)

so ∇λ has no component parallel to the perpendicular of ∇p and ∇ρ.

When 1–3 hold, the potential vorticity is a conserved quantity,

DΠ
Dt

= 0 . (25.25)

25.4 Small Rossby number

Small Rossby number Ro = U/ΩL implies that velocities induced by the applied forces are small
compared to the rotation velocity. Thus

ω′ ¿ ω , (25.26)

so ω =̇ Ω. The ratio of the LHS of Eq. 25.19 to the vortex stretching and tilting terms on the RHS is Ro,
so for Ro ¿ 1 and E ¿ 1, where E = ν/ΩL2 is the Ekman number, Eq. 25.19 becomes

(2Ω · ∇)u − 2Ω∇ · u = ∇1
ρ
×∇p . (25.27)

This equation expresses a (delicate) balance between baroclinic vorticity production and vortex stretching
and tilting, and provides for the maintanance of long-lived motions which otherwise would change in time
Ω−1. In component form Eq. 25.27 is

2Ω
∂u

∂z
= − 1

ρ2

(
∂p

∂z

∂ρ

∂y
− ∂p

∂y

∂ρ

∂z

)
(25.28)

2Ω
∂v

∂z
=

1
ρ2

(
∂p

∂z

∂ρ

∂x
− ∂p

∂x

∂ρ

∂z

)
(25.29)

2Ω
(

∂u

∂x
+

∂v

∂y

)
=

1
ρ2

(
∂p

∂x

∂ρ

∂y
− ∂p

∂y

∂ρ

∂x

)
=̇ 0 , (25.30)
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where a coordinate system with Ω aligned with the z-axis has been used. Eqs. 25.28–25.29 describe the
thermal wind. The RHS of Eq. 25.30 is small because of the thin-layer approximation.

For low Rossby and Ekman numbers, the momentum equation (Eq. 25.16 including the body force
term) is

ρ 2Ω × u = −∇p + ρB (25.31)

25.5 Taylor-Proudman Theorem

For constant-density flow (∇ · u = 0) Eq. 25.30 gives that

∂w

∂z
= 0 . (25.32)

Thus if the flow is bounded by a solid bottom, where w = 0, then w = 0 everywhere and the flow is
two-dimensional. The result of towing a body (sphere) horizontally through the rotating fluid is a Taylor
column which moves along with the sphere, deflecting the fluid as though the body were a cylinder.

25.6 Geostrophic Motion

This treatment is slightly different than that carried out in class.

To get the geostrophic equations we subtract out the hydrostatic balance and make the thin layer
approximation. In the coordinate system (r, θ, φ), that is, (altitude, latitude, longitude), with velocities

Figure 76.

(w, v, u) (vertical, north-south, east-west), respectively, Eq. 25.31 written out in component form is

ρ (−2Ω v sin θ + 2Ωw cos θ) = − 1
r cos θ

∂p

∂φ
(25.33)

ρ 2Ω u sin θ = −1
r

∂p

∂θ
(25.34)

−ρ 2Ω u cos θ = −∂p

∂r
− ρg . (25.35)
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With

p = ps(r) + p′(r, θ, φ) (25.36)

ρ = ρs(r) + ρ′(r, θ, φ) , (25.37)

where ()s refers to the static (no motion) case, such that

−∂ps

∂r
= ρsg , (25.38)

the equations become

(ρs + ρ′) (−2Ω v sin θ + 2Ωw cos θ) = − 1
r cos θ

∂p′

∂φ
(25.39)

(ρs + ρ′) 2Ω u sin θ = −1
r

∂p′

∂θ
(25.40)

−(ρs + ρ′) 2Ω u cos θ = −∂p′

∂r
− ρ′g . (25.41)

we have in the thin layer approximation, D/L ¿ 1,

w ∼ U
D

l
(25.42)

p′ ∼ ρ2ΩUL (25.43)
∂p′

∂r
∼ ρ2ΩU

L

D
(25.44)

ρ′ ∼ p′

gD
∼ ρ2ΩUL

gD
(25.45)

ρ′

ρ
∼ Ro

4Ω2L2

gD
, (25.46)

so Eqs. 25.39–25.41 become,

fv =
1

ρsr0 cos θ

∂p

∂φ
(25.47)

fu = − 1
ρsr0

∂p

∂θ
(25.48)

ρg = −∂p

∂z
, (25.49)

or,

uH =
1

fρs
k ×∇p , (25.50)

where f = 2Ω sin θ and z = r − r0. The primes have been dropped from the first two equations because
ps = ps(r).

In another form,

fv =
1

r0 cos θ
g

(
∂z

∂φ

)
θ,p

(25.51)

fu = − 1
r0

g

(
∂z

∂θ

)
φ,p

, (25.52)
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or,

uH =
gk

f
× (∇z)p , (25.53)

Differentiating Eqs. 25.47–25.48, gives the equations for the thermal wind in this coordinate system
and approximation,

∂v

∂z
= − g

fρ r0 cos θ

(
∂ρ

∂φ

)
p

(25.54)

∂u

∂z
=

g

fρ r0

(
∂ρ

∂θ

)
p

, (25.55)

or

∂uH

∂z
=

gk

ρf
× (∇ρ)p , (25.56)
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