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1. Introduction 

The stable low-earth orbital speed of a satellite is approximately 8 km/s. When a space 

vehicle enters the earth's atmosphere with this speed, the kinetic energy of the gas (viewed 

from the reference frame of the vehicle) is converted to thermal energy in the stagnation 

region of the vehicle. The specific enthalpy of the gas in the stagnation region is then 
a pproxima tely 

h ':::: U2/2 = 32MJ /kg. 

The specific heat of a diatomic perfect gas of molecular weight 29 is 

7R 
cp = :2 M ':::: lOOOJ/(kgK). 

Hence, the temperature of the gas, if it were to remain a perfect gas, would rise to 

T = h/Cp ':::: 32000K. 

At this high temperature, the mean value of the molecular speed would be approximately 

3000 mis, and the number of molecular collisions for which the relative motion has a kinetic 
energy exceeding the dissociation energy of the molecule becomes significant. Consequently, a 

significant part of the thermal energy is used for dissociation and the stagnation temperature 

is substantially reduced. 

The perfect gas model is therefore unsatisfactory for this region. The dissociation energy for 

nitrogen is approximately 34 MJ/kg and that for oxygen 17 MJ /kg. These are comparable 

magnitudes to U2 /2. Even if the gas remains in thermodynamic equilibrium, we therefore 

need a new model to describe the relation between pressure, density and temperature to 

replace the equation of state of the perfect gas (which approximates the behavior of many 
gases so well over a wide range of conditions). 

However, if we consider a material element of the free-stream gas and follow it across the 
shock, we observe that it experiences a sudden jump in state. In order for it to regain ther­

modynamic equilibrium after passing the shock, it must be dissociated via many molecular 

collisions. This process takes time, the so-called relaxation time. We can no longer make 
the assumption (usual in continuum perfect gas dynamics) that the gas is in thermodynamic 

equilibrium immediately after the thin shock, but we have to develop a model for the re­

laxation zone as well. The fact that this introduces a characteristic time changes the type 
of the material model in a fundamental way, as we shall see in examples. The first task, 

however, is to introduce an equilibrium model, i.e., one that relates the state variables for 

the case when the gas is in thermodynamic equilibrium. 
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Both for the equilibrium and the non-equilibrium models, we shall restrict the discussion in 

most of this course to a simplified representation of gas which, in its undissociated state, is 

a symmetrical diatomic gas, in order to understand the new features of flows in this regime 
with the simplest model that accounts for the essential features. A refinement for more 

accurate (and more elaborate) representation is left to a later part of the course. 
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Chemical Equilibrium 

Consider a system enclosed in an adiabatic wall. Let hydrogen and oxygen be present in 

the system at room temperature. This is a state of constrained equilibrium, since, in the 

true, unconstrained equilibrium state, the hydrogen and oxygen would be combined to water 

according to the reaction 

(AI) 

Since this reaction occurs only infinitely slowly at room temperature, we speak of a con­

strained equilibrium. 

The constraint may be removed by introducing a platinum catalyst which causes the reaction 

to proceed spontaneously. Since this is a nonequilibrium adiabatic process, the entropy 

increases 

AS> O. !S''V--",'¥'''J ~ (A2) 

Thus the entropy of the unconstrained equi1ibriu~e is higher than that of the constrained 

equilibrium state. Since the system is adiabati0he internal energy E and volume V remain 

constant. We may therefore express the results as follows: 

For given values of E and V the entropy of a system in unconstrained equilibrium has a 

maximum value. 

In unconstrained equilibrium we may write 

S = S(E, V). (A3) 

To describe the system in a constrained equilibrium state we must introduce at least one 

further parameter ~ say, which in our example could be the ratio of the mass of H2 to that 

of H20, such that 

S = S(E, V, ~). (A4) 

A necessary condition for unconstrained equilibrium would then be 

as(E, V, ~) = 0 (A5)
a~ , 

This condition permits us to determine (for a given function S(E, V,~)) what value ~ takes 

at a given E and V in unconstrained equilibrium. 

Since the system is homogeneous even in constrained equilibrium and therefore has a uniquely 

definable temperature T, and pressure p, the Gibbs relation 

TdS = dE+pdV 
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may be extended to our situation: 

(A6) 

where the new variable f has the following meaning 

TDS(E, v, E) = _ DE(S, v, E)
f (A7)

DE DE 

In a situation in which many different reactions between n + 1 species may occur, 

S = S(E, V, 6, .....,en) 

and 

TdS dE + pdV + Ef=l fidei 

fi TDS(E, V, Ek#i' Ed/DEi. 

The condition that S has a maximum for fixed E and V is equivalent to the condition that 

the free enthalpy G has a minimum at constant p and T. 

To show this, consider a small system A whose wall is flexible and diathermic, contained in 

a huge system B which in turn is enclosed by a rigid, adiabatic wall. The temperature and 

pressure of the two systems will thus always be the same. Let A be initially in a constrained 
equilibrium state and proceed by a suitable process to unconstrained equilibrium. Let B be 

in unconstrained equilibrium before and after the process. Flexible diathermic inner walls 

and adiabaticity of the outer walls give 

~VA = -~VB 

~EA -~EB 

Also 
(A8) 

Since p, T are constant, we may integrate 

TdS dE+pdV 

for system B 
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Substituting in b..S above, 

or 

so that 

(A9) 

Thus the Gibbs enthalpy of system A always decreases, or at best remains constant. The 
Gibbs enthalpy therefore goes to a minimum at unconstrained equilibrium for given T, p. 

aG(T,p,e) = 0 a2G(T, p, e) 0 
ae2 >ae ' 

equil. (A10) 

Now return to the chemical reaction 2H2 + O2 2H20. If Xl, X2, X3 are the masses of 

H2, O2, H20 resp., dXI is not independent of dX2' If ml, m2, m3 are the molecular masses we 
may see that 

dXI = 2m1d>" 

dX2 m2d>" 

dX3 = -2rn3 d>.. 

describes a suitable relation between the changes of masses for a given degree d>" of change 

in the reaction. More general reactions are described by 

The Vi are called stoichiometric coefficients. From (A 10) the reaction will proceed until G 

reaches a minimum corresponding to equilibrium. Hence at equilbrium, 

dG o. (All)
d>" 

It is necessary to express G for a mixture of (ideal) gases. To do this, recall that 

and 
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since the variables Hand S are extensive and because of Dalton's law of partial pressures. 

Hand S may be written as 

where P* is the reference pressure at which hand s take the values ho and So. Hence 

(A12)(C~liJ~ 
where Wi is used as an abbreviation for the lengthy expression resulting from forming H - T S. 

It is a function of T. 

Returning to (All) we now see that to satisfy it, 

dG dXi Pi d Pi
\ L)-[Wi+~Tln +xi~T-ln-}=O (A13)

d/\ d'\ P* d'\ P* 


Consider first the last term in the curly brackets: it is 


xi~T dPi xi~TV dPi dp
I: Pi d'\ = 'E XiRi T d'\ V d,\' 

At constant pressure, this is zero. Hence the requirement (A13) boils down to 

Pi
I:[VimiWi(T) + vimi~Tln -] = 0 

P* 
or 

Rewriting this as a product: 

(A14) 

This is the Law of Mass Action, which constrains the partial pressures for chemical equilib­

rium. The numerator of the exponential may be expressed in terms of the energy released 
in the reaction. For example, in the dissociation of a simple diatomic gas, it is simply the 

dissociation energy. The left hand side may also be expressed as a product over the concen­
trations, and this form will actually be used in the equilibrium model for this part of the 
course. 
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REVIEW OF STATISTICAL MECHANICS 

There are seven conserved scalar variables of motion: The three components of linear mo­

mentum, the three components of angular momentum, and the energy. If we deal with 

macroscopic systems, the sum of the contributions to the linear momentum from the indi­

vidual particles gives the linear momentum of the system as a whole, i. e., is a property 

of the global motion of the system relative to an inertial frame of reference. We consider 

only systems that are stationary or that move with constant velocity relative to an inertial 

frame. The same applies to the angular momentum, and we consider only systems that are 

not rotating as a whole. 

Thus the only conserved quantity that characterizes the macroscopic systems of interest to 

us is the energy. In an insulated system of constant volume, E and V are constant, and the 

microscopic arrangement of the particles is changing all the time at constant energy. There 

is an extremely large number of possible ways in which the system can be arranged to have 

the same energy E. We speak of a very large number of microstates of the system. The 

probability of each microstate of a system depends on how often that microstate occurs in a 

very long time, compared with the rest of the microstates. There is no particular reason to 

suppose that anyone microstate is more probable than any other, each has the same energy 

that eharacterizes it. The fundamental assumption of statistical mechanics is that: 

All microstates of a system that have the same energy are equally probable. 

Put another way, the probability that a system is in a particular microstate depends only 

on the energy of the microstate: 

P P(E). 

Now consider an ensemble of a very large number of closed systems, all prepared in the same 

way, and all in equilibrium with a huge heat reservoir which has a particular temperature 

T. Otherwise each system is insulated. The energy of a particular system of the ensemble is 

then able to fluctuate around the equilibrium value as it interacts with the reservoir. What 

is the probability that one of the systems in this ensemble is in a particular microstate with 

energy E? 

Consider two of the systems of the ensemble and call them A and B. Let the probability that 

system A is in a microstate with energy EA be PA(EA). Similarly PB(EB). Now consider A 

and B together as a composite system. The probability that A B is in a microstate with 
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energy EA+B we call PA+B(EA+B). The individual systems behave independently, so that 

If three functions are related as in 

h(x)!2(y) f(x + y), 

the functions f1 and 12 have certain properties: Differentiating with respect to x, 

f{ (x)!2(y) = 1'(x + y). 

The prime denotes differentiation with respect to the argument of the function. Similarly, 

fUI = 1'. 

Dividing both of these by h!2, 
f{ _ L _ n. -\w~~) 

\,,·...4.tk...~ 'if h h12 12 L _. 
The left side eepeH:as only OR -0/;, the right side ~e~ellQ,e (;m.ly on if, so F both sides must 
be independent of both x and y. .Stvtc.r....... ...u......; {.>( 
It follows that 

where f3 is independent of the two energies and may depend only on properties of the reservoir 

and is the same for all the systems of the ensemble. Hence, 

P(E) Cexp( -f3E). 

The constant C is det~rmined by; thE:: normalizl:j.tiQIl con~itiop ~ A._)
(~~ Lc; I;&..... Il'I. ~ 01- ' t.£. jt:l'Sift:;" ~ ...... ~ s'""""~ 

"EkP(Ek) = C"Ekexp(-f3Ek) = 1, 
1"'u, So ,. " 1,­

where the sum is understood to go over alimicrostates. 

Now introduce the partition function 

Q 

If Q is known, all macroscopic thermodynamic properties of the system can be obtained. 

For example, the average energy of the system 
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We may relate this to the derivative of Q w.r.t. /3: 

8lnQ 
= -873' 

The value of /3 

Consider a monatomic gas in which particle i has kinetic energy Ci. We can determine 

the sum in Q approximately by pretending that the energy is smoothly distributed. This 

approximation is good if the quantum states are close together. In general, the energy of a 

particle depends on its position and velocity. We therefore have to integrate the probability 

that a particle is in a particular volume element of space and has a particular velocity over 

all physical space and velocity space for all particles, in order to calculate Q. 

00

Q = { { ..... { (XJ 1 ..... {(X) e-fJele-f3e2 ...... e-fJeNdrldr2 ..... drNdvldv2dv3 ....dvN.
iv iv iv 1-00 -00 i-oo 

Here the r are the position vectors and the v are the velocity vectors of the N particles. 

With the assumption that the interaction potential energy is negligible, the integrals over 

the position all contribute a factor V, and the integrals over the velocities are independent 

of each other, so that 

If the particles are identical, the integrals over the velocities are all the same, so 

N 
Q - VN (f: e-f3mv2/2dvr

or U:(12Q=VN ~ 
This is the partition function of a perfect, monatomic gas of N identical paficles. Note that, 

since this may be written as 1'­

Q = [v (;:rr 
the concept of a particle partition function 
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is useful in this case. We can now get the internal energy of the system from this by 

differentiation of the logarithm w.r.t. 13: 

8lnQ 3N 
213 .813 

For a perfect, monatomic gas the internal energy is 

3 
= 2NkT, 

where k is Boltzmann's constant, so that 

1 
13 = kT 

Although this derivation has assumed a perfect, monatomic gas, it is a general result. Recall 

that 13 has to be the same for all systems at the same temperature, and that it may depend 

only on the temperature. The above result shows how it depends on the temperature. 

Other thermodynamic functions 

Think of Q as a function of 13 and V: 

Q = Q(f3, V). 

Then, 

d(lnQ) = 8~Q df3 + 8~~Q dV 

From E above, 
8lnQ dVd(ln Q) = df3 
8V 

or 
8lnQ

d(lnQ + Ef3) = f3dE + avdV. 

Solving this for dE, 

dE kT d(ln Q + Ef3) kT 8~~Q dV. 

Recall that 

dE = TdS - pdV, 

and compare, to get 

dS = k d(ln Q + Ef3), 

or 

S - So = k (InQ + Ef3), 
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and 
= kT BlnQ 

p BV . 

For example, in the case of a perfect monatomic gas, where 

3N/22Q = VN ~ ,( )(3m 

this leads to 

pV = NkT, 
3 

E "iNkT, 

V 3 T 
5 - 50 = Nkln- + -Nkln-. 

Vo 2 To 
When a system is composed of more complicated particles, the € have to be expressed in 

terms of the parameters that define the energy for these particles. Accordingly, the partition 

function will be different, but the thermodynamic functions can still be obtained from Q in 

the same way. 

If the spacing of the quantum energy states of the particle is a significant fraction of kT, it 

is not a good approximation to replace the sum with an integral. This is particularly true at 

low temperatures. An example of where we can do the discrete states sum analytically is in 

the harmonic-oscillator model of molecular vibration, which we will use later in the course. 
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STATISTICAL MECHANICAL FORM OF LAW OF MASS ACTION 

Consider a large number of systems in equilibrium on one side with a thermal reservoir and 

on the other with a particle reservoir. The systems are otherwise rigid and insulated. The 

systems are open in the sense that they are able to exchange particles with the particle 

reservoir, so that the number of particles in a system can fluctuate. An example of an 

open system is a liquid in equilibrium with its own vapor. For such an ensemble of equally 

prepared systems, the fundamental assumption of statistical mechanics is extended to 

All microstates of a system that have the same energy and the same number of particles are 

equally probable. 

Put another way, the probability that a system is in a particular microstate depends only 

on the energy and the number of particles of the microstate: 

P = P(E,N). 

As before, we consider a composite system A + B made up of two of the systems. Let the 

probability that system A is in a microstate with energy EA and number NA be PA(EA, NA). 

Similarly PB(EB: NB)' The probability that A + B is in a microstate with energy EA+B and 

number NA +NB we call PA+B(EA+B, NA+B). The individual systems behave independently, 

so that 

By a similar argument as that applied to the closed system before, we obtain 

PA(E, N) = Q-l exp (-[3E + [3pN) , 

where [3 is a constant characterizing the thermal reservoir, and p is a constant characterizing 

the particle reservoir. Q is the so-called grand canonical partition function defined by the 

normalization condition: 
- ,,00 " e {:JJ.LN -(:JE"Q - L.JN=oL.Jk • 

The quantity p is called the chemical potential and is equal to the specific Gibbs potential. 

With this, by the same arguments as before, we see that 

- o(N = kTop InQ) 
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and 

Now consider a closed system in which a number Nab of particles of a diatomic molecular 

gas AB is in chemical equilibrium with number Na of A and a number Nb of B. Consider 

each of the species as a separate open system exchanging particles with the other two acting 

as particle reservoirs. Let the total number of microstates of the system of A-particles that 

have energy £j, be Wa Wa(Naj). Then the total number of microstates of the system is 

where the sum is to be taken over all possible sets of the numbers. These sets are restricted 

by the constraints that the number of atoms of A and the number of atoms of B are constant: 

Furthermore the restriction 

applies, because the total energy of the system is made up of these parts. Here, account 

has been taken of the fact that the energy origin of the atoms and molecules differs by the 

dissociation energy D. It turns out that only the maximum value of the product of the W's 

contributes significantly to n. Hence we put n = Wma.x = W, say. It is convenient to deal 

with In W. 

In W = In Wa + In Wb + In Wab . 

It may be shown that, at sufficiently large temperatures and low densities, 

where Caj is the number of ways in which the atom A can be arranged to have the same 

energy Ej. 

To maximize In W, consider the small change in it as a consequence of small changes in the 

contributing terms, and set them equal to zero: 

~. a(1n W) -'N. ~. a(ln W) bN. ~ a(ln W) bN . = 0b(ln W) 
UDJ aN. aJ + J aN. bJ + J aN. abJ .

aJ bJ abJ 
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Substituting, 
C aj C bj ~ C abj ~ 

Ejln N .ONaj Ejln N .UNbj + Ejln -N.UNabj = 0. 
aJ bJ abJ 

These changes are constrained by the conditions 

E j oNaj + E j oNabj 0, 

E j oNbj + Ej oNabj = 0, 

and 

EjEajoNaj EjEbjoNbj + Ej(Eabj - D)oNabj O. 

Using the method of Lagrange multipliers the most general solution of this problem gives 

the equilibrium values of the N (for maximum W) as 

Naj = C aj exp ((3J-ta - (3Eaj), 

Nbj = Cbj exp ((3J-tb (3Ebj) , 

Nabj = C abj exp ((3[J-ta + J-tb +~Dl- (3Eabj)' 

Now the total number of particles of A is 

and similarly for the other two gases, so that 

Eliminating the J-t's and D from the equations for the N j by using these three equations, and 

recognizing that ~ ra.J\A'~ r~' ......:a.... f- (/:J \.. ~ 
_ E. C· e-<:J / kT CJ' r.t..-\ () ~ v- 1Q 
-JJ) ~ c4-> 

we get f ovV' . l J....J 
Caje<:aj/kT ~k..v~-

Naj = Na Qa ' 1tJ~ ~~ 
C

b 
, eebj/kT 

Nbj = Nb J Qb ' 

Cab .e <:abi/kT 
JNabj = Nab_..::.___ 

Qab 

Also, by eliminating the J-t's from the expression for the total numbers, through forming the 

quotient 
Nab _ Qab e D/kT 

NaNb - QaQb ' 

we obtain the statistical-mechanical form of the Law of Mass Action. 
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2. The Equilibrium Model 

Following Lighthill [1] we consider the simplest case of a symmetrical diatomic gas, e.g. 

nitrogen, in dissociation equilibrium: 

In equilibrium, the number density of atoms (nN) and the number density of molecules (nN2) 

are related through 
2 Q2

nN = --..!:Le-DlkT (2.1) 
nN2 QN2 ' 

where D is the dissociation energy per molecule, k is Boltzmann's constant and the Q are the 

partition functions of the components Nand N2 . Equation (2.1) is the law of mass action. 

If the energy of the gas is independent of the relative position of the particles (sufficiently 

low density) the Q may be resolved into factors according to the types of states over which 

they are summed as follows: 

QN = Q~' Qifr (2.2) 

QN2 = Q~2 . Q~2 . Q~2 . Qifr2, (2.3) 

where the indices T, R, V and E signify pertinence to the degrees of freedom translation, 

rotation, vibration and electronic excitation. 

a) Translation: In quantum-statistical mechanics, the particle partition function is defined 

as 

states 

where € is the energy level of the state of the particle. In the following, we use the quantum­

statistical mechanics results for the different degrees of freedom. In the case of translation, 

the approximation that the energy spacing of the states is very small compared to the energy 

of the state, which has been made earlier in the derivation of the partition function of the 

perfect monatomic gas this was justified, but with vibration and ionization involved this is 

not always true, so it is more convenient to use the quantum-statistical results. 

T _ (21fmkT) ~V 
Q N (2.4)- h3 • 

where m is the mass of the atom, V is the volume of the system, h is Planck's constant, and 

T _ (41fmkT) ~V 
Q (2.5)N2 - h3 . 
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b) Rotation: 

(2.6) 

where I is the moment of inertia of the molecule, Or is the characteristic temperature of 

rotation. Typical values are 

O2 Or 2.07K 

N2 Or 2.86K 

H2 Or = 85.4K. 

c) Vibration: 

The atoms in a molecule exert a force on each other that depends on the distance between 

them. The potential of this force is sketched in the figure. 

Energy 

D 

interatomic distance 

Figure 1. Potential energy of a molecule as function of interatomic distance. The dashed curve is 
a parabola and corresponds to the harmonic-oscillator model. 

A first approximation to this potential is the harmonic oscillator indicated here by the 

dashed-line parabola. For the harmonic oscillator, 

1 1
QV = 

hv (2.7) 
e-itT1 

O2 , Ov = 2230K 

N2 Ov = 3340K 

H2 , Ov = 6100K. 
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d) Electronic Excitation: 

The energy levels of electronic excitation of some of the components of air yield 

Q Eo 5 3.=l1!!li -327K O(~'= + e T +e T + e )T 

QE 3 2 -1l300K O( -23000K,
02 = + e-r- + e T ) 

Q~ = 4 + O(e -28~OOJ() 

QE = 1 + O(e -28~OOJ()
Nz 

At temperatures below 10000K the neglected terms contribute less than 3%. 

Before substituting these expressions in the law of mass action (2.1) we introduce the degree 

of dissociation 0; which is the mass fraction of dissociated gas 

(2.9) 

and observe that the density P is related to nN2 through 

(2.10) 

It follows that 
0;2 n'J..r m n'J..r 

(2.11)
1 - 0; - 2nN2(nN + 2nN2) - 2pV nNz' 

substituting the Q-values for 1'1 and 1'12 into (2.1) and using (2.11) leads to 

(2.12) 

where the characteristic temperature for dissociation is 

(2.13) 

1'12 : Od ::= 113200K 

O2 : Od 59500K. 

The expression in curly brackets in (2.12) has the dimension of density. We give it the symbol 

Pd. Pd is a function of temperature, which is, however almost independent of temperature 

over a fairly wide range and may be regarded as being approximately constant within this 

range. Within this approximation, (2.12) may be written as 
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Figure 2. The characteristic density plotted for oxygen (upper curve) and nitrogen. The horizontal 
lines represent the approximation made by the lDG. 

~~~_________________......I f--- equilibrium! (2.14) 

The error in a made by the assumption Pd = constant amounts typically to 0.3% at a = 0.5 

and 0.5% at a = 1. 

The thermal equation of state for the mixture of Nand N2 is 

p 

or 

k 
p 2mpT(1 + a). 

(2.15) 

Equations (2.14) and (2.15) replace the thermal equation of state of the perfect gas, i. e., 

p = 2':nPT. An additional equation is needed here, since the additional variable a is to be 

determined. The model gas described by (2.15) and (2.14) is the Ideal Dissociating Gas 

introduced by Lighthill (IDG). 
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Exercise {2.1} Show that, if electronic excitation does not contribute significantly to the 

variation of Pd with temperature, Pd depends only on constants and T IfJv' Hence show that 

the maximum of Pd occurs at a particular value of TlfJv. Determine this value. 

Exercise 2.2 Determine the values of Bd and Pd for hydrogen, and the range of tem­

perature over which H2 may be considered to a good approximation as an IDG. Use 

D 4.476eV, fJr = 85.4K, fJv = 6100K. Electronic excitation: H 2 : ground state de­

generacy = 1 First excited state level = 11.4eV H: ground state degeneracy = 2, first 

excited state level 10.15eV. [leV = (1l600K) . k]. 
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3. Caloric Properties of The IDG 

For the determination of the caloric properties of the IDG, we use the result from statistical 

mechanics that the internal energy E of a system of n identical particles is 

(3.1) 

where the partition function Q is Q(T, p), and the density is sufficiently small for the energy 

to be independent of the relative position of the particles. 

Extending this formula to the case of a system with nN atoms and nN2 molecules, we assume 

that the presence of the molecules does not influence the internal energy of the atoms and 

vice versa. It is also necessary to take account of the fact that the ground state of the atom 

lies above that of the molecule by an energy D /2 per atom (since energy D is required to 

produce 2 atoms in their ground state from one molecule in its ground state). 

Hence, for nN atoms and nN2 molecules, 

(3.2) 

The quantity Pd that we assume to be constant (independent of T) is given by (see equation 

2.1) 

Pd =: Q'7v 
QNz 

constant) . (3.3) 

Its constancy implies that 

(3.4) 

In the temperature range of our interest, the electronic excitation of the atom (N) does not 

playa significant role. Hence 
(27rmkT)3/2 

QN = 4· h3 V, (3.5) 

(see equations 2.5 , 2.4 and p.8) therefore, 

8 3 (3.6)8T(lnQN) 2T' 

Substituting in (3.2), and using (3.4) leads to 

(3.7) 
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Just like equation (2.14), equation (3.7) is ) of course, also only an approximation to reality: 

which is applicable only within a limited temperature range. In order to bring out the error 

incurred by the approximation we write equation (3.7) in the more general form 

(3.8) 

The approximation (3.7) implies A B = 3/2. In the temperature range from 2000 K to 

9000 K A and B deviate from 1.5 by less than 1 % and less than 5% respectively in the case 

of nitrogen. With (3.7) we may write the specific internal energy, 

(3.9) 

(3.10) 

For flowing media, the specific enthalpy 

h=e+p/p (3.11) 

is often a more convenient quantity than e. Using (2.15) and (3.10) we obtain 

h 

(3.12) 

the caloric equation of state of the IDG. 

Equations (2.14), (2.15) and (3.12) describe a material model which supplies a sufficient set 

of conditions for the purposes of equilibrium flow. To give an example we consider the 

steady flow of a gas in state 1 (index 1) through a normal shock and seek the equilibrium 

state after the shock for an IDG and a perfect gas. The equations to be solved are 

IDG: 

p = ~(1 + a)T 

2 



Perfect gas 

h =..'£. IT
2m 2 

- .P!.TP - 2m 

Both perfect gas and IDG: 

mass pu PIUl 

momentum p+ pu2 
PI + PIU

2 
I 

u2 2 
energy -h+~h+ 2 - I 2 

For a given state 1 and given m, Pd, 8 d , these 6 equations form a system from which the 6 

unknown quantities may be determined 

For the perfect gas, 5 unknowns are determined from 5 equations 

{m,cp } ~ {p,u,p,h,T}. 

It is interesting to consider equation (3.12) in the limiting cases a and a = 1. 

For a 0, h = 4· kT/(2m). This corresponds to a diatomic perfect gas with 6 degrees of 

freedom. Since there are 3 translational and 2 rotational degrees of freedom, this is equivalent 

to one vibrational degree of freedom being excited; i.e., the IDG in the un dissociated state 

is like a diatomic gas, whose vibrational mode is "half-excited." The error made by this 

approximation is small in the range where the IDG applies, because a8d represents a very 

much larger energy store than kT/2m, when a is say 0.25 and T 8 d/15. For a = 1, i.e.,f'.J 

the fully dissociated monatomic gas, a8d is a constant and the mass of the particles is m. 

Thus the specific heat at constant pressure is ~ . fii as it should be for a monatomic perfect 

gas. 

The ratio of specific heats accordingly is 4/3 at a = 0, and 5/3 at a 1, (for processes in 

which a does not vary, frozen flow). 

The material equations (2.14), (2.15) and (3.12) represent relations between the quantities 

p, p, T, a, h, which are plotted in dimensionless form in the diagrams. 

The second is a so-called Mollier-diagram in which the specific enthalpy is plotted against 

the specific entropy. 
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Figure 1. Behavior of the IDG. 

The latter is obtained by integrating 

1
Tds = dh - -dp, (3.13) 

P 

a corrollary of the first and second laws of thermodynamics. 


Exercise 3.1 (from V + K) 


Show that for the IDG in equilibrium, 


2sm 
2 In 0:) - (1 0:) In(l - 0:) - (1 + 0:) In l!..- + const. (3.14)

k Pd 

Exercise 3.2 

Use an accurate Mollier chart for nitrogen to plot the error made by equation (3.12) against 

T at a particular value of sjR Nz . Chart supplied. Use equation (2.15) to determine 0: from 

the chart. 

References 

Vicenti & Kruger: chapter V 
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CLASS NOTES: Ae234 

4. The Non-Equilibrium Model 

As has been indicated in the introduction, dissociation of the gas requires many high-energy 

collisions. Hence, in many cases, the time taken for the gas to reach a new equilibrium 

state (e.g., after crossing a shock) is comparable to the characteristic time of the flow (body 

dimension divided by flow speed). 

In such situations the equilibrium model (2.14) is not valid, and we need a model equation 

specifying the rate at which the gas dissociates. We consider the reversible chemical reaction 

N2 + M ~ 2N + 1'o, ( 4.1) 

in which IV! may be N2 or N. This representation of the reaction is intended to illustrate 

that the N2 molecule is dissociated by collision with lv[ and that the collision partner }.;[ 

remains unchanged by the collision. 

In the recombination (reverse reaction 4.1) it is necessary that the two atoms collide at 

the same instant at which the third body M also collides with them; for, if the third body 

were not present, the energy released during the recombination (the dissociation energy) 

could not be carried away from the two atoms, and they would remain dissociated. Thus 

recombination requires three-body collisions. Dissociation requires only two-body collisions. 

In order to dissociate a molecule from its ground state the energy of the collision between N2 

and "~I has to exceed D. The number of molecular collisions that lead to a dissociation per 

volume and time is equal to the collision frequency (Z) multiplied by the fraction of collisions 

whose energy exceeds D, (Z(D)jZ), multiplied by the probability that such a collision is a 

dissociating collision (P). For the forward rate: 

(dnN) -2 (dnN2) = 2PZ Z(D)V. ( 4.2) 
dt f dt f Z 

The hard-sphere model of the theory of molecular collisions gives 

(4.3) 

cr = 1 for AI = Nand cr 2 for !vI N2 .;12 is the so-called collision cross section, and 

(4.4) 

is the reduced mass. 

1 



The fraction of molecules that have energy exceeding D can be approximated in the case 

when the colliding particles have only translational energy and for sufficiently small T /fJd by 

Z(D) 
--=e (4.5)

Z 

If the internal degrees of freedom of the colliding partners are excited, (rotation, vibration) 

/ 
D E 

Figure 1. The area under the curve and to the right of D is Z (D) / Z. 

the value of Z(D)/Z is increased, since dissociation from an already excited state requires 

less energy. For sufficiently small T /fJd the result is then 

Z(D) 1 (>0 -E (s-l) (4.6)-----z- = (8 _ 1)!(kT)S iD e kT E dE, 

where 28 is the number of excited (square-term) degrees of freedom of the colliding particles. 

If T /fJd « 8 1, the integral may be approximated and 

Z(D) ~ (fJd /T)S-l -9d1T (4.7)-----z- - (8 I)! e 

Substituting (4.7) and (4.3) in (4.2) yields 

~ (dnN) = 2 {P' 2;]2 t(27rk) tTt (fJd )S-le-9dIT} nN2 .nu. (4.8) 
V dt f (] (8 - I)! , m* T V V 

.... ' 

2 



We now put {} - kt/NAV • The forward reaction rate "constant" kf is dependent essentially 

on temperature; the other variables in {} are difficult to determine theoretically. isk f 
therefore usually written as 

(4.9) 

and the material "constants" Cf and Tlf are determined experimentally. Avogadro's number 

NAv = 6.02 X 1023 appears here because chemists use the notation of molar density for species 

concentration rather than the particle density (n/V) chosen here. 

In measurements of kf deviations from the Arrhenius straight line are absorbed by the factor 

T'IJ in (4.9). According to equation (4.8), TJf should be ~ - s. In many cases, this is, however, 

not confirmed by experiment. Furthermore, it must be noted that the parameters Cf and 

TJf have to be determined anew for each collision partner IvI. In our case there are therefore 

four material constants to define the overall forward reaction rate. 

In order to return to our notation of chapters 2, 3, we put 

nN O'.p nN2 (1 - 0'.) P 
V m'V 2m 

and obtain 
nM/IttItt:'"ft, (dO'.) Jtt (dnN) 0'.) . (4.10)

'~ dt f = pV dt f VNAv 

It is now necessary to determine the reverse reaction rate, since the total dissociation rate is 

dO'. (dO'.) (dO'.) (4.11)dt = dt f + dt r' 

If the gas is in equilibrium, and density and temperature are constant, then the total number 

of dissociating collisions and the total number of recombining collisions within the system 

per unit time are equal. Hence (dO'./ dt)* is zero. Denoting equilibrium conditions with an 

asterisk, 
dO'.) * (4.12)( dt f 

But in equilibrium, (eqn. 2.14) 

(4.13) 

Substituting in (4.12) yields 

(4.14) 

giving an expression for the reverse reaction rate when the gas is in equilibrium. 

3 



We now make the assumption that this result does not only apply in equilibrium, but also 

when the gas is significantly far away from equilibrium. Combining (4.14) with (4.10) ac­

cording to (4.11) we obtain 

da = C TTl! {(I (4.15)dt f 

Summing the contributions from the two reactions for Ai = Nand M N2 , 

(4.16) 

Where M is the molecular weight mNAV of the atomic gas. Measurements [5] give for 

6000K < T < 14000K 

(4.17a) 

(4.17b) 

Since the uncertainties in such measurements are fairly large, the approximation made by 

Freeman (1958) is appropriate: 

(4.18) 

With the values (4.17), we obtain, for a = 0.25, = 10000K 

(4.19) 

Equation (4.18) is the model for the reaction rate that we shall adopt in the remainder of 

Part I of this course. 

Discussion of eqn (4.18) 

1. The dimensions of CpTTI are (time)-l. 

2. The curly bracket is a measure of the departure of the system from equilibrium. At 

equilibrium, {} = O. If {} > 0 there are more molecules than corresponds to equilibrium, 

and when {} < 0 there are too many atoms for equilibrium. 
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3. The dissociation rate (first term in {} multiplied by factor outside {}) is proportional 

to the density. The recombination rate (second term in {} multiplied by factor outside 

{}) is proportional to the square of the density. This is a fact which has very important 

consequences for gas dynamics. 

4. The derivative d/dt applies here to a thermodynamic system which may be understood 

as a material element in a flowing medium in the following sections. Accordingly, it is to be 

understood as the substantial derivative D / Dt in that case. 

5. The material properties introduce a characteristic time (see 1. above) Thus the non­

equilibrium model puts the IDG (noneq.) into the class of materials with (fading) memory. 

Exercise 4.1 

In a plot of a vs log (T/ 8d ) draw a few contours of (the square bracket in equation (4.16) 

divided by (14 times T2.5)] i.e., of C, with 'fJ -2.5. Take 8d 113200K. Hence discuss the 

step from (4.16) to (4.18) in the light of the error bar of the experiments in (4.17). 

References 

Kewley D.J. & Hornung, H.G.(1974) Chern. Phys. Letters 25 p.531. 


Freeman, N.C. (1958) J. Fluid Mech. 4 p.407. 


Vincenti & Kruger, Chapter VII. 
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Ae234 Assignment No.1, due 18 April, 2002 

QUESTION 1 


Show that, if electronic excitation does not contribute significantly to the variation of Pd 
with temperature, Pd can be expressed as a function of constants and T IOv. Hence show 
that the maximum of Pd occurs at a particular value of T IOv. Determine this value. 

QUESTION 2 

Determine the values of Od and Pd for hydrogen, and the range of temperature over which 
hydrogen may be considered to a good approximation as an IDG. Use D = 4.476 eV, 
Or = 85.4 K, Ov = 6100 K. Electronic excitation: molecule: ground state degeneracy 1, 
first excited state level 11.4 e V; atom: ground state degeneracy = 2, first excited state 
level 10.15 eV. [1 eV = (1l600K)*kj. 

QUESTION 3 

Obtain an expression for the dimensionless specific entropy, smlk, of an IDG as a function 
of 0, T IOd) and piPd, by integrating the Gibbs relation 

1
TdS = dh 	 -dp. 

P 





CLASS NOTES: Ae234 

5. Normal Shock in IDG 

We consider flow of an IDG through a normal shock in the frame of reference in which the 

shock is stationary, i.e., in steady flow. To the left of the shock the gas is in the spatially 

and temporally uniform state 1. To the right of the shock the state of the gas depends 

on the distance x from the shock since dissociation requires finite time. The figure shows 

schematically the behavior of some of the relevant quantities. Far from the shock, the gas 

eventually reaches an equilibrium state. It is assumed here that the conditions immediately 

alpha 

T 

x 

Figure 1. Sketch of dissociative relaxation after a normal shock. 

after a thin shock correspond to those which a perfect gas at the composition 0:1 would reach 

across a normal shock from state 1, i.e., the trans&.tionaljrotational shock is very thin and 

may be regarded as having thickness zero. This is valid when the mean free path of the gas 

is small compared with values of x that interest us. This is usually the case in regimes where 

dissociation plays a significant role. 

For the problem at hand, the following equations apply 

pU - PIUI 

P + pu 
2 

- PI + PI ui 
h + u2 j2 - hI + uU2 

P (kj2m)pT(1 + 0:) 

h (kj2m) [(4 + o:)T + 0:8d ] 

and either 

1 




(5.2) 

or 

(5.3) 

depending on whether we are dealing with an equilibrium flow or a nonequilibrium flow, in 

other words, on whether we are interested in the process leading to equilibrium or not. The 

latter may be the case for example, if the relaxation length u/(CpTTJ) is very much smaller 

than any lengths of interest to us. 

Initially, we use the first five of the above equations to derive a relation between P and 0: 

which is valid for both equilibrium and nonequilibrium flow. For this purpose we introduce 

the dimensionless quantities 

- mui J[, _ 2mho P 'PIK (5.4)- ked' 0 - ked' = PI UI ) 

wh~re ho = hI + ui/2. These three numbers together with 0:1 and PI!Pd describe the state 

1. Using (5.4) in the last of (5.1), 

(5.5) 

Eliminating P from the second and fourth of (5.1), 

_1_.~= [P+1 PI] PI . _1_. (5.6)
2K ed P P 1 0: 

Substituting (5.6) in (5.5) with the first of (5.1) gives 

_ (PI) 2 7 + 0: K + 2K PI 4 + 0: (P + 1) + (0: H0) = o. (5.7)
P 1+0: P 1+0: 

Only one of the roots of this quadratic in PI! P has physical significance. It is 

.3!..=PI=4+0:(1 P){l- 1_(HO-0:)(7+0:)(1+0:)} 
Ul P 7 + 0: . + \ K(4 + 0:)2(1 + P)2 , 

(5.8) 

2 




see [7]. 

The case hI « ui/2 is of particular interest. It leads immediately to Ho = K; and P « 1. 

For this limiting case (5.8) reduces for a = 0 and al = 0 (i.e., immediately after the shock) 

to 
P2 = 7. 
PI 

It differs from the density jump of a perfect diatomic gas, which for strong shocks is 6, because 

the vibrational degrees of freedom of the IDG are effectively half excited. The density ratio 

p(a)jPI obtained from equation (5.8) is plotted here for the case P = 0, Ho = K. In order 

to use this information, it is necessary to invoke either equation (5.2) or equation (5.3), 

depending on whether the equilibrium or non-equilibrium solution is sought. 

k-:: 0* f.I 1- t/.(; 0'> '. 
16 

14 

12 

~ 
Q. 10 

a 

0: 1=0, P=O, Ho=K, K=O.4 to 1.26 
'----'---' Equil~brium: Pd/Pl=le4, le5, le 6, Ie?, le,a j,

0.0 0.2 0.4 0.6 0.8 
0: 

Density as function of a. Full line: (5.8), dashed line: equilibrium. 

a) equilibrium flow 

We write equation (5.8) formally as 

PI = f(a, P, Ho)K) (5.9) 
P 

and use (5.8) to write (5.6) formally as 

T 
e g(a, P, Ho, K) (5.10) 

d 

For equilibrium flow, the 6th equation required to determine the 6 unknowns is the algebraic 

3 




equation (5.2). Substituting (5.9) and (5.10) in (5.2), we obtain 

*2 

Q = Pd . f* e- , (5.11)
1 - Q* PI 

where the asterisks indicate equilibrium. For a given value of Pdf Pll equation (5.11) can 

be solved iteratively yielding Q* and, (5.9) PI!p*. If we plot this against Q* for the case 

Ho = K, P 0, QI = 0, we obtain a set of curves with PdfPI as parameter. It is particularly 

striking that the density ratio can reach very much higher values in the case of the IDG than 

in a perfect diatomic gas, if si~nific'fUt amounts of dissociation occur after the shock. For 

nitrogen at UI = 6 km/s, PI I· ~g/cm3 , we obtain K = 0.54, PI!Pd f x 1O-~ The 

resulting values of Q* = 0.24, p* / PI = 11.4, T* = 8000 K. I\).. l 

b) Nonequilibrium flow 

In this case we invoke the differential equation (5.3) instead of the algebraic equation (5.2) 

in order to complete the set. Substituting (5.9) and (5.10) in (5.3) we obtain 

dQ g'fJ [- = CPI 8;J - (1 - Q)e (5.12)
dt f 

as a function of Q and free-stream parameters. For the one-dimensional steady flow under 

consideration here, we may write d/dt = ud/dx uIJd/dx. Hence, 

(5.13) 

or 

(5.18) 

where F is a known function defined by (5.13, 5.9, 5.10). For a given IDG and given state 1 

upstream of the shock, the r.h.s. is therefore known as a function of Q. Numerical quadrature 

of the equation 

(5.19) 

leads to a curve Q(x). 


In the example chosen above for equilibrium flow, the characteristic length 


UI 

f= CPI 8'fJ- d 

is 1.2 mm. The plot shows the result of such an integration for Q(x), T(x), p(x). 
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Note the temperature peak immediately after the shock and the strong density rise. Both 

are consequences of the finite dissociation rate. 

Since I! rv PI I and since pI!Pd mainly influences only the equilibrium condition, the charac­

teristic length for finite rate dissociative effects is inversely proportional to the density. 

IDG flow after normal shock 

0.02 

0.2 

Pd/Pl = 1.0E+07, K = 0.5 

0.0b==C~~~L-~~~~L-~~~~L-~~~~ 
0.001 0.010 0.100 1.000 10.000 

7i 
Example of an integration of equation (5.19). 

It is interesting to superpose the two diagrams showing P as functions of a in order to show 

the path to equilibrium. For this purpose we select the curve PdfPI = 106 and plot it. 

Choosing K 0.6, for example, we see that the states (p, a) traversed by the gas as it 

passes from the frozen state at x = 0 to the equilibrium state at x = 00 is prescribed by the 

equation (5.8). This is therefore a very useful result, especially since it is in closed form. It 

does not appear in any textbook. 

It remains to discuss the behavior of pressure and enthalpy behind the shock. For the case 

Ho = K, P = 0, the conservation of energy and momentum (equations 5.3 and 5.2) may be 

rewritten as 

2h 

u2
I 

u 2 

1-­
UI = 1- (:)' 

p 
--2
PIU1 

pu2 

1-­ 2PIU I 
1 PI 

P 

Since PI fP is small in the relaxation region, the pressure changes only slightly and the 

enthalpy hardly at all. In the case calculated, the pressure change from shock to equilibrium 

5 




is 6% and the enthalpy change 1.3%. We conclude that dissociative relaxation influences the 

pressure and enthalpy only slightly, while temperature and density are dramatically affected. 

References 

[7] Hornung H. G. J. Fluid Mech. 53 pp. 149-176 (1972) 

[8] Freeman N.C. J. Fluid Mech. 4 pA07 (1958) 

Vincenti & Kruger Chapters VI and VII. 
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CLASSNOTES: Ae 234 

6. Speed of Sound 

In order to relate the speed of sound to the material properties, consider a gas at rest 

(Po, Po) and superimpose on this state a small pressure perturbation p'(x, t) which leads 

to corresponding small density and velocity perturbations p'(x, t), u'(x, t). The inviscid 

momentum equation in linearised form for the disturbance quantities is then 

au' 1 
~ + - grad p'
ut Po 

= o. (6.1) 

The corresponding form of the continuity equation is 

ap' d' Iat + Po IVU 
0= . (6.2) 

For sufficiently small freqencies the compressions and expansions in a sound wave occur 

adiabatically. To show this, consider a sinusoidal distribution of disturbance pressure along 

the x-axis at an instant of time. With this pressure wave will be associated a temperature 

distribution that is also sinusoidal. The order of magnitude of the temperature gradient will 

be T:n;)" where T:n is the amplitude of the temperature disturbance, and), is the wavelength. 

If the wave were stationary in the gas, the order of magnitude of the heat that would have 

to be transported from the higher to the lower temperature region of one wavelength per 

unit area, in order to flatten the temperature distribution, would be 

The time it would take to transport this heat would be 

amount of heat to transport 
k temperature gradient 

T:nCpp). 
k Tin;). 

).2 pCp 

k 

where k is the thermal conductivity of the gas. The time taken for the wave to propagate 

through one wavelength is 

a' 

where a is the speed of sound. The ratio of the two times is 

1 




For adiabatic behavior it is necessary for the transport time to be much larger than the 

propagation time, or 

or, with f = a/ A, 

v 
where Pr is the Prandtl number and v the kinematic viscosity of the gas. In room tempera­

ture air this frequency is approximately 5 GHz, so the assumption that the thermodynamic 

processes associated with sound waves may safely be assumed to be adiabatic in most cases. 

For adiabatic equilibrium changes of state, 

, _ (8Po ) ,
P - a p. (6.3)

Po s 

Subsitituting this in (6.2) gives 

8p' (8Po). (6.4)8t + Po 8po s dlV U = o. 

We define a disturbance potential 

u' grad ¢>. 

Substituting in (6.1) leads to 
, 8¢> 

P = -Po at' (6.5) 

Using this in (6.4) gives the wave equation 

~~ - (~;), \7' vi 0, (6.6) 

in which the wave speed, i.e., the speed of small disturbances or the speed of sound is given 

by 

a 

i (6.7) 

In chemical thermodynamics it is usual to extend the concept of entropy change to 

processes for which the initial and final states of the system are constrained equilibrium 

states. This leads to the equation (see Vincenti & Kruger pp. 70-75, also eqn. A6) 

1 
Tds = dh - -dp (J-LN2 2J-LN )da, (6.8)

P 

2 

I' j , j I 1'1 .' 



which differs from (3.13) in the last term. In equilibrium, i.e., for a reversible process, 

0, (6.9) 

so that (3.13) is recovered. The chemical potentials J-tN2 are the amounts by which the energy 

of the system is increased by the addition of molecules and atoms respectively, at constant 

temperature and pressure. 

The specific enthalpy may be written more generally than eqn (3.12) as 

h = h(p, p, a), (6.10) 

so that 
8h 8h 8h 

dh = 8p dp + 8p dp + 8a da. (6.11) 

Substituting this in (6.8) yields 

8h 8h (8h )1)Tds - - - dp+ -dp+ - + J-tN - 2J-tN da. (6.12)( 8p p 8p 8a 2 

First, consider frozen flow, i.e., processes where da = O. For such processes ds = 0 demands, 

see (6.12), 

8h/8p 
8h/8p 1/p 

(6.13) 

Example: In the special case of the perfect gas, 

Therefore, 
8h Cp 1 
-=-.- ,
8p R p 

Hence, 

,p/p. 

For the lDG, (6.10) becomes 
4+a p k

h ---+a-(}d
1 + a p 2m 

and 
dh = 4 + a dp _ 4 + a p dp + ( )da.

l+a p l+a 

3 



Hence 

2 4+ap
af = 3 p 

(6.14) 

The effective value of the ratio of specific heats of a frozen IDG is seen to be (4 + a) /3. 

For equilibrium flows, a = a*(p, p). It follows, that 

8a* 8a* 
da = da* = 8p + 8p dp. (6.15) 

Substituting in (6.12) and using (6.9) gives 

Tds = (8h + 8h 8a* 1) (8h 8h 8a*)- dp + - + - -- dp. (6.16)
8p 8a 8p p 8p 8a 8p 

By putting ds 0 we obtain 

8h/8p + 8h/8a 8a* /8p _ 2 
e8h/8p + 8h/8a 8a* /8p 1/p = a · 

(6.17) 

Exercise 6.2 

Show that, for an IDG in equilibrium 

= p a*(1 - a*2)(1 + 2<t-) + (8 + 3a* - a*3)(<t-)2a2 

e p(1 + a*) a*(1 - a*) + 3(2 - a*)(~J2 


(6.18) 

and that the following inequality holds 

4 
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The diagram shows the ratio (a,/ae )2 for an IDG. For high temperatures, the gas is fully 

dissociated if in equilibrium, i.e., a* = 1 and equation (6.18) gives 

5p 

3 p 

as is expected for a monatomic gas. 
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7 . Nozzle Flow 

Consider adiabatic steady flow through a Laval nozzle that is so slender that quasi­

onedimensional flow applies to a good approximation. In such a situation the following 

conservation laws hold: 

1 du 1 dp 1 dA--+--+-- 0, (7.1)
udx p dx A dx 

du 1 dp 
u- +-- - 0, (7.2)

dx p dx 
dh du 

(7.3)dx + u dx 0, 

where A(x) is the cross-sectional area of the nozzle. 

Writing 
dp dp dp 
=-­

dx dp dx 

and evaluating dp/dx form (7.1), 

dp = dp . p [_ !.. dA 1 duj. (7.4)
dx dp A dx u dx 

Combining (7.2) and (7.4) we obtain 

u du _ 0dp [!.. dA + .!. duj = 
dx dp A dx u dx 

or 

1 du 1.. dA 
A dx 

(7.5) 

The denominator of the r.h.s. of (7.5) goes to zero at u2 = dp/dp. If the left hand side is 

to remain finite at this point, the numerator must also be zero at this point, unless dp/dp 

depends on du/dx. Stating this in the opposite way, for nonzero du/dx, u2 = dp/dp at the 

nozzle throat, unless dp/dp depends on du/dx. The latter is the case, for example, if nonequi­

librium flow occurs in the throat region. For equilibrium or frozen flow, the singularity occurs 

at the throat and it has saddle point character. 

1 



At this point we introduce the material properties into the discussion, in order to be able to 

make use of equation (7.3). To this end we write, for h = h(p, p, 0:) 

dh oh dp oh dp oh do: -=- +--+­
dx op dx op dx 00: dx 

and replace dp/dx in this equation from (7.2), dp/dx from (7.1) and dh/dx from (7.3) to 

obtain 

1 du 
-
u dx 

(7.6) 

a) Frozen flow, da/dx = 0 

The expression in curly brackets in (7.6) is now recognized as the square of the frozen speed 

of sound a}, s. eq.(6.13). Th~s is, of course, as it should be, since we are considering adiabatic 

How, which, at constant composition, is isentropic, so that dp/dp (op/oP)s,a = a}, s.eq. 

(6.7). Since the second term in the numerator is identically zero for da/dx 0, we recover 

the condition that the saddle point occurs at the nozzle throat. At the throat we must 
2therefore have u a} or du/dx = O. 

b) Equilibrium flow, 0: = a*(p, p). 

In this case we can replace da/dx in (7.6) by 

do: oa* dp oa* dp
-+ ­

dx op dx op dx' 

Replacing dp/dx and dp/dx from equations (7.2) and (7.3) in this expression and solving for 
1. duo 
1.1 dx' 

1 du 

u dx 

(7.7) 
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Where the complicated expression occurring in the denominator has already been replaced 

by a~ from equation (6.17). Again, we see that the saddle point occurs at the nozzle throat 

and that either the flow speed has to be ae or du/dx = O. This is as it should be, since, for 

adiabatic equilibrium flow, dp/dp = (~) 8 a~. 

c) N onequilibrium flow. 

The situation is significantly different when nonequilibrium flow occurs in the region of the 

nozzle throat. The flow is no longer isentropic and dp/dp is no longer (8p/8p)s and depends 

on du/ dx. Hence, it may not be replaced by the square of some speed of sound, and, more 

important, the saddle point no longer occurs at the throat. Consider the case du / dx > O. If 

du/dx is to be positive and finite, the numerator (N) and the denominator (D) must go to 

zero at the same value of x. For the IDG, 

8h 8h 
- < 0 and - > 0
8p 80; 

see p. 39. For du/dx > 0 the gas recombines in the flow direction i.e., do;/dx < O. Hence 

8h /8h) ~. do; > O. 
( 80; 8p p dx 

Hence the numerator of (7.6) 

~ dA _ (8h /8h) .1 do; 
A dx 80; 8p p dx 

goes to zero at a positive value of dA/dx, i.e., downstream of the nozzle throat. The position 

of the saddle point is particularly important for numerical computations. At the saddle it 

is necessary to take special measures to ensure that, when integrating through the saddle 

point, the solution follows the correct downstream branch. For example, the method of de 

I'Hopital could be used to approximate the r.h.s. of (7.6) by 

N dN/dx 
D dD/dx 

locally, and thus obtain a well-defined expression throughout. 

Exercise 7.1 Use de l'Hopital's rule to obtain a local solution for ~ ~~ in the vicinity of 

the throat in the case of a perfect gas. Hence show that the singularity has saddle-point 

character. 
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8 Nozzle Flow Freezing 

In a large class of nozzle flows of practical importance the flow in the vicinity of the nozzle 

throat is in equilibrium. However, as A(x) increases, the density falls, and the recombination 

rate (the negative term in da j dx), which is proportional to the square of the density, 

da 2 
pa } ,u­ (8.1)

dx Pd 

falls even more rapidly. At some stage, a point may be reached where the recombination 

rate can no longer keep up with the demands put on it by the rate of increase of A{x). At 

that point a (smooth) transition from equilibrium to non-equilibrium flow occurs. Since the 

recombination rate falls rapidly with increasing A(x), this transition is followed fairly closely 

by a second (smooth) transition to frozen flow, after which no significant changes of a occur 

anymore. 

In numerical computations of such flows it is convenient to treat these three regions sepa­

rately. We discuss them in terms of the above rate equation: 

If the flow is in equilibrium the curly bracket is (very close to) zero. Since the change of 

conditions imposed on the gas with increasing A(x) demands recombination, however, i.e., 

finite negative dajdx, the coefficient of {} must be (very close to) infinity. For equilibrium 

flow, we determine a from the algebraic relation {} = o. 

In the numerical integration of the equations the equilibrium value of dajdx is then compared 

at each step with CpTTJa 2pj(UPd). When a point is reached where 

Cp2TTJa2 
(8.2) 

UPd (~~)e 

reaches 0 (1) from above, a switch is made from the algebraic equation {} = 0 to the 

differential equation (8.1), i.e., to nonequilibrium flow. This strategy may be extended 

to more general problems in which many chemical reactions occur simultaneously. This 

avoids the numerical difficulties that arise in such situations from the possibly very different 

magnitude of different reaction rates, which cause the equations to be "stiff". By separately 

switching each reaction from equilibrium to finite rate at the point where the l.h.s. of (8.2) 

for that reaction reaches a chosen threshold value, the "stiffness" is removed, see Rein. 
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The diagram shows the result of an IDG nozzle flow integration. 

ex '" 0.3, r'"/ e ::: O. 10, A::: 5.0E + 0 2! 3.0E+03 
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h 2 
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C\l 

OL-__~~~~~~~__~__~~~~W-__~~ 

1 10 100 
A/A' 

Figure 1. Calculated IDG nozzle flow. A is a reaction rate parameter to be defined later. The 
asterisks refer to values of a variable at the throat. 

As may be seen, the change of a from the point where the nonequilibrium effects are signifi­

cant to the point where a is constant (frozen flow) is not very large. This has led Bray (see 

V. & K.) to suggest the freezing criteria 

Cp2T'TIa2 
1 (8.3) 

UPd (~~)e 

to be used in conjunction with an equilibrium calculation. This leads to the result shown 

as a dashed line. Bray's procedure requires no nonequilibrium computations and therefore 

no integration since the nozzle flow equations for equilibrium may be written as algebraic 

equations only: 

puA - const. 

s s*(p, p) const., see eqn.(3.14) 
2u

h+- const. (8.4)
2 
p k 
- (l+a)T­
p 2m 

2 
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h = 

and the left hand side of equation (8.3) is completely determined by the equilibrium solution. 

Since this is the case, one may also alternatively use a Mollier diagram. See procedure p. 

185, Vincenti & Kruger. 

Note that, as the speed approaches a constant with increasing A, the density and A become 

increasingly proportional to each other (pA const.). Also, in the frozen limit, with ut'V t'V 

const., the pressure goes approximately as P "" A-I' since p t'V pl'. (For frozen flow the perfect 

gas model applies and r = cp/ev = const.) 

Features of nozzle-flow freezing 

The fact that recombination can not keep up with the demands made by the rates of change 

imposed on the composition by the nozzle flow, leads to a nozzle-exit composition that is in 

a non-equilibrium state. For most applications it is important to know this composition. If 

the gas is subject to many different chemical reactions, and produces many different species, 

such as is the case for air flow, the problem appears at first sight to be very complex. It 

turns out, however, that there exists a very useful simplification, discovered by Harris and 

·Warren. 

For a given gas and a given nozzle geometry, the composition at which the gas eventually 

freezes in the nozzle expansion, depends only on the specific entropy in the reservoir. Hence 

the composition may be plotted against the specific reservoir entropy in a single diagram 

'"alid for all combinations of Po and To. For example, a set of numerical computations of 

air flow in the T5 nozzle gives the result shown in the figures. Since the exit composition 

depends on the specific reservoir entropy, this can be translated by using a Mollier chart 

(lower part of figure) to give the dependence of exit composition on reservoir enthalpy and 

pressure. In T5 the maximum reservoir pressure is 100 MPa. It follows that, to obtain 

an exit composition of less than 1% by mass of atomic oxygen, the flow speed can not be 

increased to more than 4.2 km/s, and, at 6 km/s, the atomic oxygen concentration is 12% by 

mass. Also, the improvement achieved by increasing the reservoir pressure is slow. A tenfold 

increase to 1 CPa only increases these numbers to 5.2 km/s, and 5% by mass, respectively. 

To explain why the reservoir-entropy-correlation works, introduce the characteristic length 
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Figure 2. TOP: Calculated composition at the exit plane of the T5 nozzle as a function of specific 
reservoir entropy. BOTTOM: Mollier chart showing how the exit composition depends on the 
reservoir pressure and reservoir enthalpy. 

A/(dA/dx), of the nozzle. An approximate value for this is half the nozzle length, L/2, say. 
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The recombination reaction freezes when 

bf'comes comparable to L/2. f!r increases extremely rapidly in a nozzle expansion. Assuming 

that the dominant variable in f!r is p, we see that 

f!rx "'" _2Px ,....., 2Ax 
f!r- p- A' 

Also, f!r is determined essentially by state variables, provided that the gas is in equilibrium. 

Thus, the equilibrium value of f!r may be represented in a Mollier chart. Since an equilibrium 

expansion is a vertical line in the Mollier chart, the point at which that line crosses the line 

does not depend on the value of ho where that line starts, but only on So. If f!r increases 

sufficiently rapidly, freezing will occur suddenly at that point. 
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Nozzle Flow Starting From Throat 

6.1 Variables and Parameters 


Write the variables in terms of the conditions at the throat as follows: 


u u' I a:* 

x ::::: x'IVA'* 


p p' I p'* (6.1) 


T T'led 

p p'l (p'* a:2) 

A(x) A'IA'*, 

where the primed variables and (}d are dimensional. The dissociation fraction is a, and the 

problem depends on the dimensionless parameters 

JAi* T'*
K 	 r], and (6.2)-f-' 0;;' 	 p'* 

6.2 	 Equations for Equilibrium Flow / 

- L,<"" II - rJ. e-
The equations then become: a... \I-\.. ~ .St ~~ , • 

1 

S" ~~ "',0<.) T) r, r 

C 
H 

puA 

uUx + uApx 

- 1 

0 

f~ +~)( t ~x 
\' ~ A 

=..-J 

6 2Ku Ux + (4 + a)Tx (1 + T)ax 0 

1'1 A 
2ax- ­
a 

ax 
I-a 

Px Tx+--­p T2 0 (6.3) 

T.5 Px 
p 

Px 
p 

ax 
1 a 

2K:f .. .. 
Tx 
-
T 

... 
"" 

7'(1 + u)T'
".. ... .... 
O. 

The third, fourth and last of these are obtained by differentiating the energy equation in­

corporating the caloric equation of state, the law of mass action and the thermal equation 
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--

of state with respect to x. Using the second to replace Px and the fifth to replace p in the 

last, and replacing Px/ P from the differentiated form of the first, i. e., 

Px 
(6.4)

p u 

we obtain the following three simultaneous differential equations in u, a, and T, with x as 

independent variable: 

2 
2Ku 1 ax Tx Ax~ [1 (1 + a)T 1+a T A 

U x 2 a Tx Ax-+ a -- (6.5)
U a(1 - a) x T A 

2Kuux + (1 + T)ax + (4 + a)Tx 0 

These may be solved to give the derivatives explicitly in terms of the dependent variables 

and the area ratio: 

Ax 1 
Ux A 1 a~/ (2K u2) 2Ku 

Ax T a(1 a){1 + a - 3T) 
ax (6.6)

1 a~/(2Ku2) a(1 - a) + 3(2 - a)T2 

Ax (2 - a)(1 + a)T + a(1 - a)
Tx - -----:--­

A 1 a~/(2Ku2) a(1 a) + 3(2 a)T2 

where 

T a(1 - a2)(1 + 2T) + (8 + 3a a3 )T2 
(6.7)

a(1 - a) + 3(2 - a)T2 

is the square of the dimensionless equilibrium speed of sound. At an area minimum, or throat, 

where Ax is zero, U x may be non-zero only if the denominator is also zero, i. e., if the speed 

is equal to the equilibrium speed of sound. This means that, at the throat, the expressions 

for the derivatives become undefined. In the vicinity of this point it is therefore necessary 

to use de l'H6pital's rule to specify the derivatives. By differentiating the numerators and 

denominators of the right hand sides in (6.6), and forming the quotient, we obtain three 

new differential equations for the neighborhood of the nozzle throat that involve the second 

derivative of A which is finite at the throat: 

2 



" 
I • 



Axx a~u 

A 4Ku + (GIFI + G2F2 )/G3 

-Glux (6.8) 

where 

FI 3T2(8 + 30: - 0:3) + 0:(3 + 2T)(1 - 0: 2) 6(2 - o:)Ta~ 

F2 - 3T2(1 - 0:2) + (1 + 2T)(1 - 30:2) - (1 - 20: - 3T2 )a; 
2K 0:(1 - 0:)(1 + 0: 3T)

GI (6.9)
0:(1 - 0:2)(1 + 2T) + (8 + 30: - 0:3)T2 

2KuT (2 - 0:)(1 + o:)T + 0:(1 0:)G2 0:(1 - 0:2)(1 + 2T) + (8 + 30: - 0:3)T2 

G3 0:(1 0:) + 3(2 0: )T2. 

The problem is most easily solved by integrating the initial-value problem in both directions 

starting from the throat, where the conditions are presumed known for a specified A( x). 
Equations (6.8), derived using de l'H6pital's rule, have to be used first, up to where Ax is 

no longer small, at which point a switch to equations (6.6) is in order. If it is necessary 

to solve the nozzle flow for a given reservoir condition, the equations are integrated in the 

upstream direction first, until u becomes small. This condition is then the reservoir state for 

the initially presumed throat condition. To get the desired reservoir condition, change the 

throat condition and iterate. 

As the area increases with increasing x on the downstream side of the throat, it is possible 

th.?-t the recombination rate demanded by the area increase can not be supplied by the 

chemical reaction rate. At that point it is necessary to replace the law of mass action (or 

its derivative) with the reaction rate equation to give a non-equilibrium formulation. vVe 

assume here that the flow is always in equilibrium at the throat. 

6.3 Non-equilibrium Flow 

In the case of non-equilibrium flow it is necessary to replace the fourth of equations (6.3) 

with the rate equation 

(6.10) 

Thus, we obtain the set of equations that have to be solved in that case: 
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u [(1 + 0:)(4 + o:)T Ax/A + (1 + 0: - 3T) O:x] 

6Ku2 - (1 + 0:)(4 + o:)T 

ATTf [ 	 0:
2 p'*]- (1 - 0:)e-1/T - -- (6.11) 

u2A uA Pd 

2Kuux + + O:x 

4+0: 

The following figures show two examples of solutions to the non-equilibrium flow problem, 

the first two being a case close to equilibrium (A 5E10) and the next two a case where 

non-equilibrium effects are important, (A = 500). 
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9. Plane, oblique shock 

Consider a plane shock making an angle j3 with an oncoming free stream at uniform condition 

1. As the fluid crosses the shock, only its normal component of velocity, v, is changed, the 

tangential component u, remaining unaltered, i.e., U2 Ul' 

Figure 1. Sketch of oblique shock in perfect gas. Since this can be generated by a Galilean 
transformation from a normal shock, Ul = U2. 

This result may be obtained by requiring Galilean invariance: An observer moving with 

velocity Ul parallel to the shock would see the gas approaching only with the normal com­

ponent of velocity VI' Hence he would see the situation of a normal shock in which the 

downstream value of U is also zero. It follows that if he moves at a velocity parallel to the 

shock but different from Ul, the new shock-parallel velocity he sees is the same before and 

after the shock. The component of velocity parallel to the shock is thus uniform in the entire 

flow field. 

\Ve now use the results obtained for the normal shock with chemical nonequilibrium in 

order to obtain the flow through an oblique shock by superposition of a uniform velocity 

field parallel to the shock. To remind us of the features of nonequilibrium normal shock 

flow, the density and velocity profiles are sketched here again. A discontinuous reduction of 

the velocity at the translational shock is followed by a continuous further drop as the flow 
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Figure 2. Sketch of density and velocity distribution in the flow downstream of a shock with 
dissociative relaxation. 

approaches dissociative equilibrium. As may be seen from the Fig. 1, a reduction in v means 

an increase in b. Thus, if we superpose a uniform velocity field parallel to the shock on a 

norinal shock flow with nonequilibrium, the deflection angle increases with distance from the 

shock and the streamline downstream of the shock is curved. The deflection angle may be 

seen to be related to the shock angle and density ratio through 

P VI tan,B 
PI = V = tan(,B - 0)' (9.1) 

as may be verified geometrically. The streamline is therefore curved in the relaxation zone 

and only becomes straight again when equilibrium is reached. If the relaxation is endother­

mic, as it is in the case of dissociation after a shock, the curvature is concave as shown in 

our sketch (03 > 02). It is possible, however, to imagine a situation where the free stream 

is in a state of constrained equilibrium, such as, e.g., a mixture of hydrogen and oxygen at 

low temperature. If such a mixture flows through a sufficiently strong shock, the hydrogen 

may be caused to burn or detonate after the shock. This exothermic reaction would cause 

the behavior of the velocity in the relaxation region to be opposite to that shown in Fig. 2, 

and the streamline curvature would have opposite sign to that shown in Fig. 3. (03 < 02)' 

In the following we restrict discussion to the endothermic case. 

An observer who cannot resolve the relaxation length .e sees only the straight parts of the 

streamline before the shock and downstream of y = .e. For him the flow is in equilibrium 

in the complete field with the exception of a region within the thin shock, which he has to 

treat globally as a discontinuity. 
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Figure 3. Sketch of streamline deflection in the flow downstream of a shock with dissociative 
relaxation. 

We now vary the shock angle /3 and focus attention on the condition 2 after the shock and 

the final equilibrium condition 3 after the relaxation zone. It is convenient to plot these 

states in the V - 6 plane. Two special cases give 62 63 = O. They are the infinitely weak 

shock or sound wave 

/3 = arcsin (at/Vi), (9.2) 

and the normal shock 

/3 = 11/2. (9.3) 

In the latter case (/3 = 11/2) it is necessary to distinguish between equilibrium and nonequi­

librium flow. Since (for /3 = 11/2) V2 = V2 > V3 \13, the point representing the equilibrium 

normal shock (N3) lies to the left of that for the frozen normal shock (N2 ). 

Varying the shock angle /3 from arcsin (af /V1) to 11/2 the condition 2 traverses the V 6­

plane along the curve 2 and the condition 3 along the curve 3. As we know from perfect-gas 

dynamics the curve 2 passes through a maximum deflection point M 2 . Since (for endothermic 

reaction) 63 > 62, M3 lies at a higher value 6 than M2 • Hence, the maximum deflection angle 

is higher for equilibrium than for frozen flow. 
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Figure 4. Oblique shock locus in the V6-plane for frozen (lower curve) and equilibrium flow. Also 
sho~n is the locus of a streamline (dashed curve). Though there is a jump in 6 and V across the 
shock from condition 1 (point(l,O)) to condition 2 on the lower curve, equation (9.4) describes the 
behavior of the streamline within this shock too. Of more interest to us is the behavior of the 
streamline between the condition 2 and condition 3. 

We now seek the map of the streamline after an oblique shock that has a particular value of 

(3 in the V 8- plane. Evidently the condition jumps first of all from the state 1 on the V -axis 

to a state 2 whose position on the curve 2 is determined by (3. Therefore, 8 is given by 

v 
arctan , 	 (9.4)

u 

as may easily be seen geometrically from Fig. 3. Replacing v by JV2 - u2 and differentiating 

8 w.r.t V at constant u and (3 (plane shock) we obtain 

d8 u 
dV - vV' 

(9.5) 

since u, v and V are all positive, the streamline has negative slope in the V 8-plane. Since v 

decreases monotonically in the streamwise direction and so does V, while u remains constant, 

the map of the streamline in the (V8)-plane is concave upward. 

Note that all of this discussion does not make any assumptions about what happens in the 
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translational/rotational shock. In fact, (9.5) applies equally there. If the behavior of v . 


through the translational shock is monotonic-decreasing, the dotted line between 1 and 2 


indicates the map of the streamline within this thin shock. 


Note that Fig. 4 applies for one free-stream condition and would be different if that is 


changed. The dimensionless parameters determining the diagram (in terms of IDG proper­


ties) are those of the normal shock flow, i.e., HOl K, aI, P, and PdfPl. 


Exercise 9.1: 


Use the normal shock calculation you have made for a nonequilibrium normal shock flow to 


map out the streamline in the V J plane for a corresponding oblique shock. 


Exercise 9.2: 


Use the software you generated to solve the normal shock hydrogen flow to obtain the J - V 


map for oblique shocks in nitrogen at a flow speed of 7 km/s and a free-stream density of 


5 x 10-6 g crn-3 . Assume al = 0 = P, Ho = K. 
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10. Sonic Line After Oblique Shock 

In the last chapter we have tacitly assumed that shock waves of infinitesimal strength, i.e., 

sound waves, propagate at the frozen speed of sound af, see equation (6.13). This is the 

case because the relaxation length becomes infinite as the shock strength goes to zero. This 

is also the reason for the curves 2 and 3 in the Va-plane to approach the point 1 with the 

same slope. 

We now want to focus attention on that part of the Va-plane where the downstream speed 

is near aft and sketch that part of the Va-plane. In this diagram we plot the maximum 

deflection points M2 , M3 , and the points S2f and S3f at which the speed V equals the local 

frozen speed of sound. At S2f, V2 = af2 and at S3f, Vs af3. For a given free-stream, these 

two points correspond to two different shock angles /3. In the limit of an infinitely strong 

V 
Figure 1. Sketch of V8-plane for oblique shock with dissociation, showing the sonic line and two 
streamlines A and B. 

shock (VI/af -+ 00), the point S2f coincides with the point M2· 

Starting from the map of the streamline in the V o-plane shown in section 9, we now increase 

the shock angle /3. In that case both upstream and downstream flows are supersonic. By 

1 
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Y Ys Y 
Figure 2. Profiles of V and af as functions of y for the two streamlines A and B. 

increasing /3, we reach a point where the point 2 coincides with 82f • This case is shown in 

Fig. 1 as a streamline map A. The streamline A has been drawn in such a way that the 

intersection with 3 occurs to the right of S3f' 

We now examine whether this is correct. To do that we observe that for IDG 

2 4+o:p 1 
af 

I'V ­= (10.1)
3 p p 

and 

(10.2) 

In the range of interest here, this means that af falls more quickly with distance from 

the shock than V. It follows that case A is as shown in the left sketch, i.e., supersonic 

everywhere except at the shock. However, if we increase the shock angle further, an entirely 

new phenomenon occurs: The intersection point between the curves V(y) and af(Y) now 

moves downstream of the shock, thus opening up a subsonic region of finite extent, y < Ys, 

downstream of the shock. Beyond this region the flow remains supersonic. As we continue 

to increase /3, Ys increases more and more rapidly until, as Ys -+ e it increases infinitely 

fast (~ -+ (0) and at that point Ys becomes infinite, so that the whole of the downstream 

region becomes subsonic. This corresponds to the point at which the condition 3 maps onto 

the point S3f in the V 6-plane. 

I t follows from the foregoing arguments that the ~onic line is as sketched in the diagram 

Fig. 1 as a dashed line. The fact that a limited extent subsonic region may exist downstream 
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Figure 3. Physical picture for case B 

of a plane oblique shock has important consequ~nces as we shall see later. It also does not 

appear in any textbooks. 

To show the quantitative extent of the subsonic region, the results of a numerical solution 

for the case V1 = 6km/S, l.¥l = 0, pdPd = 10-6 
, Ho = K, I DG : N2 are reproduced 

here as a sketch Ys vs. f3 from [8]. 

Figure 4. Sketch of variation of Ys with (3 
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In this flow case A occurs as f3 = 67.6°. This phenomenon, that a subsonic layer may follow 

a plane oblique shock, is of decisive significance for flow over a wedge. However, in order to 

understand it and other flows better, it is necessary to discuss the flow after a curved shock 

in more detail first (next chapter). 

Exercise 10.1: Show that) as ~/af1 -+ 00 the point S21 moves into the point M2 in the 

V 6-plane. Is this also true for the corresponding points S31 and M3? If not) why not? 

Reference: 

[8] Hornung, H.G. & Smith G. H. J. Fluid Meeh. 93, p.225-2S9, (1979). 
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11. Flow after a curved shock 

To analyze the inviscid, adiabatic flow after a curved shock, we use the curvilinear coordinates 

whose origin lies in the point where the streamline to be considered pierces the shock. x is 

parallel to the shock, y normal to it. At the point (x, y) (0,0) the radius of curvature of 

the shock is l/k, at the point where a streamline intersects the shock at right angles it is 

l/ko. 

streamline 

11k' 

Figure 1. Notation. 

In order to simplify the notation, introduce dimensionless variables as follows: 

d ~ i h' 
v , U = Tn' p = '11,'2' h = V{2'11"1 vl Pl 1 

P' k' 
P I ,k k" X x'k~ , y = y'k~ , t = t'V{ k~, (11.1) 

Pl 0 

where the primed variables are dimensional and the unprimed variables are dimensionless. 

For the discussion in this chapter, we keep the gas general, as the conclusions to be drawn do 

not require a specific gas modeL The conservation equations and calo~c equation of state r 
may be written in these coordinates 

1 
UUx + (1 - ky)vuy - kuv + - Px - 0 

P 
uVx + (1 - ky) VVy + k~+ (1 ky)py/ P 0 

h(p, p, a) + (u2 + v2)/2 ho (11.2) 

(pu)x - kpv + (1 ky)(pv)y 0, 

1 





where the indices denote partial differentiation w.r.t. the index variable. These equations, 

together with an equilibrium condition such as equation (2.14) or (alternatively) with an 

expression for dajdt such as (4.18) specify the flow downstream of the shock. We are 

particularly interested in the nonequilibrium case. Here, we can introduce a more general 

reaction rate 
h da (11.3)

a: dt 

which could be much more complex than the IDG model, involving many species and 

reactions, since the flow only cares about the rate at which enthalpy goes into and out of the 

chemical energy store. By differentiating the 3rd of (11.2) we can solve for the y-derivatives 

in terms of the flow variables and the x-derivatives. At the shock: the x-derivatives can 

be determined by differentiating the shock-jump relations w.r.t. x. This introduces the 

curvature /3x = -k. The x- and y-derivatives may then be combined to form the substantial 

derivatives with 
d a (t; a 
dt v ay + 1 kyax' 

A great deal of algebra leads to the result 

F 
dp 

dt 

p2h
pr+k--PG 

v 
dp 

dt 
P2 r 
v 

k p2 (hp 
v 

- ~) G, 
p 

(11.4) 

where 

V2 + uVx _ ~pxG ky). (11.5){ k pv k 

(11.4) immediately yields the very interesting result 

(11.6) 

vVe use this equation to discuss the limiting cases of frozen flow (r = 0) and of the plane 

oblique shock (k=O) 

a)In frozen flow, (11.6) degenerates to 

hp _ 2 
(11.7)1 - af'h - ­p p 
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In this expression we recognize the frozen sound-speed, as expected, since the flow is isen­

tropic after the shock in frozen flow, and (EJpjEJp)s = a}. Note that this is independent of 

G and k. 

b)For a straight shock, (11.6) degenerates to 

(11.8) 

in agreement with our result for the plane shock; this may be checked by differentiating 

equation 5.21 which, in the dimensionless coordinates is 

p sin2 ,B (1 - 1j p) 

glvmg 
dp sin2 ,B 2 

--2- = V .
dp P 

Note that (11.8) is independent of r ! 

The equilibrium case is not covered by (11.6) because we would have had to use an algebraic 

equation of the form 0: = o:*(p, p) instead of the differential equation (11.3). 

For finite k and finite r, dpjdp depends on both of these parameters. If one of them is zero, 

the dependence on the other also disappears. 

In order to be able to draw conclusions about the V 6"-map for reacting curved-shock flows, 

write the streamline component of the momentum equation as 

1 dp 
(11.9)

pdt' 

Substantial differentiation of the equation 

arctan 
v 

(11.10)
u 

(with,Bx - - k and ,By = 0) then leads to 

w-G+ &.do u u pk 

dV Vv w G 

(11.11) 

where 
vr w- (11.12)

kphp 
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is a local dimensionless reaction rate parameter. It relates the relaxation length to the radius 

of curvature of the shock. The limiting case w = 0 means frozen flow, and for it, equation 

(11.11) applies for arbitrary k: 

vV2 px 

uG pk 

(11.13) 

It should be pointed out here that Px/k is independent of k at the shock. Similarly G. 

The limiting case w = 00 means plane shock, since (11.11) only applies for finite r (the 

equilibrium case is excluded). We obtain 

u 
(11.14)

Vv' 

as expected (see eqn. 9.5). 

Equations (11.13) and (11.14) thus show that the direction of the streamline at the shock in 

the V 8-plane depends on w. 

The right hand side of eqn. (11.13) has three zeros. Two of these occur at 8 = 0, namely 

because u = 0 both at V = Vl and at the normal shock point N2 . The third zero is [l = o. 
It is the so-called Crocco-point C2 , that lies between M2 and 82 , In the region between fv12 

and N 2 , (d8 / dV)w=o has a pole at the point h. 

The sketch shows as short full lines the direction in which the streamline leaves a curved 

shock in the case of frozen flow, while the dash-dotted short lines show the direction in 

which a reacting flow leaves a straight shock. For a curved shock with finite reaction rate, 

the direction of the streamline at the shock lies between these two extremes. 

This map gives a useful means of drawing qualitative conclusions about reacting flows as we 

shall see. The physical plane can often be usefully mapped into the V8-plane and vice versa. 

Exercise {11.1}: Find 82 , C2 , M2 and 12 for VI/at 00. Give values of (3. 

References: 

8. Hornung H.G. & Smith G.H.,l. Fluid Mech 93 p.225-239 (1979) 

9. Hornung H.G., 6th Australian Hydraulics & Fluid Mech. Conference, Proceedings, Ade­

laide (1977). 
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Figure 2. V 8-plane shock locus showing the directions in which streamlines have to leave the 
frozen shock locus when w = 0 (dash-dotted line) and when w = 00 (full line). M2 is the maximum­
deflection point, S2 the sonic point, and C2 the Crocco point. At the Crocco point, the d81 dVw:oo = 
0.. 12 is the point at which d8ldVw=o = 00. 
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Abstract. The inviscid equations of motion for the flow at 
the downstream side of a curved shock are solved for the 
shock-normal derivatives. Combining them with the shock­
parallel derivatives yields gradients and substantial deriva­
tives. In general these consist of two terms, one propor­
tional to the rate of removal of specific enthalpy by the re­
action, and one proportional to the shock curvature. Results 
about the streamline curvature show that, for sufficiently fast 
exothermic reaction, no Crocco point exists. This leads to a 
stability argument for sinusoidally perturbed normal shocks 
that relates to the formation of the structure of a detona­
tion wave. Application to the deflection-pressure map of a 
streamline emerging from a triple shock point leads to the 
conclusion that, for non-reacting flow, the curvature of the 
Mach stem and reflected shock must be zero at the triple 
point, if the incident shock is straight. The direction and 
magnitude of the gradient at the shock of any flow quantity 
may be written down using the results. The sonic line slope 
in reacting flow serves as an example. Extension of the re­
sults - derived in the first place for plane flow - to three 
dimensions is straightforward. 

Key words: Streamline curvature, Crocco point, Pressure­
deflection map, Mach reflection, Detonation, Shock stability, 
Vorticity, Sonic line 

1 Introduction 

Physical shock waves, which always have finite thickness, 
may be modeled mathematically as infinitesimally thin en­
tities across which physical properties change discontinu­
ously. The relation between the two states at the discontinu­
ity is supplied by the conservation equations. Thus, given the 
local and instantaneous velocity of propagation of a shock 
relative to the medium and the orientation of this velocity 
relative to the tangent-plane to the shock, the local and in­
stantaneous conditions on the downstream side of the shock 
may be determined from the upstream state on the shock 
and the thermodynamic properties of the medium. This is 
true even if the shock is curved and accelerating, and if it 

is propagating into a medium in which finite gradients exist. 
Such relations will be referred to in the f91l0wing as the 
shock-jump relations. 

When dealing with curved or accelerating shocks, or 
with non-uniform upstream media, it is sometimes useful 
to extend the shock-jump relations to include the connec­
tions between curvature or acceleration of the shock, and 
the gradients on the downstream side of the shock. The case 
considered here is that of a stationary curved shock with 
uniform upstream conditions in a steady flow of a perfect or 
a reacting gas. In tbis case the shock curvature and reaction 
rate determine the gradients on the downstream side of the 
shock. 

A number of textbooks on gasdynamics partially cover 
this topic, e. g., Hayes and Probstein (1959), Oswatitsch 
(1952), and several publications treat different aspects, e. 
g., Lighthill (1949), Munk and Prim (1948), Clarke(l969), 
Molder(l97l). To present the problem coherently it is neces­
sary to repeat the analyses of previous publications to some 
extent. In doing so the present approach begins with the 
analysis of Hornung (1976), in which the equations required 
for the present problem were used as a starting point for 
an asymptotic analysis of endothermic reacting flow down­
stream of a convex shock. 

2 Definition of the problem 

Consider a curved shock wave in a uniform free stream 
characterized by velocity V~, density p~. The origin of 
the shock-aligned curvilinear coordinates Xl, yl is chosen at 
the point where the streamline of interest crosses the sbock 
wave. Let the shock curvature at this point be kl and the 
shock and deflection angles be /3 and aas shown in Fig. I. 
Introduce dimensionless variables defined by 

h - h'/V'2
- 00' p =p'/p~V:;', v =Vl/VC:O, 

P = pI / p~, y =y'kb, 

where h, p, p, v are dimensionless specific enthalpy, pres­
sure, density and y-velocity, and kb is a convenient reference 
value of the shock curvature. The x-component of velocity 
1£ is made dimensionless in the same way as v. 





12 
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Fig. 1. Notation. Upstream of the curved shock wave, conditions are as­
sumed to be uniform. The origin of coordinates is the point where the 
streamline of interest crosses the shock 

The gas is supposed to obey caloric and thermal equa­
tions of state of the forms 

(I) 

(2) 

in which T is the dimensionless absolute temperature 
RT'IV:};, with the specific gas constant R, and the Ci are 
the mass fractions of the n constituent species of the gas, i 
taking values 1 through n. 

Since the mass fractions must satisfy the identity 
n 

:z=ci=l, 

( 
i:1 

the number of mass fractions that are independent is one 
less than the total number n of components present. It is 
usually convenient to choose CI as a dependent variable and 
the other Ci' S as independent variables. Thus, 

n 


dh == hpdp + hpdp + :z= he; dc; 

i=2 

where the sUbscripts denote partial differentiation. 
In order to determine the gradients of physical properties 

of the flow at the shock wave, it is necessary to solve the 
differential equations of motion for the components of the 
gradients. To do this, consider the two components of the 
inviscid momentum equations, the y-differentiated energy 
equation and the continuity equation as follows: 

UUx + (1 ky)vuy kuv + Px/p == 0, (3) 

uVx + (l - ky)vvy 	+ ku2 + (I ky)py/p 0, (4) 
n 

hppy + hppy + :z= hCiCiy + VVy + uUy 0, (5) 
;=2 

(pU)x - kpv + (1 - ky)(pv)y :: 0. (6) 

The case of interest here is y == 0, i. e., the term (I - ky) 
that occurs in these equations may be written as 1 for our 
purposes. The x-differentiated form of the energy equation 

Px == -(uux + vVx + hpPx)/hpJ 	 (7) 

will also be needed, as will the shock-jump relations 

p - Poo =sin2;3 (I 1/p) J 	 (8) 
Ci :: Cioo, 	 (9) 

v :: sin;3/p, (10) 

2(h hco):: sin2;3(1 - 1//), (II) 

u= cos;3, 	 (12) 

1+1 
p= 	 (13)

I - 1+ 2/(!vI2sin2;3)' 

where I is the ratio of specific heats, and !vI is the free­
stream Mach number. The expression for the density ratio 
across the shock, Eq. (13), is written for a constant-I gas. 
This is permissible in a reacting flow situation if the shock­
jump relations are taken to apply to the jump from the free­
stream conditions to the conditions downstream of the shock 
before any reactions take place, i. e., to a jump that does not 
involve a change of composition, as is made clear by Eq. 
(9). 

The problem of determining 'the gradients of the flow 
variables at the shock consists of solving Eqs. (3 to 6) for 
the y-derivatives, and determining the x-derivatives (along 
the shock) by differentiating the shock-jump relations with 
respect to x. 

So far it has been tacitly assumed that the flow is plane. 
As will be seen later, the extension to the general case is 
quite straightforward. 

3 Partial and substantial derivatives at the shock 

Differentiation of the shock-jump conditions with respect to 
x introduces the shock curvature;3x -k: 

Ux :: sin;3 	 (14)
k 

Px 4p2cos;3 
:: (15)

k (I + 1)ivJ2sin3;3 

Px 	 sin2;3 Px 
== -2sin;3cos;3 (1 - +--- (16)

p2 kk 	 ~) 
Vx cos ;3 sin;3 Px 

:: 	 (17)
k p 7-;:;' 

Solving Eqs. (3 to 6) for the y-derivatives yields: 

i=2 

(18)- kp [U (I - P:: ) K+ v + P~L] 
kE 

(19) 
v 

vVyF :: - ~ hc,Ciy + k [PUhpK + v + p ~ L] (20) 
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where 

J( = Va;k + u, (22) 

(pu)a;
L f)k - V, (23) 

Pa; tta;
E = - + u- - ttl' (24)

pk k ' 

F == 1 p (~i + hp ) . (25) 

The v-derivatives of the Ci have to be kept as components 
of a parameter, because they depend on the reaction rates, 
which are functions of state that have so far been left unspec­
ified. As may be seen from Eqs. (14 to 17), any x-derivative 
is proportional to k, so that ratios like PxI k are independent 
of the shock curvature, and all such ratios are known on the 
shock in terms of the free-stream conditions and {3. 

With both x- and y-derivatives known, it is now possible 
to form substantial derivatives according to 

d I:J I:J 
- ==.JJ,- + V-. (26)
dt ,.....,I:Jx l:Jy 

For example, noting that the deflection angle is 

5 {3 - arctan(vlu). (27) 

forming the derivatives of this function with respect to x 
and y, and writing 

V dsldt == Vv l + u2 , (28) 

where s is distance along the streamline measured from the 
origin, the streamline curvature at the shock, d5I ds is ob­
tained as 

vV
3 

F d5 
VV2 Px F), (29) 

u ds pu k 

where 

V 2 + uVxG == (30)
k 

Similarly, other substantial derivatives may be formed: 

n ,
dp hp

F == "" h dCi kG P- (31)P.L.. dt + v'Cidt ,=2 

dp P2 
F = !!.-~ h dCi _ kG (h (32)v2 .L.. c, dt v pdt 

i=2 

dV 1 dp 
(33)

pdt' 

At this point it is worth taking a closer look at these re­
sults. Note that the streamline curvature and the substantial 
time-derivatives all consist of two terms, one of which is 
proportional to the rate of change of specific enthalpy of the 
gas that is caused by chemical reaction, and the other is pro­
portional to the shock curvature. (It is important to remember 
that the coefficients of these two parameters - reaction rate 

and shock curvature - are all determined by the free-stream 
conditions and the shock-jump relations). It follows that, for 
non-reacting flow, all of these derivatives are proportional 
to the shock curvature, through a proportionality factor that 
depends on the free-stream conditions and the shock angle. 
Conversely, for chemically reacting flow through a straight 
shock, the streamline curvature and time derivatives are di­
rectly proportional to the rate of specific enthalpy removal 
by chemistry. 

A special case of some interest warrants discussion: In 
inviscid chemically reacting flow over a plane wedge at an 
angle sufficiently small to give an attached shock, the stream­
line curvature at the tip of the wedge has to be zero (plane 
wedge) and Eq. (29) gives 

n dCi k ( V V2 Px )
"" h . - = - - ph G - - - F (34).L.. c, dt v p k 1 

i=2 pu 

i. e., the reaction-rate parameter is proportional to the shock 
curvature at the tip, as has been pointed out by Clarke (1969), 
Becker (1972) and others. This has also been used to deter­
mine reaction rates experimentally by Smith and Wegener 
(see Becker, 1972) and by Kewley and Hornung (1974). 

Another interesting observation may be made by forming 
the ratio of Eqs. (31) and (32). This gives 

dp 0 2 . ,£7=2 hc,dCildt + kGphplv 
(35)

dp '£~2 hCidcildt - kGpv (hp - lip)' 

Both the numerator and the denominator obviously contain 
two terms, one from shock curvature and one from reaction 
rate. Again consider the limiting cases of non-reacting flow 
and straight shock: In the case of non-reacting flow, the first 
terms in the numerator and in the denominator vanish. This 
has the interesting consequence that the curvature terms also 
cancel, so that the derivative of p with respect to p along the 
streamline also becomes independent of the shock curvature! 
The equation reduces to 

dp 
(36)

dp 

This is just the expression for the value of this derivative at 
constant entropy (the square of the frozen speed of sound) 
for a gas with a general caloric equation of state. This is 
as it should be, since the entropy will be constant along a 
streamline in non-reacting flow. 

In the other limit, that of reacting flow through a plane 
shock, omitting the curvature terms again causes the other 
parameter to cancel as well, and gives the well-known result 

dp , 
- = V-. (37)
dp 

4 Streamline curvature 

Many interesting features of flows may be understood better 
by studying the streamline curvature at a shock. This is, of 
course, only one case where the results of the previous sec­
tion about gradients at the shock can be used to advantage. 
However, it serves the purpose of demonstrating how the 
jump conditions may be extended by considering gradients. 
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Fig. 2. Ratio of streamline to shock curvature for perfect-gas flows with 
"( = 1.4 and for free-stream Mach numbers 1.1 (uppermost curve), 1.2, 
1.4, 1.7, 2.0, 2.5. 3,4, 5, 7. 10, 20. The ratio becomes singular at the Mach 
angle, and goes to zero at the normal-shock point. A zero crossing occurs 
again at the Crocco point (zero crossing) which always occurs between the 
sonic and maximum-deflection point . . 

4.1 Perfect-gas flows 

With non-reacting flow, G, F, E, K, and L reduce to rela­
tively simple functions of M, , and (3: 

sin 8cotl (3
G= 

[ 
3 cos-1 (3 - . p2 

2B] (I - P1) + ._------= (38)
(f + l)AI2' 

F = __1_ (1- ,pp) (39) 
, - 1 sin2(3' 

(40)E = COS(3pSin(3 [(3 - ~) + p (, +-1)~~j2si~2(3] • 

J{ = cos(3 [1 - ~ + -~-~--J . (41) 
p C! + 1).i\,f2 sin2(3 . 

2 
. ( 1 ) 4 Pcos (3L = sm(3 I - - - -... '1' (42)

P (, + I)AI2sin- (3 

Evaluating the ratio of streamline to shock curvature gives 
the result shown in Fig. 2 for , == 1.4. The features of 
the streamline-lo-shock curvature ratio may be described 
in terms of a convex shock such as is shown in Fig. 1. At 
the normal-shock point the streamline curvature has to be 
zero, of course. It is of opposite sign to that of the shock 
at values of (3 smaller than and close to 900 

, but reaches a 
minimum before increasing again to positive values, and fi­
nally becomes singular at the Mach angle. The zero-crossing 
occurs at the so-called Crocco point, at which the stream­
line curvature is zero for all values of the shock curvature. 
For perfect-gas flows, the Crocco point always lies between 
the point where the Mach number at the shock is unity ­
the sonic point and the maximum-deflection point. Thus, 
for the convex shock, the streamline curvature is concave­
up near the normal-shock point, and goes to convex-up at 
small shock angles. The singularity at the Mach angle does 
not mean that the streamline curvature becomes infinite, but 
rather that the shock curvature is identically zero there. 

The dependence of the streamline to shock curvature ra­
tio on , may be illustrated by plotting the same graphs for 
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Fig. 3. Ratio of streamline to shock curvature for perfect-gas flows with 
"y = 1.05 and for free-stream Mach numbers 1.1, 1.2. 1.4, 1.7,2.0,2.5,3, 
4, 5, 7, 10, 20. Note how the high-Mach-number cases hug the ratio l. 
This is close to the Newtonian limit, where the streamlines lie close to the 
shock for a large range of shock angles 

, 1.05, see Fig. 3. At low Mach numbers the curves be­
have in much the same manner as for higher " but at higher 
Mach numbers the minimum is much lower, the Crocco 
point is pushed closer to the normal-shock point, and, as 
the Mach number becomes very high, the curvature ratio 
hugs the value I more and more closely and for a larger 
range of shock angles. This is the behavior expected as con­
ditions approach the Newtonian limit (M -+ 00, ,-+ 1), 
where streamline and shock become almost congruent, since 
the density ratio across the shock approaches infinity. 

4.2 Reacting flow 

In order to calculate explicit values of gradients in the case 
of reacting flow, it is necessary to introduce a model for the 
caloric equation of state and for the reaction rate. For this 
purpose, the rate equation is written in the simple form 

(43) 

so that a representative vadation of the dependence of reac­
tion rate on shock angle is maintained by using the Arrhenius 
form_ The differential form of the caloric equation of state 
becomes 

p ,1 e 
dh = - ~dp + ~.~- -dp + -exp(-Bp/p)dt. (44)

,-lp· ,-lp c 

With this form of the reaction rate, the streamline curvature 
may be calculated explicitly for given values of Band c. the 
result of such a computation is plotted in Fig. 4. With the 
sign convention chosen in Eqs. (43) and (44), positive values 
of eand c mean that the reaction is endothermic. Thus, Fig. 4 
shows the remarkable fact that, for a given set of parameters 
lvI, " and e, there exists a particular reaction rate parameter 
c, below which the streamline-to-shock curvature ratio is 
positive for all shock angles, and no Crocco point exists. 
The reaction rate at this point is always exothermic, i. e., c 
is negative at this point. For the parameters chosen in Fig. 4, 
the special value of € is approximately -1/119. 
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Fig. 4. Streamline to shock curvature ratio in reacting flow for "y = 1.4. 
AI 6 and IJ = 0.8. The values of the reaction rate parameter are lie ::: 
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\ 
Fig. 5. Schematic sketch of a convex and concave near-normal shocks with 
associated streamlines. t'or a perfect gas. Both the concave and the convex 
shocks produce streamline curvatures that can exist stably in steady flow 

4.3 Application to geometrically perturbed normal shock 

The fact that the curvature ratio is positive near the normal­
shock point, if the rate of an exothermic reaction is suffi­
ciently fast, has interesting consequences. In order to under­
stand this, consider first the case of a sinusoidally perturbed 
normal shock in a perfect gas. Figures 2 and 3 show that, 
for small negative perturbations of the shock angle from 
90°, the streamline-to-shock curvature ratio is negative for 
a perfect gas. Similarly, for positive perturbations of ,8 from 
90°, the ratio will be positive. Consequently, a concave­
upstream shock, which is associated with streamline conver­
gence toward the symmetry plane of the shock, will cause 
the streamline curvature to be such that streamlines merge 
into the direction of the symmetry plane, see Fig. 5, left 
A convex-upstream shock, for which the deflection is away 
from the symmetry plane, produces streamlines that bend 
away from the symmetry plane, see Fig,S, right. This is very 
different in the case of a sufficiently fast exothermic reac­
tion, of the type where no Crocco point exists, or where the 
streamline-to-shock curvature ratio is positive in the range 
o < /3 < 90°. In that case, the situation is as illustrated 

{ 	 in Fig. 6. The convex-upstream shock with deflection away 
from the symmetry plane is also associated with a streamline 
curvature away from the symmetry plane, see Fig. 6, left. On 
the other hand, the concave-upstream shock, with deflections 

Fig. 6. Schematic sketch of a convex and concave near-normal shocks 
with associated streamlines, for a gas with fast exothermic reaction rate. 
The convex-upstream shock on the left can exist with stable steady flow. 
However. the concave-upstream shock shown in the center requires a pair 
of unsteady shocks to deflect the flow parallel to the symmetry plane (right) 

toward the symmetry plane, also produces a streamline cur­
vature toward the symmetry plane. On the symmetry plane, 
this causes a clash between the two convergent streamlines 
that will necessarily result in the production of two unsteady 
shock waves traveling outward from the symmetry plane, see 
Fig. 6, right. 

Thus, it is evident that a concave-upstream shock can 
not give a steady solution if an exothermic reaction of suffi­
ciently fast rate occurs at the shock. This is clearly related to 
the unsteady waves that occur in detonations and that form 
the cellular structure observed in such waves, 

5 Shock and streamline in the Va-plane 

Many gasdynamical problems are simplified by mapping 
the flow into the hodograph or ltV-plane, It is sometimes 
more convenient to choose other vmiables for this mapping, 
such as the V o-plane, or the po-plane, The condition after a 
straight shock in non-reacting flow maps into the V J shock 
locus shown in Fig. 7 as the continuous curve, starting at 
the infinitesimally weak shock point (1,0), moving smoothly 
through the maximum-deflection point and back to a= 0 
at the normal-shock point. This curve is the same for flows 
with finite reaction rate, of course, since it just represents 
the shock-jump conditions, which we have taken to be the 
same, by choosing the composition to be unchanged across 
the shock. 

The additional information that is brought into this pic­
ture by knowing the gradients at the shock, is that it permits 
curved and reacting shocks to be treated in this way as well. 
It is therefore convenient to treat perfect-gas and reacting 
flows separately. 

In particular, the derivative do/dV may be formed by 
using the general results for the gradients at the shock. Thus, 

do do ds d6 ds!!!:... = do (_pV2) dt. (45) 
dV ds dV ds dt dV ds dp 

Substituting from Eqs. (29) and (31), this gives 

"n h!!:.s. k ( h G &F)do U Ld",2 Cj dt + v P p - pu k 
= 	 (46)

dV Vv "n h.!!:.s. + kGe!!:e.L.t=2 c, dt v 

This derivative indicates the direction in which the stream­
line departs from the shock in the V 6-plane. 
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Fig. 7. V 6-plane map of a curved shock in non-reacting flow with M = 6 
and "'( = 1.4. Tl]e short straight lines indicate the direction in which the 
streamline leaves the shock in the case of a convex-upstream shock. Note 
how the direction is parallel to the shock lotus at the weak-shock point. 
becomes horizontal at 'the Crocco point. then vertical at the zero--G point. 
and finally horizontal again at the normal-shock point 

5.1 Perfect-gas flows 

For the special case of non-reacting flow, the streamline 
slope in the V o-plane becomes 

do -u [ V V2 
Px F]


dV =Vv I - p2h 
p 
u k G . (47) 


( In Fig. 7 this direction is indicated by a short strai aht line . e 
stm1ll1g at the shock locus. Although the slope of the stream­
line in the V o-plane is independent of the shock curvature, 
its direction is opposite to the one shown. for a shock wave 
curvature of opposite sign. The direction of the streamline 
shown in Fig. 7 is that for a convex-upstream shock. 

The streamline direction in the V o-plane undergoes sev­
eral changes as we proceed from the weak-shock point to 
the normal-shock point. At the former, the streamline di­
rection is parallel to the shock locus. No dramatic change 
occurs up to the vicinity of the Crocco point. In that vicin­
ity, the slope changes rapidly from negative to zero at the 
Crocco point, and subsequently to infinite, where it changes 
sign to minus infinity, and then approaches zero from below 
at the normal-shock point. For non-reacting flow, the point 
at which the slope becomes infinite is easily identified as the 
zero-G point, see Eq. (47). 

This kind of diagram was used extensively by Guder­
ley in the hodograph plane. He called it the hedgehog or 
porcupine diagram. Figure 7 is a funny-looking porcupine, 
with some of the "spines" pointing inward. However, it be­
comes obvious why the term porcupine seemed appropriate 
to Guderley, when it is remembered that he was concerned 
particularly with flows in the vicinity of AI =I. Thus, Fig. 8 
shows the same plot for the case !d = 1.5 in which all the 
spines are seen to point outward. 
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Fig. 8. For 111 = 1.5, "'( = 1.4, the streamline direction at the convex~ 
upstream shock is everywhere outward from the shock locus 
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Fig. 9. Plane shock with endothermic chemical reaction. M 6, I '" 1.4. 
Note the difference between the streamline slopes of this diagram and those 
of Fig . .7 

5.2 Reacting flow 

In the other extreme case of a straight shock with finite 
chemical reaction rate the streamline slope in the V o-plane 
becomes particularly simple: 

do u 
= (48)

dV Vv' 

It is clear that this slope is negative throughout the range 0 < 
(3 < 90, and the spines point outward for an endothermic 
reaction and inward for exothermic reaction. Figure 9 shows 
that case with AI =6 and, =1.4 for endothermic reaction. 

The streamline slopes in Figs. 7 and 9 are very different, 
especially in the weak and medium shock strength regime. 
Both are extreme cases, of course, and the general case of 
finite reaction, Eq. (46), will give slopes anywhere between 
the two extremes depending on the relative importance of 
chemical reaction and shock curvature. It is also possible to 
obtain the asymptotic behaviors of Eq. (46), both in the fast 
and slow reaction limits. To do this, introduce the parameter 

~n h dc· 
V L..i=2 Ci Tt ,- 1 B 

w= = sin{3-- -exp(-Bp/p), (49)
kphp , €k 
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where the last expression applies for the gas model of Eq. 
(43). This variable measures the relative importance of reac­

( 	 tion rate and shock curvature. It is positive for endothermic 
reaction and convex-upstream shocks. With this definition 
of w, Eq. (46) becomes 

d s: w-C+ vV2 '&.F 
v U ~k 

(50)dV :;:: -Vv w - C 

Expanding this for w -+ 0, the slope becomes 

( dO) :;:: _~ [I _ ( ~V2 Px F) ~ (I + w)]
dV w--+o Vv p hpu k C C 

+ 0(w2
). 	 (51) 

In the other limit, we obtain 

(:t) w--+oo = -t:v [I + ~ (;~~:U P; F)] 
+0 (~2) . (52) 

It is opportune here to stress again that the functions on 
the right of 50 to 52 may all be expressed in terms of the 
free-stream conditions, (3 and w. 

The manner in which do / dV changes with reaction rate 
is shown for AI :::: 6, I :::: 1.4 and () :::: 0.8 in Fig. 10, 
using the reaction rate model of Eqs. (43) and (44). Consider 
first the full lines in this graph: In the weak-shock limit, 
the slope has a finite negative value. For a given value of 
k::. as ,8 is increased from the weak-shock limit, the slope ( 
increases and becomes infinite at a particular value of (3, then 
rises from negative infinity, toward zero at the normal-shock 
point. This rise occurs almost exactly along the straight­
shock curve, which is the lower convergence line in the 
graph. Note that, for straight shocks, i. e., infinite w the slope 
is negative everywhere except at the normal-shock point, 
independently of whether w is positive or negative. This 
is the reason why this line is a convergence line between 
the dashed and full curves. In the V o-plane the difference 
between endothermic and exothermic reactions would be that 
the streamlines would leave the shock (at the same slope) in 
opposite directions. The upper convergence line is the value 
for a curved shock in non-reacting flow, the curve labeled 
kc: :::: ± 1. 

It is interesting to consider a particular shock angle, say 
55° and fixed shock curvature, and changing E from 00 (non­
reacting flow) to 0 (fast reaction rate). The slope starts on 
the upper convergence line (ke::::: ±I), where do/dV is ap­
proximately -1.8, then increases rapidly to 00 at e: ~ 10-3, 

where it flips to -00 and then approaches the lower con­
vergence line from below. For a convex-upstream shock, 
these changes represent a smooth anticIockwise rotation of 
the "spine" of the porcupine from the direction in Fig. 7 to 
that in Fig. 9. 

6 Three-shock points 

Across the streamline coming out of an intersection of three 
shock waves in inviscid, steady flow the velocity is discon­
tinuous, but the deflection and pressure are continuous. This 
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Fig. 10. Effect of reaction rate on do/ dV as a function of shock angle, for 
IV! = 6, 'Y = 1.4 and f) = 0.8. The values of the reaction rate parameter are 
k~ = I, 10-3• 10-6, 10-9, 10- 12 , -I. -0,0084, -10-3, -10-6• _10- 9•. 

and _10- 12 . The dashed lines indicate the cases where the reaction is 
exothermic. The lower convergence line corresponds to the straight-shock 
solution shown in Fig. 9. The non-reacting curved-shock case is the upper 
convergence line at low shock angles, and - at larger shock angles - may 
be identified as the lines for k~ =± 1 that are practically congruent 

makes representation of the flow in the op-plane very at­
tractive. With the knowledge of the gradients, it is relatively 
simple to extend arguments about triple points of straight 
shocks to include cases where the shocks are curved. To 
this end, the derivative do / dp at a curved shock may be 
evaluated quite straightforwardly as: 

do _ do ds _ do ds dt _ do V dt 
(53)

dp - ds dp - ds dt dp - ds dp , 

Substituting from Eqs. (29) and (31), 

,,\,n h!k.i !!! ( h C _ vv 
2 &F)

do U ~i"'2 Cj dt + v P p pu k 
= 	 (54)

dp pV2v - ,,\,n h.!k.i + kCe!::.e. 
~t"'2 c, dt v 

which is just l/pV)do/dV. This means that the qualita­
tive behavior of do/dp is like -do/dV. 

An example of the occurrence of a triple point is the 
Mach reflection of a straight shock from a wall, as shown 
schematically in the upper part of Fig. I I. The lower part of 
Fig. II shows a map of non-reacting flow of this kind in the 
op-plane. The regions labeled I through 5 in the physical 
space are labeled similarly at the corresponding points in the 
op-space. Now suppose that, at the triple point, the Mach 
stem is curved, the incident shock is plane, and the reflected 
shock is curved. Since 0 and p must be continuous across 
the slip line not only at the triple point, but also at ds from 
the triple point, do / dp has to be continuous across the slip 
line at the triple point. 

The value of do / dp, for non-reacting flow and a con­
cave-upstream shock, gives the slopes and directions shown 
in Fig. 11 for the chosen parameters. It is clear from Fig. II 
that, with a straight incident shock, the slope in op-space of 
the slip line issuing from the Mach stem is not the same as 
that issuing from the reflected shock at the point 3,4. Since 
the slopes are independent of the shock curvatures, there 
is no possibility for the curvatures to adjust to meet the 
constraint. The only possible conclusion to be drawn from 
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Fig. 11. Mach reflection. Top: Schematic sketch of the shock configuration. 
with labels identifying regions and points of the flow in physical space. Bot­
tom: ap-map of this !low, showing the incident shock (1-2), the reflected 
shock (2-3) and the Mach stem (4-5), as determined from the shock-jump 
relations. Al =6, 'Y = 1.4, non-reacting steady !low. Also shown are the 
streamline directions from the re!lected shock and the Mach stem, Note 
that the two streamline directions coming from 3 and 4 are nor the same. 
leading to the conclusion that these two shocks must have zero curvature 
at the triple poin! 

Fig. 12. Definition of angles 

this result is that in non-reacting flow - the curvatures of 
both the Mach stem and the reflected shock must be zero 
at the triple point (except in very special cases). This is 
not to say that these two shocks can not be curved at other 
locations, but rather that - at the triple point - both have 
a point of inflection. (In the more general case of a curved 
incident shock, MOlder (1972) shows that the curvature of 
the other shocks need not be zero.) 

It is interesting that this result may be different for the 
case of reacting flow. This is because, with finite reaction 
rate, d8!dp is no longer independent of the shock curva­
ture. The reaction therefore provides an additional degree 
of freedom that may permit the shocks to assume the finite 

curvatures that correspond to the local reaction rates and the 
streamline curvature constraint at the triple point. 

7 Some other derivatives 

The derivatives of the flow quantities at the shock obtained 
in Sect. 3 permit a number of other interesting quantities to 
be determined. In this section the vorticity at a shock is used 
as an example, and an illustration of how the results may be 
used generally is given. 

7.1 Vorticity at the shock 

In the curvilinear coordinates chosen, the vorticity at the 
shock is given by 

( = uy - Vx + ku. (55) 

Substituting for u y from Eqs. (19) and (24), this becomes 

I' k (Px U x vx) (56)" = -; pk + uk - uv - + uv .v k 

In this expression, the terms with explicit Mach-number and 
, dependence in the p- and v-derivative terms cancel when 
using Eqs. (8-17), and only the 13- and p-dependence re­
mains. The result is 

(= -kPCOS13(1 - ~r (57) 

This is the well-known expression for the vorticity at a 
curved shock, see e. g., Hayes and Probstein (1959). Clearly, 
the vorticity at the shock is independent of the reaction rate. 
Note that this is because the problem considered here is that 
where the composition is constant across the shock and con­
tributions from the reaction occur only after the shock, rather 
than that of equilibrium shocks. 

7.2 Gradients at the shock. sonic line direction 

The results of Sect. 3 may be used to determine the magni­
tude and direction of the gradient of any flow quantity. For 
example, the pressure gradient direction and magnitude will 
be 

(58) 

Since reactions strongly affect the direction of the density 
gradient, knowledge of this direction is very valuable, for 
example, in the interpretation of interferograms of reacting 
flow. Other gradients are of interest. For example, the slope 
of the sonic line, for which a closed-form solution exists 
in the case of plane flow of a perfect gas (see Hayes and 
Probstein, 1959), is also affected by the reaction rate. 

In order to determine the sonic line slope, consider the 
energy equation for our isoenergetic flow and the model gas 
in the form 

V2 2a
-2 + -- + hchem . ::::: hOl (59) 

,- 1 
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Fig. 13. Top: Dependence of sonic line angle on Mach number 
and reaction rate, plane How, "I :: 1.4. e '= 0.8. The deflection 
and shock angles at the sonic condition are also shown as a dot­
ted and a chain-dotted line. The chain-dotted line with three clots 
is for the non-reacting case, in agl'eemenl with the solution given 
hy Hayes and Probstein. Continuous lines and dashed lines repre­
sent endothermic and exothermic reaction rate cases respectively. for 
kc: = -0.0001, -0.001, -0.003, -0.01,0.01,0.003,0.001,0.0001. Bot­
tom: Schematic sketch of shapes of subsonic pocket behind a plane ::onvex 
shock in near-sonic How 

where hchem. is chemically stored specific energy and a is 
the frozen speed of sound. V == a along the sonic line, for 
which we can therefore write 

7 + I V2 + h h (60)2{f-1) chern. == O· 

Differentiating this along the sonic line, and recalling that 
Cix == 0, 

Vx cos¢ + Vy sin¢ + sin¢ 7:: ~ t hCiCiy == O. (61) 
i=2 

Here, ¢ is the angle between the sonic line and the shock. 
It is related to the angle 0: between the sonic line and the 
streamline through 

see Fig. 12 for notation. Thus, 

tan ¢ :::; (62) 
Vy + 

Figure 13 shows that, at high Mach number, endothermic 
reactions cause Q to increase, and vice versa, but these trends 
are reversed at low Mach number. The reversal occurs at a 
particular Mach number. which, for the value of 7 chosen, 

1.4 

streamline. 1.2 

Fig. 14. Sketch of sonic lines for IvI = 10, "I = 1.4 with endothermic 
reaction. The equilibJium situation is modeled by a "I :: 1.2 flow to provide 
the asymptotic sonic-line direction. The sonic lines for three reacting-flow 
cases and the frozen case are shown as heavy lines 

is approximately 2.5. This is the point where the reaction 
rate term in Vy just cancels the one that occurs explicitly in 
the denominator of (62). This condition occurs at 

p '12 -'1+ 2 
:::: 

pv2 - 1 

Using (8), (l0) and (13) to express p, 11 and p in terms 
of AI, 'I and /3 then leads - for the particular value of 
/3 == /3s(7, j1,1) at the sonic point - to a particular value of 
M(7) at which the reaction rate does not influence the sonic 
line slope. 

For very fast reactions, ¢ switches from -90° to +900 at 
this critical Mach number, so that, at large Mach number, the 
limiting sonic line direction for very fast reaction is along 
the shock. In endothermic flow it is at ¢ == +900 and in 
exothennic flow at -90°. 

The response of the sonic line to reaction rate at high 
Mach number has been observed by Hornung and Smith 
(1979), who used it to make an argument about the influ­
ence of non-equilibrium dissociation on the shock detach­
ment process in flow over a wedge. This behavior was also 
observed in recent numerical computations of these wedge 
flows by Candler (unpublished work). In endothermic flow 
near the shock, at high Mach number, streamlines cross the 
sonic line from a subsonic region, while, for sufficiently fast 
exothermic reactions, the opposite holds (negative 0:). 

In the low Mach number range, the sonic line direction 
is very sensitive to slight heat removal by endothermic re­
action. Near IvI :::: I, a change from non-reacting to slow 
endothermic reaction switches 0: from +900 to -900 

, while 
exothermic reactions have a weaker effect. This will cause 
the subsonic pocket behind a convex shock to change as 
shown in the sketch of Fig. 13. (bottom). 

The effect of chemical reaction on the sonic line may be 
illustrated by considering frozen and equilibrium flow limits. 
In the endothermic case, the equilibrium limit is displaced, 
relative to the non-reacting limit, toward the direction of 
smaller 7. For smaller 7 the sonic point is displaced to larger 
{3. This is shown with the correct values of {3s in Fig. 14 
for the example of a circular-arc shock at M :::; 10 with 
7 == 1.4 and 1.2. Also plotted are the correct streamline 
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Fig. IS. Hyperbolic shock shapes, with finite curvature at the normal-shock 
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Fig. 16. Streamline-to-shock curvature ratio for axisymmetric shocks as 
shown in Fig. 15. Perfect gas, "r = 1.4, Mach numbers as in Fig.IS. The 
ratio is the streamline curvature divided by the shock curvature k in the 
xV-plane 
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Fig. 17. Streamline-to-shock curvature ratio for plane shocks of the shape 
shown in Fig. 15. Perfect gas, "r = IA. Mach numbers as in Fig. 15 
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Fig. 18. Sonic line angle in axisymmetric flow. Shock shape as 
in Fig. 15. notation as in Fig.!3. "r = 1.4, (J = 0.8, ke: 
-0.0001, -0.001, -0.003, -0.01,0.01, 0.003, 0.001, 0.0001 

and sonic line directions for the two cases. In flow with 
endothermic reaction, the sonic lines depart from the 'Y =1.4 
sonic point at angles a that increase with reaction rate. If 
the reaction is completed to equilibrium over a distance that 
is small compared with the shock radius of curvature, all 
the directions at equilibrium should be something like that 
for 'Y 1.2 in this crude model. Thus, the sonic line for 
finite reaction rate leaves the I = 1.4 sonic point at a finite 
angle relative to that of non-reacting flow and asymptotically 
blends into the 'Y =1.2 sonic line. In the sketch, sonic lines 
for three finite rates are shown to illustrate how the transition 
from frozen flow to larger and larger rates proceeds. 

The situation is reversed for exothermic flow. It is easily 
seen from Fig. 14 that the streamline always crosses the 
sonic line from the subsonic to the supersonic side with 
endothermic flow at these conditions, while both directions 
are possible with exothermic flow, as has been pointed out 
earlier. 

8 Three-dimensional flows 

Finally, consider the extension of these results to the more 
general case of three-dimensional flow. To this end, choose 
the xy-plane to be the plane of the free-stream direction and 
the local normal to the shock wave at the point of interest. 
With this choice, the velocity component in the third (z) 
direction and its gradients in the xy-plane are zero. Thus a 
suitable name for this plane is the "flow plane". By choosing 
x and y to lie in the flow plane, the derivatives of p, p and 
u with respect to z (the dimensionless coordinate nonnal 
to the flow plane) are zero, and the only non-zero gradient 
normal to the flow plane is 

W z = I, 

where w is the dimensionless z-component of velocity and 
I is the shock curvature in the yz-plane. k+l is the Gaussian 
curvature of the shock at the point considered. 

If we write Egs. (3 to 6) for y = 0, the only changes 
to these equations are that the term -kpv in the continuity 
equation becomes -(k+l)pv, and a new term -pi is added, 
The equation (at y =0) becomes 

http:0.01,0.01
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(pu)x - (k + l)pv + pl + (pv)y ::: O. (63) 

This causes additional terms proportional to l to appear in 
Eqs. (18). (20) and (21), for the y-derivatives of p. v, and 
p as follows: 

pyF = ... + lphp(l/v 1), (64) 

vVyF ::: ... + lphp(l/v - 1), (65) 

pyF::: ... + l(l - l/p + p/v). (66) 

Equation 19 for u y remains unchanged. 
A relatively simple example is that of axisymmetric flow. 

In this case, the flow plane is the meridional plane. Consider 
an axisymmetric shock wave of hyperbolic shape in the flow 
plane, such that the normal-shock point has finite curvature 
equal in both directions, and the shock is aymptotically con­
ical with half-angle equal to the Mach angle far from this 
point. Defining the distance along the axis of symmetry. 
normalized by the radius of the shock at the nose, to be X, 
and the normal to it (similarly normalized) as Y, the shock 
shapes for a set of Mach number values are as shown in 
Fig. 15. The equation of the shock shape is 

X(X + _2_)Y == tanfJ, (67)
tan2fJ, 

where fJ, is the Mach angle arcsin(l / !VI). This gives a shock 
angle /3 that can be determined from 

tan/3 :::: tanfJ, 1 + 1/(Xtan2fJ,) 
(68)

VX Vi + 2/(Xtan2fJ,) 

Solving this for X. 

tan2/3
--;;-;:----;;-- - 1. (69)
tan2/3 tan2fJ, 

With this, the shock curvature in the meridional plane be­
comes 

(70) 

This gives an explicit relation between k and /3 with Mach 
number as a parameter. For an axisymmetric shock, the 
transverse curvature in the yz-plane is l == cos/3/Y. The 
shape of the shock now permits the streamline to shock 

curvature ratio to be determined for the axisymmetric and 
the plane case as functions of the shock angle /3. The results 
are shown in Figures 16 and 17. These exhibit no qualitative 
differences. Quantitative changes include slight changes in 
the Crocco points and a greater negative value of the curva­
ture ratio for axisymmetric flow. 

It is interesting to find the effect of the third dimension 
on the sonic line slope at the shock. This is not new in 
non-reacting flow (see Hayes and Probstein), but our results 
permit it to be obtained directly for reacting flow also. Fig­
ure 18 shows how a behaves in an axisymmetric flow with 
the same shock shapes as in Fig. 15. The effect of reactions 
is very similar to that for plane flow. 
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Curved shock waves and chemical reactions 
H. G. Hornung 
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA 

Abstract: The features of steady flows with chem­
ical reactions initiated by curved shocks are de­
scribed by using examples of results in which en­
dothermic or exothermic reactions take place. The 
dramatic effects of shock curvature are highlighted. 
Attention is then focused on the immediate vicinity 
of the shock in order to show that gradients at a 
curved shock always contain two terms: one pro­
portional to reaction rate and one proportional to 
shock curvature. Numerous results are derived for 
endo- and exothermic flows with convex and con­
cave shocks. 

Key words: Dissociation quenching, streamline 
curvature, sonic line, Mach reflection, detonation 

1. Introduction 

The phenomena that occur in steady flows with 
shock-initiated chemical reactions are particularly 
interesting if the shock is curved. They may 
be characterized by two dimensionless parameters. 
One is a measure of the ratio nof the radius of cur­
vature of the shock to the characteristic reaction 
length, and the second is a measure of the ratio ~ 
of the energy going into the reaction to the kinetic 
energy of the free stream. The richness of the flow 
features that may occur is increased significantly 
by the fact that n and ~ can be positive or nega­
tive. (They change sign together). A sign change 
corresponds to a change from an endothermic to 
an exothermic chemical reaction, i. e., from energy 
absorption into (as in the case of dissociation) to 
energy release from the chemical energy store (as in 
the case of shock-initiated combustion). 

In a first, descriptive part of this paper, experi­
mental and theoretical results are used to illustrate 
phenomena with endothermic reactions where the 
flow features depend on both of these parameters, 
as well as cases where only the first one plays a role. 
Experimental results are then used to illustrate phe­
nomena that occur with exothermic reactions. 

In the second part, attention is focused on the 
point at the downstream side of a curved shock, 
where the rate of exchange of thermal and chemical 
energy competes with the curvature-induced tem­
perature change. Restriction to this region permits 
the gradients of flow quantities to be determined 

streamline 

l/ko 

Figure 1. Notation. Upstream of the curved shock 
wave, conditions are assumed to be uniform. The ori­
gin of coordinates is the point where the streamline of 
interest crosses the shock. 

explicitly, from which many flow features may be 
derived. This restriction limits the quantitative re­
sults to those dependent on n alone, but qualitative 
features that depend on both parameters may be 
deduced by extrapolation. 

Throughout the paper the discussion is restricted 
to steady flows with uniform free stream. 

2. Definition of variables 

Consider a curved shock wave in a uniform free 
stream characterized by velocity V~, density p'oo. 
The origin of the shock-aligned curvilinear coordi­
nates x', y' is chosen at the point where the stream­
line of interest crosses the shock wave. Let the shock 
curvature at this point be k' and the shock and de­
flection angles be f3 and (j as shown in Fig. 1. In­
troduce dimensionless variables defined by 

h = hi/V;; , p = pi / P'oo V;;', v Vi/V'
00' 

p = pi / P'oo, Y = y' k~, k k'/k'0, 

where h, p, p, v are dimensionless specific enthalpy, 
pressure, density and y-velocity, and k~ is a conve­
nient reference value of the shock curvature. The 
x-component of velocity u is made dimensionless in 
the same way as v. The caloric equation of state 
for a reacting gas mixture is 

h = h(p, p, c.), (1) 

where the Ci are the mass fractions of the n reacting 
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2 Curved shocks and chemical reactions 

species. Since the sum of the mass fractions has to 
equal unity, one of the Ci may be expressed as a 
function of the others, and the differential form of 
the caloric equation of state becomes 

dh (2) 

Here, the subscripts denote partial differentiation, 
and the reaction rates and dimensionless time (mea­
sured from when the fluid element has crossed the 
shock) have been introduced in the last term. It is 
convenient to rewrite this as 

thus defining hit. The last term measures the en­
thalpy change caused by the reaction. 

3. Endothermic flows 

3.1. Straight, oblique shock 

At a straight oblique shock the temperature jumps 
to a high value, so that (in cases of interest here) 
the gas begins to dissociate, and the third term in 
equation 3 is negative. This causes the tempera­
ture to decrease at a finite rate determined by the 
dissociation rate at the local conditions, until even­
tually the new post-shock equilibrium condition is 
reached. This process is plotted against t as a dot­
ted line in Fig 4, which also shows as a second dot­
ted line the density change. In this case the density 
increases monotonically, so that the shock-normal 
component of velocity will decrease monotonically 
with time, and a streamline will have a concave-up 
curvature. Such a streamline is sketched into the 
finite-fringe interferogram of Fig. 2 showing disso­
ciating carbon-dioxide flow over a wedge, with a 
nearly straight shock. The fringes in such an inter­
ferogram approximately correspond to density pro­
files across the flow, so that the density change fol­
lowing a streamline such as the one superimposed 
on the photograph in white can be seen to be mono­
tonically increasing. 

3.2. Curved shock, dissociation quenching 

In non-reacting flow, a temperature change along 
a streamline after a shock may be brought about 
by shock curvature. For example, a temperature 
decrease occurs along a streamline after a convex­
upstream oblique shock. The initial temperature 
gradient along a streamline is then proportional to 
the shock curvature. If both effects (shock curva­
ture and chemical reaction) are present, we may 
therefore expect interesting phenomena to result 

from competition between them. Such competi­
tion is at the heart of many important steady flows. 
Further complications occur if the flow is unsteady, 
as may be seen from the contribution by Eckett et 
al. (1997). Only steady flows will be discussed here. 

To illustrate one such phenomenon and to define 
the scope of this presentation, consider high-speed 
dissociating flow of nitrogen over a circular cylinder 
as in the interferogram by Sanderson (1995) shown 
in Fig. 3. In this interferogram the fringes approx­
imate lines of constant density which show a max­
imum density at the stagnation point. The fringe 
pattern is typical of a non-equilibrium flow with a 
significant density rise between the shock and the 
body on the stagnation streamline. 

A streamline is sketched in this interferogram as 
a thick white line with an arrowhead. As in the 
straight-shock case, the density increases along the 
streamline at first, but reaches a maximum value 
approximately at the point where the streamline is 
tangent to the fringes, and then decreases again. 
If many such streamlines were plotted in this flow, 
their points of tangency with the fringes would trace 
out a line approximately like the thin white line 
sketched in the interferogram, starting from the 
stagnation point and intersecting the shock near 
the top of the picture. Comparing the two flows 
of Fig. 2 and Fig. 3 thus shows that shock curva-

Figure 2. Finite-fringe interferogram of CO2 flow over 
a wedge, V~ = 4.1 km/s, p'oo = 0.005 kg/m3 

. Since 
fringe shift is approximately proportional to density 
change, it may be seen that the density increases mono­
tonically to equilibrium along streamlines such as the 
one sketched in white. Taken by Ebrahim (1975), T3 
run 678. 
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Curved shocks and chemical "factions 

Figure 3. Infinite-fringe interferogram taken by 
Sanderson (1995) of dissociating nitrogen :flow over a 
circular cylinder of 1.6 in. diameter, aspect ratio 4.5, 
T5 run 824. Free stream conditions: Velocity, 5A km/5, 
density, 0.016 kg/m3 

• The heavy white line sketches a 
streamline. A density maximum is reached along this 
streamline approximately where it is tangent to the 
fringes. The locus of such streamline-fringe tangent 
points is sketched as a light white line. The shock is 
also emphasized by a sketched thin white line. 

ture causes the initial increase of density associated 
with the dissociation to be reversed further down­
stream. This behavior is typical of the regime where 
the characteristic dissociation distance is small com­
pated with the local shock curvature radius. 

The strong influence of curvature in dissociating 
flow may best be illustrated by a plot of the flow 
properties along a streamline such as the one high­
lighted in Fig. 3. Such a plot is shown, for condi­
tions corresponding closely to the chosen stream­
line in Fig. 4, calculated from the asymptotic the­
ory of Hornung (1976). This plot shows density 
ratio, temperature and dimensionless pressure plot­
ted against dimensionless time along the stream­
line. Dotted lines show straight-shock results and 
full lines correspond to the curved shock. Note the 
close correspondence of the two sets of curves in the 
immediate vicinity of the shock. 

The tiny additional drop in temperature caused 
by the shock curvature a little further downstream 
makes a dramatic difference to the flow. In fact, 
it causes the dissociation to stop altogether very 
shortly after the maximum-density point. This is 
because of the strong temperature dependence of 
the dissociation rate. Stalker, in 1972, was the 

0.00 '---_..L-__L._~_..._ ___'__~__~ 

0.0 	 0.2 
time, t 

Figure 4. Temperature, density and pressure distri­
butions along a streamline such as the one sketched in 
Fig. 3 (full line) as calculated from the asymptotic the­
ory of Hornung (1976). The dotted lines show the cor­
responding straight-shock solutions. The values at the 
shock are marked with labels with subscript s. 

first to recognize this, and he called it "dissociation 
quenching". It is appropriate to choose a differ­
ent name than "freezing") because the latter term 
is generally used for the termination of recombina­
tion, whereas here, the reaction is terminated while 
proceeding in the dissociating direction. 

In many flows of this nature the recombination 
rate is very much smaller than the dissociation rate, 
so that a good approximation is to consider the 
composition to be constant after quenching, albeit 
different on different streamlines. (The effect of re­
combination was considered by Wen (1994)). Thus, 
the flow downstream of the thin white line in Fig. 4 
(quenching line) is practically non-reacting and the 
reaction is restricted to the region upstream of it. 

For fast reactions, such as in the case shown in 
Fig. 3, the quenching line lies close to the shock, so 
that it is tempting to define effective shock jump 
conditions, appropriate for the flow downstream 
of the quenching line, that depend not only on 
free-stream conditions and shock angle, but in ad­
dition on dissociation rate and shock curvature. 
Such jump conditions have been derived by Hor­
nung (1976). As had been suggested by Stalker, 
these new conditions give shock temperatures that 
are approximately independent of shock angle (3 and 
shock densities that are approximately proportional 
to sin2(3, exactly opposite to perfect-gas behavior. 

Paper 9060 21st International Symposium on Shock Waves, Great Keppel Island, Australia, July 20-25, 1997 



I' " I I • 



4 Curved shocks and chemical reactions 
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Figure 5. Plot of dimensionless shock stand-off dis­
tance on a sphere against reaction-rate parameter ac­
cording to Wen and Hornung's integral theory for values 
of p.1 pe 0.4,0.5,0.6,0.7,0.8,0.9. The uppermost full 
line corresponds to the value 0.9. The subscripts denote 
shock and equilibrium values. p. increases monotoni­
cally with <P. 

Dissociation quenching is an example of a flow 
that does not reach equilibrium, and in which the 
chemical activity is confined to a half-moon shaped 
region where the shock angle is large. The amount 
of energy that goes into dissociation to equilibrium 
therefore does not enter the problem and the in­
fluence of chemistry is subject to the parameter Q 
alone. It is necessary to treat this statement with 
care, however, because the asymptotic theory that 
leads to the quenching concept breaks down in the 
immediate vicinity of the stagnation point. 

3.3. Stagnation region 

In the stagnation region the recombination rate 
and the energy to equilibrium may not be ignored 
when the reaction rate is sufficiently large. This 
is brought out by the simple integral method used 
by Wen and Hornung (1995) for the shock stand­
off distance 6. on a sphere of diameter d, shown in 
Fig. 5. This figure shows that the higher the value 
of <I>, the larger is the range in which the dimension­
less stand-off distance depends only on n (dashed 
curve). This integral theory agrees well with exper­
iments as is shown by Fig. 6. 

4. Exothermic flows 

Exothermic flows exhibit much more dramatic phe­
nomena. This is because endothermic nonequilib­
rium flows generally start from an equilibrium state 
that is perturbed by the shock, and a final equilib­
rium state is approached smoothly in an energy­
absorbing process. Exothermic flows start from a 
state of constrained equilibrium containing stored 
chemical energy that is suddenly made available by 
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Figure 6. Measured dimensionless stand-off distance 
in carbon dioxide flows over a sphere at three specific 
reservoir enthalpies, for which the theoretical curves are 
plotted as the dashed, dash-dot and full line. The black 
circles mark the points where each curve departs from 
the dashed line of Fig. 5. 

the shock wave. The structure of the flow field can 
be significantly affected, depending on how rapidly 
the chemistry can give this energy to the flow. 

To observe this, consider the shadowgraphs 
shown in Fig's. 7 and 8 taken by Kaneshige, see 
Belanger et al. (1995) and Kaneshige and Shep­
herd (1996). Fig. 7 shows a shadowgraph in 
which a spherical projectile travels through a com­
bustible mixture of hydrogen, oxygen and nitrogen 
at 2730 m/s. The pressure of the mixture is approx­
imately half an atmosphere, which is high enough 
to make the bow shock on the projectile ignite the 
mixture in the region where the shock angle i3 is 
sufficiently large. Downstream of a cut-off value of 
i3, however, no reaction occurs. Most of the com­
bustion occurs in a region close to the shock, just 
as in the case of dissociation quenching, see Fig. 3. 
The region filled with combustion products is thus 
bordered by a turbulent reacting interface that cor­
responds approximately to a streamsurface, outside 
of which the flow is smooth and completely non­
reacting. The shadowgraph makes the region inside 
this interface appear turbulent too, but remember 
that this is an axisymmetric flow visualized by a 
line-of-sight integrating method. 

Just how small an extra kick the gas needs to 
make it burn outside the interface is shown by the 
fact that the bow shock on a small piece of di­
aphragm (see arrow in photo) suffices to start the 
reaction again. In this flow, the estimated reaction 
distance (equivalent Chapman-Jouguet detonation 
cell size) is 11 mm, approximately the same as the 
the projectile radius of 12.7 mm. The ratio of radius 
to cell size is a measure of -no 
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Figure 7. Shadowgraph of a spherical projectile of 
25.4 mm diameter traveling at a speed of 2730 mls 
through a mixture of (2H2 + O2 + 3.76N2 ) at a pressure 
of 42.1 kPa. The Chapman-Jouguet speed at this con­
dition is 1950 m/s. Up to the point where the sketched 
light white line intersects the shock wave, the shock is 
steep enough to ignite the gas mixture, as indicated by 
the turbulent nature of the region of combustion prod­
ucts. The white line is sketched in to indicate the edge 
of this region. Note the weak shock on the piece of 
diaphragm (arrow) just upstream of the shock on the 
lower side (see text). T5 run 1015. 

If the pressure of the mixture is increased to 2.5 
atmospheres, the reaction rate is increased so much 
that the heat release is sufficiently rapid to support 
an oblique, over driven detonation wave, see Fig. 8. 
In this flow the axisymmetric detonation wave is 
reflected in a weak Mach reflection off the walls of 
the square test section. 

5. Gradients at a curved shock 

It would be desirable, of course, to obtain theoreti­
cal descriptions of general curved-shock flows with 
chemical reactions. Unfortunately, it has only been 
possible to solve special cases such as that of dis­
sociation quenching. However, it is possible to find 
general expressions for the gradients of flow quan­
tities at a curved shock. A remarkable number of 
interesting results may be derived from such infor­
mation. 

5.1. Outline of derivation 

In this section, the results derived in Hor­
nung (1997) will be used without giving a deta.iled 
derivation, but rather describing it only in broad 
terms. The inviscid equations of motion may be 

Figure 8. Shadowgraph of same projectile traveling at 
a speed of 2560 mls through same mixture at a pres­
sure of 256 kPa. At these conditions the CJ-speed is 
1990 m/s. The pressure is now sufficiently high to make 
the reaction length so small as to cause the combus­
tion to couple into the shock and produce an overdriven 
oblique detonation wave at 60·, CJ-angle=51°. T5 run 
1020. 

written in the curvilinear coordinates of Fig. 1 as 

uu'" + (1- ky)vuy kuv + p",/p 0, 

uv'" + (1 - ky)vvy + ku2 + (1 - ky)py / p 0, 

hppy + hppy + L
n 

hCiCiy + VVy + uUy 0, 

(pu)", - kpv + (1 - ky)(pv)y 0. 

At the shock, y = 0, and the resulting equations 
may be solved for the shock-normal derivatives 
Py, U y 1 vy, Py in terms of the other variables. The 
shock-parallel derivatives may be obtained by dif­
ferentiating the shock-jump conditions, which in­
troduces the shock curvature f3", = -k. For this 
purpose, perfect-gas behavior is assumed up to the 
point where the chemical reaction begins, i. e., the 
downstream point on the shock. The resulting x­
and y-derivatives may then be combined to form 
the substantial time derivative 

d 8 8 
(4)dt = U 8x + v 8y . 

Noting that the deflection angle is 

8 = f3 - arctan(v/u), (5) 

forming the derivatives of this function with respect 
to x and y, and writing 

2v = ds/dt = Vv 2 +u , (6) 
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6 Curved shocks and chemical reactions 

where s is distance along the streamline measured 
from the origin. the streamline curvature at the 
shock, d6/ds is obtained in the form 

db 
(7)

ds 

where the functions It and h are known functions 
of f3, the free-stream Mach number M and the ra­
tio of specific heats /. Similarly, other substantial 
derivatives are obtained: 

dp 
dt hida + kf4' (8) 

dp 

dt 
h;d5 + kf6, (9) 

V 
dV 
dt 

1 dp 
pdt' (10) 

Again the functions Is to f6 are known in terms of 
f3, M, and /. 

All of these derivatives thus have two contribu­
tions: one from shock curvature and one from reac­
tion rate, and the ratio of these contributions is pro­
portional to the reaction rate parameter 0 = hit/k. 
In order to compute numerical values it is necessary 
to introduce a model for the reaction rate. This is 
assumed to be of the form 

f) 
hit = -exp(-Bp/p). (11)

e 

5.2. Streamline curvature 

Calculating the streamline-to-shock curvature ra­
tio by dividing equation 7 by k results in the plots 
shown in Fig. 9 for given values of /, M, and B, 
and with e as a parameter. The dashed curve is the 
non-reacting case. As f3 decreases, it shows the typ­
ical transition from zero at the normal-shock point 
to negative at large shock angles, a zero crossing 
at the Crocco point, and a positive range with sin­
gularity at the Mach angle, where the shock cur­
vature must be zero. With endothermic reaction 
(lowest four curves), nothing changes qualitatively, 
except that the shock angle at the Crocco point 
decreases with increasing reaction rate. Similarly, 
negative reaction rates (negative 1/e) that corre­
spond to exothermic reaction continue this trend 
in the opposite direction. The interesting thing 
is, however, that when the reaction rate exceeds 
a particular threshold, the region of negative cur­
vature ratio ceases to exist. This has interesting 
consequences for a nearly-normal curved shock as 
sketched in Fig. 10. 

Since shock and streamline curvature now have 
the same sign in the near-normal shock region, a 

shock angle. f3 

Figure 9. Streamline to shock curvature ratio in re-­
acting flow for r == lA, M == 6 and (J == 0.8. The values 
of the reaction rate parameter are lie: == 160 (lowest 
curve), 80, 40, 20, 0 (dashed curve), -20, -40, -80, -119, 
-160, -320. 

Figure 10. Schematic sketch of convex and concave 
near-normal shocks with associated streamlines, for a 
gas with fast exothermic reaction rate. The convex­
upstream shock on the left can exist with stable steady 
flow. However, the concave-upstream shock shown in 
the center requires a pair of unsteady shocks to deflect 
the flow parallel to the symmetry plane (right). 

convex shock produces streamlines as shown in the 
leftmost sketch of Fig. 10. If the shock is concave, 
the streamlines curve inward, so they will clash 
on the symmetry plane and require two unsteady 
shocks to deflect the flow into the symmetry-plane 
direction. It is this instability that leads to the weak 
transverse waves behind a shock, which generate the 
characteristic cellular structure in detonations. 

5.3. Triple-shock points 

The results may be combined to form the derivative 

d6 f hit + kfs (12)dp = 7 hit + kf9 ' 

or 
do _ f 0 + fs (13)dp - 7 0 +19 , 

where the f are again known functions of {3, M, 
and 'Y. This is a very useful result for arguments 
relating to triple shock points, where the op--plane 
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Curved shocks and ch.emical reactions 

1.0 

0<8 

0<6 
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Figure 11. Mach reflection. Top: Schematic sketch of 
the shock configuration, with labels identifying regions 
and points of the flow in physical space. Bottom: 6p­
map of this flow, showing the incident shock (1-2), the 
reflected shock (2-3) and the Mach stem (4-5), as deter­
mined from the shock-jump relations. M = 6, 'Y 1.4, 
non-reacting steady flow. Also shown are the stream­
line directions from the reflected shock and the Mach 
stem. Note that the two streamline directions coming 
from 3 and 4 are not the same, leading to the conclusion 
that these two shocks must have zero curvature at the 
triple point. 

is a powerful simplifying device. Fig. 11 shows the 
usual picture of a Mach reflection in steady flow 
that may be mapped into the op-plane as shown, 
with the numbers in corresponding places accord­
ing to the mapping. At the triple point the pres­
sures and streamline directions (inviscid flow) on 
either side of the slip line have to match. How­
ever, the streamline curvatures also have to match 
at that point for inviscid flow. This is where equa­
tion 12 can help us. Consider this equation in the 
non-reacting case hit = O. Note that then, dojdp 
reduces to a known function of {3, M and {, and 
is independent of the shock curvature. The direc­
tion in which the streamline leaves the shock in the 
op-plane therefore does not depend on the shock 
curvature and may be indicated by short straight 
lines as shown in Fig. 11. Thus, we see that the 
directions in which streamlines leave the reflected 
shock and the Mach stem are not matched! The 
only way in which this problem can be resolved in 
non-reacting flow with a straight shock and uni­
form upstream conditions is if the Mach stem and 
the reflected shock both have zero curvature at the 

triple point (do dp = 0). 

It is interesting that an additional degree of free­
dom is introduced if either the incident shock is 
not straight, or the free stream is non-uniform, or 
both, as has been shown by Molder (1972). Such 
cases therefore permit the shocks to be curved at the 
triple point. However, it is also possible to the 
flow this additional degree of freedom if the shocks 
start a chemical reaction, as equation 13 shows. 

5.4. Sonic line direction 

The sonic line plays a very important role in gas­
dynamics, because it is a boundary of information­
transfer. Call the shock angle at the sonic point 
Ps(A1, I)' and let the direction of the sonic line rel­
ative to the shock be 1>. Analysis results in 

cot ¢ (14) 

where the f are again known functions of {3, M 
and I. For a particular I, Fig. 12 shows plots 
of ¢ for different values of n = 1/(kt:). The 
chain-dotted curve with three dots shows the non­
reacting case. At high Mach numbers, above ap­
proximately 2.5, the endothermically reacting flows 
give values higher and the exothermically reacting 
flows give lower 1> than the non-reacting case. At 
M :::::: 2.5, flo changes sign, so that this trend is 
reversed. 

Consider M 6 and let the reaction rate change 
from very fast exothermic to non-reacting to very 
fast endothermic. This takes 1> from 0 to 350 and 
then rapidly to 1800 This allows us to make an • 

intelligent extrapolation to sketch the behavior of 
the sonic line in physical space. If we know o;I>, 

which measures the energy that goes into the reac­
tion to equilibrium, we can locate the sonic points 
on a curved shock not only for frozen, but also for 
equilibrium flow. In Fig. 13 this has been done 
quantitatively correctly on a circular-arc piece of 
shock. The corresponding streamline directions at 
the sonic points are also shown. The exothermic 
equilibrium sonic point lies above (smaller {3), and 
the endothermic equilibrium sonic point below the 
frozen sonic point. 

Now consider n -+ -00, for which if> :::: 0, so that 
the initial direction of the sonic line hugs the shock 
on the upper side. In the limit when the reaction 
rate is infinitely fast, one may consider the sonic 
line to start at the frozen sonic point, follow the 
shock and leave it at the equilibrium sonic point 
in the appropria,te direction. Thus, the uppermost 
thick line that asymptotically approaches the equi­
librium sonic line illustrates the likely behavior of 
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Curved shod. a,nd chemical reactions 
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Figure 12. Dependence of sonic line angle on Mach 
number and reaction rate, plane flow, "'f "" 1.4, f) "" 0.8. 
The deflection and shock angles at the sonic condi­
tion are also shown as a dotted and a chain-dotted 
line. The chain-dotted line with three dots gives rJ; 
for the non-reacting case, in agreement with the so­
lution given by Hayes and Probstein. Continuous lines 
and dashed lines represent endothermic and exothermic 
reaction rate cases respectively, for ke =-0.0001 (low­
est curve at high Mach number), -0.001, -0.003, -0.01, 
00 (chain-dotted with three dots), 0.01, 0.003, 0.001, 
0.0001. 

the sonic line for fast exothermic reaction. Simi­
larly, the lowest thick line shows the behavior of 
the sonic line for fast endothermic flow. Between 
them, a smooth transition occurs, something like 
the sketched thick lines for different values of n. 
A conclusion that may be drawn from this behav­
ior is that streamlines that cross the shock between 
the frozen and endothermic equilibrium sonic points 
cross the sonic line from subsonic to supersonic con­
ditions, while the opposite is true for exothermic 
flow. If the shock is nearly straight, the separation 
of the frozen and equilibrium sonic points can be 
large. In the endothermic case, this can lead to a 
slender subsonic sliver near the shock, which has a 
profound influence on the shock detachment process 
on a wedge, as has been shown experimentally and 
theoretically by Hornung and Smith (1979). 

Studying the effects of chemical reactions in this 
way takes no account of the intricacies of rate pro­
cesses, but it opens up a new view on the subject. 
An interesting next step would be to repeat the 
asymptotic analysis for exothermic flows. 
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streamline. (exo., equiJ.) 

sonic line, (exo .. equil.J 

streamline, (frozen) 

streamline, (endo., equil.) 

sonic line, (endo., equi1.) 

Figure 13. Sketch of the sonic line for different reaction 
rates (thick lines). The uppermost curve is the sonic 
line for a fast exothermic reaction, the lowest for a fast 
endothermic one, see text. 
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Ae234 Assignment No.2, due 30 April, 2002 

QUESTION 1 

Calculate the relaxation zone after a shock propagating at 16 km/s into undissociated hy­
drogen at a density of 10-5 kg/m3. Neglect the enthalpy and pressure of the free stream, 

3 1i. e., take Ho = K, P = o. Use C 6 x 1018 cm g- s-1K, Tl = -1. Plot a, density, velocity, 
temperature and pressure as a function of distance from the shock. Use the values of Pd and 
Od that you determined in assignment no. 1. 





CLASS NOTES: Ae 234 

12. V 8-PLANE for w -+ 0 And w -+ 00 

To complete the picture of the streamline direction at the frozen shock in the V 8-plane 

consider the cases w -+ 0 and w -+ 00. Equation (11.11) gives 

w-G [~ vV2 ( 1 1 )]d8 U pk u ar - v 2 
--. GdV Vv w 

For w -+ 0, 

_ U {I(:~) Vv w ~ G}w-+o 

2 
;v {I - [ ] ~ (1 + ~) } + O(w ) (12.1) 

As w is increased from zero, it changes according to 

~il 
Vv G2 

V Px ( 1 1 ) (12.2)
v2p k a} 

~ is negative for a convex shock and, since v < af (normal component of velocity is subsonic 

after the shock) the bracket is also negative. All the other variables in (12.2) are positive. 

Hence 

(12.3)[a: (:~)Lo > O. 

For w -+ 00 

_~{W(l-§+Y)} 
Vv w(l-§) 

(12.4)- -~ {I + U} + 0(~)
w2Vv W 

We see that, not only is the limiting value of d8 / dV at w = 00 independent of G, but the 

dependency drops out already in the first order of t. The rate at which d8/dV changes with 

w is now 
0 (d8)1((l V Px (1 1 ) (12.5)[ow dV wV pw2 a} - v2k . 

This is again positive, so that 

0 (12.6)[a: (!)If) > 

1 




Thus, in both cases, the streamline leaves the shock in the Vo-plane at an angle that lies 

between the two angles for the frozen and straight-shock limits. Monotonic changes of the 

angle with w may be expected throughout the range. 

In order to compute the values of the terms in the equations derived in chapters 11 and 12, 

one may proceed as follows: Put 

m = sin f3 (12.7) 

Then the shock-jump relations are 

m 2U \11 ­

v mJp 

P (12.8) 

p 
r.y-l+~m2 

/P 
p 

Also, by differentiating these w.r.t. x, we obtain, 

U x mk 

Px 
k 

- - 2mvl ­ m2 (1 _pI) m 
2 

Px+(J2k 

k 
~ 
p 

(vI _m2) _ m 
p2 

Px 
k 

(12.9) 

Px PVl - m 2 4/(/ ­ 1) df 
k m 1 + 2/({ ­ 1 

For example, 
2 

x 

[ 
2m2] ( pI) _ 2mVp12- m Pk .G = 3(1 m) - p 1 (12.10) 

Since the free-stream Mach number is 

2 _ pi V{2
M 1­

/PI 

PI -+ 0 asMl 

and the above formulae are somewhat simplified. 

2 




Example: Maximum deflection point 

v/3 - arctan 
u 

/3x ! (arctan*) 
- k - 1 :~ (u-1 ~ - :2 ~) 

u 2 

owhen r.h.s. 0, i.e., when 

(12.11) 

O. 

Substitute: 

2 2 21 { [ \11 - m \11 - m 4,b - 1) ~ 1 m }1 + ------,,- VI - m 2 - +. - = 0 
1 m2 + p p 1+2,b-l)~ p 

2P) m 
2 

-- +
I+P p 

= -m ( 1 
p 

2 

~) 

p - 1 + 2P/(1 + P)
p . 

p - 1 _ 

(12.11) 

This is a general expression for the maximum-deflection point of a perfect gas in terms of 

M1 , , and m, since 
P = 2(, 1) 

M 2 2' 
1 m 

For M2 -+ 00 , P -+ 0 , so for 

m2 , + 1 
-p­

I- m 2 - -, - 1 

for, i this gives = 6 or /3 = 67.79°. 
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13. Flow Over A Wedge. Constrained Shock Points 

In chapters 11 and 12 the equations of motion were applied to the problem of finding gradients 

right at the downstream side of the frozen shock only. They are, of course, valid also at finite 

values of y. 

In this chapter we extend the streamline map to regions of y =J. 0 for the region 

1 y«.­
k 

close to the shock wave in terms of the radius of curvature. This restriction allows us to 

neglect ky in comparison with 1. In addition, the x-derivatives may be assumed to be 

independent of y. The last assumption is a thin-layer type of assumption similar to the 

boundary layer assumptions. 

Consider a streamline that intersects a curved shock at a particular value of f3. Let this 

correspond to the point P in thMnap on the frozen shock locus 2. Let the value of~at 
the shock be~ As the streamline leaves the shock, in the direction corresponding to this 

value of w, the dissociation rate decreases rapidly, just as in the flow after a normal shock. 

If equation (11.11) 
2 

d J: W - G + vv (&) (1 - 2+)
u _ _ ~ u pk Q.} v

(11.11)
dV vV w G 

applies in the region y «. ~, as it should, if the above assumptions hold, then the direction 

of the streamline map changes towards the frozen direction (w 0) with increasing distance 

from the shock along the streamline as shown. The final direction of the streamline depends 

on the composition of the gas at the point where da/dt has become zero. The sketch shows 

how the streamline map changes as~s increased from 0 to 00. 

At this point it is interesting to consider the entropy change along the streamline as it 

traverses the relaxation region. To do this, recall that 

Tds dh 

Along a streamline, starting from the point 2 after a frozen shock, the energy and}'rnomentum 

equations may be written as , t--. 

dh+ VdV 0 

dp+pVdV O. 

1 

j 4,!I ' ! I I I ' 
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Figure 1. Behavior of streamlines in the relaxation region (between conditions 2 and 3) when 
I! « 1Jk' for different values of w. 

It follows that 
1 . 

dh - dp = O. 
P 

Therefore 

Tds (/-LN2 - fJN) do:. 

In the case of the IDG, 

2mds 

(In this equation k is Boltzmann's constant). Recall that the square bracket is equal to 

one for equilibrium flow, so that no entropy change occurs downstream of the shock for 

equilibrium flow, as required. Trivially we also recognize that ds = 0 for do: O. The square 

bracket is the ratio of the dissociation rate to the recombination rate. Depending on whether 

this is greater or smaller than one, the logarithm is positive or negative. However, do: also 

changes sign when the square bracket does, so that their product (ds) is always positive, as 

required by the second law of thermodynamics. 

It is interesting to consider the limiting case of equilibrium flow as that when the dissociation 

rate becomes infinite. In that case we might consider the extremely thin relaxation region as 

part of the shock wave. Thus, the difference between the two ways of looking at the problem: 

frozen shock followed by a thin relaxation zone on one hand, and equilibrium shock followed 

by isentropic equilibrium flow on the other, is just the difference of whether one considers 

the entropy rise associated with the dissociation as occurring within the equilibrium shock, 

or in a thin relaxation region after the frozen shock. 

2 



Fig. 1 shows the situation after an unconstrained shock point. A constraint is applied, for 

example, if the streamline direction is fixed by the presence of a solid boundary. An example 

is the flow near the tip of a wedge as shown. Along the wedge surface, the 

T
t[f+.------L 

v 
Figure 2. LEFT: Physical plane, showing an attached shock in flow over a symmetrical wedge. 
RIGHT: V tS-map of this flow for the case when w « £, in which the far-field streamline passes 
through a straight shock. 

deflection is constant, b bw . In the Vb-plane, this streamline ~e:~:~~n~a 
horizontal line. The apparent contradiction of this with the diagram \, pa e 

is resolved if the curvature of the shock at the wedge tip takes on that special value which 

enables this. 

Equation (11.11) shows that this is the case if 

db = 0 : Wzr = G _ V V
2 

Px (~ vI2 )' (13.1 ) 
dV u pk aJ 

It follows that the shock curvature at the wedge tip is a measure of the dissociation rate. 

It has been attempted by several authors to use this as a method of measuring dissociation 

rates. However, in a practical flow, the displacement effect of the viscous boundary layer 

always causes the method to be inaccurate, and curvature is difficult to measure accurately 

in any case. If the wedge extends infinitely far downstream the shock becomes straight 

asymptotically, and the streamlines there map into the straight-shock curve for W2 00. 

3 
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Between the tip and the far field, there is a continuous transition from W2 = W2T to W2 00. 

This occurs at constant r by virtue of a continuous change of shock curvature. 

r v 
w=--,--- (11.12)

k php V2' 

The extent of the region where the shock is significantly curved is thus scaled by i. 

Constraints may be applied at a shock in other ways too, of course; for example, at a point 

where two shock waves intersect such as in the regular shock reflection shown on the next 

page. If this occurs in a perfect gas, both incident and reflected shock are straight, and the 

V 6 map of the region downstream of the reflected shock is a single point C. For relaxing 

flow the incident shock encounters a nonuniform free stream, and further dissociation may 

occur after the reflected shock. The flow after the incident shock maps into the straight-shock 

sol ution AB, and the region downstream of the reflected shock into the region G H CFE, with 

all arrows asymptotically approaching the V axis (6 0). In this flow it is not possible to 

draw any conclusions about the sign- of the curvature of the reflected shock without knowing 

details about the two relaxation processes. 
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Figure 3. LEFr: Rp.gular reflection of a plane oblique sho('.k. from a plane of symmetry. The 
incident and reflected sho('.k. have different relaxation lengths. RIGHT: Vo map of this flow. The 
inflow conditions for the reflected shock now lie on the streamline AB through the relaxat.ion zone 
of the incident sho('.k.. From PAC'.h point on this streamline we have til draw a new sho('.k. locus pair 
to find the locus of conditions GEDC on the downstream side of the frozen reflected sho('.k.. The 
subsequent streamlines all have to finish up with zero o. This happens through a straight sho('.k. 
in the far fipld (GHl and along the axis mr the streamline CF. To R<'.hieve the latter, the reflected 
shock has to curve appropriatply. 
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Ae234 Assignment No.3, due 7 May, 2002 

QUESTION 1 

Cse the software you generated to calculate a normal shock in an IDG with appropriate 
changes to calculate an oblique shock. Use this to plot the V ~ <5 map of a frozen and an 
equilibrium shock in nitrogen with free-stream at 7 km/s, 0.004 kg/m3 and 500 K. Choosing 
a few particular shock angles, plot (in the same diagram) the path followed by a streamline 
from the frozen to the equilibrium shock. 

QUESTION 2 

Cse the results from Question 1 and suitable additional calculations to plot a graph of the 
distance (measured normal to the shock) from the shock to the point where V aj as a 
function of shock angle, in the range where this distance is finite. 
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By establishing that the length scale governing the detachment of a shock wave from 
a wedge is the distance from the leading edge to the sonic line, and by considering the 
view of observers with different length scales, it is predicted that the detachment 
distance increases gradually with wedge angle for relaxing flow and more rapidly in a 
perfect gas. Both of these features are confirmed by experiments in the free-piston 
shock tunnel. The influence of other length scales is discussed. The phenomenon is 
related to a relaxation effect in which a subsonic layer grows from the translational­
rotational shock as the wedge inclination is increased beyond the frozen sonic point. 

1. 	Introduction 
A two-dimensional wedge placed symmetrically in a uniform supersonic flow 

supports an oblique shock wave which is attached to the leading edge if the wedge is 
sufficiently slender. In the vicinity of the leading edge, the oblique shock on a slender 
wedge is straight if the fluid is in thermodynamic eqUilibrium before and immediately 
after the shock and ifthe shock itself is thin compared with the observer's length scale. 
Under such circumstances the conditions throughout region B (see figure la) are 
uniform and may be determined from the shock jump conditions, that is, from the 
conservation and state equations. Take the flow speed, VB' to be a representative 
property of region B. For a given deflexion 0 of the flow through the shock the shock 
jump conditions give two possible solutions for VB' of which the t stronger', with smaller 
VB' is usually only realized in practice when the shock is curved. It is convenient to 
map the flow into the velocity-deflexion plane (see figure lb). The whole of region A 
maps into the point A'(Ven, 0) and point B'(VB'o) represents the whole of region B. 
When the shock front segment bordering region B is straight, the flow deflexion angle, 
0, at the shock is constant throughout B, and equal to the angle of inclination, 011), of 
the wedge face relative to the freestream direction. The curve in figure 1 (b) is called a 
shock locus and represents all possible states which may be reached from state A 
via an oblique shock. As the wedge angle Ow is increased from zero, the point B' moves 
from A' along the shock locus towards the sonic point S at which Vrl has decreased 
to the local speed of sound. At this point an important change occurs. Whereas, before, 
conditions in B were supersonic, so that signals from the trailing edge of the wedge 
were unable to travel upstream, and the flow pattern near the leading edge was devoid 
of a length scale, information about the finiteness of the wedge, that is about the length 
W, can now be communicated to the leading edge. The flow pattern responds to this 
situation by exhibiting a curved attached shock when B' lies slightly to the left of S. 
The region B is then no longer uniform, and B' only represents the post-shock flow at 
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FIGURF; 1. Attached shock wave and supersonic post-shock flow. (a) Physical plane. (b) V, J 
plane_ A, free stream; B, 0, post-shock flow upstream of corner expansion; M, maximum 
deflexion point; S, sonic point. The flow near the leading edge is devoid of a length scale. ­
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FIGURE 2. Detached shock wave and subsonic post-shock flow up to the sonic line at the trailing 
edge. (a) Physical plane. (6) V, J plane. Infonnation about the length scale w can reach the 
leading edge. Sand M are effectively coincident at high free stream Mach number. 

the leading edge, the remaining part of the shock being"mapped into the portion ofthe 
shock locus between B' and S. For very large free stream Mach number, the case of 
present interest, the point S practically coincides with the maximum deflexion point 
M. When the wedge angle is increased beyond 8M a significant change occurs in the 
flow pattern: The shock wave detaches from the leading edge of the wedge to form the 
flow pattern shown in figure 2(a) with the corresponding V, 8 map of figure 2(b). 
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The influence oj relaxation on shock detachment 

IfSand M are considered to be coincident, a particular wedge angle 8 = 8M sharply 
divides the two flow patterns of figures 1 (a) and 2 (a). In the former, the flow in region 
B is supersonic and' knows' nothing about the extent of the wedge face; this results in 
the absence of a length scale in the flow pattern. In the latter case, the post-shock 
flow is subsonic, so that the length w communicates itself to all ofthe flow field over the 
wedge. For a given free stream and wedge angle the length scale of the flow pattern, as 
manifested for example by the stand-off distance 6., is then proportional to w. 

In the present investigation we inquire how the detachment process is modified 
when the approach to thermodynamic equilibrium at the shock occurs over a finite 
length, so that the equilibrium shock may no longer be considered thin. In the dis­
cussion of situations encountered in relaxation gas-dynamics it is convenient to intro­
duce the smallest resolvable and largest viewable lengths of the observer, A and A, 
say. The ratio AIAis a measure of the range or power ofobservation. Let the relaxation 
lengths for translational, rotational, vibrational and dissociative relaxation be Lt. 1r' 
1'!) and 1a respectively. In the following, vibration and dissociation will be regarded as a 
single relaxation process with characteristic length 1. Similarly, translation and rota­
tion may both be conveniently described by the length scale It. This is appropriate to 
the experimental conditions of §3. The situation to be considered by an observer who 
cannot resolve any relaxation, is specified by the set of conditions 

It < 1 < A < w < A. (1) 

The shock observed by this observer will be referred to as 'equilibrium shock' for 
which the post-shock flow is everywhere seen to be in thermodynamic equilibrium. 
The case of present interest, in which the observer can resolve the dissociative relaxa­
tion, may then be specified by 

It < A < 1 < w < A. (2) 

Since our observer would regard as zero all lengths smaller than A, (2) specifies a 
situation in which the translational shock thickness is zero. However, he can resolve 
dissociative relaxation, so that (chemical) equilibrium is reached within his window. 

By restricting his field ofview, A, the observer may reduce his power ofobservation 
and thereby change the nature of the problem he has to study, for example to 

It < A < A ~ 1, A ~ w. (3a) 

This corresponds to the case of a perfect or chemically frozen continuum gas in which 
the translational shock thickness is again zero. It is a set of assumptions appropriate 
for describing the conditions in the immediate vicinity of the frozen shock, before any 
appreciable dissociation has occurred. The gas may effectively be considered to be in a 
state ofconstrained equilibrium. For the observer (3) the post-shock equation of state 
is different from that for the observer (1), and consequently the shock jump condition 
and shock locus are also different; this is illustrated in figure 3. The region B, in a 
sufficiently small window A(3), maps into the point B' on the 'frozen' shock locus (3) 
while the eventual equilibrium point 0 [well outside A(3)] maps into 0' on the shock 
locus (1); this describes the flow when it has eventually attained chemical equilibrium; 
it may be thought of as the equilibrium shock locus. 

The relatiye positions of the shock loci (1) and (3) are always as shown in figure 3 if 
the free stream is in unconstrained thermodynamic equilibrium, and the streamlines 
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FIGURE 3. Flow over a wedge with resolvable relaxation length and an atta.ched shock wave. 
(a) Physica.l plane. (b) V, 0 plane. The shock loci seen by observers (1) and (3) do not coincide. 

are drawn in the V, °map according to the rules derived for relaxing flow by Hornung 
(1977). In the case illustrated in figure 3, the flow is supersonic everywhere. 

In the above discussion the transition to observer (3) is made by holding the geo­
metric length scale constant and varying the observer's length scale. This leads to 
observer .(3) viewing a small part ofa large experiment, the extent ofwhich lies outside 
his window. He is therefore unable to measure wand cannot make anystatements about 
the flow as a whole. If, on the other hand, the transition to observer (3) is made by 
increasing the relaxation length until it is much larger than A while maintaining the 
inequality A > w, he can view the perfect gas flow problem as a whole. His situation is 
then specified by 

It < it < w < A ~ I. (3b) 

It corresponds to the continuum, perfect gas situation commonly treated in gas 
dynamics text books. 

It can now be demonstrated that detachment is a more complex process when the 
relaxation can be resolved by the observer. Consider the case when Ow lies between the 
maximum deflexion angles 0M(1) and 0M(3) (see figure 4b). According to observer (1) 
who cannot resolve I, the equilibrium shock is straight and attached. However, accord­
ing to observer (2), who can resolve details within the relaxation length I, the frozen 
shock is detached. The two observers can only be simultaneously right if the detach­
ment occurs on such a small length scale that observer (1) cannot resolve it, but 
observer (2) can. The same conclusion is reached when it is recognized that a small 
subsonic region start,s to grow from the frozen shock as the shock angle is increased 
beyond that corresponding to 0M(3); a more detailed discussion follows in §2.2. The 
distance to the sonic point is the determining length scale for the stand-off distance t:.. 

On the basis of the above arguments it may be expected that the observer (2), who 
can resolve 1, will see the following as he increases OW' At 0M(3) the frozen shock 
becomes strongly curved near the tip and, as Ow increases further, begins to detach 
gradually, t:. being approximately proportional to the smoothly increasing distance to 
the sonic line, until the sonic line reaches the end of the relaxation zone. This point 
corresponds to ow= 0M(1}, and a further increase in Ow results in a very rapid move­
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Ii S(1 ) 

A' 
L-~~----------------______~__ V 

FIGURE 4. When 8M (3) < 8", < 8M(1), observer (3) sees a detached shock, but observer (1) sees an 
attached shock. This can occur only if 6.. is so small that observer (1) cannot resolve it. Note that 
the equilibrium shock locus (1) a.pplies only if the shock curva.ture is sma.ll compa.red with 1/1. 
(a) Physica.l plane. (b) V, 8 plane. 
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FIGURE 5. Behaviour of stand-off distance with wedge angle as predicted 
for observers (1), (2) and (3). 

ment of the sonic line to the trailing edge of the wedge (see also figure 8b), and a con­
sequent rapid increase in ll.. This corresponds to the detachment of the equilibrium 
shock. Figure 5 illustrates the variation of the stand-off distance with lJwexpected by 
observers (1), (2) and (3). The behaviour ofthe curves as 0w~ in is sketched in accord­
ing to the expectation that the stand-off distance, measured not from the tip but 
from the line joining the trailing edges of the wedge, becomes insensitive to lJw as 
0w~ in (see Cabannes 1960). 
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The aim of the present investigation is to test these predictions for observers (2) and 
(3) experimentally in the free-piston-driven shock tunnel with dissociating nitrogen 
and carbon dioxide flows, for which this facility is able to reproduce the conditions of 
observer (2) around the detachment angle. As a check, perfect gas argon flows should 
reproduce the conditions of observer (3) reasonably well. 

2. Theoretical considerations 
2.1. Dimensional analysis 

In the dynamics of an inviscid perfect gas (frozen flow) with a uniform free stream the 
variables governing the flow over a body are the free stream speed, pressure and den­
sity, V"" Poo, Poo, the ratio of specific heats, ')', the size of the model, w, say, and additional 
parameters describing the shape, such as the wedge angle 8 in our problem. Thus, thew 

shock stand-off distance ll. may be written in dimensionless form 

(4) 

These are the variables that are important to observer (3) when w is within his window. 
Moo is the free stream Mach number voopi/(')'poo)!. 

For obs~rver (1) the chemical composition changes (in zero distance after the shock), 
so that an additional variable is required to specify the flow completely. This may be 
conveniently chosen to be the amount of energy per unit mass, E, to bring the gas to 
its new equilibrium state at some representative condition, say after a normal shock. F 
Hence, for observer (1), 

(5) 

where", = V!!2E, and ')'00 is the ratio of specific heats in the free stream. 
Observer (2) sees the composition change over a finite distance and therefore 

requires yet another variable to specify his picture completely, namely the relaxation 
length l. For him, 

(6) 

The transition from the flow seen by observer (1) to that of observer (3) proceeds via 
that seen by observer (2) and may be described by 

(7) 
corresponding to the change 

0-+ l/w-+ 00. (8) 

For constant free stream conditions, the parameters 111 ,),,,, and", are constant and00 , 

may be omitted from/1J2 and/3 . The problem of observer (2) then reduces to 

ll./w = I(ow, l/w), (9) 

the dependence on llw disappearing for the other two observers, for whom only Ow 
mat,ters. 

2.2. The position 01 the sonic line 

Our motivation to study the detachment process in relaxing flow came about through 
our discovery that in relaxing flow through an oblique shock there exists a range of 

I ,! II 1 !, !' 1 I (" II' 
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FIGURE 6. Notation for flow through a straight, oblique shock with rela.:xation. 
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FIGURE 7. The growth of a subsonic layer after a straight, oblique shock making an a.ngle <p with 
the free stream. (a) <p < <p.(3). (b) <p = <p.(3). (e) <p > <p.(3). (d) <p > <P••. Relaxation causes the 
frozen speed ofsound, al' to decrease more rapidly than the flow speed. V. with distance from the 
shock. 

shock angles within which the flow after the translational shock is first subsonic and 
then becomes supersonic again within the relaxation zone. This is an effect which is of 
dominant importance to the detachment process. It comes about essentially because 
the frozen speed ofsound, aI' falls more rapidly than the flow speed, along a streamline 
within the relaxation zone. 

In order to illustrate the effect it is convenient to consider a straight, oblique shock 
making an angle </> 'with the free stream, as shown in figure 6. The streamline is deflected 
by the translational shock to the frozen deflexion angle 8(3), and within the relaxation 
zone it suffers a further deflexion to the equilibrium deflexion angle 8(1). Let the 
distance measured at right angles to the shock be y. As 1> is increased from a point 
where the flow is everywhere supersonic, the sequence of sketches of figure 7 illustrates 
the process by which a subsonic region grows from the translational shock to cover the 
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FIGURE 8. (a) Numerical calculations of dissociative relaxation of nitrogen after a straight 
oblique shock at a freestream speed of 6 kmjs, showing the frozen Mach number at the shock, 
M,.. and at the end of the relaxation zone, M,.. as well as the equilibrium Mach number as 
functions of the shock angle ifJ. (b) The cOITeSponqing movement of the frozen sonic point away 
from the shock. ­

whole region downstream of the shock. The sequence relates rp to two of its possible 
values, one when the frozen shock becomes sonic, rps(3), and the other when the flow 
becomes sonic at the end of the relaxation zone, rpse. 

To substantiate this idea quantitatively, numerical calculations were made for a 
series of straight oblique shocks in a dissociatively relaxing nitrogen flow at fixed 
freestream conditions. (These conditions were chosen arbitrarily and do not represent 
those of the experiments in section 3 exactly.) The results are presented in figure 8. 
Figure 8 (a) shows the frozen Mach number ~ = Vfal , calculated at the translational 
snock (subscript 8) and at the end of the relaxation zone, i.e. at the equilibrium com­
position (subscript e), plotted against the shock angle rp. As may be seen, the flow 
becomes sonic at the translational shock when rp = 67'6° hut becomes supersonic 
again within the relaxation zone for shock angles up to rp = 71·2°. At the former 
condition, 8(3) = 45° and, at the latter, 8(1) = 56°, a change of 11° in the relevant 
wedge deflexion angle. 

The corresponding distance to the sonic point, 1/s' is shown in figure S (b). The impli­
cation to the detachment process of the variation of 1/x with rp is that signals from 
downstream of 1/ = 1/s cannot reach the shock. It follows that the region of the flow 
field which is able to influence the flow near the tip of a wedge is the subsonic region 
of dimension 1/8' The latter must therefore be the determining length scale for the 
stand-off distance 11. As rp is increased through rps(3), observer (2) may therefore 
expect to see 11 increase smoothly like '!Is' This behaviour is in agreement with that 
expected from the argument in the introduction and outlined in figure 5. 

Figure Sea) also shows the equilibrium Mach number Meq = V /aeq, where aeq is the 
equilibrium speed of sound; aeq is the speed at which disturbances of a wavelength 
much larger than l propagate and is smaller than the frozen speed of sound aI' relevant 
for short wavelengths. Observer (1) cannot detect wavelengths shorter than l so that 
aeq is the sound speed relevant to his observations. Both observers (3) and (2) must 
consider disturbances propagated at aI' however, since they can resolve wavelengths 
shorter than l. The region downstream of the shock must therefore be considered to be 

I ,,' I I I ' 
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FIGURE 9. The source flow effect. 

wholly subsonic above <p = 71·2°.in the example of figure 8, since we identify ourselves 
with observer (2). 

2.3. Other length scales 

Experience with the interpretation ofinterferograms of relaxing flows has shown that 
the presence of other length scales can produce phenomena which manifest themselves 
in a manner similar to relaxation. Care must therefore be taken to avoid such effects. 
To illustrate how thay may come about in the flow over a wedge, two specific additional 
lengths are considered in detail. These are the transverse length of the wedge, L, and 
the distance to the source point in a divergent free stream, S. The latter is important 
if, as is often the case, a conical nozzle is used to generate the flow. 

The presence of these two additional lengths would alter (9) to the form 

!1/w = f'(8w , l/w, S/w, L/w). (10) 

These additional two parameters could make interpretation of experimental results 
much more difficult, so that it is desirable to produce a situation withL/w = S/w = 00. 

The manner in which these two parameters affect our experiment may best be studied 
by considering the extreme cases L/w-+O and S/w-+O. 

Take S/w-+ 0 first. For simplicity let the source flow have plane symmetry and 
consider a wedge oflarge flank length w, placed with its tip a small distance S from the 
source (see figure 9). Within a distance from the tip which is small compared with S, 
the flow is like that for a parallel free stream, producing a shock at an angle <p, say. 
Assuming this shock to be straight (for simplicity) and proceeding along it away from 
the tip, the streamlines cross it at smaller and smaller angles, so that the shock becomes 
progressively weaker, until, at e= eo, it ceases to deflect the streamline. The mass 
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FIGURE 10. The effect of finite transverse length. Perspective view of model and cut-away shock. 

flux between the wedge and tJ = tJo is the same as that between tJ = tJo and tJ = 2tJo, 
however the rate of increase of cross-sectional area in the latter sector is much larger. 
Consequently the pressure drops more quickly along the streamline in the sector 
tJo < tJ < 2tJo than near the wedge, and pressure-equalizing expansion waves cause the 
flow near the wedge to be accelerated. If the shock at the tip is detached, followed by 
subsonic flow, this acceleration can cause the flow to become supersonic before it 
encounters the trailing edge of the wedge. The sonic point may therefore reside on the 
face of the wedge rather than at the trailing edge. It is not necessary for the situation 
to be as extreme as that in figure 9 for the effect to be noticeable, as even a slight 
weakening of the shock at distances small compared with S can cause the necessary 
slight acceleration of the flow. 

A similar effect may occur when the experiment is performed in an open jet. The 
wedge shock is reflected as an expansion wave from the edge of the jet. This expansion 
wave may impinge on the wedge face and cause the flow to be accelerated if the jet 
diameter, yet another length scale, is too small. 

Finite Llw also causes the sonic line to move forward by a similar mechanism, with 
the accelerating expansion coming in from the side of the model. It may be illustrated 
by considering a wedge offinite width L in the extreme case L ftc -r 0 when 8,,, > 8.1[, see 
figure 10. By considering the flow in the immediate vicinity of the tip, within a radius 
small compared with L, the shock is seen to be detached. However, when viewing the 
flow from the 'top', the symmetry plane containing the leading edge of the wedge 
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intersects the sonic surface in a line emanating from the end point A of the leading 
edge. The expansion propagating inwards from the sides accelerates the flow and causes 
the sonic surface to intersect the wedge face in a curve 0, whose maximum extent c 
from the leading edge is smaller than w. 

Other effects such as the displacement due to a viscous boundary layer can cause the 
wedge face to be effectively convex. This too would bring the sonic point closer to the 
leading edge. 

The above discussion shows that many finite lengths, some ofwhich are unavoidable 
in an experiment, produce effects similar to those ofrelaxation. It is therefore essential 
that any experiment examining the effect of relaxation must be complemented by a 
control experiment in which the relaxation effect is removed (e.g. by making llw~ 00) 
while the other finite length scales are retained. 

3. Experiment 
3.1. Facility. 'I1Wilel and instrumentation 

Much of the discussion in the preceding section about length scales other than 1and 
w arose in the first place because a pilot experiment for this project had been per­
formed in the small free-piston shock tunnel atA.N.U. (known as T2). In these experi­
ments the nozzle was conical (Sjw!:::: 4), the wedge face length was comparable to the 
free jet diameter, and the transverse length of the model was such that Ljw !:::: 1. An 
asymmetric wedge was used, consisting of a flat plate whose incidence was adjusted to 
change ~ID' The experiment measured the stand-off distance as a function of 310 for 
reacting nitrogen and carbon dioxide as well as perfect gas argon flows. 

In view of the importance ofLjw and S jw in this experiment, it is not surprising in 
hindsight that the results were inconclusive, inasmuch as the behaviour of I1jw with 
~ID had essentially the same features for the perfect gas argon flow as for the dissociating 
flows, all of which showed a gradual increase of I1jw with ~ID' 

In order to reduce the undesirable effects of finite Ljw and S jw, the experiment was 
performed again in the large free-piston shock tunnel, T3 (see Hornung & Stalker 
1978) with a contoured nozzle and also with a symmetrical wedge. This contoured 
nozzle was originally designed for use with air at a specific reservoir enthalpy of 
3 x 107 m2js2 and a reservoir pressure of 200 atm. However, it also gives good quality 
parallel, uniform flows (Sjw = 00) with specific reservoir enthalpies in nitrogen of 
2·2 x 107 m2js2, carbon dioxide of 1·6 x 107 m2js2 and argon of 2·5 x 106 m2j s2. The 
former two gases are partially dissociated in the reservoir and recombine rapidly as 
they cool upon flowing through the throat, while their composition is frozen by the 
rapid drop in density through the nozzle flow. The effective specific heat ratios, and 
therefore the exit :Mach numbers, are different for the two gases. At the low enthalpy 
chosen for the argon, it behaves like a perfect gas. Though the nominal exit Mach 
num ber is 16 for the argon flow, the displacement thickness ofthe nozzle wall boundary 
layer is quite large at this conditiOn, so that the exit Mach number may be significantly 
reduced. The test section conditions for the three gases are obtained by numerical 
computation of the nozzle flow from the measured reservoir conditions and are given 
in table 1. 

The new model consisted of two sharp wedges whose position and incidence could be 
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Nitrogen Carbon dioxide Argon 

Specific reservoir enthalpy (m%/s2) 2·2 x 107 1'6x107 0·25 X 107 

Reservoir tempera.ture (K) 9070 5750 5000 

Reservoir pressure (atm) 180 180 180 

Exit velocity (krn/s) 5·5 4'1 2·2 

Exit density (g/cmB) 2·6x 10'" 4·6 x 10-4 2·2 x 10'" 

Exit temperature (K) 1100 1960 57 

Exit Mach number 7·5 6·0 16 

Exit composition (mole/g) N1 0'0319 C < 10-10 Ar 0·025 
N 0·0077 00·0044 
e- < 10-4 COl 0·0074 
N+ < 10'" 0 2 0'0055 

CO 0·0153 

TABLE 1. Calcula.ted tunnel conditions. 

adjusted separately so that they could be arranged in the form of a single symmetrical 
wedge with variable Ow by making their leading edges touch. Small nonuniformities 
in the leading edges caused a gap ofno more than 0·2 mm width to appear between the 
leading edges. This was sealed from behind the wedges with a pliable vacuum-sealing 
compound. Thewidthofthe model wasL = 15·2cmand wwas 5·1 cmgiving L/w = 3. 
This is still quite finite and should ideally be much larger. However, at the chosen 
conditions the relaxation length is approximately 1-2 em, and the exit diameter of the 
nozzle is 25 cm. In order to stay well clear of the edge of the free jet it is necessary to 
have L sufficiently small compared with 25 cm (L = 15·2 cm chosen). To produce a 
behaviour significantly different from the frozen flow of observer (3) it is desirable to 
make 1comparabletow. This led to the compromise w = 5·1 cm, i.e.ljw *i, Ljw = 3. 

The flow was investigated by Mach-Zehnder interferometry, the light source 
being an exploding wire. This produces a sufficiently short (AJ 50 foS) intense light 
pulse, bright enough to overcome the self-luminosity of the gas in the shock layer, 
which is also partially eliminated by a stop at the exit focus of the interferometer and 
by an interference filter passing wavelengths of 510 ± 5nm. The main purpose of the 
filter is to facilitate quantitative interpretation of the interferograrps. 

3.2. Results 

As an example ofthe experimental results obtained with a relaxing flow, a set of inter­
ferograms of dissociating carbon dioxide flow over the wedge is presented in figure 11. 
These show an attached shock in figure 11 (a), and gradually increasing stand-off 
distance with increasing Ow through to figure 11 (e). Figure 11 (a) shows a curved 
attached shock followed by strong relaxation as indicated by the decrease of fringe 
shift gradient with distance from the shock. The sharp rise in fringe shift at the wedge 
surface is due to the boundary layer and gives an indication of its thickness. 

Two examples of detached shocks in argon are presented in figure 12. In these inter­
ferograms the trailing edge of the wedge is obscured by a support bracket on the side 
of the wedge which does not significantly affect the flow oyer the wedge. Notice the 
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FIGURE 14. Measured stand·off distance for: t:,. the perfect gas argon; D. dissocia.ting nitrogen; 
O. diSsociating carbon dioxide. For freestrea.m conditions see table 1. The filled symbols indio 
cate the ea.lcula.ted frozen detachment angle. The curves are mean lines through the experimental 
results. 

more nearly constant fringe shift in the shock layer, indicating a more uniform density 
field. Also, the boundary layer on the wedge surface is noticeably thicker than in the 
carbon dioxide flows. Figure 12 (a) shows a situation with OlD barely above the incipient 
detachment angle and figure 12(b) shows a case with Il so large that it can be appre­
ciated that finite Ljw and.finite open jet diameter will affect the results. 

Incipient detachment and a small Il are shown for dissociating nitrogen flow in 
figures 13(a) and (b). Again a considerable change in 011} is necessary to change Il 
relatively slightly. 

The features of the interferograms taken at the three conditions of table 1 are pre­
sented in figure 14, which is a graph of t::.jw against 011}' Estimated error bars for the 
measurement of Il are indicated on a few representative points, while the error in 011} is 
smaller than the size of the symbols. There are a few points showing a significant dis­
crepancy from the main trend in the carbon dioxide data, which we are unable to 
explain. The value of oM(3), the frozen detachment angle, as calculated from the free­
stream conditions is also shown in figure 14, and may be seen to agree well with the 
observed incipient detachment point in all three cases. 

It is shown in figure 14 that the trend at small values of Iljw is as expected from the 
argument in the introduction. The relaxing flows give a very slow rise of Iljw with 
increase of Ow, whereas the perfect gas flow gives a rapid increase. 
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4. 	Discussion 
The perfect gas detachment process has been examined by a number of authors 

whose results indicate that 6./w increases gradually with 8w even in the absence of 
relaxation. Guderley (1962) obtains this result on theoretical grounds; Frank (1972) 
from measurements in transonic flows; Zierep (1968) from similarity arguments; and 
Johnston (1953) from measurements at Moo = 2·5. The former three are concerned 
with the transonic situation in which the sonic and maximum deflexion points on the 
shock locus (S and M) are significantly separated. In Johnston's results the gradient 
d6./rMw at incipient detachment is comparable with that of the present experiments at 
6./w ~ 0·1 in argon. However, following the argument presented in the introduction, 
we observe that, in parallel, frozen flow with L/w = co, no length scale is available to 
the flow at the tip of the wedge until the flow becomes subsonic after the shock. At 
high Mach number, M and S effectively coincide, so that, at incipient detachment, the 
length scale governing the stand-off distance jumps from zero to w. It is probable that, 
in the absence of relaxation, any smoothing of the effect of this discontinuity in the 
length scale on the behaviour of6. with8w occurs becauseoffiniteL/w. The importance 
ofthis effect may be expected to increase as 6./L increases. It is supported by the argon 
curve in figure 14. A possible way of testing this explanation is to repeat the experi­
ment in frozen flow with a smaller w. This would reduce the importance of L/w in the 
frozen case. 

s. 	Conclusions 
The discussion of relaxing flows in terms of the phenomena seen by observers with 

different smallest resolvable and largest viewable length scales has been shown to give 
correct predictions in the case of detachment of a shock from a wedge. The mapping of 
the flow into the speed-deflexion plane has been shown to be a useful tool for obtaining 
the principal features ofrelaxing gas flows. The determining length scale for the detach­
ment distance is the distance to the sonic line which has been shown to grow with 
increasing shock angle, even for a straight shock. The detachment distance therefore 
grows gradually as the wedge angle is increased for relaxing gases and more steeply 
for a perfect gas. Both features have been confirmed by experiment. The effect of 
finite transverse extent of the wedge and of a divergent free stream have been dis­
cussed and shown to produce similar effects as those due to relaxation. 

The facility used in this project was financially supported by the Australian Re­
search Grants Committee. The project has benefited greatly from discussions with 
Professor E. Becker during his visit to A.N.U. 
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FIGURE 12. Inrerferograms of perfect gas flow (argon) over a wedge. (a) Just detached shock. 
(b) Large stand-off distance. For freestream conditions see table 1. 
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FIGURE 13. Interferograms of dissociating nitrogen flow over a wedge. (a) Curved attached shock. 
(b) Small stand·off distance. For freestrcam conditions see table 1. 
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Shock detachment from cones in a relaxing gas 
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Measurements of the shock stand-off distance on cones of various base diameters in 
carbon dioxide and nitrogen flows with dissociative relaxation show that the detach­
ment process occurs more gradually with relaxation than in a perfect gas, as the cone 
semi-angle is increased. This is in agreement with a prediction which is made on the 
basis of the behaviour of the sonic surface in the flow field. The phenomenon is similar 
to that observed previously with wedge flow but shows interesting effects peculiar to 
the cone flow. The cone experiments also eliminate the end effect and permit easy 
variation of the relaxation rate parameter without changing the gas. Perfect-gas 
argo~ experiments provide a convenient check. 

1. Introduction 
This paper is concerned with the inviscid, high-Mach-number flow of a relaxing gas 

over cones at zero incidence with semi-angles in the range around the value at which the 
shock wave detaches from the cone tip. The shock is taken to be partly dispersed, the 
situation ofparticular interest being that in which a translational-rotational subshock 
of unresolvably small thickness is followed by a region of vibrational and dissociative 
relaxation, the extent of which is characterized by a single relaxation length, I. 

Whether an observer sees such a flow to be in thermodynamic equilibrium or not 
depends on the relative magnitudes ofhis smallest resolvable length scale A, his largest 
viewable length A, and the relaxation length I. If he cannot resolve I, or if 

s..'~'...... 1<A <A, (1) 
an equilibriumJexists, while, if 

A < I < A, (2) 

the relaxation is resolvable and must therefore be taken into account. At the other 
extreme, when 

A < A ~ I, (3) 

a 'frozen' situation exists. The gas may be considered to be in a constrained state of 
equilibrium, which differs from the unconstrained equilibrium state indicated by (1). 
Hence the equation ofstate is different for case (3) than for case (1), Since the conditions 
after a plane oblique shock are determined from the free-stream conditions by the 
conservation and state equations, they will be different for (1) and (3), and, in case (2) 
the conditions after the translational shock are as for (3) while they asymptotically 
approach those specified by (1) further from the shock. 

The conditions achievable from a free-stream state, A, by a plane, 0 blique shock may 
be conveniently presented in the speecl-deflexion (V-0) plane, see figure L The two 

t Present address: DFVLR·AVA, 34 Gottingen, Bunsenstr. 10, ,,', Germany. 
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o~d3) I-_+-__~-"":::"':: D 

FIGURE 1. Shock loci in the speed-deflexion plane for equilibrium (1) and frozen (3) flow. 
- -, sonic line relative to frozen speed of soWld. 

curves represent the loci of conditions after the shock as observed in cases (1) and (3) 
respectively as the shock strength is increased from zero at point A. The maximum 
deflexion points M(3) and 1J1(1) represent the largest angles of a wedge at which an 
attached shock can be observed in the respective situations. For high free-stream Mach 
number, the point S(3} at which the flow is sonic (flow speed = frozen speed ofsound) 
at the sub-shock practically coincides with M(3). 

By considering the flow over a wedge of angle ~w such that 

~sM(3} < ~w < ~SM(1), (4) 

Hornung & Smith (1979) showed that, in this range, the ahock stand-off distance, 
fl, is O(l), and that fl increases more gradually with relaxation than for a perfect gas. 
They related this behaviour to the phenomenon that, as cfi is increased beyond a certain 
value, a subsonic layer starts to grow from the subshock into the relaxation layer while 
the flow further downstream is still supersonic. Their experiments with dissociating 
nitrogen and carbon dioxide flows substantiated these predictions and were given 
additional weight by being contrasted with a perfect-gas argon experiment. 

One ofthe weaknesses ofwedge flow experiments is that the transverse length of the 
wedge is finite. The end effects influence results in a similar way as relaxation does, and 
a null-experiment with a perfect gas becomes essential. One of the motivations for 
repeating the experiments with cones was that the end effect is automatically removed 
in axisymmetric flow. The relative ease of making cones also allows the important 
parameter lid to be varied without changing the gas by making cones ofdifferent base 
diameter, d. 

2. Relaxing cone flow 
2.1. Weale and strong relaxation 

The flow over cones is more complex than wedge flow, as the condition at the body, 
charact.erized for example by the cone semi-angle 0o, is not the same as that at the 
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FIGURE 2. Shock and body loci for frozen (3) and equilibrium (1) cone flow 
in the case of weak relaxa.tion, 8sM(1) < 8CM(3): 

shock, ~S, even in equilibrium or frozen flow. The conditions at the body map into a 
body locus in the V-8 plane, the shock detachment condition being given by 

(5) 

where 80.Al is the extreme value of ~o. Again, the body locus for the frozen situation (3) 
is different from that for the equilibrium situation (1), as is the case for the shock locus_ 
One may now distinguish between two cases according to the relative magnitude of the 
extreme deflexion angles at the shock and cone in the frozen and eqUilibrium situations_ 
We denote by 'strong' and 'weak' relaxation the cases when 8sJ!i(1) is greater or less 
than ~C.Ai(3) respectively. The V-8 map of the case of weak relaxation is shown in 
figure 2. 

This is the case relevant to the present discussion and, indeed, strong relaxation may 
be expected to be quite rare in a laboratory environment. This can be demonstrated by 
the following simple estimate. Numerical solutions of the equations of perfect gas cone 
flow give 80 "11 as a function of r, the ratio of specific heats. The values of 80M and the 
corresponding maximum de flexion at the shock are shown in figure 3 for infinite free­
stream Mach n um ber. Taking the case of a free stream of diatomic molecules, r = 1-4, 
and figure 3 gives 80JJ(3} :::: 57°. The curve for ~s.u has this value at r 1-18. For 
~CllJ(3} = 8sM(1}, the internal degrees offreedom of the equilibrium flow would have 
to use up enough energy to make the effective ratio of specific heats equal to 1-18, 
corresponding to a hypersonic density ratio across the shock of 12-1_ vVhile this is 
possible in free flight, it is unusual in wind-tunnel experiments, because freezing of the 
internal degrees of freedom in the nozzle flow invariably causes the free stream to 
remain partially dissociated. In the free-piston shock tunnel a density ratio of 12 in 
nitrogen has only been achieved across a normal shock. In the following, we shall 
therefore restrict discussion to the case of wC<'1.k relaxation. 
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FIGURE 3. Calculated maximum deflexion angles at the shock and at the cone in 
perfect.gas flow a.t infinite free-stream Mach number. 

2.2. The V -0' map oJ cone flow uith an attached sheck 

When the cone angle is sufficiently small, the shock is attached to the cone tip and the 
flow is everywhere supersonic .. Within a distance A(3) of the cone tip, such that 
A(3) ~ 1, the frozen conditions apply. Consider first the streamline that passes through 
the shock very close to the tip. It Buffers an initial discontinuous deflexion to 0'8(3) at 
the shock, followed by a further deflexion asymptotically approaching the cone semi­
angle 0'0' During this second continuous deflexion the velocity decreases along the 
streamline according to a relation 0'( V) which can be determined from numerical 
solutions of frozen cone flow. Since A(3) ~ 1, no appreciable relaxation takes place 
along this streamline until it has reached the cone semi-angle 0'0 on the body locus 
O'd3). The subsequent relaxation along this streamline occurs at constant deflexion 
and is accompanied by an increase in velocity, so that the conditions on it finally 
approach a point close to 0'0 = O'c(l) in the V-O' plane. This streamline is show'll in 
figure 4(b) in the physical plane as BO, and its corresponding V-O map is BB'O in 
figure 4(a). Note that the point B in the physical plane maps into the line BB' in the 
V-O'plane. 

The streamline that passes through the shock at a distance from the tip much larger 
than the relaxation length, 1, must approach the point 0'0 = O'd1) eventually. It is 
sho\ru as DEF in figure 4(b). The distance measured along this streamline to the point 
where the flow deflexion approaches the body deflexion 0'0 is large compared with l. The 
deflexion of the streamline due to relaxation is therefore completed before any 
significant turning due to the cone flow occurs. The V-O' map of this equilibrium 
streamline is also shown in figure 4(a). Clearly, the curves BE' and EF represent the 
frozen and equilibrium cone flow solutions respectively for a cone of semiangle Be. 

1 .·1 jI "I ! I I I ' 
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FIGURE 4. Relaxing flow over a cone with attached shock and supersonic conditions 
throughout. (a) V-O' plane; (b) physical plane. 

The V-8 map now shows that the translational subshock must be curved between B 
and D. Since the body loci 80(3), 80< 1) as well as the equilibrium shock locus 813( 1) only 
apply for straight shocks, they can only be used for the frozen and equilibrium 
extremes in the cone flow. However, the qualitative behaviour of the V-8' map of a 
streamline through a curved shock has been determined by Hornung (1977) for the 
plane case, and the results may be easily extended to axisymmetric flows. Applied to 
the present problem they yield the qualitative shape of the V-O map of the general 
streamline GH shown in figure 4. Note, that the intersections of this streamline with 
the lines 813(1) and 80(3) have lost their significance because the shock radius of curva­
ture at G is neither very large nor very small compared with 1. The separation of the 
asymptotic points G and F in the V-8' plane also arises from the fact that the shock 
angles at Band D are not the same so that, though the asymptotic pressures at G and 
F are the same, the streamline near the body has a higher entropy and therefore a lower 
velocity. 

2.3. The sonic line 

Since we have only considered the supersonic problem so far, the size of the cone was 
not important. As the cone semiangle to is increased, however, the flow becomes locally 
subsonic. The existence of subsonic regions provides t.he mechanism by which the 
detachment process derives its length scale either from .the relaxation length or from 
the size of the cone. The latter may conveniently be specified by the base diameter, d. 

Consider first the case ofperfect-gas (frozen) flow. The equations of cone flow admit 
conical solutions in which both subsonic and supersonic regions occur, the conical 
sonic surface separating a subsonic region near the body from a supersonic one near the 
sIwek If the cone is finite, this pro\-ides a path by which the trailing edge of the cone 
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FIGURE 5. Mixed (supersonic and subsonic) cone flow of a. perfect gas. 
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FIGURE 6. Detached shock in perfect-gas flow over a. cone. 

can influence the flow near the tip. However, it appears that, at least for a small range 
of angles, this is not enough to cause the shock to be influenced (see Solomon 1955). 
The sonic line has to meet the trailing edge where the flow is accelerated by the corner. 
The mixed case for perfect gas flow over a finite cone with its V-a map is shown 
schematically in figure 5. 

The cone angle for maximum deflexion is somewhat larger than that for a sonic 
shock. Thus when the cone semiangle has reached 0C"11(3) conditions behind the 
shock are already subsonic. The trailing edge of the cone, and therefore the length 
scale d, can influence the shock, so that the shock is curved. For cone angles larger 
than 0CM( 3) the shock detaches. The detachment distance, t::.., increases approximately 
linearly with ac-ocM(3) (see Ward & Pugh 1968). The detached flow and its V-o 
map are shown in figure 6. Clearly, the body locus in the V-0 plane no longer has any 
significance in this case because the shock is curved. Similarly, the shape of the sonic 
line in the V-a plane depends on the shock shape in the physical plane, though its 
end point on the shock is fixed. 

, I .. ' I *.! 
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FIGURE 7. Relaxing cone flow. Attached shock, subsonic region 
embedded in relaxation region. 

Now introduce relaxation and, for simplil:)ity, take the case d ~ 1first. Consider the 
attached shock of figure 4 and let 80 be increased, so that the' quadrilateral' enclosing 
the flow field in the V-8 plane slides up and to the left, its corners being constrained to 
lie on 8d1), 8d3) and 88 (3). As 80 is increased, there comes a point at which B' crosses 
the sonic line. However, the Mach number on the streamlines entering the subsonic 
region is increased again by the relaxation, so that the complete flow picture is as shown 
in figure 7. 

As 80 is increased to a point where 80 > 80111(3), the frozen shock detaches, but the 
detachment distance remains so small that it cannot be resolved by an observer for 
whom the inequalities (1) apply. This is consistent with the form of the corresponding 
V-O' map of the flow, see figure 8. It shows that the extent of the subsonic region from 
which the detachment distance derives its scale is less than the relaxation length l. 

Further increase of 0'0 causes the extent of the subsonic region t{) increase further, 
until it exceeds the relaxation length. This occurs when 0'0 ~ 80J1 (1). Thereafter the 
point where the sonic line meets the body lies at the trailing edge of the cone, and the 
flow picture is qualitatively very similar to that of figure 6. The length scale governing 
tJ. is then the cone size d. The shock stand-off distance tJ. may be expected to increase 
more slowly with 0'0 when 80~H(3) < 0'0 < 80 ..'11(1) than when 0'0> O'oM(l), since the 
length scale governing tJ. i~ 1itthe former range while it is d in the latter. 

Now letd ~ l. Consider the caseO'o.1J(3} < 0'0 < 8mAl). The subsonic region may now 
be terminated by the expansion around the trailing edge and not by the relaxation. 
The governing length scale for the detachment distance is then d, so that one may 
expect only a slight departure from the frozen flow behaviour. Ifd <{ 1, figure 6 applies, 
and tJ. is always governed by d. The expected behayiour of tJ.ld with 0'0 can now be 
sketched for different values of lid, see figure 9. This diagram incorporates the linear 
behaviour of tJ.ld with 0'0 observed by Ward & Pugh (1968) in the frozen case and 
assumes that it also occurs at equilibrium. 'Vard & Pugh's measurements resolve 80 

more finely in the immediate vicinity ofdetachment than the othen\ise more extensive 
mea,snrements ofEmunds (1976). 
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FIGURE 8. Relaxing cone flow. Detached shock, stand-off distance controlled by relaxation 
length. 8CM(3) < 8c < oCM(l). Subsonic region has reached shock. 
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FIGURE 9. Expected behaviour of shock stand-off distance for cones 
of different sizes relative to the relaxation length. 

3. Experiment 
3.1. Facility and free-stream conditions 

The large free-piston shock tunnel was used for all the experiments in the same con­
figuration as in the wedge flow experiments of Hornung & Smith (1979). Mach­
Zelmder interferograms were taken of dissociating nitrogen and carbon dioxide flows, 
and of perfect-gas argon flows. The free-stream conditions of the contoured nozzle 
flow, calculated numerically from measured reservoir conditions, are given in table 1. 
The free-stream density in the carbon dioxide and nitrogen flows was increased by a 
factor of 1·7 over those of the wedge flow experiments in order to reduce the viscous 
length scale. This has the consequence that the gas composition is slightly changed in 
favour of the molecular constituents. 

I ' <I I I I ! t ~ I I 
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Nitrogen Ca.rbon dioxide Argon 

Velocity (kIn 6-1) 5·2 4·0 2·2 
Mach number 7·8 5·9 16 
Density (g cm-3 ) 4·3 x 10-6 7·8 x 10-6 2·2 x 10-8 

Temperature (K) 1040 1900 57 
Composition (mole g-1) N z 3·37 x 10-11 COa 9·1 x 10-3 Ar 0·025 

N 4·0x 10-3 CO 1·34 X 10-2 

0 2 6.2 X 10-3 

o 1·0 x 10-8 

TABLE 1. Free-stream conditions. 

3.2. Range ofparameters 

For each of the experimental conditions in table 1, a relation of the form implied by 
figure 9, 

!lId =f(lld,8oJ (6) 

exists for inviscid flow. In the experiment, however, the Reynolds number is finite and 
is likely to affect the experiment in the case of the smallest cones (d = 1 cm), so that 
the boundary-layer thickness has to be estimated. The case of most interest in the 
present context is that of incipient detachment of the shock when the Mach number 
outside the boundary layer, but behind the attached shock, is approximately 1, and 
conditions outside the boundary layer are uniform, For the small cones, the flow may 
be assumed to be frozen throughout for the purposes ofestimating the boundary-layer 
displacement thickness, 8*, For the case of an insulated wall (giving an overestimate 
of 8*) the results of van Driest (1952) may be used to obtain 

3* 2 
(7)L ~ .JRe 

for a flat plate at zero incidence, at sonic conditions outside the boundary layer, for a 
Prandtl number of 0,75 and a specific heat ratio of 1·4. Though the last two conditions 
are not exactly satisfied in our experiments, 3* is not sufficiently sensitive to these 
parameters to cause concern in our crude estimation. Applying a Mangler transforma­
tion to this result to account for the axial symmetry (see, for example, Walz 1966, 
p. 174), yields 

3* 2 
(8)L ~ .J3.JRe' 

In (7) and (8) L is the length ofthe generator ofthe cone, 3* is the displacement thick­
ness at the trailing edge of the cone, and Re is the Reynolds number outside the 
boundary layer, based on L. 

In both ofthe dissociating gases the t.emperature after a frozen shock of 60° incidence 
to the free stream is approximately 10000 K. Since the wall temperature remains at 
300 K during the short test time, the effect of heat transfer to the wall must be con­
sidered. This may be estimated by assuming the Prandtl and Lewis numbers to be 
unity and using equation (8.3.3) of Hayes & Pl'obstein (1959) in a linear velocity 
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Nitrogen Carbon dioxide Argon 
Reynolds number 

L = 1cm 5000 5000 1500 
L = 10cm 50000 50000 15000 

Displacement thickness (cm) 
L = 1cm 0.005 0·005 0·007 
L = 10cm 0·01 0·01 0·02 

Relaxation length l (cm) 1·2 0·4 co 

TABLE 2. Range of boundary-layer displacement thickness at incipient detachment. 

profile. In this manner, the effect ofwall cooling may be shown to reduce 0* by a factor 
of 4. The viscosity may be estimated from data given by Dorrance (1962) to be 
(3 ± 1) x 10-3 gcm-1 s-1 for nitrogen at 10000K and is assumed to be the same for the 
carbon-dioxide flow, which consists in a large part of CO. The resulting values of the 
Reynolds number and estimates ofdisplacement thickness are given in table 2. Clearly, 
8* is near or below the resolution limit. This is in agreement with observation (see, for 
example, figure 12d, near trailing edge). 

In the present experiments the parameter lid was varied both by changing l and by 
varying the model size d. The dissociation rate is very sensitive to temperature and 
varies approximately linearly with the density. For a given set of free-stream condi­
tions, the relaxation length is therefore sensitive to the shock angle. Since the range of 
shock angles of interest to the detachment problem lies in a narrow range around 
incipient detachment, l may be considered to be constant for each gas. Calculated 
values of the relaxation length after a normal shock (to where the density change due 
to relaxation reaches 95 %of its maximum value) are given in the last row of table 2. 
However, changing l by changing the gas changes the functional form of equation (6) 
(for example, it changes the values of 00Ji(1) and 00M(3}) so that this does not help in 
examining the detailed behaviour predicted by figure 9. It is more profitable to 
change d. For this purpose a large number of cones was made with a range of semi­
angles 00 and with d = 7'5, 3 and 1 cm. A few very large (d = 15cm) and very small 
(d = 0·5 cm) cones were also made, but the limits of the facility size and resolution in 
interferometry caused results obtained 'with those to be only of restricted value. 

4. 	Results and discussion 
The results of the argon experiments are presented in figure 10. These were all 

obtained on cones with d = 3 cm. The error bars on the measurement of D. represent 
approximately ± 0·15 mm. Though the photographs permit considerably better resolu­
tion, the relatively low density ofthe argon flow causes the shock in the interferograms 
to be poorly defined. The behaviour ofD./d with 00 can be seen to follow approximately 
that observed by Ward & Pugh (1968), though there appears to be a slight departure 
from linearity of the CUlTe in our experiment. As can be seen, the results also agree 
with the calculated value of 00.11> within the error, though they indicate a slightly 
higher yalue. 

The results obtained in nitrogen with cones of d 1, 3 and 7.5 cm are shown in 
figure 11. It is clear that the error bars on b./d, particularly for the small cones, is too 
large to be able to separate the curve obtained for d = 7·5 cm from that for d = 1 cm 

I "I I ,I I I ' , ~" I 
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FIGURE 10. Results of perfect-gas argon experiments, d = 3 em. 
The arrow shows the calculated value of OeM­
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FIGURE 11. Results of dissociating nitrogen experiments. 0, d = 1 em; /;;., d 3 cm; 0. 
d 7·5 em. The effect of model size is barely significant in view of the measurement errors, 
Arrows show calculated angles. 

with any significance above 00 = 64°, and it is barely possible to detect the trend 
predicted by figure 9 below this angle. The calculated values of 0c.lI(1) and oc.1I(3) are 
again sho\\'n by arrows. 
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FIGURE 13. Results of dissociating carbon dioxide flows. 
0, d = 1 em; 0, d = 7·5 em. 

The higher density and refractive index of the gas in the carbon dioxide flow makes 
it possible to resolve the shock much more sharply. With care in the adjustment of the 
interferometer it was even possible to see the shock on cones with d = 0·5 cm provided 
that it was detached. Examples of the interferograms taken in carbon dioxide flows 
are shown in figure 12 (plate)). 

The results obtained with carbon dioxide are shown in figure 13, in which the points 
for d = 1 cm and d = 7·5 em only have been selected. Here, the separation of the two 
curves is clearly in the same direction as that in figure 9 and the qualitative behaviour 
is generally as predicted. The points for d 3 cm fall between the two curves. It can be 
seen from figure 13 that the position of the two curves in relation to the two arrows 
(JO.1J(l) and 0011'1(3)) is closer to the equilibrium side than in the case of nitrogen (see 
figure 11). This is as it should be in view of the difference in the relaxation lengths. For 
example, the case d = 3 cm in nitrogen gives the same lid as the case d = 1 cm in 
carbon dioxide. This is part of the reason for the small separation of the curves in 
figure 11. 

5. Conclusions 
Experiments to examine shock detachment in relaxing flow' with wedge models had 

the unavoidable problem that end effects are difficult to separate from relaxation 
effects. The present experiments were successful in eliminating this difficulty by per­
forming the experiments with cones. The results clearly show that the effect, observed 
by Hornung & Smith (1979) on wedges, that shock detachment occurs more gradually 
in a relaxing gas than in equilibrium or frozen flow, is also observed in cone flow. 

Considerations of a map of the flow into the speed-deflexion plane again allow the 
effect to be predicted. However, this mapping is considerably more complex in cone 
flow, because the conditions after a conical shock are not uniform eyen in frozen or 
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319 Shock detachment from cones in a relaxing gas 

equilibrium flow. The speed-deflexion plane map gives a good explanation of the 
qualitative behaviour of the sonic surface in the flow field as the cone semi-angle is 
increased. 

The experiments were performed with sets of cones of various base diameters, thus 
varying the parameter lid without changing the gas. Though the predicted effect was 
clearly observed in carbon dioxide flows, the limits of resolution of optical inter­
ferometry caused the results obtained in nitrogen to be barely significant. As a check, 
a perfect-gas argon experiment showed the effect to be absent in frozen flow. 

The facility used in this project received support from the Australian Research 
Grants Committee. 
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Shock Detachment Process in Hypervelocity Flow over 
a Cone 

I.A. Leyva, H.G. Hornung 

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA 

Abstract: A comprehensive experimental and com­
putational study of the shock deta.clunent process in 
hypervelocity flow over cones is presented. The exper­
iments are carried out in the T5 hypervelocity shock 
tunnel. The computations are mostly done with a 
code for axisymmetric thermo-chemical nonequilib­
rium flow. The data obtained confinn a previous theo­
retical model that predicts lower growth rate of the de­
tachment distance with increasing cone half-angle for 
nonequilibrium Rows than for frozen and equilibrium 
Rows. The lower growth rate is related to the behavior 
of the sonic line in relaxing Rows. The growth of the 
subsonic region is studied in detail from attached to 
detached conditions. A comparison between measured 
and computed interferograms is also made. Measured 
and computed heat flux distributions are compared, 
and differences between flows with attached and de­
tached shocks are discussed. 

Key words: Shock detachment, Hypervelocity flow, 
High enthalpy, Nonequilibrium cone flows 

1. Introduction 

The flow over cones at hypervelocity conditions is 
one of the most sensitive flows to thermo-chemical 
nonequilibrium. For certain combinations of free­
stream conditions and cone half-angles, the shock can 
be detached if the flow is frozen but attached if the 
flow is in equilibrium. The rate of increase of the 
detachment distance with cone half-angle is strongly 
affected by the relaxation rate. Features of special 
interest are the conditions for incipient shock detach­
ment, the important parameters of the body geometry 
and free-tltream conditions that determine the detach­
ment process, and the effect of shock detachment on 
heat loads and surface pressure. This knowledge can 
be applied to the design of inlets or any other sharp 
large-half-angle conical structure in a hypersonic ve­
hicle. 

The objective of the present study is to explain the 
effects of nonequilibrium on the shock detachment dis­
tance and its growth rate with increasing cone half­
angle in hypervelocity flows. This work extends the 

study by Hornung and Houwing (1980) which showed 
that the growth rate of the detachment distance with 
increasing cone half angle is smaller for nonequilibruim 
than for frozen or equilibrium flows, and related this 
effect to the behavior of the sonic surface. The re­
sults were, however, only marginally conclusive be­
cause of the relatively large measurement uncertain­
ties. With a greater range of free-stream conditions, 
coupled numerical investigation, higher resolution in­
terferograms, and heat flux and surface pressure mea­
surements, the present study has been able to yield 
conclnsive results. 

2. Experiments 

About 170 shots have been performed in the T5 hy­
pervelocity shock tunnel at Caltech, which is described 
in Hormmg (1992). A total of 24 stainless steel cones 
have been tested, ranging in base diameter d from 2 cm 
to 16 cm and cone half-angles from 55° to 75°. Fig­
ure 1 shows a schematic diagram of a model in the test 
section of T5. The variable dep is the distance from 
the tip of the cone to the nozzle exit plane during the 
test time. 

conical nozzle 

nozzle '.~~--
- -centerline 

model sting with 
instumentation cables 

Figure 1. Schematic diagram of model in test section of 
T5. 

The cones with d = 8 cm and d = 16 cm are instru­
mented with coaxial thermocouples and the largest 
cones also have recessed pressure transducers. Flow vi­
sualization by holographic interferometry gives quanti­
tative field information and, in particular, the detach-
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2 Shock Detachment Process on Cones 

ment distance. Each cone is tested in six free-stream 
conditions (see tables 1 and 2) which span the avail­
able ranges of stagnation pressure and enthalpy of T5. 
The values of ho and Po represent the mean and stan­
dard deviation calculated from all the shots obtained 
for a given free--stream condition. All the shots are 
performed using a 7° half-angle conical nozzle. 

Table 1. Free--stream conditions used. 

Condition N21 N22 N2 3 
ho (MJ/kg) 18.2 ± 0.7 10.3 ± 0.9 16.3 ± 1.1 

• 	 Po (MPa) 53.6 ± 1.5 53.9 ± 2.8 20.3 ± 1.3 

Table 2. Free--stream conditions used. (Cont'd.) 

Condition N24 C022 C023 
ho (MJjkg) 9.20 ± .38 6.62 ± 0.39 9.13 ±.46 
Po (MPa) 28.2 ± 1.5 24.5 ± 1.2 64.7 ± 1.8 

3. Computations 

The reservoir conditions in T5 are calculated using the 
computational tool STANJAN, see Reynolds (1986). 
For N2 flows, the conical conditions at the nozzle exit 
are computed using the code SURF, see Rein (1989), 
for the conditions just downstream of the throat, and 
a modified version of the code by Olejniczak (1997) for 
the nozzle exit results. For CO2 flows, the quasi-one­
dimensional code NENZF, see Lordi et al. (1966), is 
used to calculate the nozzle exit conditions. 

The main numerical code used to simulate cone 
flows was originally written by Candler (1988) and im­
proved by Olejniczak (1997). It uses a finite--volume 
approximation to solve either the Navier-Stokes equa­
tions or the Euler equations for 2-D or axisymmet­
ric flows with thermo-chemical nonequilibrium. The 
code can also be used for frozen flows. For the spa­
tial differencing it uses a flux-splitting method, see 
Candler and MacCormack (1991), based on the Ste­
ger and Warming approach. The code marches in 
time using the implicit and iterative Gauss-Seidel line 
relaxation method. For this study, the vibrational 
modes are modeled as harmonic oscillators and the 
Park model is used for the vibration-dissociation cou­
pling. The dissociation rates for N2 are taken from 
Park (1985) and those for C02 flows are taken from 
Park et al. (1994). Almost all the grids for cones with 
d=8 cm or smaller have l00x200 cell points. The grids 
for the biggest cones have 200 x 200 points. 

In a few cases, the computational system Amrita, 
see Quirk (1998), is also used to compute inviscid, 
frozen flows. This system provides the advantage of 
adaptive mesh refinement. For the cases run here, a. 

flux-limited, operator split, Roe solver is used. The 
grids used have 120 x 200 cells, and two tiers of refine­
ment by a factor of 3 are applied, giving an effective 
grid resolution of 10SOx1800. 

4. Theoretical considerations 

On the basis of a simple scaling argument, 
Hornung and Houwing (1980) are able to deduce that 
the detachment distance ~ is scaled by the cone di­
ameter (for a given free-stream condition and cone 
half-angle) for frozen and equilibrium flows. Nonequi­
librium flows introduce a new length scale, the relax­
ation length l, which in this case is taken as an overall 
characteristic length for the vibrational and chemical 
relaxation processes. In the range of cone angles be­
tween the frozen and the equilibrium detachment an­
gle, the detachment distance ~ is scaled by the re­
laxation length l. The ratio lid is zero for equilib­
rium flows and infinite for frozen flows. The growth 
rate is expected to be smaller when the detachment 
distance is controlled by l than when it is controlled 
by d. This is related to the difference in the growth 
rate of the subsonic region inside and outside the re­
laxation zone. Hornung and Smith (1979) show that, 
within the relaxation zone, the frozen speed of sound 
decreases more rapidly than the flow speed with dis­
tance along a streamline. This means that, in this 
range of angles, a subsonic region is embedded in the 
relaxation zone, and the extent of this subsonic zone 
scales the detachment distance. The rate at which the 
detachment distance grows with angle in this range is 
therefore determined by the relaxation process. 

5. Results and discussion 

5.1. 	Sonic line from attached to detached con­
ditions in frozen Hows 

If we start with a given free-stream condition and 
cone diameter, as we increase the cone half-angle, the 
flow will be supersonic throughout the shock layer up 
to a certain critical angle. A subsonic region then 
starts to grow from the cone surface and from near 
the cone tip. With further angle increase, the sub­
sonic region grows toward the cone corner and toward 
the shock. Figure 2 left shows a numerical simula­
tion of frozen flow with an attached shock and mixed 
supersonic-subsonic conditions. This simulation was 
performed with Amrita. The white line represents the 
sonic line. In order for the shock to detach, the sonic 
line has to reach the corner of the cone at its down­
stream end and the shock along its upstream face 
like in figure 2 right. It is then that the size of the 
cone can be communicated back to the tip of the cone 
and the detachment distance is scaled by d, as argued 
by Hornung and Houwing (1980). In these computa-
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3 Shock Detachment Procesll on Cone.! 

tions, it was found that the transition from attached 
to detached conditions is not abrupt. For the case 
studied here it took about 2.50 for the shock to de­
tach after the sonic line had met the two conditions 
mentioned above. 

/ 
/ 

,I 

! 
Figure 2. Left: Frozen flow with attached shock and 
mixed 8upersonic-flubsonic conditions: () = 53.8° M = 
5.89 'Y = 1.4. Right: Frozen flow with detached shock. 
The sonic line has reached the corner of the cone on the 
downstream end and the shock in the upstream face: () 
60.0° M = 5,89 'Y = 1.4 

5.2. 	Experimental and computed interfero­
grams 

Figures 3 and 4 present a comparison between an 
experimental and a computed interferogram. Notice 
that the fringe distributuion in the experimental in­
terferogram is asymmetric, with more dark fringes on 
the upper side. This asymmetry was a recurrent fea­
ture in those experimental interferograms for which 
the infinite-fringe condition was not achieved, so that 
fringes were evident in the free stream. Without tak­
ing into account the free-£tream fringes, the com­
puted interferograms show symmetric flow fields, as 
one would expect, since both the free stream and the 
cone flow are symmetric about the same axis. When 
the free-stream fringe distribution is taken into ac­
count in the computed interferogram, see figure 4, the 
flow field becomes asymmetric and the agreement in 
the number of fringes is also improved. 

5.S. 	Dependence of detachment distance on re­
laxation rate 

For given free-£tream conditions, the relaxation length 
is approximately constant for the range of angles con­
sidered here. Thus, one way to vary the ratio l / d is 
by varying the diameter of the cone. Changing the 
cone diameter can make the flow go from near the 
frozen limit to near the equilibrium limit. Figure 5 
shows a compilation of the normalized detachment dis­
tance for the free-stream condition N2 4 and four cone 

Figure 3. Experimental interferogram for condition N2 2; 
() = 70° d = 4 cm. 

x(m) 

Figure 4. Computational interferogram for condition 
N2 2; () = 70° d = 4cm. 

diameters. The results are plotted against the cone 
half-angle (). The only data available for the frozen 
and equilibrium limits come from numerical simula­
tions. The data labeled "f" are obtained from the 
code by Olejniczak (1997) run in its frozen inviscid 
mode. The data "f a" are also for the frozen limit 
but obtained with the Roe code under Amrita. The 
discrepancy between the two data sets is attributed 
to the uncertainty in the value of the effective 'Y for 
the free-stream condition. Both data sets are well fit­
ted by straight lines confirming the experimental data 
of Ward and Pugh (1968). The data set "e" is ob­
tained from numerical calculations for the equilibrium 
limit obtained with the code by Olejniczak (1997) by 
adjusting the reaction and relaxation rates appropri-
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4 Shock Detachment Proc&s on Cones 

ately. The good linear fit to the frozen and equilib­
rium results confirm the features expected from the 
theory of Hornung and Houwing (1980). The points 
Of and Oe are the critical detachment angles for frozen 
and equilibrium flow, respectively. The difference be­
tween these values increases with the fraction of the 
total energy of the flow that is absorbed by the re­
laxation, and therefore also increases with reservoir 
enthalpy. The curve "2cm" shows the experimen­

0.15 	 O--f 

f a 


... -- 2cm 

0.125' 
A 2cm c 

• - 4cm 
0 4cm c 

Scm 	 /
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Figure 5. Non-dimensional detachment distance for con­
dition N2 4. The filled symbols indicate experimental re­
sults. The straight lines are linear fits to the numerical 
data "e", "f a", and "e", and to the experimental data set 
"2cm" . The rest of the curves are cubic fits to the exper­
imental data presented to aid the eye. The letter "c" at 
the end stands for computations. 

tal data obtained for the smallest diameter cones. As 
expected, this data set is closest to the frozen limit. 
In fact, this flow is almost frozen as revealed by the 
linear behavior of the curve and by the fact that the 
linear fit is good nearly all the way to incipient de­
tachment. As the cone diameter increases, the curves 
shift toward the equilibrium limit. Notice that the 
dimensionless detachment distance grows more slowly 
for the relaxing flows than for the frozen and equilib­
rium flows as expected. Also note that all the curves 
start to detach from the same point (Of) as predicted 
by Hornung and Houwing (1980). The error bars rep­
resent the uncertainty in reading the detachment dis­
tance off the interferograms and the effect of the uncer­
tainties in the free-stream on the detachment distance. 
For most of the N2 conditions studied here, the dis­
crepancy in llld between experimental and numerical 
data is between 6 and 10%, with the computational 
data falling fairly consistently below the experimental 

0.15 

0.125 

0.1 

O--f 
... - ­ 2cm 
A 2cm c 
• 4cm 
0 4cm c 
*- Scm 
0 Scm c
"* ---16cm 

4d 0.075 

0.05 

Figure 6. Non-dimensional detachment distance for con­
dition C02 2. The filled symbols indicate experimental 
results. The straight line is a linear fit to the numerical 
data "r" while the rest of the curves are cubic fits to the 
experimental data presented to aid the eye. The letter "c" 
at the end stands for computations. 

values, however, the difference is too small to attach 
significance to it. Figure 6 is an example of the results 
obtained for CO2 flows. The frozen data are again 
well fitted by a straight line as expected since the lin­
ear behavior is independent of the gas used. Notice 
how all the curves are closer to the equilibrium limit 
than for the N2 example. Also note the larger sep­
aration between Of and Oe. This is to be expected 
since the separation depends on the amount of en­
ergy absorbed by relaxation, which is greater for the 
CO2 flows treated here than for the N2 flows. The nu­
merical simulations for C02 were not as successful as 
those for N2. A more detailed model for the different 
vibrational modes in CO2 is needed along with more 
accurate reaction rates and a nozzle code to take into 
account the conical nature of the free-stream flow. 

5.4. 	Normalized detachment distance from the 
frozen to equilibrium limits 

In this section, we try to collapse the normalized 
detachment distance obtained for different N2 con­
ditions, from the frozen to the equilibrium lim­
its, for a given cone half-angle. Using the ideas 
of Wen and Hornung (1995), who studied nonequilib­
dum flow over spheres, we now scale the dimensionless 
detachment distance by the density ratio across the 
frozen normal shock: 

II Ps (1)d Poo' 
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5 Shock Detachment Prrx:ess on Cones 

where the subscript 8 denotes conditions immediately 
after the shock and Poo is the free-stream density. We 
plot this variable against the reaction rate parameter 
n which quantifies the rate of energy absorption by 
relaxation. ill this sense it is similar to the ratio 1/ d 
used previously. For N2 80ws n reduces to 

d (oh do)
" Ps oadt. 

3' (2).1£ t"V 

PooUoo 

where Q is the mass fraction of atomic nitrogen (N), 
h is the specific enthalpy, and U oo is the free-iltream 
speed. This expression is evaluated assuming nitrogen 
to be well approximated by the ideal dissociating gas 
model. The results are presented in figure 7. In this 
case, n = 0 represents the frozen limit and n = 00 

represents the equilibrium limit. The different curves 
obtained for the same condition are the results of us­
ing different baseline diameters to numerically reach 
the frozen and the equilibrium limits as explained in 
Leyva (1999). If this flow followed binary scaling, as 
expected since the ratio of the dissociation to the re­
combination reaction rates varies from 500-5000 for 
the cases studied here, all the curves for a given condi­
tion would collapse into a single curve. We would have 
three curves instead of four. The differences between 

O. 01 100 
O.S 

0.7 .. 
0.6 

<) 

O.S 
0 

l> 
m 0.4 .. EXP. 

0.3 l!. CPO var d 

<> CFD d=2cm 
0.2 0 CPO dOll-Bcm 

1:r CPD d=16cm 
0.1 

0.01 	 1 
.n 

Figure 1. Modified non-dimensional detachment distance 
from frozen to equilibrium limits. The red color corre­
sponds to condition N2 3, green to condition N2 4, and 
blue to condition N2 2. The curves shown are fits of the 
form y = A+B arctan(cx+d) for the numerical data. For 
all of these cases the cone haif-angle is 750 

the data sets for different diameters for a particular 
condition, as the equilibrium limit is approached, can 
be explained in terms of the experimental error, except 
for the difference between the curve "CFD d=16cm" 
and the curve for "CFD d=8cm" and "CFD d=2cm" 
for condition N2 3. This difference is most probably 
due to vibrational non-equilibrium which is ignored 
while deriving the significant scaling parameters for 
binary scaling. We do observe, however, a coll.apse of 
the curves for different conditions in the frozen limit. 
Also observe that the detachment distance changes 

most rapidly for the range of cone diameters used 
in this study. This dramatic change means that we 
have captured the most sensitive regime for the effects 
of nonequilibrium on the detachment distance. The 
offset along the n-axis, in the fast-ch.anging region, 
from one condition to another can be accounted for in 
terms of the error in n which is about 80%. Finally, 
the difference between the frozen and the equilibrium 
plateaus for each condition is proportional to the stag­
nation enthalpy of the condition as mentioned before. 

5.5. 	Dimensionless heat flux and pressure dis­
tributions 

Heat flux measurement are made to determine 
whether the heat flux is a sensitive indicator of 
shock detachment. The results are also compared 
with results from computations using the code by 
Olejniczak (1997) in its viscous mode. To non­
dimensionalize the results, we form the Stanton num­
ber St, and the Reynolds number Rex, 

q
St 	 (3) 

qXRex = PeqUe , (4) 
Iteq 

where q is the dimensional heat flux, It is the viscosity 
of the flow, and the subscript "eq" denotes properties 
evaluated in the stagnation streamline after the shock 
when the vibrational and translational temperature 
are in equilibrium. Figure 8 is a logarithmic plot of 
typical results obtained for a given N2 condition for 
different cone diameters. The CFD data are fitted to 
straight lines in their linear part in the low Re limit. 
For attached shocks the slope of this line should be 
-1/2 , following the formula, 

A
St = 	 (5) 

which applies for attached shocks, see Leyva (1999). 
In this case the slopes are 0.48 and 0.47 for the CFD 
data, even though equation 5 does not strictly apply 
anymore. If the heat flux were sensitive to the chem­
istry, we would see the effects in this graph, where 
the cone diameter changes by a factor of four. What 
we have instead are very similar curves in terms of 
the slope in the low Re limit and their general shape. 
The comer of the cone manifests itself in two ways, the 
most evident one is the heat flux peak near the comer. 
This peak is due to the thinning of the boundary layer 
as it a.pproaches the expansion around the comer. The 
more subtle one is the "peel-off" of each curve from 
the linear behavior. As the size of the cone increases, 
the range of Re covered by the cone is larger and the 
heat flux follows the linear part of the curve longer 
before "feeling" the etIects of the comer. Therefore, 
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6 Shock Detachment Process on Cones 

the heat flux measured close to the end of the cone 
(before the corner peak) gets lower and lower as the 
cone diameter increases. 

SI!ot 1489 d=1lan 
a SOot 1914 d'l6cm

0.025 
FH lor CFD d_m.l6cm 

0.02 FH 101' CFD d*'" 

10 10 
Re, 

Figure 8. Comparison of non-dimensional heat flux for 
condition N2 4. 

The results obtained from the surface pressure mea­
surements confirm the theoretical predictions that sur­
face pressure is not sensitive to nonequilibrium effects. 
It was found that the nunlerical results slightly under­
predict (less than 10%) the surface pressure measure­
ments. 

6. Conclusions 

The shock detachment process on cones in hyperveloc­
ity flows has been studied experimentally and compu­
tationally. It has been confirmed that the detachment 
distance grows more slowly for relaxing flows than for 
frozen and equilibrium flows. The difference is due to 
the behavior of the sonic line inside and outside the 
relaxation zone behind the shock wave. The growth of 
the sonic line has been characterized from attached to 
detached conditions in the frozen case. It has been 
found that the transition from incipient to full de­
tachment is not abrupt but takes a few degrees to 
be completed. The behavior of the detachment dis­
tance has also been characterized from the frozen to 
the equilibrium limits. A new modified detachment 
distance is correlated to the reaction rate parameter. 
The correlation is not perfect because of the effects of 
vibrational nonequilibrium. Measured and computed 
interferograms have also been compared. The heat 
flux distribution is found to be insensitive to shock 
detachment. The changes seen in the heat flux a.'l the 
shock detaches can be attributed to the conditions at 
the edge of the boundary layer, the pressure field out­
side the boundary layer, and to the Reynolds number, 
rather than to nonequilibrium effects. 
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Previous work on the correlation of dissociative non-equilibrium effects on the flow 
field in front of blunt bodies considered the dependence· of the dimensionless shock 
stand-off distance on the dimensionless dissociation rate immediately after the normal 
shock in the simple case of a diatomic gas with only one reaction. In this paper, the 
correlation is corrected to take into account the additional parameter of the dimen­
sionless free-stream kinetic energy, and extended to the case of complex gas mixtures 
with many species and many reactions, by introducing a new reaction rate parameter 
that has a clear physical meaning, and leads to an approximate theory for the stand­
off distance. Extensive new experimental results and numerical computations of air, 
nitrogen and carbon dioxide flow over spheres were obtained over a large range of 
total enthalpy. The results comprise surface heat flux measurements and differential 
interferograms. Both experimental results and numerical computations substantiate 
the approximate theory. . 

1. Introduction 
When a sphere is placed in a flow at high Mach number and at such high velocity 

that the ordered kinetic energy of the uniform free stream is comparable with the 
dissociation energy of the gas, two new parameters (in addition to those of perfect-gas 
flows) enter the problem. In the simplest case of dissociation of a single diatomic gas, 
a dimensionless number of the form .K == u~/(2D) measures the free-stream kinetic 
energy in terms of the dissociation energy of the gas. Here, U(X) is the free-stream 
speed and D is the specific dissociation energy of the gas. 

If the gas density is sufficiently large, the collision frequency between the molecules 
is high and produces a dissociation rate that is fast enough to cause significant 
dissociation over distances that are comparable with the diameter of the sphere. In 
the simplest case of dissociation of a single diatomic gas, where the composition may 
be characterized by a single variable, e.g. the dissociation fraction a, this means that 
a dimensionless number of the form 

Q = (da) d 
- dt 2u(X)5 

is O( 1). Here, the time derivative is the dissociation rate at a representative point, e.g. 
just after the normal shock wave, and d is the diameter of the sphere. High density is 
required to satisfy this condition because the dissociation rate is directly proportional 
to the density. Clearly, this means that the product of density and body size has to 
be sufficiently large. Hence, the Reynolds number of the flow is also large, and for 
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Shock 

FIGURE L Schematic of control volume, and notation. 

many purposes the flow may be considered to be inviscid to very good approximation. 
Infinite Q corresponds to such a fast reaction that the flow may be considered to be 
in equilibrium, while zero Q corresponds to no dissociation, or the frozen limit. For 
given (ree-stream conditions, Q can be varied by changing the size of the body. 

A well-known feature of hypervelocity blunt-body flows is that the shock wave 
stand-off distance L1 is inversely proportional to the average density on the stagnation 
streamline. This follows from a very simple argument which is presented here because 
it determines the right dimensionless numbers to choose for the problem. Consider 
the control volume shown in figure. 1. Apply continuity to this control volume. At 
the left, the rate at which mass enters the control volume is uroProb, or rcuroprob2, 
depending on whether the flow is plane or axisymmetric. For small b, the rate at 
which mass leaves the control volume is ubpL1 or 2rcubbpL1, respectively, where p is 
the average density in the shock layer. With Ub ~ urocos¢ and b rs cos¢, mass 
balance gives 

1 L1 P 1 1 
-- - and = 

2 rs Pro 4 2 
respectively, for axisymmetric and plane flow. Here, rs is the radius of curvature of the 
shock. Since the stand-off distance is small compared to the body radius, d/2 ~ rs 
and the dimensionless parameter on the left may be formed with the body radius 
instead of the shock radius. The importance of this simple argument is not in the 
numbers on the right, but in the fact that it brings out the importance of the average 
density in the shock layer. 

This topic was studied theoretically and experimentally in some detail by Hor­
nung (1972). By examining a large number of numerical computations of dissociating 
flow over cylinders, it was found that the dimensionless stand-off distance, in the form 

. J=L1~ 
- d Pro' 

could be correlated by plotting it against the parameter Q. Here, Ps is the density 
immediately after the normal shock. The computed density fields in the shock layer 
were also shown to be correlated approximately by Q. However, the experimental 
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results of that study, obtained in the free-piston shock tun' T3, at the Australian 1,I National University, did not corroborate the numerical cor~ ...ttion very well.: 
This earlier study suffered from two main problems. First, the theory was limited 

to a single diatomic gas, and did not account for the effect of K on 1. No derivation 
of the correlation of J with Q was given. Second, the unavoidable end-effects in 
experimental studies of flow over cylinders manifest themselves in just the same 
manner as non-equilibrium dissociation effects, so that the latter were obscured by 
them. Also, the facility employed probably suffered from driver-gas contamination at 
the highest specific enthalpies tested. 

Therefore, in the present study, we have the following three aims: to perform 
a theoretical study to relate the stand-off distance to both Q and K; to seek a 
more general reaction rate parameter, that allows the gas to consist of many species 
with many reactions; and to test the results experimentally and numerically. In the 
experiments, the new facility T5, at GALCIT, in which the density is significantly 
larger than was possible in T3 so that interferograms of flow over spheres give 
sufficient resolution, permitted the bothersome problems associated with flow over 
cylinders to be avoided. In the numerical investigation, the code developed by 
Candler (1988) was employed. 

- 2. Conditions along the stagnation streamline 
2.1. Effect oj chemical reactions 

Consider the stagnation streamline along the symmetry axis between the shock and 
the stagnation point. The momentum and energy equations for inviscid adiabatic 
flow take the simple forms 

dp + pudu = 0 = dh + udu , 

where p, p, u, and h are pressure, density, velocity and' specific enthalpy respectively. 
Thus, 

dp = pdh . 

This equation does not mean that the entropy is constant along the stagnation 
streamline, but rather that the only entropy change that occurs is that associated with 
the chemical reaction: 

T ds = L fiidcj , 

where T, s are temperature and specific entropy, and the fii and Ci are the chemical 
potentials and mass fractions of the constituents. Let the caloric equation of state be 
given in the form 

h = h(p,p,cJ . 

Since the mass fractions must satisfy the identity 

n

LCi = 1 , 
i=l 

the number of mass fractions that are independent is one less than the total number n 
of components present. It is usually convenient to choose Cl as a dependent variable 



392 c.-Y. Wen and H. G. Hornung 

and the other Cj as independent variables. Thus, 

dh hpdp hpdp L
n 

hc;dci = hpdp + phpdh +L
n 

hcjdcj, 
1=2 i=2 

where the subscripts denote partial differentiation. Solving for dp, 

1- php 1 ~ 
dp = h dh- h ~hc;dci . 

P P i=2 

Note that the coefficient of dh is related to the frozen speed of sound af, and that 
dh may be replaced by -udu. Rewriting the first term on the right of this equation 
accordingly, it becomes 

where 
2 -hpa - ----.:.-,.­
f - hp -1/P 

The frozen Mach number u/af after the normal shock is typically 0.2 or less. This 
means that, in the absence of dissociation, the density is practically constant along the 
stagnation streamline, and, with dissociation, the density change along the stagnation 
streamline is essentially controlled by the chemistry: 

(dp)s ~ - (: t hc;dCi) 
p i=2 s 

This approximation makes it possible to relate the average density on the stagnation 
streamline to the rate at which energy is absorbed by the chemical reactions at the 
shock. This then appears to be the right quantity to incorporate in a new reaction 
rate parameter 

Q 
d 

Psuro (~ ~h dCI)
h ~ C'dt 

P 1=2 s 

For a given gas mixture, 

12 - p,d (t, h" ~~i) ,(Pro":), 

which has the physical significance of 

Energy absorption rate by chemistry 
Q 

Input rate of free-stream kinetic energy' 
. ­

In order to determine the value of Q it is necessary to express hp in terms of the 
conditions at the shock. This may be done by assuming that the gas mixture obeys 
the thermal equation of state 

T 

I . 'I ' II' 
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FIGURE 2. Density profile along the stagnation streamline from numerical computations for 
different values of the reaction rate parameter. 

where 
n 

r I:;.=~, 
i=l I 

and Wi and Ware the molecular weights of species i and of the dissociated gas 
mixture, respectively. This leads to 

where 
n 

cp = I: CiCpi , 

i=1 

and the Cpi are the specific heats at constant pressure of the constituents. The value 
of hp at the shock can be estimated by approximating the value of Ps with Prou~, so 
that . 

2.2. Density profile 

Figure 2 shows seven density profiles along the stagnation streamline obtained using 
an inviscid version of Candler's code plotted against y / J, where y is the distance 
from the shock. The free-stream conditions for these different profiles were the same, 
and the changes are brought about by successively increasing the sphere diameter. 
As may be seen, the profile changes in a monotonic fashion from the frozen-flow 
profile, with virtually constant density, to the equilibrium profile, in which all the 
dissociation, and therefore all the density change, occurs in the shock, and the density 
is again virtually constant thereafter. 

Recall that the quantity that determines the stand-off distance is the average density. 
In fact, numerous correlations of stand-off distance with average density have been 
made for non-reacting flow. Upon interpretation into our variables, these give the 
following result: 

J P -p
-- =J = L 
d Pro Ps ' 

where L 0.41 for spheres. 
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FIGURE 3. Simplified density profiles for the purpose of determining an approximate average value 
of the density along the stagnation streamline. Pb and Pe denote the stagnation-point density and 
the equilibrium density, respectively. By comparing with Fig. 2, it is clear that using this linear 
approximation will overestimate the average density slightly, because the actual profiles are always 
convex up. 

Because the stand-off distance is related to the average density, the exact details 
of the density profile are not important and we can proceed in an approximate 
Karmim-Pohlhausen-type analysis by assuming linear density profiles between the 
shock and the body, provided that the density on the body Pb is smaller than the 
equilibrium density Pe. If the linear profile reaches Pe before the stagnation point, the 
density is taken to be constant thereafter at Pe. This clearly requires the equilibrium 
density to be determined and is evidently the place where the dependence of J on K 
(and therefore the recombination reaction) enters. 

To proceed with the analysis, distinguish the cases where Pb < Pe from those 
in which the body density is Pe. The slope of the density profile at the shock is 
determined from the dissociation rate just downstream of the shock. Figure 3 shows 
the simplified linear profiles. 

3. Analytic solution for the stand-off distance 
3.1. The case when Ph < Pe 

When Pb < Pe, the linear profiles give 

Pb Ps 
J 

(dp j dt)s can then be approximated as 

Using the definition of Q to replace (dpjdt)s leads to the quadratic equation for J 
~2 ~ 2 
J (L-J)-= = 0 . 

Q 

Only one of the two roots of this equation is physically meaningful. It is 

_ 1 [ ( -) 1/2]J = Q -1 + 1 + 2LQ . (3.1) 

I I I i I I' I 1· j ! 
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FIGURE 4. Plot of equations (3.1) (dashed line), and (3.2) (full lines) for 

PsiPe = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. 


This has the correct limit Lf = L at Q 0, but will clearly fail at large Q, because 
we have to proceed differently in calculating p when the linear profile reaches the 
equilibrium density within the shock layer. 

3.2. The case when Pb = Pe 

For values of Q that are sufficiently small, so that Pb < Pe, the previous section 
shows that Lf depends only on Q. When Pb pe, however, this is no loger true, since 
the equilibrium value of the density now enters the calculation of p. Thus, a critical 
value of Q exists for each free-stream condition, beyond which Lf depends on two 
parameters, changing in form 

from Lf = J(Q) to Lf = g(Q, PelPs). 

By proceeding as in the previous section, but this time forming the average density 
from the linear profile up to the point where preaches Pe and a constant-density part 
with P = Pe thereafter, the average density becomes 

p _ Pe __1_ (1 Pe)2 
ps - Ps 2Q,d Ps 

By using th.: relation between the average density and the stand-off distance, and 
solving for il, we obtain 

,d = Ps [L+ ~ (Pe 1)2]. (3.2)
Pe 2Q Ps 

Again, this may be seen to have the correct limiting value LPslPe when Q = 00. 

Equations (3.1) and (3.2) are plotted in figure 4. The curves of the two-parameter 
family of equation (3.2), valid for large Q, are nearly tangent to the single curve of 
equation (3.1), valid for small Q at the transition point, which is different for different 
PsiPe. 

The coordinates of the transition point (Qo, ,do), can be determined explicitly as 

-1 
Qo = --'--2L-­
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and 

- 2L 

Llo = . 

PelPs + 1 
The slopes of the two curves are not quite the same at this point. This may be 
seen from the fact that the average density increases less rapidly with Q when the 
equilibrium density is reached before the stagnation point than if Pe > Pb (see 
figure 3). 

3.3. Discussion 

The approximate theory leading to equations (3.1) and (3.2) takes account of the 
free-stream kinetic energy K through the appearance of the equilibrium density Pe. 
This is therefore the place where the effect of the recombination reactions enters 
the picture. For higher values of K, i.e. higher values of the total enthalpy ho, the 
amount of energy absorbed by dissociation to equilibrium is increased, so that PelPs 
is increased, and J is decreased. The approximate theory takes all of these effects into 
account in the simplest approximation. The two-part approximation of the density 
profile (linear plus constant) makes it necessary to distinguish between the regimes of 
low and high Q with the two equations (3.1) and (3.2). 

The two-part approximation also overestimates the average density and therefore 
underestimates the stand-off distance, as will be seen later. This error may be reduced 
significantly if the approximation for the density profile is improved, for example, by 
writing; it as 

P - Ps = 1 - exp [_ 2Qps Y]. 
Pe - ps Pe ps Ll 

Integrating this to determine the average leads to 

p- Ps 1 ) ( -
Pe - Ps 2QLJ Ps Pe - Ps 

1 + -== (Pe- - 1 exp [2QJPs] - 1) . 

This is now a single equation for the average density, from which a single equation 
for J can be obtained by substituting in 

J=L~,
P 

and solving the resulting equation for J. In this case, an explicit solution is not 
possible, except in the two limiting cases, where the results are, of course, the same 
~ equations (3.1) and (3.2). This refined theory is more accurate in the mid-range of 
Q. However, the simple forms of equations (3.1) and (3.2) are surprisingly accurate 
and the theory is much more transparent in this simpler form. 

The manner in which the stand-off distance may be described in terms of the two 
parameters K and Q is, of course, also of wider significance. It may be expected, for 
example, that, for a given gas, the density field in the shock layer of a blunt body 
will be the same for all flows in which these two parameters take the same value. The 
stand-off distance just serves as a convenient variable to test this concept. The success 
of the simple correlation stems from the fact that the influence of the chemistry on the 
fluid motion acts through the removal or addition of energy to or from the chemical 
energy store represented by the dissociated species. Thus, the important step in the 

.""." -'.",', ' 

, ' , I I I ' 
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analysis is to express .Q in terms of the dimensionless chemical energy absorption 
rate. 

4. Computational method 
The code developed by Candler (1988) was used to compute the inviscid reacting 

flow over a sphere. The flow field is described by coupled partial differential equations 
for the conservation of species> mass> mass-averaged momentum, vibrational energy of 
each diatomic species and total energy. A finite-volume method using modified Steger­
Warming flux-vector splitting is used to obtain the steady-state solution to these fully 
coupled equations for different gases. Park's semi-empirical two-temperature model 
and chemical kinetics model (Park 1988, 1989) was used to calculate the reaction rates 
for different reactions of air and nitrogen. For carbon dioxide, the chemical kinetics 
model of Park et ai. (1991) was used. The scheme is implicit, using Gauss-Seidel line 
relaxation and is second-order accurate in the tangential direction. A compromise 
between efficiency in computational time and accuracy led to the use of a (56x100) 
grid throughout the present work. Extensive documentation of successful examples 
exists in reproducing experimental results in great detail, see e.g. Candler (1988), 
Rock, Candler & Hornung (1992), Wen & Hornung (1993), and Hornung et al. (1994). 
Since the shock values of temperature, vibrational temperatures, and density are not 
accessible during the experiment, the computational method provides a good way to 
obtain partial information about them. 

The stand-off distance and the shock values of the reaction rate and density 
for the numerical calculation are determined from the point where the vibrational 
temperature reaches a maximum. 

5. Experiment 
5.1. Facility 

The facility used for all the experiments described here was the free-piston shock 
tunnel T5 at GALCIT. The facility uses the principle of free-piston adiabatic com­
pression of the driver gas of a shock tunnel to achieve the high shock speeds and 
densities required to generate high enthalpy and reaction scaling. It is capable of 
producing flows of air or nitrogen up to specific reservoir enthalpy ho of 25 MJ kg- 1 at 
reservoir pressure Po up to 100 MPa. The shock tunnel has two additional important 
features. One is that the test duration is sufficiently short to avoid destruction of 
the machine by melting, yet long enough to provide good measurements during the 
steady-flow period. The other is that the gas is partially dissociated at the nozzle exit, 
especially in the cases of air and carbon dioxide at high specific reservoir enthalpies, 
where these gases also contain, respectively, some nitric oxide and carbon monoxide. 
A more detailed description of T5 and its performance envelope, flow quality and 
repeatability may be found in Hornung (1992). 

5.2. Free-stream conditions 

For the experiments, the flow was generated through a contoured nozzle of 300 mm 
exit diameter and 30 mm throat diameter. Using an equilibrium calculation, the 
specific reservoir enthalpy can be determined from the measured shock speed and the 
measured reservoir pressure. The nozzle flow is then computed by using an axisym­
metric inviscid non-equilibrium flow code developed by Rein (1989). The calibration 
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'., " 

Po ho Ueo Teo Peo 

(MPa) (MJ kg-I) (km S-I) (K) (kg m-3) ....~ 


Nitrogen 

from 30 10.58 4.2 1390 0.0175 

to 90 21.06 5.5 2760 0.0561 


Air 

from 30 9.81 3.9 1340 0.0152 

to 90 22.15 5.6 2930 0.0627 


Carbon dioxide 

from 30 4.5 2.5 1130 0.0326 

to 90 11.95 3.6 2400 0.162 


TABLE 1. Range of reservoir and free-stream conditions 

Neutral density filter Wollaston prism 

Digital delay 

generator 


(camera shutter 


Windows 

_-JaL-,ont<O~_ unit) [JDAS 


nd 'L:J, -,laser_fi_lf_in_g_--" 

Model 


Nd:YAG Tunable 

laser dye laser 


532 nrn 589.6 nrn 


Test section 

FIGURE 5. Schematic diagram of the optical arrangement. Bandpass and spatial filters are used to 
reduce the luminosity emitted from the test gas. The bandwidth of the bandpass filter is 10 nm 
centred at 590 nm for the dye laser and 10 nm centred at 532 nm for the neodymium-YAG laser. 

of the free-stream conditions obtained by this method has been accomplished by mea­
suring test section Pitot pressure distribution, see Rousset (1994) and stagnation-point 
heat flux, see Wen (1994). 

Table 1 gives the ranges of values of the reservoir and test section conditions chosen 
for the present investigation. The Mach number of the free stream is about 5.5 for 
nitrogen, 5.3 for air and 4.6 for carbon dioxide. 

5.3. Models and flow visualization 
The models were spheres with diameters 1, 2, 3, 4 and 6 in. in order to vary the 
reaction rate parameter at a given tunnel condition. This has an upper limit of 6 in. 

, I I I II 
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FIGURE 6. Finite fringe differential interferograms of air flow over 1,2,3 and 4 in. diameter spheres. 
J 589 nm. (a) Po = 58 MPa, ho = 10.7 MJ kg-I. (b) Po = 25 MPa, ho 9.8 MJ kg-I. (c) 
Po = 28 MPa, ho 10 MJ kg-I. (d) Po = 27.5 MPa, ho = 16 MJ kg-I. The blemish ahead of the 
bow shock wave in interferograms (a) and (b) is due to a flaw in the optical window. 

because of the useful diameter of the flow, and a lower limit of 1 in. because of the 
resolution of the optical system. The spheres were instrumented with thermocouples 
to measure the surface temperature history and thus the surface heat flux, in particular 
at the stagnation point. 

The optical system used for flow visualization is a differential interferometer shown 
schematically in figure 5. This instrument uses a Wollaston prism in a conventional 
schlieren setup and was used in the finite-fringe mode with a dye laser producing 
5 m] pulses of 6 ns duration. 

6. Results 
6.1. Density field 

As an example of the interferometric results obtained, figure 6 shows a set of four 
finite-fringe differential interferograms of air flow over four different-size spheres, and 
figure 7 shows five cases of carbon dioxide flow. A large number of such measurements 
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FIGURE 7. Finite fringe differential interferograms of CO2 flow over 1, 2, 3, 3, and 4 in. diameter 
spheres. J., = 589 nrn. (a) Po = 55 MPa, ho = 6 MJ kg-I, (b) Po = 25 MPa, ho = 12 MJ kg-I. 
(c) Po = 25 MPa, ho = 9 MJ kg-I. (d) Po = 55 MPa, ho = 4.6 MJ kg-I, (e) Po = 22.5 MPa, 
ho = 11.4 MJ kg-l. 

1"' ! 1 I I I I I 1'1 i 
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FIGURE 8. Comparison of measured (right) and computed differential interferograms in the case of 
air flow over a 4 in. sphere, at Po 27.5 MPa, ho = 16 MJ kg-I. 

0.4 - - -.. -- **i.~~ 

0.3 

0.2 

0.1 

Q 

FIGURE 9. Numerical (open symbols) and experimental (full squares) results for nitrogen flow 
plotted in the old variables, with equations (3.1) and (3.2) superimposed. As may be seen, in these 
variables, the curves for different PsiPe are shifted relative to each other. 

were taken, and compared with numerically computed interferograms. An example of 
such a comparison is presented in figure 8. Extensive comparisons of this kind have 
been made. More detail about the results of such comparisons are reported elsewhere, 
see e.g. Wen (1994) and Hornung, Wen & Candler (1994), Hornung (1994). 

6.2. Stand-off distance 

If equations (3.1) and (3.2) are plotted in the form J vs. the old reaction rate 
parameter 0, in the only case where 0 can meaningfully be defined, i.e. for nitrogen, 
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FIGURE 10. Plot of equations (3.1) and (3.2) for selected values of ho, resulting in different values of 
Ps/Pe. The symbols represent computational results for (a) air (b) carbon dioxide. The full circles 
are the junction points of equation (3.1) and equation (3.2). Note that the theory underestimates 
the stand-off distance slightly, consistently with the overestimate of the average density. 

the situation presented in figure 9 results. The manner in which this causes the curves 
for different values of PsiPe to be shifted relative to each other is the reason why 
the mistake of thinking that only one correlating parameter, Q, is required, is easily 
made. The difference becomes clear when the results are plotted against D, as in 
figure IO(a) which presents computational results for the case of air. Note that the 
value of PsiPe depends on ho. Similar results are presented in figure lOeb) for carbon 
dioxide flows. 

In these two plots the slight underestimate of the stand-off distance by the theory 
tha~ results from the overestimate of the average density is evident in the mid-range 
of Q. 

Next, we compare the experimentally measured stand-off distance in both these 
gases with the approximate theory, see figures Il(a) and Il(b). In the case of air, the 
effect appears to be much smaller than is the case in figure lO(a). This is because 
the highest value of the enthalpy in the computed cases is 38.2 MJ kg-I, whereas the 
experiments only range up to 20.6 MJ kg-I, Clearly, the nitrogen in the air is not 
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FIGURE 11. Comparison of measured dimensionless stand-off distance with the analytical theory in 
the case of (a) air flows (b) carbon dioxide flows. 

fully dissociated at the latter value. In the case of carbon dioxide, the effect is more 
dramatic, because it has lower dissociation energies. In the case of air, it may also be 
seen that most of our experiments were conducted at conditions that are fairly close 
to equilibrium, since the points all lie on the large-Q branch of the theory. 

6.3. Stagnation-point heat flux 

It remains to present an example of the measured stagnation-point heat flux. The 
high enthalpies of the flows studied can produce quite substantial values of this 
quantity. For example, on the small sphere, values up to 30 MW m-2 were obtained. 
The importance of measuring this quantity lies partly in the need to substantiate the 
reservoir specific enthalpy, ho, which is determined indirectly from the measured shock 
speed in the shock tube. Figure 12 shows measurements of the stagnation-point heat 
flux in dimensionless form (Stanton number) plotted against the free-stream Reynolds 
number based on the sphere diameter for three different gases. These are compared 
with appropriate predictions from the correlation according to Fay & Riddell (1958). 
The flow and surface conditions are such that full recombination of the dissociated 
species may be expected to occur. (Catalytic surface.) While the experiments show 
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-- Sts =4.97IRe1j1, N2 

- - - Sts=4.76IRe~, Air 

----- St,= 3.50IRe~, CO2 

St, 0.01 

Reoo 

FIGURE 12. Comparison of measured dimensionless stagnation-point heat flux (symbols) with 

Fay & Riddell's correlation. 


substantial scatter, the differences between the different gases are significant and 
follow the predicted differences. This provides some confirmation of the indirectly 
determined value of ho. 

7. Conclusions 
Theoretical, numerical and experimental results on the hypervelocity dissociating 

flow of nitrogen, air and carbon dioxide over spheres have been presented. An approx­
imate theory relating the dimensionless shock stand-off distance to the dimensionless 
total enthalpy and a reaction rate parameter corrects and extends previous relations 
of this kind. A previous correlation did not take into account the effects of recom­
bination reactions which appear through the total enthalpy parameter, nor could it 
deal with mixtures comprising many species with many reactions. By introducing a 
reaction rate parameter that is a measure of the rate of energy absorption by chemical 
reactions immediately behind the normal shock, scaled by the rate of input of kinetic 
energy, it is possible to deal with complex mixtures. 

Experimental results from the hypervelocity shock tunnel T5 and numerical com­
putations support the approximate theory and give detailed information about the 
flow field in the form of measured and computed differential interferograms as well 
as stagnation-point heat transfer data. 

The work leading to the material presented in this paper was sponsored by AFOSR 
URI grant F49620-93-1-0338 (Dr J. Tishkoff). 
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The curved bow shock in hypersonic flow over a blunt body generates a shear layer with smoothly 
distributed vorticity. The vorticity magnitude is approximately proportional to the density ratio 
across the shock, which may be very large in hypervelocity flow, making the shear layer unstable. 
A computational study of the instability reveals that two distinct nonlinear growth mechanisms 
occur in such flows: First, the vortical structures formed in the layer move supersonically with 
respect to the flow beneath them and form shock waves that reflect from the body and reinforce the 
structures. Second, the structures deform the bow shock, forming triple points from which shear 
layers issue that feed the main shear layer. Significant differences exist between plane and 
axisymmetric flow. Particularly rapid growth is observed for free-stream disturbances with the 
wavelength approximately equal to the nose radius. The computational study indicates that the 
critical normal shock density ratio for which disturbances grow to large amplitudes within a few 
nose radii is approximately 14. This served as a guide to the design of a physical experiment in 
which a spherical projectile moves at high speed through propane or carbon dioxide gas. The 
experiment confirms the approximate value of the critical density ratio, as well as the features of the 
computed flows. Comparisons of calculations of perfect gas flows over a sphere with shadow graphs 
of the projectile show very good agreement. The Newtonian theory of hypersonic flow, which 
applies at high density ratio, makes the assumption that the flow remains smooth. The results show 
that high density ratio also causes this assumption to faiL © 2001 American Institute of Physics. 
[DOl: 10.1063/1.1383591J 

I. INTRODUCTION 

A curved shock wave in a steady, uniform free stream 
generates vorticity 

(1) 

by the baroc1inic mechanism within the shock wave (see 
Lighthill, l and Hayes and Probstein2

). Here, U"" p", are 
free-stream speed and density, and /3, K are the shock angle 
and curvature at the point of interest. In hypervelocity flow 
of a molecular gas over a blunt body the post-shock tempera­
ture is so high that substantial dissociation occurs. One con­
sequence is that the endothermic dissociation process ab­
sorbs a large fraction of the thermal energy of the gas, so that 
the temperature falls dramatically and the density rises cor­
respondingly. Thus the density ratio, pip~, across the shock 
and (thin) reaction zone is very large. For example, in air 
flows at 7 krnls, a density ratio of 12 is typical, while in 
carbon dioxide flows, such as occur, e.g., in traversing the 
atmosphere of Mars, the density ratio may be as high as 28. 
This is the kind of flow of interest here. With such high 
density ratio, the inverse of the ratio may be neglected com­
pared with 1 in Eq. (1). 

ITelephone: 626-395-4551; fax: 626-449-2677; electronic mail: 
hans@galciLcaltech.edu 

Consider Eq. (1) in connection with flow over a blunt 
body. At the normal shock point, w is zero, because the shock 
angle is 90". Far downstream, where (on an asymptotically 
slender body) the shock approaches a straight Mach wave, 
the density ratio becomes one and the curvature goes to zero, 
so w again vanishes. Somewhere between these limits a 
maximum value of w must therefore occur. With typical 
shock shapes this maximum lies at approximately /3=60°. 
Since the shock angle and curvature vary smoothly with dis­
tance along the shock, a smooth distribution of vorticity re­
sults. The shock generates a shear layer with a smooth vor­
ticity maximum. Since the flow is compressible, the vorticity 
does not remain constant along streamlines even in the ab­
sence of diffusion, but is influenced by the density and pres­
sure fields. 

The stability of a shear layer with distributed vorticity 
has been studied extensively (see, e.g., Drazin and Reid,3 or, 
more relevant to the present investigation, Zhuang et al. 4). A 
qualitative feature is that, other things being equal, layers 
with higher maximum vorticity and smaller thickness are 
more unstable (a result that follows already from scaling ar­
guments). Not only does the high density ratio of hypervel­
ocity flows cause proportionately higher maximum vorticity 
in the layer, but it also causes the shock layer, and therefore 
the shear layer, to be proportionately thinner. It may there­
fore be expected that the shear layer that results from shock 
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curvature in hypervelocity flows becomes unstable at suffi­
ciently high density ratio. 

The instability of the layer has been considered by aero­
dynamicists for some time as a cause of boundary layer tran­
sition. This is relevant, because, far downstream the shear 
layer will eventually be ingested by the growing boundary 
layer. Since the shear layer represents the edge of a high­
entropy layer close to the body, this is also known as 
entropy-layer swallowing (see, e.g., Stetson et aL s). There is 
a significant difference between inviscid flow in axial and 
plane symmetry in this phenomenon. The reason is that, with 
axial symmetry, the stretching term in the vorticity equation 
causes the vorticity on the body surface to be finite, while it 
is zero in plane symmetry; see Hayes and Probstein.2 The 
result is that the shear layer is further from the body in plane 
flow so that, as regards entropy-layer swallowing, plane and 
axisymmetric flows behave very differently. 

At a curved shock, vorticity is imparted to a material 
element Even in plane flow, the vorticity of the material 
element is subsequently changed by the fact that the density 
and pressure of the material element change. In the particular 
case of homenthalpic, plane, steady flow of a perfect gas, the 
ratio of vorticity to pressure is conserved along a streamline 
(see, e.g., Vaszonyi6

). Thus if the pressure is constant along a 
streamline, then so also is the vorticity. A relatively simple 
configuration for an exploratory study of the instability of a 
shear layer in the shock layer of a blunt body in hypersonic 
flow is therefore a hemicylindrically blunted wedge. This has 
the necessary curved bow shock followed by a constant­
pressure region downstream. To illustrate the behavior of the 
shear layer generated in such a flow, Fig. I shows an ex­
ample of an Euler computation of flow over a cylindrically 
blunted 30° wedge. Note the location of the region of maxi­
mum shear relative to the body. In plane flow, the shear layer 
remains at a constant distance from the wedge surface, and 
the growth of the shock layer outside of the shear layer 
leaves the shear layer virtually unchanged. 

In the following, we therefore start with a computational 
study of the stability of the shear layer in such a flow. A 
disturbance is introduced to the flow by imposing an un­
steady boundary condition at the inflow boundary. This study 
is then followed by a similar one on axisymmetric flow, to 
examine the difference in behavior discussed earlier. Finally, 
the experience gained from the computational studies is used 
to design a physical experiment. It turns out that in the latter 
it is necessary to choose a differently shaped model. Com­
putations of this new configuration are therefore added to 

. compare with the physical flow. 

II. COMPUTATIONAL EXPERIMENT 

A. The computational setup 

For the computations, the software system Amrita, con­
structed by James Quirk (see Quirk7) was used. Amrita is a 
3ystem that automates and packages computational tasks in 
such a way that the packages can be combined (dynamically 
linked) according to instructions written in a high-level 
scripting language. The present application uses features of 
Amrita that include the automatic construction of different 
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FIG. 1. Top: Pseudo-schlieren image of computed flow over cylinder­
wedge, M~ =9, 1'= 1.095. making the nonna! shock density ratio J7.5. 
Grayshading is a monotonic function of the magnitude of the fractional 
density gradient. The dark region corresponds approximately to the shear 
layer. The white line in the flow field is the sonic line. Bottom: Five profiles 
of speed across the layer uniformly spaced between the two white lines 
show that the shear layer does not change significantly with downstream 
distance. 

Euler solvers, automatic documentation of the codes, auto­
matic adaptive mesh refinement according to simply chosen 
criteria, and scripting-language-driven computation, ar­
chiving, and post-processing of the results. The automation 
of the assembly and sequencing of the tasks makes for dras­
tically reduced possibility of hidden errors. More impor­
tantly, it makes computational investigations transparent and 
testable by others. The ability to change one package at a 
time, without changing the rest of the scheme, permits easy 
detection of sources of error. The scope of the software sys­
tem far exceeds its use here. 

Adaptive mesh refinement was applied in two stages of a 
factor of 3 each, on a coarse grid of 40 X 240 cells, so that the 
effective grid was 360X 2160. The grid refinement criterion 
was a threshold value of the magnitude of the density gradi­
ent. Extensive tests were performed on different criteria and 
degrees of grid refinement in order to ensure that the phe­
nomena observed were not grid-resolution related features. 

In most of the following, a flux-limited, operator-split 
solver is used, with a body-fitted grid. With such a scheme, 
nonuniformity of the grid introduces numerical noise in the 
flow. The maximum magnitude of this noise in density is 
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FIG. 2. Fonn of the amplitude function of the perturbation. 

0.3% of the free-stream density in our case. Provided that the 
normal shock density ratio is small enough, this noise is 
insufficient to make the flow unstable, as in the example 
shown in Fig. 1. Such -Stable flows can then be excited with 
deliberately introduced disturbances, whose growth can be 
studied to determine the instability conditions. 

B. Choice of disturbance 

A suitable disturbance for excitation of instability in a 
shear layer is a periodic variation of the velocity component 
normal to the shear layer: If such a disturbance is introduced 
l.ll along the inflow boundary of the computational domain, 
.t causes trouble at the plane or axis of symmetry. We there­
fore choose an amplitude function, A, for the disturbance, 
which is of the form 

VIU",=A(yIR)sin(21rUcx,t/"A), ~ (2) 

where V is the y-component of velocity, R is the nose radius, 
t is time, and A is the wavelength of the disturbance. The 
amplitude function is 

A(ylR) = C 1(ylR)5 exp( - C 2Y IR). (3) 

The numerical constants C I and C 2 can then be chosen to 
adjust the magnitude of the disturbance and the y-Iocation of 
its maximum. A plot of A is presented in Fig. 2. 

This is not the only type of disturbance that was applied 
to the problem. Others included unsteady density and pres­
sure conditions at the inflow boundary. The behavior of each 
disturbance type was tested by applying it to an otherwise 
uniform flow. As expected, the disturbances steepen into 
weak shock waves on their forward side, but with the small 
amplitudes introduced here, visible steepening only occurred 
after large distances, and, for sufficiently small disturbances, 
effects of numerical dissipation prevent the steepening. In all 
the cases studied here, the disrurbances decay slightly over 
the small distance between the inflow boundary and the bow 
,hock. 

As an example of the effect of a disturbance on the flow 
shown in Fig. 1, a disturbance with maximum amplitude a 
=VmaxIU",=l.O% and with maximum located at ylR 

0.556 was switched on at the left boundary after the flow 
had reached steady state. This was then repeated with differ-

H. G. Hornung and P. Lemieux 

>./R = 0.233 

A/R =0.333 

>./R:=. 0.733 

VR =1.000 

>./R = 1.500 

>.jR 3.000 

FIG. 3. Pseudo-schlieren images of the flow of Fig. 1, after a disturbance of 
maximum amplitude 1.0% is imposed at the left boundary. Note that the 
structures in the shear layer move supersonically and push shock waves that 
reflect from the wall. At large wavelengths the structures do not become 
larger, but fonn in packages spaced at the imposed wavelength. 

ent disturbance wavelengths. A selection of the resulting 
pseudo-schlieren images is presented in Fig. 3. 

A number of features of the growth of the disturbance 
emerge. At small wavelength ("AIR=0.233) the disturbance 
is only slightly amplified. However. as the wavelength is 
increased, the growth is so strong that the structures, which 
move at supersonic speed relative to the flow between the 
shear layer and the body, push oblique shock waves into it, 
which are reflected from the wall and reimpinge on the shear 
layer. 

Another feature is that the preferred wavelength that 
grows is quite small. In unconfined shear layers this pre­
ferred wavelength amounts to several shear-layer thick­
nesses, while it is of the order of the shear-layer thickness 
here. Also, the strucrures become so strong at AIR = 1.0 that 
they perturb the shock wave significantly. For wavelengths 
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FlG. 4. Enlargement of portion of the flow in Fig. 3, case AIR 1.0, show­
ing vectors of velocity relative to a point approximately in one of the shear­
layer structures. The length of the velocity vectors is proportional to the 
velocity, but the refined-grid vectors are plotted to a smaller scale. Note that 
the vectors show the vortical nature of the structures and identify the dark 
oblique lines underneath them as shock waves. Note also that the structures 
move approximately at the shock-parallel component of the free-stream 
speed. 

that are larger than the preferred wavelength, the imposed 
wavelength appears in the form of packets of the small wave­
length spaced at the imposed wavelength. At larger wave­
lengths the growth rate is strongly reduced again. A quanti­
tative analysis shows that, in the flows presented in Fig. 3, 
the density fluctuations that result in the shear layer reach 
values up to 20% after a distance of a few nose radii. 

Figure 4 shows an enlarged view of portion of Fig. 3, 
case AI R 1.0, with vectors of velocity relative to the veloc­
ity of a point moving with one of the structures. The size of 
the vectors is proportional to this relative velocity (but 
refined-grid arrows are correspondingly smaller). Three fea­
tures are brought out by this. First, the shear layer structures 
move with a speed close to the post-shock speed and they are 
vortical in nature. Second, the flow below the shear layer is 
very fast in this reference frame, explaining the occurrence 
of the oblique shocks that reflect from the wall. Third, when 
the disturbance has grown to such a degree that the shock 
becomes perturbed, weak triple points form on the shock 
(top left of Fig. 4), from which thin shear layers emerge that 
feed the main shear layer with even more vorticity of the 
same sign. Once this mechanism sets in, as computations at 
higher density ratios show, the growth of the disturbance 
enters a catastrophic phase that eventually produces a turbu­
lent shock layer bounded toward the free stream by an ir­
regular unsteady shock. 

C, Flow over a sphere-cone 

In axisymmetric flow, the vorticity of a material element 
at constant pressure does not remain constant, because the 
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FIG. 5. Top: Pseudo-schlieren image of computed flow over a 20° sphere­
cone, M",= 9. y= 1.12, corresponding to a nomal shock density ratio of 
14.7. The body-fitted grid represents curved surfaces as polygons. On the 
spherical nose this causes waves to be emitted from the surface. Thes~ are 
significantly stronger in this axisymmetric case, because the polygons he In 

a higher-Mach-number part of the flow. The waves are reflected from the 
shock and again from the body a couple of times. Although they introduce a 
significant disturbance they are not strong enough to cause the shear layer to 
become unstable at this density ratio. Bottom: Five uniformly spaced pro­
files of speed across the layer. Note how the vorticity of the shear I~yer 
increases with downstream distance. as a consequence of the vortex lInes 
being stretched. 

vortex lines may be stretched. Thus in the analogous model 
to that of the cylinder-wedge of plane flow, namely a sphere­
cone, the vorticity of a material element will increase with 
time. This may be seen in the no-disturbance computation 
presented in Fig. 5. Observe the profiles of speed across the 
shock layer. From the second profile onward, the vorticity 
(the slope of the velocity profile) increases with downstream 
distance and the region of maximum vorticity is at or very 
near the body. Thus the shear layer and any structures that 
might develop in it will not move at a supersonic speed 
relative to the region between the shear layer and the body, 
and we may expect this region to be free of shock waves. 

In this flow field a feature of blunt cone and blunt wedge 
flows mav be observed: The shock shape near the nose is like 
that of a ~lender blunt body, i.e., like the paraboloid (in axi­
symmetric flow) of the blast wave analogy, which would 
intersect the cone far downstream. However, far down­
stream, where the flow becomes asymptotically like that over 
a sharp cone, the shock shape has to become conical, so that 
the shock exhibits a point of inflection. 

Computations with deliberately introduced d.isturb~ces 
were also made in the axisymmetric case for denSIty raUos of 
14.7 and.17.5. These are presented in Figs. 6 and 7. 
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FIG. 6. Pseudo-scnlieren images of flow over a sphere-cone at M x = 9, r 
1.12. making the normal shock density ratio 14.7, with the same free­

stream disturbance as in the case of the cylinder-wedge. 

D. The critical density ratio 

As was pointed out earlier, the shear layer thickness de­
creases and its intensity increases in approximate proportion 
to the normal shock density ratio. Both of these increase the 
instability of the shear layer. In an inviscid flow the shear 
layer will eventually exhibit instability far downstream, of 
course, but a certain critical density ratio is likely to exist, 
below which no detectable evidence of instability exists 
within the computational domain, and above which it does. A 
large number of computations were made in both the plane 
md the axisymmetric flows with different disturbance ampli­
tudes and different values of Mach number and specific heat 
ratio, in order to examine the influence of the normal shock 
density ratio on the stability: 

When the normal shock density ratio was smaller than 

AIR = 0.233 

AIR = 0.333 

VR =0.500 

>'IR =0.733 

>'IR = 1.000 

>'IR = 1.500 

FIG. 7. Pseudo-schlieren images of flow over a sphere-cone at M", = 9. r 
= 1.095, (normal shock density ratio 17.5) with the same free-stream distur­
bance. 

11, disturbance amplitudes as large as 2% did not exhibit any 
growth of structures in the shear layer. On the other hand, 
when the normal shock density ratio was 18 or greater, it was 
not necessary to introduce a disturbance at all in order to 
cause the shear layer to become unstable within the compu­
tational domain. This indicates that the small nonunifonnities 
in the free stream that result from the nonuniformity of the 
body-fitted grid (density perturbations of up to 0.3% of the 
free-stream density) suffice to trigger the instability of the 
shear layer within the computational domain. This therefore 
suggests that, in an experiment to test the results of the ex­
ploratory computational study, normal shock density ratios of 
at least 14, and preferably more should be achievable. 

III. THE PHYSICAL EXPERIMENT 

An example of a situation in which high nOlmal shock 
density ratios occur is hypervelocity flight in a carbon­
dioxide atmosphere. One might expect that such flows could 
be achieved in a hypervelocity test facility such as a free­
piston shock tunnel, where flow speeds are achievable that 
produce very significant dissociation (and therefore density 
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FIG. 8. Equilibrium density ratio 
across a normal shock in carbon diox­
ide (left), and in propane (right) as 
functions of Mach number. The up­
stream condition is p ~ = J00 kPa, T. 
=293 K. These curves were calcu­
lated using the software package 
STANJAN. see Reynolds (Ref. 10). 

increase) downstream of the bow shock wave of a blunt 
body. Unfortunately, this is not possible in a reflected shock 
tunnel, for the following reasons: 

In a reflected shock tunnel, the high-speed flow is gen­
erated by converting the thermal energy of a stationary res­
ervoir gas into ordered kinetic energy of flow by means of a 
nozzle expansion. The thermal energy of the stationary gas 
necessarily has to be comparable to the dissociation energy 
of the gas if significant dissociation is to occur after the bow 
shock. This means that the reservoir gas is partially dissoci­
ated. During the passage of the gas through the nozzle, some 
recombination does occur, but as the density decreases, there 
comes a point when the composition freezes. Thus the flow 
that arrives at the bow shock is already partially dissociated, 
so that the amount of dissociation that occurs after the bow 
shock (and therefore the amount of density increase) is 
smaller than would be observed in flow with an undissoci­
ated free stream. It turns out that the highest normal shock 
density ratio achievable in the T5 free-piston shock tunnel at 
Caltech is approximately 12. Experiments involving flow 
over a cylinder-wedge such as those studied in the explor­
atory computational experiment yielded only very scant evi­
dence of instability in the shear layer; see Lerttieux.8 

An alternative to generating flow over a stationary model 
is to shoot a projectile into low-temperature stationary gas. A 
modification of T5, designed and built by Belanger and 
Kaneshige.9 converts the facility into a light gas gun with 
which a 25 mm diameter projectile can be accelerated to 3 
kmls and shot into a test section containing any gas between 
two thin mylar diaphragms. If a density ratio of 16 is to be 
achieved by shooting a projectile into carbon dioxide, the 
velocity of the projectile has to be of the order of 4 km/s. 
However, high density ratios can be achieved more easily by 
using a gas with a very small ratio of specific heats. For 
example, with propane (C3Hs), a normal shock density ratio 
of 17 can be achieved at 2.8 kmls; see Fig. 8.10 

A. Experimental setup 

In the light gas gun modification of T5, a gun barrel is 
attached to the end of the shock tube, which reaches approxi­
mately to the middle of the dump tank. A test section at­
tached to the far end of the dump tank contains the test gas 
between thin mylar diaphragms. The shock-heated and com­
pressed helium in the shock tube serves as the driver that 
propels the projectile along'the gun barrel. through the dump 
tank, and into the test section. As the projectile travels 

through the test section, shadowgraph records of the flow 
may be taken through a window. A drawing of the test sec­
tion is shown in Fig. 9. 

To measure the projectile speed, three photodetectors 
and three pressure transducers are installed in the test sec­
tion, as shown in Fig. 9. The projectile breaks a wire, pro­
viding the first timing signal for the speed deterrttination. The 
photodetector signals are used together with this to calculate 
the projectile speed. The projectile speed can be varied from 
I to 3 kmls by changing the gas gun driver gas and condi­
tions. At the higher speeds, it was found that nylon did not 
have sufficient impact strength to survive, and it was neces­
sary to switch to the much tougher material Lexan. 

B. Experimental results 

At conditions where the normal shock density ratio is 
less than 14, the flow over the projectile is characterized by a 
smooth shock wave. Two examples are shown in the shad­
owgraphs of Figs. 10 and 11 for propane and carbon dioxide 
flows, respectively. In contrast, when the conditions are such 
that the density ratio is larger than 15 (see Figs. 12 and 13), 
the shock wave is significantly perturbed, so much so that the 
features of the flow in the central wake are completely ob­
scured by the refraction of the light in the outer part of the 
axisymmetric flow in the (line-of-sight integrating) shadow­

P2 P3 

-1 


0.lS89 

!.630 

Break Wire L3 

FIG. 9. Ught gas gun test section., Photodetector and pressure transducer 
stations are labeled L and P. respectively. Dimensions shown are in meters. 
The stations P3 and L3 are in the middle of the window. 
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FIG. 10. Shadowgraph of projectile moving at 2.26 kmls in propane, giving 
a normal shock density ratio of 13. The black regions just inboard from the 
shock result from the very large separation of the elements of the shadow­
graph system. This causes regions of large refractive index gradient to re­
fract the beam so much that 1t misses one of the mirrors completely, causing 
that region to be black. The shock front is quite smooth. and turbulence is 
only evident in the central wake. The wake shocks are faintly visible. 

graph. This shock wave perturbation looks similar to that of 
the second nonlinear amplification mechanism discussed in 
connection with the computations. 

It is clear from these results that a dramatic change oc­
:urs in these flows in the range of normal shock density ratio 
around 14. In order to relate this to the phenomena that occur 
in the exploratory computational expedment, it is necessary 
to compute flows that are more nearly like the ones in the 
experiment. 

It should be pointed out that a similar experimental ob­
servation of instability of high Mach number flow over a 
sphere has been made by Tumakaev,ll who attributes the 

FIG. 12. Sbadowgraph of projectile moving at 2.7 kmls in propane, giving 
a normal shock density ratio of 20. Note the dramatic perturbation of the 
shock wave, which manifests itself in features that stretch across the flow, 
obscuring the features of the central wake. 

phenomenon to phase transltlons. In our experiments no 
phase transitions occur, and we suspect that the phenomenon 
he observed also arises because of the shear layer instability 
that attends the high normal shock density ratio in his freon 
flows. 

IV. COMPARISON WITH COMPUTATION OF FLOW 
OVER A SPHERE 

In the experiment, the gases exhibit high-temperature 
real-gas effects, in particular, vibrational excitation. We 
simulate the flow over a sphere at conditions that are as 
nearly the same as those in the experiment, but with a perfect 
gas, by making the density ratios of the computations the 
same as those in the experiment. Since the density ratio de-

FIG. 11. Sbadowgrapb of projectile moving at 2.7 kmls in carbon dioxide, FIG. 13. Sbadowgraph of projectile moving at 2.2 kmls in propane, giving 
giving a normal shock density ratio'of 12. Again the shock wave is smooth, a normal shock density ratio of 17. Again the features are like those in Fig. 
and the features are much like those of Fig. 10. 12 and in stark contrast to the smooth shocks of Figs. 10 and 11. 
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FIG. 14. Overlay of shadowgraph of Fig. 10 with pseudo-schlieren image of 
computation of flow over a sphere at M",=5.5 and y= 1.13. The computa­
tional image, unlike the experimental one, is not line-of-sight integrating, so 
that it shows the details of the central wake much more pronouncedly. The 
disturbance at the inflow boundary is of the same form as that in the explor· 
atory computations at an amplitude of 0.5%. 

pends on both the Mach number and the specific heat ratio, a 
given density ratio permits the choice of the right Mach 
number. Using the same computational setup as for the ex­
ploratory experiment, the flow over a sphere was computed 
for conditions as near as possible to those in Figs. 10 and 12. 
The results are shown in Figs. 14 and 15 as overlays over the 
experimental shadowgraphs. It is important to note that, in 
both cases, the disturbance introduced at the inflow boundary 
was the same. Clearly this disturbance is damped in the low 
density ratio case and amplified in the high density ratio 
flow. 

V. CONCLUSIONS 

A computational study of the stability of the shear layer 
formed by the curved bow shock in the shock layer of a 
hypervelocity flow over a blunt body revealed the following 
results: 

(1) 	In plane flow over a cylinder-wedge, the shear layer is 
separated from the body by a roughly parallel region in 
which the flow is supersonic relative to the region of 
maximum shear. 

(2) 	This layer is unstable to disturbances introduced in the 
free stream, when the disturbance wavelength is of the 
order of the nose radius. 

(3) The structures formed 	by the instability grow by two 
nonlinear mechanisms. First, they push oblique shock 
waves into the flow beneath them that reflect from the 
body and reinforce them. Second, they perturb the bow 
shock, forming triple points from which shear layers is­
sue that feed the shear layer. 

(4) 	 In axisymmetric flow over a sphere-cone, the shear layer 
is much closer to the body, so that the structures do not 
move supersonically with respect to the flow between 

FIG. 15. Overlay of shadowgraph of Fig. 12 with pseudo-schlieren image of 
computation of flow over a sphere at M", = 10 and y= 1.07. The disturbance 
amplitude is again 0.5%. Note the similarity berween the experimental and 
computational shock perturbations. 

them and the body, so that the dominant nonlinear 
mechanism of growth is through the perturbation of the 
bow shock by the structures. 

(5) 	 A physical experiment with propane and carbon dioxide 
flow over a sphere confirms the computational results, 
giving very good agreement, and confirming the 
existence of a critical normal shock density ratio of 
around 14. 

The existence of a critical density ratio, beyond which 
the shock layer becomes unstable, shows that the simple 
Newtonian theory for hypersonic flow at high density ratio 
may be safely applied only when the normal shock density 
ratio is less than about 14. This study is an example of how 
a relatively inexpensive exploratory computational study 
may be used to design an experiment, which, were it neces­
sary to do the exploratory study experimentally, would be 
very expensive indeed. With this approach, the expense of 
the physical experiment can be kept to a minimum. 
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Abstract 

The requirements for ground simulation of hypervelocity flows are 
set out on the basis of the similarity parameters of the problem. 
This, together with the thermodynamical properties of air, the 
consequent heat loads on the facility and large power requirements, 
leads to the two most successful devices, the reflected shock tunnel 
and the expansion tube. After a description of the operation and 
the thermodynamics of these devices, their essential limitations are 
explained. Scale effects of these limitations are discussed. On this 
basis the range over which they can be applied for flow simulation 
is delineated. 

Keywords: Hypervelocity flow, ground simulation, simulation 
facilities, shock tunnel, expansion tube, dissociation. 

1. Introduction 

The term hyperllelocity is used to distinguish those flows in which 
the velocity is so large that the conditions after the bow shock on 
a body are such as to cause the molecular components of the gas 
to dissociate. The fields of human endeavor where hypervelocity 
flows are of importance are those in which an object traverses the 
atmosphere of one of the planets of the solar system. Typically 
this could be associated with transport to or from space in man­
made vehicles, but hypervelocity flows also occur naturally, e.g., 
when a meteorite enters a planetary atmosphere. 

The term hypersonic flow is used to describe situations where the 
flow speed is large compared to the free-stream speed of sound. 
Such high-Mach-number flows can, of course, be generated by low­
ering the speed of sound far enough to keep the gas in the regime 
where it behaves as a perfect gas. In such cold hypersonic flows, 
the important dissociative and other 'real-gas effects of hypervelo­
city flows do not occur. In order to understand the intricacies of 
flows in which the chemistry of the gas is activated by the kinetic 
energy of the flow, it is necessary to simulate hyperveiocity flows 
in the laboratory. 

In the context of the earth's atmosphere the orbital velocity is 
8 km/s, and the velocity at which the most severe heating problems 
arise is 6 km/s. In the frame of reference of the flying object, 
the ordered kinetic energy per unit mass of the free-stream gas is 
therefore 18 MJ/kg. At high enthalpy, the Mach number, which 
measures the square root of the ratio of the ordered kinetic energy 
of the flow to the thermal energy of the gas, is not so important 
as the ratio of the ordered kinetic energy measured in terms of the 
specific dissociation energy of the gas. There are usually several 
such characteristic chemical energies. 

The characteristic specific energies relevant for air are 

DN2 = 33.fiMJ/kg EvN2 =0.992 MJ /kg 

D02 = 15.5MJ{kg EV02 =0.579 MJ {kg 

DNO =20.9 MJ/kg EvNO = 0.751 MJ/kg, 

where the D's and Ev's are specific energies of dissociation and of 
vibration respectively. It is not possible to simulate the numerous 
idiosyncrasies of a particular gas by using another gas. The specific 
chemical energies have definite known values, and the duplication 
of the ratios of the ordered kinetic energy to them in a simulation 
implies that the actual flow speed has to be duplicated. 

It follows that the reservoir enthalpy ho of the flow, which is ap­
proximately equal to V 2 /2, where V is the flow speed, has to have 
the same value as in flight. If the flow is accelerated from a reser­
voir at rest, without adding energy to it during the expansion, 
the reservoir enthalpy corresponding to a flow speed of 6 km/s is 
18 MJ/kg, which, at a reservoir pressure of 100 MPa, implies a 
temperature of nearly 9000 K in air. 

The high pressure is necessary to ensure that the chemical reaction 
rates occur at the right speed for correct simulation of nonequi­
librium effects. Smaller scale requires faster reaction for correct 
simulation. If the temperatures are right (as is ensured by correct 
flow speed) the reaction rates depend mainly on the density. Rates 
for binary reactions, like dissociation, are linear in density, those 
for three-body reactions, like recombination, are quadratic in den­
sity. Thus, all reactions can never be simulated correctly except 
at full scale. In many cases, three-body reactions are not impor­
tant and, where they are, component testing or extrapolation is 
necessa.ry. 

Continuous flow facilities are ruled out by the high power require­
ments of typically a few GW. The high speed reduces the steady 
flow duration requirement to a few ms, however. A convenient 
way to accelerate, heat and compress a gas for a short time, is to 
pass a shock wave over it. Many types of high-enthalpy facilities 
therefore embody shocks as elements. 

The problem of hypervelocity simulation is not limited to speeds 
of the order of 6 km/s, of course. Meteorites entering planetary 
atmospheres typically have a speed of 20-60 km/s, and proposals 
for man-made vehicles have considered speeds in the vicinity of 
16 km/s. Such conditions involve very strong ionization of the gas 
and intense radiative heat loss from it. In the following discus­
sion, such very high speeds will not be considered, and attention 
will be concentrated on the range 3-7 km/s. In this range, the re­
quirements for simulation of hypervelocity flows and some of the 
methods by which the simulation has been achieved to date will 
be presented. The paper then closes with a discussion of the limi­
tations and achieved conditions of the different types of facilities. 

This paper is a descriptive account of the reasons for the forms that 
hypervelocity simulation facilities have taken. It is not a detailed 
account of the work that has been done in the field, and only a 
few representative publications will be cited. A very important 
book on the subject is Lukasiewicz's "Experimental Methods of 
Hypersonics". The interested reader should consult this volume 
on all the questions concerning this field. 

http:necessa.ry


In the present paper, the two most successful facility types for 
hypervelocity flow simulation, the reflected shock tunnel and the 
expansion tube will be given prominence. 

2. Requirements for Ground Simulation 

2.1 Similarity in Hypervelocity Flows 

To simulate a hypervelocity flow at smaller scale, all the dimen­
sionless parameters of the problem have to be reproduced. In 
steady hypervelocity flows any dimensionless dependent quantity 
Q, say, depends on dimensionless variables as follows: 

Q = Q(Moo , Re, Pr, Tw/To, B n ,O!,(3,Ej,Rj,Lej,coo j). 

Here, Moo is the free stream Mach number, Re and Pr are 
Reynolds and Prandtl numbers, which, in this context, are best 
defined a.t conditions corresponding to the gas in equilibrium af­
ter a normal shock for which the upstream conditions are those 
of the free stream, Tw is a representative body surface tempera­
ture, To is the temperature from which a gas would have to be 
expanded by a steady expansion to reach the free-stream condi­
tions, Bn is a vector of length ratios defining the body geometry, 
O! is the angle of attack, and (3 is the yaw angle. Ei is a vector of 
dimensionless numbers relating the specific formation enthalpies 
of the species to the specific kinetic energy of the free-stream gas, 
Rj is a vector relating the characteristic lengths associated with 
the chemical reactions to the characteristic length of the body, Lei 
are the Lewis numbers giving the dimensionless species diffusion 
coefficients, and coo; is a vector giving the dimensionless concen­
trations of the species in the free stream. Even this long list of 
variables is not complete, as the vibrational characteristics of the 
molecular species have been omitted. 

Up to and including (3 in the above list, the variables are the same 
as in cold hypersonics, in which the remaining variables, which 
describe the thermodynamic and chemical properties of the gas, 
can be replaced completely by a single variable, the ratio of spe­
cific heats, which, for a perfect gas, is a constant. Clearly, the 
more complex thermodynamics and chemistry of the hypervelo­
city flow requires many more parameters to be duplicated in the 
scale experiments than perfect-gas cold hypersonics. For example, 
in air at a free-stream speed of 5 km/s, it is necessary to include 
at least 5 species and 8 reactions, so that, if all the geometrical 
parameters are exactly duplicated, there remain over 20 dimen­
sionless variables to match. In fact, as has already been indicated 
in the introduction, it is not possible to simulate both binary and 
three-body reactions simultaneously (except at full scale) because 
of the difference in their dependence on the density. 

In s:pecial cases, however, the problem may be considerably sim­
plified. For example, if the gas is especially simple, such as in a 
single diatomic gas, there is only a single E and there are only 
two R's. Only one of the R's can be matched, and, e.g., in blunt 
body flows, it is best to match the binary dissociation reaction. 
With correct E, this automatically also causes Re, Le and Pr to 
be matched. Thus, the problem reduces to 

Q = Q(M, Tw/To,E,R,coo )' 

If the Mach number is sufficiently high, and the bow shock is not of 
interest in regions where it becomes very weak, the Mach-number­
independence principle is effective, and the number of independent 
parameters is down to 4. This situation can be satisfactorily sim­
ulated. 

Where such simplifications are not possible, it becomes necessary 
to divide the flow field up into particular regions and to simulate 
these separately. This is sometimes referred to as component test­
ing. An example is the testing of engine combustors by connecting 
the inlet of the combustor directly to the exit of the facility noz­
zle, thus enabling testing at almost full size. Another example is 
the testing of the situation on the front of a body by placing only 
the nose shape into the test section, so that binary scaling and 
Mach-number independence apply. 

2.2 Power Requirement 

It is really quite amazing how much power is in a hypervelocity 
flow. For example, a wind tunnel with a cross-sectional area 
of 1 m2, in which the flow speed is 7 km/s, and the density is 
0.01 kg/m3 requires a power of 2 CW. This is a tenth of a percent 
of the power consumption of the USA. It also corresponds to an 
energy flux of 2 CW/m2, or 46 times that at the surface of the 
sun. It is clear, that this kind of power can not be sustained for 
long times. 

Fortunately, it only takes a very short time to set up a steady 
flow over a model at such high speeds. Opinions differ about the 
necessary test time. A reasonably conservative value is 

L 
20 V ' oo 

where L is the model length and Voo is the free-stream velocity. 
With this value, the test time requirement for the above facility 
comes out to approximately 3 ms, so that the energy requirement 
is only 10 MJ. This energy can be stored over a long time and 
released during a short test period. 

The power requirement is thus one of the reasons why short­
duration facilities are necessary for hypervelocity flow simulation. 
Another reason arises in the case of facilities that use a steady 
expansion to accelerate the flow from rest. In such facilities, the 
thermodynamic condition in the reservoir from which the gas is 
expanded is such that the specific enthalpy, ho, has to be 20 MJ/kg 
or so. In air, at a pressure of 100 MPa, this corresponds to a tem­
perature of 9500 K or so. Hence, it is necessary to limit the time 
for which the materials containing the flow are exposed to these 
conditions. With the best materials available today, 3 ms is about 
the limit at the conditions quoted. 

2.3 Instrumentation Requirements 

This topic is one that deserves at least as much space as this whole 
paper, and it will not be possible to deal with it here, except for 
the purpose of pointing to its importance. Clearly, a test in a 
hypervelocity simulation facility is quite expensive. It is therefore 
most desirable to make as extensive a set of measurements as 
possible, each time such a test is performed. Unfortunately, the 
different forms of non-intrusive testing that exist at present require 
different degrees of expertise, which are seldom available at the 
same place as the test, because of the degree of sophistication 
that they often require. 

Among the presently used routine measurement techniques, the 
following are available at all high-enthalpy test facilities: 

1. Surface pressure measurement 

- 2­



2. Surface heat flux measurement 

3. Schlieren and shadow photography 

4. Interferometry 

Techniques that are applied relatively rarely to hypervelocity 
flows, but are very important for them, are 

1. Mass spectrometry 

2. Spectroscopy 

3. Laser-induced fluorescence 

4. Raman spectroscopy 

These methods are able to measure species concentrations and 
temperature, and would therefore provide extremely important 
data for the analysis of results from hyper velocity facilities. In the 
author's opinion, it is high time that major funding be directed to 
the juxtaposition of modern diagnostics and hypervelocity facili­
ties. A good example of this is the policy at the HEG laboratory 
in Gottingen, Germany. 

3. Hypervelocity Simulation Facilities 

In this section the principles of operation of the most success­
ful types of hypervelocity facilities are presented. The thermody­
namical and chemical processes which the gas undergoes in the 
generation of the hypervelocity flow are given prominence in this, 
because they define and explain the most serious disadvantages of 
the facility types. 

3.1 Reflected-Shock Tunnel 

9.1.1 	 Configu.ration and Operation 

By far the most used and most productive hypervelocity simula­
tion facility is the reflected shock tunnel. Fig. 1 shows a schematic 
sketch and a wave diagram of the device. Initially, the driver re­
gion is filled with high-pressure gas and a diaphragm separates 
it from the shock tube, which is filled with the test gas at lower 
pressure. The shock tube is separated from a nozzle, attached to 
its other end by a weak diaphragm. The nozzle and test section, 
as well as the dump tank, are initially evacuated. The test section 
and dump tank are not shown in the figure. 

time 

test time 

I 
2 

distance 

shock

,nn',,' '"d'~ 
I driver gas J test gas' 	 0 

nozzlemain diaphragm J 
Fig. 1. 	 Schematic sketch of reflected shock tunnel and wave dia­

gram. The sepa.ration between the shock wave a.nd contact 
surface is exaggerated to show it better 

When the main diaphragm breaks, a shock Wave propagates into 
the test gas, and an expansion wave propagates into the driver 
gas in such a way that the pressures and velocities in the region 

-

between the shock wave and expansion wave are continuous across 
the interface between the two gases. These processes are shown 
in the wave diagram of Fig. 1. The initial state of the driver gas, 
in region 4 of the wave diagram, is processed by the expansion 
wave to the condition in region 3, and the initial state of the test 
gas, region 1, is processed by the shock wave to the condition in 
region 2. The states 2 and 3 are determined by the expansion 
wave and by the shock wave and the requirement that velocities 
and pressures must match across the boundary between 2 and 
3. This may best be illustrated by a velocity-pressure diagram, 
shown in Fig. 2. The upper curve shows the locus of the states 
that can be reached from the initial condition of the driver gas 
via an expansion wave a.nd the lower curve shows the states that 
can be reached from the initial state of the test gas via a shock 
wa.ve. Their intersection represents the condition in regions 3 and 
2, where pressures and velocities are matched. The solution thus 
corresponds to the intersection of the two curves in Fig. 2. 

1000 

100 

10 

o 2 4 6 8 
u/a1 

Fig. 2. 	 Example of velocity-pressure diagram for a shock tube. The 
pressure p is normalized with the initial pressure of the test 
gas, PI, and the velocity u is normalized with the speed of 
sound in the test gas at condition 1, al. In this example the 
gases are trea.ted as perfect gases with specific heat ratios 
/1 and 14 of 7/5 and 5/3 respectively. Also, the ratio of the 
speeds of sound <Li/a!, the third parameter determining the 
solution, was chosen to be 5. 

If a whole lot of such solutions are combined, the solutions can 
be shown parametrically in a diagram plotting the shock Mach 
number M. = V./a} against the pressure ratio P4/Pl' This is 
done in Fig. 3. 

In the reflected shock tunnel, the state of the test gas in region 2 is 
processed further by the shock wave reflected from the closed end 
of the shock tube. This heats and compresses the gas even more 
than has already been accomplished by the primary shock, but it 
also brings the test gas to rest again. The primary shock breaks 
the thin diaphragm between the shock tube and the nozzle, thus 
allowing the test gas to expand in a steady expansion through the 
nozzle. 

It is important to operate the shock tunnel in such a way that the 
interaction between the reflected shock and the contact surface 
does not produce any further waves. When conditions have been 
chosen in such a way that this is the case, this is referred to as 
tailored-interface operation. The condition behind the reflected 
shock is then the reservoir condition of the nozzle flow, and is 
referred to by the subscript O. 
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Fig. 3. 	 The shock tube equation for monatomic driver gas and di­
atomic test gas, both treated as perfect gases. Note the 
strong dependence of the shock Mach number on the speed 
of sound ratio. Real-gas effects modify this diagram only 
slightly. 

The nozzle expansion converts the thermal energy of the station­
ary reservoir gas into ordered kinetic energy. In doing so, the 
maximum flow velocity achievable is 

where ho is the specific enthalpy of the reservoir condition. Since it 
is necessary to achieve speeds around 6 km/s, the reservoir specific 
enthalpy needs to be in the vicinity of 18 MJ /kg. In a reflected 
shock tunnel, a very good approximation is 

It follows that the shock speed has to be about 4.3 km/s, which, 
in air, corresponds to Ms 12.5. Referring to Fig. 3, we see 
that this value may not be reached with pressure ratios less than 
2000 unless a4/a] exceeds 8. Since the test gas speed of sound is 
virtually fixed by the fact that we want to use air in a laboratory 
at room temperature, the driver-gas sound speed has to be high. 

9.1.2 	 Driver-Ga.8 Condition8 

Various ways have been used to increase a4. First, a light gas, 
either hydrogen or helium is used, and second, the driver gas is 
heated. Steady state heating is limited to about BOO K. This gives 
a4/a ] 4.B for helium driver gas and air test gas. Not only is 

this too low, but it is also expensive and dangerous to contain 
high-pressure and high-temperature gas for an extended period. 
A second method is to heat the driver gas relatively quickly by 
combustion of a limited amount of hydrogen and oxygen mixed 
with the driver gas before the test. Mixtures in the proportions 
14% hydrogen: 7% oxygen: 79% helium, give a4/al :=. 7. 

While this is just about enough, another, more convenient tech­
nique is to compress the driver gas adiabatically with a heavy 
piston. This method has the advantage that the driver gas is hot 
only for a very short time, and that (as in the combustion-heated 
driver) the high pressure required is produced automatically. How­
ever, it also means that the driver is short, with a moving end wall, 
so that waves travelling between the main diaphragm station and 
the piston cause disturbances to the shock. With adiabatic com­
pression, values of a4/a] up to 12 are easily achievable, and the 
value of this parameter ma.y be adjusted by using mixtures of he­
liUIn and a.rgon as driver gas. Monatomic gases require smaller 
compression ratios for the same pressure and temperature gains. 

An example of a free piston driven reflected shock tunnel is shown 
in Fig. 4. This is the facility known as T5 at GALCIT. Similar ma­
chines exist at Canberra and Brisbane in Australia, at Gottingen 
in Germany, and at Tullahoma, USA. 

The piston is accelerated in the compression tube by com­
pressed air initially contained in the secondary air reservoir, thus 
compressing the driver gas until the diaphragm burst pressure 
(:=. 90 MPa) is reached. The piston speed at rupture has to be 
sufficiently high (:=. 170 m/s) to maintain almost constant pres­
sure after diaphragm rupture for a short time (:=.2 ms). Thus, the 
free-piston driver is a constant-pressure driver, in contrast to the 
constant-volume driver of the conventional shock tunnel. Fig. 5 
shows a computed wave diagram for the processes in the compres­
sion and shock tubes of T5 after diaphragm rupture. 

Another method of heating the driver gas is by a detonation wave 
travelling into a detonable mixture from the diaphragm end of the 
driver tube. This method has the advantage that the diaphragm 
may be much thinner, since it only needs to withstand the rel­
atively low pressure before detonation. It also produces a long 
driver which should produce a more uniform shock propagation 
than the free-piston driver. A disadvantage is that, with hydro­
gen, the combustion produces water. The NO invariably produced 
in the reflected shock tunnel is likely to combine with this to form 
a very hostile environment for instrumentation and models. 

compression tube (CT) secondary air reservoir (2R) 

Fig. 4. 	 Sectional view of the free-piston reflected shock tunnel T5 at GALCIT, with blow-ups 
of some of the parts. On the left is the 30 m long compression tube, joined to the 
12 m shock tube and nozzle on the right. The test section and dump tank are not 
shown. 
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Fig. 5. Method of characteristics computation of the processes in 
the free-piston reflected shock tunnel. (after Hornung and 
Belanger,AIAA 90-1377). 

9.1.9 	 Reaer'Voir Conditions 

The shock wave propagating along the shock tube generates a 
boundary layer on the shock tube wall, which causes the shock to 
decelerate. This attenuation limits the length to diameter ratio of 
shock tubes to approximately 100. Since the test time is propor­
tional to the shock tube length if there are no losses, the shock 
tube diameter effectively is one of the limiting factors on the test 
time. 

As the shock speed needs to be approximately 4 km/s, the specific 
enthalpy after the shock is 8 MJ/kg. This corresponds to h/R :.= 

28,000 K, where R is the specific gas constant for air at room 
temperature. The process undergone by the gas may be shown in 
a Mollier diagram, see Fig. 6. Here the initial state of the gas in 
the shock tube (state 1) is shown at siR = 24 on the entropy 
axis as a square point, and the primary shock raises the state to 
the coordinates [30, 24000 K), (state 2) see dashed line. Pressure 
and temperature are now 18 MPa and 4000 K. At this condition, 
part of the oxygen is already dissociated and some NO has been 
formed. 	 . 

The reflected shock then increases h and s further, to the point 
[33.5, 60000 K], (state 0), where pressure and temperature are 
100 MPa and 8000 K, see continuation of dashed line. The steady 
nozzle expansion takes the gas down in enthalpy at constant en­
tropy to the final point on the dashed line, which then represents 
the free stream conditions of the tunnel. 

This is not quite correct, of course, because the nozzle flow does 
not usually proceed in thermodynamic equilibrium all the way 
down to this state. At some point in the nozzle flow, the density 
is no longer large enough to maintain the large number of three­
body collisions between particles that is required for the atomic 
particles to continue recombining as the gas cools in the expansion. 
Such non-equilibrium states can not be represented in a Mollier 
diagram. 

9.L{ 	 Nozzle-Flow Freezing 

The recombination reactions stop fairly suddenly in the nozzle ex­
pansion, and because the composition of the gas remains constant 
after this point, the phenomenon is called nozzle-flow freezing. A 

:.:: 
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1000 K 

400 K 

103 

20 25 30 35 
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Fig. 6. 	 Mollier diagram for equilibrium air, showing lines of con­
stant pressure and temperature. An example of the pro­
~esses in a reflected ~hock tunnel is shown by the dashed 
Ime. The lower astensk represents the exit condition in an 
expansion tube that starts with the same shock tube con­
~litjons as in the reflecte.d shock ex~mple. The upper aster­
Isk represents the effectIve reservoIr state of the expansion 
tube. The triangles show reservoir and exit condition of the 
facility proposed at Princeton. 
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Fig. 7. 	 TOP: For a given nozzle, the exit composition depends only 
on the dimensionless reservoir entropy. Example of T5 noz­
zle. BOTTOM: Mollier chart of the reservoir state showing 
lines of constant reservoir pressure. The specific reservoir 
enthalpy axis is plotted in the form of the maximum achiev­
able velocity. This shows how, a.t a. given flow speed, the 
specific reservoir entropy, and therefore the exit composi­
tion, depend on the reservoir pressure. 
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well-known feature of freezing is that, for a given nozzle, the com­
position of the frozen gas depends only on the reservoir specific 
entropy so, and not on the reservoir specific enthalpy ho or reser­
voir pressure po. In the example of one of the nozzles of T5, the 
upper part of Fig. 7 shows the frozen composition plotted against 
solR. As may be seen, the concentration of atomic oxygen in the 
flow increases as solR increases, until at 34 the number densities 
of 02 and 0 are equal. Also, the fairly high concentrations of NO 
are unavoidable. 

The lower part of Fig. 7 shows a MollieI' chart of the reservoir 
state. Here the enthalpy coordinate has been distorted to convert 
it into the velocity achievable from a given reservoir state. This is 
because it shows the relation between the composition of the free­
stream gas and the reservoir pressure. For example, to achieve 
6 km/s, a reservoir pressure of 100 MPa produces the composi­
tion corresponding to solR = 34.9, while a reservoir pressure of 
1 GPa at the same enthalpy would give the lower atomic oxygen 
concentration corresponding to solR = 31.6. Fig. 7 also shows 
that the NO concentration remains constant as So is decreased. 
This is unavoidable with high.enthalpy reflected shock tunnels. 

3.2 Expansion Tube 

9.2.1 	 Configuration and Operation 

Some of the essential limitations of the reflected shock tunnel are 
removed at the cost of new limitations by using an expansion tube. 
The expansion tube, like the reflected shock tunnel, first processes 
the test gas by propagating a shock wave through it, thus com­
pressing, heating and accelerating it. The test gas is then not 
brought to rest as in a reflected shock tunnel, but accelerated fur­
ther by an unsteady expansion. This is achieved by the arrange­
ment shown in Fig. 8 also showing the wave diagram describing 
its operation. 

time 

4 

In the expansion tube, a long acceleration tube usually of the 
same diameter as the shock tube is initially separated from tHe 
shock tube's downstream end by a thin secondary diaphragm. The 
pressures might have the initial values: 100 MPa, 100 kPa, 200 Pa 
in the driver, shock tube and acceleration tube respectively. 

When the shock strikes the secondary diaphragm, it breaks, and 
the test gas acts as the driver for the shock propagating into the 
acceleration tube gas. The regions 10, 20 and 30 thus are analo· 
gous regions to those labelled 1, 2 and 3 in the shock tube. The 
processes undergone by the test gas are: 1-2 (shock), 2-3 (unsteady 
expansion). The conditions in the test gas after these processes 
may again be calculated by the shock tube equation. The result 
of such a calculation is shown graphically in Fig. 9. The test time 
is limited by the acceleration-gas test-gas contact surface, and by 
the leading edge of the reflection of the unsteady expansion from 
the driver-gas test-gas contact surface. 

9.2.2 	 Effective Reservoir State 

The expansion tube's thermodynamics may now be compared with 
that of the reflected shock tunnel in Fig. 6, where the lower asterisk 
marks the test condition of the expansion tube. The two first 
square symbols representing state 1 and state 2 are shared by the 
shock tunnel and expansion tube. The expansion tube takes the 
gas to a maximum temperature of 4000 K in this example, so that 
the atomic oxygen and NO concentrations may be kept much lower 
than in the shock tunnel. 

At the same time, the effective specific reservoir enthalpy is more 
than twice the static enthalpy in region 2, since it is possible to 
gain total enthalpy in an unsteady expansion. This is therefore 
higher than after the reflected shock. To show the effective reser­
voir state of the expansion tube in Fig. 6 a second asterisk is 
plotted there, connected to state 2 with a dotted line to indicate 
that the gas never reaches this high enthalpy and pressure. The 

: test time 

-a~T-=f=='1" 20 

I driver gas , tesl gas J acceleration tube 

main diaphr&gm J secondary diaphragm ] 

Fig. 8. 	 Schematic sketch and wave diagram of an expansion tube. The detail in the vicinity 
of the rupture of the secondary diaphragm is shown in two enlarged insets. The di­
aphragm is accelerated to the contact surface speed over a finite opening time. This 
causes a reflected shock that is accelerated by the left running expansion wave trans­
mitted from the diaphragm. Clearly, diaphragm opening time reduces the available 
test time. 
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Fig. 9. 	 Velocity-pressure plot of the processes in an expansion tube. 
~he full lines give the solution for region 2 and the dashed' 
bnes, representing the locus of conditions achievable via a 
shock wave from condition 10, and the conditions achiev­
able via an unsteady expansion from condition 2, give the 
so~utjon f~r the test :-andition, 20. In this example, the 
driver gas 15 monatomIc and the test and acceleration gases 
are diatomic. All are considered perfect gases. 

lower entropy of the expansion tube causes the effective reservoir 
pressure to be enormous. In our example, it is around 2 GPa. 

The static enthalpy h and static pressure p of the gas can remain 
low in the expansion tube, because the gas is not brought to rest 
after reaching state 2. This may illustrated schematically in the 
case of h by the diagrams in Fig. 10 

Jshock] steady expansion 
re!lected .hock 

+ 	u 2/2 

h 

ulllIleady expansion 

Fig.IO. 	Timelines of the static and effective reservoir specific en­
thalpy during the processes in a reflected shock tunnel 
(TOP), and in an expansion tube (BOTTOM). The ex­
pansion tube avoids the high value of h experienced by 
the test gas in the reflected shock tunnel and yet achieves 
even higher ho. 

9.2.9 	 Free Stream Condition3 

The test gas composition is practically that of state 2, because the 
density drops so quickly in the unsteady expansion that recombi­
nation of the atomic oxygen is not possible. Therefore it is best to 
operate the expansion tube with as Iowa value of Tz as possible 
from this point of view. 

'f the expansion is taken to the same free stream presure as in the 
reflected shock tunnel, see Fig. 6, the free stream temperature is 
seen to be much lower. This permits higher Mach number to be 
reached at the same ho. 

3.3 Other Types of Facilities 

A number of other types of facilities are in operation or are being 
considered. Among these the hypervelocity range is the most im­
portant. It employs a two-stage light gas gun to launch a model at 
the required speed into stationary gas in a long tube. This device 
is clearly much more expensive to operate than one in which the 
model is stationary. The model and instrumentation are also much 
more expensive, and it is difficult to test models that have high 
lift. However, the hypervelocity range is the only facility type in 
which good measurements of far wakes of bodies can be obtained. 

There have been a number of other schemes, involving magneto­
hydrodynamic accelerators Or arc heaters. A relatively new idea 
being pursued at Princeton, is the optically heated continuous 
flow facility. This scheme aims to keep the gas below 2000 K in 
order to prevent the formation of NO. In Fig. 6, the process is 
shown by the chain-dotted line terminated by triangles. The gas 
is first compressed to a pressure of 1 GPa or more, and 2000 K 
This makes use of the van der Waals effect that the isotherms 
curve up at low entropy, giving higher enthalpy. In the example 
shown in Fig. 6, the gas has approximately 20% of the necessary 
total enthalpy in this condition. The remainder of the enthalpy is 
added during a steady expansion by absorption of light. Success 
depends critically on whether the enormous power levels required 
(:::::: i GW in the form of light) can be achieved and can be absorbed 
by the gas without causing non-equilibrium processes to produce 
atomic oxygen. In the author's opinion, these are very substantial 
questions. 

4. Limitations of the Main Facility Types 

All the different facility types have limitations that constrain them 
to be operated in regimes where conditions are acceptable and 
where they work. To some extent, the regimes covered by different 
facilities complement each other. As in the previous sections the 
following discussion will concentrate on the two most important 
types, the reflected shock tunnel and the expansion tube. 

4.1 Reflected Shock Tunnel 

Part of the following discussion is concerned with the effects of 
increasing the size of a reflected shock tunnel. In these considera.­
tions it is assumed that the ratios of lengths remain constant. In 
particular, the length to diameter ratio of the shock tube, which 
is limited by friction and heat loss at the shock tube wall, is con­
sidered to have the same value. The best value for this ratio turns 
out to be dose to 100. 

There are four main limitations to the regime that can be covered 
by the reflected shock tunnel: 

1. 	The departure of the composition of the free-stream gas 
from that of air. 

2. 	The fact that the test gas is brought to rest before it is 
accelerated again produces very high temperatures at high 
pressures which causes a containment problem. 

3. 	The test time is limited by the size, by driver-gas contam­
ination and by the containment limitation. 

4. 	The strength of the facility limits the pressure. 
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4-1.1 Free-Stream Freezing 

It is clear from Fig. 7 that it is not possible to produce a free­
stream gas composition that is free of NO, unless the reservoir 
temperature is kept below 2000 K. This is therefore a hard limita­
tion of the device if one is interested in real-gas effects in air. To 
set an arbitrary limit, choose the case when the molecular oxygen 
concentration is half of that in air. Fig. 7 may now be used to 
translate this limit into a line in ho Po space. The top part of 
the figure shows that this limit is reached at So IR = 35.2. The 
bottom part of the figure shows how Po and ho are related along 
this value of So. This relation is plotted in Fig. 11. As may be seen, 
an increase of Po moves the limit to significantly higher values of 
ho. 

This limitation may, strictly speaking, not be represented by a 
single curve in ho - Po space, because it is dependent on the size 
of the facility. However, since the recombination rate in the nozzle 
flow is proportional to the square of the pressure (other variables 
being the same) quadrupling the size of the facility would only 
lower the line by a factor of 2 in pressure. 

.1.1.2 Nozzle-Throat Melting 

The high temperatures and pressures seen by the containing mate­
rial in a reflected shock tunnel lead to the limitation that materials 
can not be found that will contain the conditions for the duration 
of the test without melting. From experiments in T5, a copper 
throat is found to melt at Po = 100 MPa, ho ;= 20 MJ Ikg, when 
the exposure to high heat flux lasts approximately 3 ms. From 
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Fig. 11. 	 Limitations on the reservoir pressure and specific enthalpy 
of reflected shock tunnels. The full line represents a facility 
of the size of T5. The dashed lines are for a facility scaled 
up by a factor of 4. 

this result, and from the properties of copper, the heat flux to 
the wall may be estimated using one-dimensional unsteady heat 
conduction theory to be ~ 2 GW 1m2. This agrees roughly with 
semi empirical formulas for throat heating. 

Starting from this experimental point, adjusting it for the differ­
ence in the properties of copper from those of the best material 
found so far (tungsten-copper alloy), and extending it according 
to approximate formulas, the curve shown in Fig. 11 results. The 
basis of the approximation of this extension is that the convective 
heat flux is proportional to the density and the cube of the ve­
locity, and that the exposure time is inversely proportional to the 
velocity. 

It is important again to realize that this curve also depends 011 

the facility size. The surface temperature reached under a given 
transient heat load is proportional to the square root of the expo­
sure time (other variables being the same). The exposure time is 
proportional to the test time, which scales directly as the facility 
size (as does the requirement for test time). Since the heat flux 
is approximately proportional to pressure, quadrupling the size of 
the facility thus lowers the throat melt limit by a factor of 2 in Po, 
which therefore kills half of the improvement of the upscale. 

4.1.9 Driver-Go..! Contamination 

The time interval between the arrival of the shock and the arrival 
of the contact surface at the right-hand end of the shock tube (see 
Fig. 1) is the most important factor in determining the test time. 
The test time can not simply be calculated from one-dimensional 
computations such as the one shown in Fig. 5, however, because 
the contact surface is in reality an extended region, and the com­
plex intera.;tion between the reflected shock and the boundary 
layer on the shock tube wall causes significantly earlier arrival of 
the driver gas at the nozzle throat . 

At a given ho, the time interval between the arrival of the shock 
and the contact surface is directly proportional to the size of the 
facility (other variables being the same). As ho is increased, how­
ever, from the condition where the gas in region 2 is a perfect 
diatomic gas to where it is partially dissociated, this time inter­
val changes down by almost a factor of 2. The speed with which 
the gas is drained from the reservoir through the throat into the 
nozzle increases as the square root of ho. Fortunately, the test 
time requirement also decreases as the square root of ho. How­
ever, the growth of the contact surface and the shock boundary 
layer interaction become more severe with increase of ho. As ho 
is increased, there comes a point when the test time is no longer 
sufficient. Though only very sparse information is available on this 
limit, it may be placed roughly at 22 :vIJIkg for the case of T5, 
and this is essentially independent of Po. 

Other things being equal, a scale increase increases the test time 
more than linearly, because the relative importance of the wall 
effects decreases. The test time requirement increases linearly with 
scale. The test time limit may therefore be expected to be moved 
to slightly higher ho in a larger facility. 

4.1.4 Strength, Scale Effects 

Clearly, the strength of the facility merely limits the pressure at 
which it can be operated, and may be represented by a line at 
constant Po. 

To illustrate the effect of scaling up a facility from the size of 
T5 by a. fa.ctor of 4, Fig. 11 also shows the displaced limits for 
the larger machine as dashed lines. This makes it clear that an 
increase of size makes strength relatively unimportant, since the 
throat-melt limit makes it impossible to operate at po > 70 MPa, 
if ho > 15 MJ/kg in the facility scaled up by a factor of 4. As 
regards the throat-melt, test-time and strength limits, T5 appears 
to be close to the optimum scale. This was fortuitous, since the 
scale and strength were determined by other constraints. 

4.1.5 Performance 

In the region of ho-po space within the above limitations, reflected 
shock tunnels can cover the space practically completely. In the 
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case of the free-piston device, this can be achieved with tailored 
interface operation, because of the flexibility of the speed of sound 
ratio a4/al of this device. 

As an example, Fig. 12 shows two reservoir pressure traces ob­
tained in T5. These are representative of the quality achiev-: 
able over the range 20 MPa < pO < 100 MPa, 5 MJ /kg < ho <; 
22 MJ/kg. 
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Fig. 12. 	 Nozzle reservoir pressure traces of two runs of T5 at 22 
(TOP) and 11 MJ/kg (BOTTOM). 

4.2 Expansion Tube 

As was pointed out in the description of the expansion tube, this 
facility type has the advantage that the material is exposed only 
to a fraction of the effective total pressure and only to a fraction of 
the total enthalpy. The stresses and heat loads are therefore not a 
serious limitation. Referring to Fig. 9 and Fig. 6 it becomes clear 
that for a given state 2, the effective values of Po and ho depend 
on the pressure 1120 to which the flow is expanded in the unsteady 
expansion. It is therefore not meaningful to relate the extreme 
heating condition to the ho - pO space on this basis. 

In the expansion tube a far more important concern is the short 
test time and the small test flow size. Consider for example a 
shock tube diameter of 100 mm. In the reflected shock tunnel, this 
provides a good flow for a nozzle exit diameter of typically 400 mm 
and a test duration of 1 ms at 18 MJ/kg. In the expansion tube, 
the same shock tube, driving an acceleration tube of the same 
diameter and 10 m length would produce a test flow of 100 mm 
exit diameter and 170 f.lS duration. 

Fortunately, the size of the facility can be increased, since the 
penalty for size that plagues the reflected shock tunnel (melt limit) 
does not exist here. However, the test time limit remains, since 
the test time, which increases linearly with the size, only matches 
the increased test time requirement, which also increases linearly 
with size, unless the facility is delibera.tely made much larger than 
the models to be tested. 

The friction losses in the acceleration tube set a limit on the length 
to diameter ratio. A reasonable maximum value is about 120. It 
turns out that a good shock tube length is then about 50 diame: 
ters. A rule of thumb for the optimum test time of an expansion 
tube is the time interval between the arrival of the primary shock 
and the arrival of the shock tube contact surface at the end of the 
shock tube. This time is given approximately by 

d 
r ~ 10 IL" 

yhO 

where d is the shock tube diameter. This is smaller than the test 
time requirement of20L/Voo , given in section 2.2, by a factor of 1.4 
if the model size L is taken to be the tube diameter d. The model 
therefore has to be smaller than the largest model that could be 
tested in the facility if size were the only constraint. 

Any attempts to expand the diameter of the expansion tube at 
the downstream end are therefore futile, since the model size is 
limited by the available test time, and not by the tube diameter. 
(This verdict may be relaxed if the flow studied is such that less 
test time than 20Voo /L is required.) 

The most important problem in expansion tube operation is there­
fore the preservation of as much as possible of the test time. An 
obvious factor reducing the test time is the opening time of the 
secondary diaphragm, which is disregarded in the ideal expan­
sion tube calculations above. In order to show the effect of finite 
diaphragm opening time, Fig. 8 shows as blown up insets two suc­
cessive enlargements of a portion of the wave diagram. In the 
largest of these, the diaphragm is shown to accelerate from rest 
over a finite time to become the contact surface between the ac­
celeration and test gas. The diaphragm thus causes the incident 
shock to be reflected. As the diaphragm accelerates, expansion 
waves are transmitted to the reflected shock, weakening it and 
eventually causing it to become the right edge of the unsteady 
expansion. On the accaleration tube side of the diaphragm, com­
pression waves are transmitted to the right, which focus to form 
the acceleration tube shock. The time it takes to accelerate the 
diaphragm clearly reduces the test time. 

The reduction in test time is roughly equal to the diaphragm open­
ing time. This is given approximately by 

where p is the density of the diaphragm material, () is the di­
aphragm thickness and 112 is the pressure in state 2. For a mylar 
diaphragm that is just strong enough to contain PI = 100 kPa, 
and a diameter of 300 mm, this gives an opening time of approx­
imately 70 f.lS. On the basis of the above rule of thumb, the test 
time becomes 0.7 ms at 18 MJ /kg, so that the diaphragm opening 
time redllces the available test time by about 10%. 

All of these considerations assume the flow to be one-dimensional, 
and serious consequences for the test time may be expected to 
result also from the wall effects on the structure of the two contact 
surfaces, and the three-dimensionality of the diaphragm rupture. 

The composition of the test gas was assumed to be that of state 
2 above. This is a little pessimistic, because some recombination 
will occur in the unsteady expansion during the later part of the 
test duration, where the gas has taken a longer time to traversee 
the expansion wave. This will therefore cause the composition to 
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va:ry during the test time from an initial condition corresponding 
to that of state 2 to a final condition in which the atomic oxygen 
concentration, and to a lesser extent the NO concentration, are 
reduced slightly. The composition limit is almost independent of 
PO. The molecular oxygen will be reduced to half the value in air 
at ho ~ 22 MJ /kg. 

Summa:rizing the limitations of the expansion tube, the emphasis 
has to be on the test time limit. Since the diaphragm opening 
time is independent of ho, there comes a point where the enthalpy 
is limited by the test time. In the author's opinion, this limit is 
at 30 MJ /kg. The upper limit on po is unimportant, since values 
in the GPa range a:re easily achievable. 

4.2.1 Performance 

To date, the la:rgest expansion tube is one operated at the General 
Applied Sciences Laboratory in New York by a team headed by 
Dr. John Erdos. This has a shock tube (and acceleration tube) 
diameter of 150 rnrn. At present it has a cold helium driver, so that 
the enthalpy at which it can be run is limited to approximately 
12 MJ /kg. A modification to equip the facility with a free-piston 
driver is being considered at present. This would extend the range 
to approximately 30 MJ/kg. The effective reservoir pressure is 
very high. In the GASL facility, values of up to 400 MPa have 
been achieved. 

5. Concluding Remarks 

The thermodynamics, gasdynamics and scaling laws of hyperve­
locity flows, the power requirements, and the properties of con­
taining materials, were shown to lead to the two main hyperve­
locity flow simulation facility types: The reflected shock tunnel 
and the expansion tube. The simplest forms of such devices were 
described, giving the logic that leads to them, and a compa:rison 
of their ranges of applicability. This was done with rega:rd only 
to their main features, and many subtle points of their operation 
had to be omitted. 

The ha:rd limitations of the reflected shock tunnel constrain 
this device to be restricted to specific reservoir enthalpies below 
22 MJ/kg and reservoir pressures below 90-200 MPa (depending 
on the enthalpy in the range 25-12" MJ/kg) at the size of the 
presently operating facility T5. Increase of size ca:rries severe pres­
sure penalties. The expansion tube's most severe restriction is the 
short test time. This is critically constrained by the behavior of the 
contact surface and the opening time of the seconda:ry diaphragm. 
However, there appea:r to be no penalties for scale increase, and the 
reservoir pressure obtainable is extremely high. The upper limit 
for the specific reservoir enthalpy is approximately 30 MJ/kg on 
the basis of the free stream dissociation and test time constraints. 
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Abstract 

The requirements for ground simulation of hypervelocity flows are 
set out on the basis of the similarity parameters of the problem. 
This, together with the thermodynamical properties of air, the 
consequent heat loads on the facility and large power requirements, 
leads to the two most successful devices, the reflected shock tunnel 
and the expansion tube. After a description of the operation and 
the thermodynamics of these devices, their essential limitations are 
explained. Scale effects of these limitations are discussed. On this 
basis the range over which they can be applied for flow simulation 
is delineated. 

Keywords: Hypervelocity flow, ground simulation, simulation 
facilities, shock tunnel, expansion tube, dissociation. 

1. Introduction 

The term hypervelocity is used to distinguish those flows in which 
the velocity is so large that the conditions after the bow shock on 
a body are such as to cause the molecular components of the gas 
to dissociate. The fields of human endeavor where hypervelocity 
flows are of importance are those in which an object traverses the 
atmosphere of one of the planets of the solar system. Typically 
this could be associated with transport to or from'space in man­

1de vehicles, but hypervelocity flows also occur naturally, e.g., 
when a meteorite enters a planetary atmosphere. 

The term hypersonic flow is used to describe situations where the 
flow speed is large compared to the free-stream speed of sound. 
Such high-Mach-number flows can, of course, be generated by low­
ering the speed of sound far enough to keep the gas in the regime 
where it behaves as a perfect gas. In such cold hypersonic flows, 
the important dissociative and other 'real-gas effects of hypervelo­
city flows do not occur. In order to understand the intricacies of 
flows in which the chemistry of the gas is activated by the kinetic 
energy of the flow, it is necessary to simulate hypervelocity flows 
in the laboratory. 

In the context of the earth's atmosphere the orbital velocity ig 
8 km/s, and the velocity at which the most severe heating problems 
arise is 6 km/s. In the frame of reference of the flying object, 
the ordered kinetic energy per unit mass of the free-stream gas is 
therefore 18 MJ/kg. At high enthalpy, the Mach number, which 
measures the square root of the ratio of the ordered kinetic energy 
of the flow to the thermal energy of the gas, is not so important 
as the ratio of the ordered kinetic energy measured in terms of the 
specific dissociation energy of the gas. There are usual:y several 
such characteristic chemical energies. 

The characteristic specific energies relevant for air are 

DN2 = 33.6 MJ /kg EvN2 =0.992 MJ/kg 

DOl = 15.5 MJ /kg EVol = 0.579 MJ/kg 

DNO = 20.9 NlJ/kg EvNO =0.751 MJ/kg, 

where the D's and Ev's are specific energies of dissociation and of 
vibration respectively. It is not possible to simulate the numerous 
idiosyncrasies of a particular gas by using another gas. The specific 
chemical energies ha.ve definite known values, and the duplication 
of the ratios of the ordered kinetic energy to them in a simulation 
implies that the actual flow speed has to be duplicated. 

It follows that the reservoir enthalpy ho of the flow, which is ap­
proximately equal to V 2/2, where V is the flow speed, has to have 
the same value as in flight. If the flow is accelerated from a reser­
voir at rest, without adding energy to it during the expansion, 
the reservoir enthalpy corresponding to a flow speed of 6 km/s is 
18 MJ/kg, which, at a reservoir pressure of 100 MPa, implies a 
temperature of nearly 9000 K in air. 

The high pressure is necessary to ensure that the chemical reaction 
rates occur at the right speed for correct simulation of nonequi­
librium effects. Smaller scale requires faster reaction for correct 
simulation. If the temperatures are right (as is ensured by correct 
:flow speed) the reaction rates depend mainly on the density. Rates 
for binary reactions, like dissociation, are linear in density, those 
for three-body reactions, like recombination, are quadratic in den­
sity. Thus, all rea,ctions can never be simulated correctly except 
at full scale. In many cases, three-body reactions are not impor­
tant and, where they are, component testing or extrapolation is 
necessary. 

Continuous flow facilities are ruled out by the high power require­
ments of typically a few GW. The high speed reduces the steady 
flow duration requirement to a few ms, however. A convenient 
way to accelerate, heat and compress a gas for a short time, is to 
pass a shock wave over it. Many types of high-enthalpy facilities 
therefore embody shocks as elements. 

The problem of hypervelocity simulation is not limited to speeds 
of the order of 6 km/s, of course. Meteorites entering planetary 
atmospheres typically have a speed of 20-60 km/s, and proposals 
for man-made vehicles have considered speeds in the vicinity of 
16 km/s. Such conditions involve very strong ionization of the gas 
and intense radiative heat loss from it. In the following discus­
sion, such very high speeds will not be considered, and attention 
will be concentra.ted on the range 3-7 km/s. In this range, the re­
quirements for simulation of hypervelocity flows and some of the 
methods by which the simulation has been achieved to date will 
be presented. The paper then closes with a discussion of the limi­
tations and achieved conditions of the different types of facilities. 

This paper is a descriptive account of the reasons for the forms that 
hyperveloci ty simulation facilities have taken. It is not a detailed 
account of the work that has been done in the field, and only a 
few representative publications will be cited. A very important 
book on the subject is Lukasiewicz's uExperimental Methods of 
Hypersonics". The interested reader should consult this volume 
on all the questions concerning this field. 



In the present paper, the two most successful facility types for 
hypervelocity flow simulation, the reflected shock tunnel and the 
expansion tube will be given prominence. 

2. Requirements for Ground Simulation 

2.1 Similarity in Hypervelocity Flows 

To simulate a hypervelocity flow at smaller scale, all the dimen­
sionless parameters of the problem have to be reproduced. In 
steady hypervelocity flows any dimensionless dependent quantity 
Q, say, depends on dimensionless variables as follows: 

Q Q(Moo,Re, Pr,Tw/To, Bn,€};,p,E" Rj, Lei, coo,). 

Here, Moo is the free stream Mach number, Re and Pr are 
Reynolds and Prandt! numbers, which, in this context, are best 
defined at, conditions corresponding to the gas in equilibrium af­
ter a normal shock for which the upstream conditions are those 
of the free stream, Tw is a representative body surface tempera­
ture, To is the temperature from which a gas would have to be 
expanded by a steady expansion to reach the free-stream condi­
tions, En is a vector of length ratios defining the body geometry, 
€}; is the angle of attack, and p is the yaw angle. Ei is a vector of 
dimensionless numbers relating the specific formation enthalpies 
of the to the specific kinetic energy of the free-stream gas, 
Rj is a vector relating the characteristic lengths associated with 
the chemical reactions to the characteristic length of the body, Lei 
are the Lewis numbers giving the dimensionless species diffusion 
coefficients, and Cooi is a vector giving the dimensionless concen­
trations of the species in the free stream. Even this long list of 
variables is not complete, as the vibrational characteristics of the 
molecular species have been omitted. 

Up to and including f3 in the above list, the variables are the same 
as in cold hypersonics, in which the remaining variables, which 
describe the thermodynamic and chemical properties of the gas, 
can be replaced completely by a single variable, the ratio of spe­
cific heats, which, for a perfect gas, is a constant. Clearly, the 
more complex thermodynamics and chemistry of the hyperveio­
city flow requires many more parameters to be duplicated in the 
scale experiments than perfect-gas cold hypersonics. For example, 
in air at a free-stream speed of 5 km/s, it is necessary to include 
at least 5 species and 8 reactions, so that, if all the geometrical 
parameters are exactly duplicated, there remain over 20 dimen­
sionless variables to match. In fact, as has already been indicated 
in the introduction, it is not possible to simulate both binary and 
three-body reactions simultaneously (except at full scale) because 
of the difference in their dependence on the density. 

In special cases, however, the problem may be considerably sim­
plifi~d. For example, if the gas is especially simple, such as in a 
single diatomic gas, there is only a single E and there a.re only 
two R'g. Only one of the R's can be matched, and, e.g., in blunt 
body flows, it is best to match the binary dissociation reaction. 
With correct this automatically also causes Re, Le and Pr to 
be matched. Thus, the problem reduces to 

Q = Q(II,f,Tw/To,E,R,coo )' 

If the Mach number is sufficiently high, and the bow shock is not of 
interest in regions where it becomes very weak, the Mach-number­
independence principle is effective, and the number of independent 
parameters is down to 4. This situa.tion can be satisfactorily sim­
ulated. 

Where such simplifications are not possible, it becomes necessary 
to divide the flow field up into particular regions and to simulate 
these separately. This is sometimes referred to as component test­
ing. An example is the testing of engine combustors by connecting 
the inlet of the combustor directly to the exit of the facility noz­
zle, thus enabling testing at almost full size. Another example is 
the testing of the situation on the front of a body by placing only 
the nose shape into the test section, so that binary scaling and 
Mach-number independence apply. 

2.2 Power Requirement 

It is really quite amazing how much power is in a hypervelocity 
flow. For example, a wind tunnel with a cross-sectional area 
of 1 m2 , in which the flow speed is 7 km/s, and the density is 
0.01 kg/m3 requires a. power of 2 GW. This is a tenth of a percent 
of the power consumption of the USA. It also corresponds to an 
energy flux of 2 GW /m2, or 46 times that at the surface of the 
sun. It is clear, that this kind of power can not be sustained for 
long times. 

Fortunately, it only takes a very short time to set up a stea.dy 
flow over a model at such high speeds. Opinions differ about the 
necessary test time. A reasonably conservative value is 

L 
T == 20 

where L is the model length and Voo is the free-stream velocity. 
With this value, the test time requirement for the above facility 
comes out to approximately 3 m5, so that the energy requirement 
is only 10 MJ. This energy can be stored over a long time and 
released during a short test period. 

The power requirement is thus one of the reasons why short­
duration facilities are necessary for hyperveiocity flow simulation. 
Another reason arises in the case of facilities that use a steady 
expansion to accelerate the flow from rest. In such facilities, the 
thermodynamic condition in the reservoir from which the gas is 
expanded is such that the specific enthalpy, ho, has to be 20 MJ/kg 
or so. In air, at a pressure of 100 MPa, this corresponds to a tem­
perature of 9500 K or so. Hence, it is necessary to limit the time 
for which the materials containing the flow are exposed to these 
conditions. With the best materials available today, 3 ms is about 
the limit at the conditions quoted. 

2.3 Instrumentation Requirements 

This topic is one that deserves at least as much space as this whole 
paper, and it will not be possible to deal with it here, except for 
the purpose of pointing to its importance. Clearly, a test in a 
hypervelocity simulation facility is quite expensive. It is therefore 
most desirable to make as extensive a set of measurements as 
possible, each time such a test is performed. Unfortunately, the 
different forms of non-intrusive testing that exist at present require 
different degrees of expertise, which are seldom available at the 
same place as the test, because of the degree of sophistication 
that they often require. 

Among the presently used routine measurement techniques, the 
following are ava.ilable at all high-enthalpy test facilities: 

1. Surface pressure measurement 
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2. Surface heat flux measurement 

3. Schlieren and shadow photography 

4. Interferometry 

'T'echniques that are applied relatively rarely to hypervelocity 
,ws, but are very important for them, are 

1. Mass spectrometry 

2. Spectroscopy 

3. Laser-induced fluorescence 

4. Raman spectroscopy 

These methods are able to measure species concentrations and 
temperature, and would therefore provide extremely important 
data for the analysis of results from hypervelocity facilities. In the 
author's opinion, it is high time that major funding be directed to 
the juxtaposition of modern diagnostics and hypervelocity facili­
ties. A good example of this is the policy at the HEG laboratory 
in Gottingen, Germany. 

3. Hypervelocity Simulation Facilities 

In this section the principles of operation of the most success­
ful types of hypervelocity facilities are presented. The thermody­
namical and chemical processes which the gas undergoes in the 
generation of the hypervelocity flow are given prominence in this, 
because they define and explain the most serious disadvantages of 
the facility types. 

3.1 Reflected-Shock Tunnel 

o t.1 	 Configuration and Operation 

J far the most used and most productive hypervelocity simula­
tion facility is the reflected shock tunnel. Fig. 1 shows a schematic 
sketch and a wave diagram of the device. Initially, the driver re­
gion is filled with high-pressure gas and a diaphragm separates 
it from the shock tube, which is filled with the test gas at lower 
pressure. The shock tube is separated from a nozzle, attached to 
its other end by a weak diaphragm. The nozzle and test section, 
as well as the dump tank, are initially evacuated. The test section 
and dump tank are not shown in the figure. 

time 

4 

shock 
contact surfa~ 

Cdriver gas J lest gas =>-0 
nozzlemain diaphra-gm ] 

Fig. 1. 	 Schematic sketch of reflected shock tunnel and wave dia­
gram. The separation between the shock wave and contact 
surface is exaggerated to show it better 

-~"'en the main diaphra.gm breaks, a shock wave propagates into 
test gas, and an expansion wave propagates into the driver 

gas in such a. way that the pressures and velocities in the region 

between the shock wave and expansion wave are continuous across 
the interface between the two gases. These processes are shown 
in the wave diagram of Fig. 1. The initial state of the driver gas, 
in region 4 of the wave diagram, is processed by the expansion 
wave to the condition in region 3, and the initial state of the test 
gas, region 1, is processed by the shock wave to the condition in 
region 2. The states 2 and 3 are determined by the expansion 
wave and by the shock wave and the requirement that velocities 
and pressures must ma.tch across the boundary between 2 and 
3. This may best be illustrated by a velocity-pressure diagram, 
shown in Fig. 2. The upper curve shows the locus of the states 
that can be reached from the initial condition of the driver gas 
via an expansion wave and the lower curve shows the states that 
can be reached from the initial state of the test gas via a shock 
wave. Their intersection represents the condition in regions 3 and 
2, where pressures and velocities are matched. The solution thus 
corresponds to the intersection of the two curves in Fig. 2. 

1000 

100 

~ 
R. 

10 

1 
0 2 4 6 8 10 

u/a1 

Fig. 2. 	 Example of velocity-pressure diagram for a shock tube. The 
pressure P is normalized with the initial pressure of the test 
gas, PI, and the velocity u is normalized with the speed of 
sound in the test gas at condition 1, al. In this example the 
ga.ses are trea.ted as perfect gases with specific heat ratios 
1'1 and 1'4 of 7/5 a.nd 5/3 respectively. Also, the ratio of the 
speeds of sound a4/ a}, the third parameter determining the 
solution, was chosen to be 5. 

If a whole lot of such solutions are combined, the solutions can 
be shown parametrically in a diagram plotting the shock Mach 
number Ms = V3 !al against the pressure ratio P4!Pl. This is 
done in Fig. 3. 

In the reflected shock tunnel, the state of the test gas in region 2 is 
processed further by the shock wave reflected from the closed end 
of the shock tube. This heats and compresses the gas even more 
than has already been accomplished by the primary shock, but it 
also brings the test gas to rest again. The primary shock breaks 
the thin diaphragm between the shock tube and the nozzle, thus 
allowing the test gas to expand in a steady expansion through the 
nozzle. 

It is importa.nt to opera,te the shock tunnel in such a way that the 
interaction between the reflected shock and the contact surface 
does not produce any further waves. When conditions have been 
chosen in such a way that this is the case, this is referred to as 
tailored-interface opera.tion. The condition behind the reflected 
shock is then the reservoir condition of the nozzle flow, and is 
referred to by the subscript O. 
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Fig. 3. 	 The shock tube equation for monatomic driver gas and di­
atomic test gas, both treated as perfect gases. Note the 
strong dependence of the shock Mach number on the speed 
of sound ratio. Real-gas effects modify this diagram only 
slightly. 

The nozzle expansion converts the thermal energy of the station­
ary reservoir gas into ordered kinetic energy. In doing so, the 
maximum flow velocity achievable is 

where ho is the specific enthalpy of the reservoir condition. Since it 
is necessary to achieve speeds around 6 km/s, the reservoir specific 
enthalpy needs to be in the vicinity of 18 MJ/kg. In a reflected 
shock tunnel, a very good approximation is 

ho V/. 
It follows that the shock speed has to be about 4.3 km/s, which, 
in air, corresponds to Ms = 12.5. Referring to Fig. 3, we see 
tha.t this value may not be reached with pressure ratios less than 
2000 unless 0.4/0.1 exceeds 8. Since the test gas speed of sound is 
virtualJy fixed by the fact that we want to use air in a laboratory 
at room temperature, the driver-gas sound speed has to be high. 

3.1.2 	 Drivel'-GaJ ConditionJ 

Various ways have been used to increase 0.4. First, a light gas, 
either hydrogen or helium is used, and second, the driver gas is 
heated. Steady state heating is limited to about 800 K. This gives 
0.4/0.1 = 4.8 for helium driver gas and air test gas. Not only is 

primary diaphragm 

this too low, but it is also expensive and dangerous to contain 
high-pressure and high-temperature gas for an extended period. 
A second method is to heat the driver gas relatively quickly by 
combustion of a limited amount of hydrogen and oxygen mixed 
with the driver gas before the test. Mixtures in the proportions 
14% hydrogen: 7% oxygen: 79% helium, give 0.4/0.1 :::::: 7. 

While this is just about enough, another, more convenient tech­
nique is to compress the driver gas adiabatically with a heavy 
piston. This method has the advantage that the driver gas is hot 
only for a very short time, and that (as in the combustion-heated 
driver) the high pressure required is produced automatically. How­
ever, it also means that the driver is short, with a moving end wall, 
so that waves travelling between the main diaphragm station and 
the piston cause disturbances to the shock. With adiabatic com­
pression, values of 0.4/ a1 up to 12 are easily achievable, and the 
value of this parameter may be adjusted by using mixtures of he­
limn and argon as 'driver gas. Monatomic gases require smaller 
compression ratios for the same pressure and temperature gains. 

An example of a free piston driven reflected shock tunnel is shown 
in Fig. 4. This is the facility known as T5 at GALCn. Similar ma­
chines exist at Canberra and Brisbane in A ustralia., at Gottingen 
in Germany, and at Tullahoma, USA. 

The piston is ac~elera.ted in the compression tube by c.om­
pressed air initially contained in the secondary air reservoir, thus 
compressing the driver gas until the diaphragm burst pressure 
(:::::: 90 MPa) is reached. The piston speed at rupture has to be 
sufficiently high (~ 170 m/s) to mainta.in almost constant pres­
sure after diaphragm rupture for a short time (::::::2 ms). Thus, the 
free-piston driver is a constant-pressure driver, in contrast to the 
constant-volume driver of the conventional shock tunnel. Fig. 5 
shows a computed wave diagram for the processes in the compres­
sion and shock tubes of T5 after diaphragm rupture. 

Another method of heating the driver gas is by a detonation wave 
travelling into a detonable mixture from the diaphragm end of the 
driver tube. This method has the advantage that the diaphragm 
may be much thinner, since it only needs to withstand the rel­
atively low pressure before detonation. It also produces a long 
driver which should produce a more uniform shock propagation 
than the free-piston driver. A disadvantage is that, with hydro­
gen, the combustion produces water. The NO invariably produced 
in the reflected shock tunnel is likely to combine with this to form 
a very hostile environment for instrumentation and models. 

compression lube (CT) econdary air reservoir (2R) 

Fig. 4. 	 Sectional view of the free-piston reflected shock tunnel T5 at GALCIT, with blow-ups 
of some of the parts. On the left is the 30 m long compression tube, joined to the 
12 m shock tube and nozzle on the right. The test section and dump tank are not 
shown. 
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Fig. 5. 	 Method of characteristics computation of the processes in 
the free-piston reflected shock tunnel. (after Hornung and 
Belanger,AIAA 90-1377). 

8.1.8 	 Reservoir Condition.! 

The shock wave propagating along the shock tube generates a 
boundary layer on the shock tube wall, which causes the shock to 
decelerate. This attenuation limits the length to diameter ratio of 
shock tubes to approximately 100. Since the test time is propor­
tional to the shock tu be length if there are no losses, the shock 
tube diameter effectively is one of the limiting factors on the test 
time. 

As the shock speed needs to be approximately 4 km/s, the specific 
enthalpy after the shock is 8 MJ/kg. This corresponds to h/R = 

1)00 K, where R is the specific gas constant for air at room 
,]perature. The process undergone by the gas may be shown in 

a Mollier diagram, see Fig. 6. Here the initial state of the gas in 
the shock tube (state 1) is shown at siR 24 on the entropy 
a.xis as a square point, and the primary shock raises the state to 
the coordinates [30, 24000 KJ, (sta.te 2) see dashed line. Pressure 
and temperature are now 18 MPa and 4000 K. At this condition, 
part of the oxygen is already dissociated and some NO has been 
formed. ' 

The reflected shock then increases h and iJ further, to the point 
[33.5, 60000 KJ, (state 0), where pressure and temperature are 
100 MPa and 8000 K, see continuation of dashed line. The steady 
nozzle expansion takes the gas down in enthalpy at constant en­
tropy to the final point on the dashed line, which then represents 
the free stream conditions of the tunnel. 

This is not quite correct, of course, because the nozzle flow does 
not usually proceed in thermodynamic equilibrium all the way 
down to this state. At some point in the nozzle flow, the density 
is no longer large enough to maintain the large number of three­
body collisions between particles that is required for the atomic 
particles to continue recombining as the gas cools in the expansion. 
Such non-equilibrium states can not be represented in a Mollier 
diagram. 

9.1.'; 	 Nozzle-Flow Freezing 

~. 'recombination reactions stop fairly suddenly in the nozzle ex­
sion, and because the composition of the gas remains constant 

after this point, the phenomenon is called nozzle-flow freezing. A 

).: 

40::­ 10
'­.c 

1 00 K 

400 K
310
20 25 30 35 40 

siR 

Fig. 6. 	 Mollier diagram for equilibrium air, showing lines of con­
stant pressure and temperature. An example of the pro­
~esse5 in a reflected ~hock tunnel is shown by the dashed 
hne. The lower astensk represents the exit condition in an 
expa.nsion tube that starts with the same shock tube con­
?itions as in the reflede.d shock ex~mple. The upper aster­
Isk represent~ the effectIve reservOIr state of the expansion 
tube. The triangles show reservoir a.nd exit condition of the 
facility proposed at Princeton. 
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Fig. 7. 	 TO P: For a given nozzle, the exit composition depends only 
on the dimensionless reservoir entropy. Example of T5 noz­
zle. BOTTOM: Mollier chart of the reservoir state showing 
lines of constant reservoir pressure. The specific reservoir 
enthalpy axis is plotted in the form of the maximum a.chiev­
able velocity. This shows how, at a given flow speed, the 
specific reservoir entropy, and therefore the exit composi­
tion, depend on the reservoir pressure. 
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well-known feature of freezing is that, for a given nozzle, the com­
position of the frozen gas depends only on the reservoir specific 
entropy So, and not on the reservoir specific enthalpy ho or reser­
voir pressure Po. In the example of one of the nozzles of T5, the 
upper part of Fig. 7 shows the frozen composition plotted against 
solR. As may be seen, the concentration of atomic oxygen in the 
flow increases as solR increases, until at 34 the number densities 
of 02 and 0 are equaL Also, the fairly high concentrations of NO 
are unavoidable. 

The lower part of Fig. 7 shows a Mollier chart of the reservoir 
state. Here the enthalpy coordinate has been distorted to convert 
it into the velocity achievable from a given reservoir state. This is 
because it shows the relation between the composition of the free­
stream gas and the reservoir pressure. For example, to achieve 
6 km/s, a reservoir pressure of 100 MPa produces the composi­
tion corresponding to solR 34.9, while a reservoir pressure of 
1 GPa at the same enthalpy would give the lower atomic oxygen 
concentration corresponding to solR = 31.6. Fig. 7 also shows 
that the NO concentration remains constant as So is decreased. 
This is una.voidable with high-enthalpy reflected shock tunnels. 

3.2 Expansion Tube 

3.2.1 	 Configuration and Operation 

Some of the essential limitations of the reflected shock tunnel are 
removed at the cost of new limitations by using an expansion tube. 
The expansion tube, like the reflected shock tunnel, first processes 
the test gas by propagating a shock wave through it, thus com­
pressing, heating and accelerating it. The test gas is then not 
brought to rest as in a reflected shock tunnel, but accelerated fur­
ther by an unstea.dy expansion. This is achieved by the arrange­
ment shown in Fig. 8 also showing the wave diagram describing 
its operation. 

In the expansion tube, a long acceleration tube usually of the 
same diameter as the shock tube is initially separated from tne 
shock tube's downstream end by a thin secondary diaphragm. The 
pressures might have the initial values: 100 MPa, 100 kPa, 200 Pa 
in the driver, shock tube and acceleration tube respectively. 

When the shock strikes the secondary diaphragm, it breaks, and 
the test gas acts as the driver for the shock propagating into the 
acceleration tube gas. The regions 10, 20 and 30 thus are analo­
gous regions to those labelled 1, 2 and 3 in the shock tube. The 
processes undergone by the test gas are: 1-2 (shock), 2-3 (unsteady 
expansion). The conditions in the test gas after these processes 
may again be calculated by the shock tube equation. The result 
of such a calculation is shown graphically in Fig. 9. The test time 
is limited by the acceleration-gas test-gas contact surface, and by 
the leading edge of the reflection of the unsteady expansion from 
the driver-gas test-gas contact surface. 

8.2.2 	 Effective Re8ervoir State 

The expansion tube's thermodynamics may now be compared with 
that of the reflected shock tunnel in Fig. 6, where the lower asterisk 
marks the test condition of the expansion tube. The two first 
square symbols representing state 1 and state 2 are shared by the 
shock tunnel and expansion tube. The expansion tube takes the 
gas to a maximum temperature of 4000 K in this example, so that 
the atomic oxygen and NO concentrations may be kept much lower 
than in the shock tunnel. 

At the same time, the effective specific reservoir enthalpy is more 
than twice the static enthalpy in region 2, since it is possible to 
gain total enthalpy in an unsteady expansion. This is therefore 
higher than after the reflected shock. To show the effective reser­
voir state of the expansion tube in Fig. 6 a second asterisk is 
plotted there, connected to state 2 with a dotted line to indicate 
that the gas never reaches this high enthalpy and pressure. The 

Fig. 8. 	 Schematic sketch and wave diagram of an expansion tube. The detail in the vicinity 
of the rupture .of the secondary diaphragm is shown in two enlarged insets. The di­
aphragm is accelerated to the contact surface speed over a finite opening time. This 
causes a reflected shock that is accelerated by the left running expansion wave trans­
mitted from the diaphra.gm. Clearly, diaphragm opening time reduces the available 
test time. 
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Fig. 9. 	 Velocity-pressure plot of the processes in an expansion tube. 
The full lines give the solution for region 2 and the dashed 
lines, representing the locus of conditions achievable via a 
shock wave from condition 10, and the conditions achiev­
able via an unsteady expansion from condition 2, give the 
so!ution f~r the test ~ondition, 20. In this example, the 
d!lver gas IS monatomlC and the test and acceleration gases 
are diatomic. All are considered perfect gases. 

lower entropy of the expansion tube causes the effective reservoir 
pressure to be enormous. In our example, it is around 2 GPa. 

The static enthalpy h and static pressure p of the gas can remain 
low in the expansion tube, because the gas is not brought to rest 
after reaching state 2. This may illustrated schematically in the 
case of h by the diagrams in Fig. 10 

JShock] stoady expansion 
rellected .hock 

+ 	 u 2/2~h 

h 

unsteady 	."panslon 

Fig.IO. 	Timelines of the static and effective reservoir specific en­
thalpy during the processes in a reflected shock tunnel 
(TOP), and in an expansion tube (BOTTOM). The ex­
pansion tube avoids the high value of h experienced by 
the test gas in the reflected shock tunnel and yet achieves 
even higher ho. 

3.2.3 	 Free Strea.m Conditions 

The test gas composition is practically that of state 2, because the 
density drops so quickly in the unsteady expansion that recombi­
nation of the atomic oxygen is not possible. Therefore it is best to 
operate the expansion tube with as Iowa value of T2 as possible 
from this point of view. 

It the expansion is taken to the same free stream presure as in the 
:ted shock tunnel, see Fig. 6, the free stream tempera.ture is 

seen to be much lower. This permits higher Ma.ch number t.o be 
reached a.t the same ho. 

3.3 Other Types of Facilities 

A number of other types of facilities are in operation or are being 
considered. Among these the hypervelocity range is the most im­
portant. It employs a two-stage light gas gun to launch a model at 
the required speed into stationary gas in along tube. This device 
is clearly much more expensive to operate than one in which the 
model is stationary. The model and instrumentation are also much 
more expensive, and it is difficult to test models that have high 
lift. However, the hypervelocity range is the only facility type in 
which good measurements of far wakes of bodies can be obtained. 

There have been a number of other schemes, involving magneto­
hydrodyna.mic accelerators or arc heaters. A relatively new idea 
being pursued at Princeton, is the optically heated continuous 
flow facility. This scheme aims to keep the gas below 2000 K in 
order to prevent the formation of NO. In Fig. 6, the process is 
shown by the chain-dotted line termina.ted by triangles. The gas 
is first compressed to a pressure of I GPo. or more, and 2000 K. 
This makes use of the van der Waals effect that the isotherms 
curve up at low entropy, giving higher enthalpy. In the example 
shown in Fig. 6, the gas has approximately 20% of the necessary 
total enthalpy in this condition. The remainder of the enthalpy is 
added during a steady expansion by absorption of light. Success 
depends critically on whether the enormous power levels required 
(~ 1 GW in the form of light) can be achieved and can be absorbed 
by the gas without causing non-equilibrium processes to produce 
atomic oxygen. In the a.uthor's opinion, these are very substantial 
questions. 

4. Limitations of the Main Facility Types 

All the different facility types have limitations that constrain them 
to be operated in regimes where conditions are acceptable and 
where they work. To some extent, the regimes covered by different 
facilities complement each other. As in the previous sections the 
following discussion will concentrate on the two most important 
types, the reflected shock tunnel and the expansion tube. 

4.1 Reflected Shock Tunnel 

Part of the following discussion is concerned with the effects of 
increasing the size of a reflected shock tunnel. In these considera­
tions it is assumed that the ratios of lengths remain constant. In 
particular, the length to diameter ratio of the shock tube, which 
is limited by friction and heat loss at the shock tube wall, is con­
sidered to ha.ve the same value. The best value for this ratio turns 
out to be close to 100. 

.There are four main limitations to the regime that can be covered 
by the reflected shock tunnel: 

1. 	The depa.rture of the composition of the free-stream gas 
from that of air. 

2. 	The fact that the test gas is brought to rest before it is 
a.ccelera.ted again produces very high temperatures at high 
pressures which causes a containment problem. 

3. 	The test time is limited by the size, by driver-gas contam­
ination and by the containment limitation. 

4. 	The strength of the facility limits the pressure. 
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4.1.1 Free-Stream Freezing 

It is clear from Fig. 7 that it is not possible to produce a free­
stream gas composition that is free of NO, unless the reservoir 
temperature is kept below 2000 K. This is therefore a hard limita­
tion of the device if one is interested in real-gas effects in air. To 
set an arbitrary limit, choose the case when the molecular oxygen 
concentration is half of that in air. Fig. 7 may now be used to 
translate this limit into a line in ho Po space. The top part of 
the figure shows that this limit is reached at So IR = 35.2. The 
bottom part of the figure shows how Po and ho are related along 
this value of So. This relation is plotted in Fig. 11. As may be seen, 
an increase of Po moves the limit to significantly higher values of 
ho. 

This limitation may, strictly speaking, not be represented by a 
single curve in ho - Po space, because it is dependent on the size 
of the facility. However, since the recombination rate in the nozzle 
flow is proportional to the square of the pressure (other variables 
being the same) quadrupling the size of the facility would only 
lower the line by a factor of 2 in pressure. 

4.1.2 Nozzle· Throat Melting 

The high temperatures and pressures seen by the containing mate­
rial in a reflected shock tunnel lead to the limitation that materials 
can not be found that will contain the conditions for the duration 
of the test without melting. From experiments in T5, a copper 
throat is found to melt at pO :=; 100 MPa, ho 20 MJ/kg, when 
the exposure to high heat flux lasts approximately 3 ms. From 
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Fig. 11. 	 Limitations on the reservoir pressure and specific enthalpy 
of reflected shock tunnels. The full line represents a facility 
of the size of T5. The dashed lines are for a facility scaled 
up by a factor of 4. 

this result, and from the properties of copper, the heat flux to 
the wall may be estimated using one-dimensional unsteady heat 
conduction theory to be ~ 2 GW 1m2• This agrees roughly with 
semiempirical formulas for throat heating. 

Starting from this experimental point, adjusting it for the differ­
ence in the properties of copper from those of the best material 
found so far (tungsten-copper alloy), and extending it according 
to approximate formulas, the curve shown in 11 results. The 
basis of the approximation of this extension is that the convective 
heat flux is proportional to the density a.nd the cube of the ve­
locity, and that the exposure time is inversely proportional to the 
velocity. 

It is important again to realize that this curve also depends on 
the facility size. The surface temperature reached under a given 
transient heat load is proportional to the square root of the expo­
sure time (other variables being the same). The exposure time is 
proportional to the test time, which scales directly as the facility 
size (as does the requirement for test time). Since the heat flux 
is approximately proportional to pressure, quadrupling the size of 
the facility thus lowers the throat melt limit by a factor of 2 in Po, 
which therefore kills half of the improvement of the upscale. 

4.1.9 Driver·Gas Contamination 

The time interval between the arrival of the shock and the arrival 
of the contact surface at the right-hand end of the shock tll be (see 
Fig. 1) is the most important factor in determining the test time. 
The test time can not simply be calculated from one-dimensional 
computations such as the one shown in Fig. 5, however, because 
the contact surface is in reality an extended region, and the com­
plex intera.:;tion between the reflected shock and the boundary 
layer on the shock tube wall causes significantly earlier arrival of 
the driver gas at the nozzle throat. 

At a given ha, the time interval between the arrival of the shock 
and the contact surface is directly proportional to the size of the 
facility (other variables being the same). As ho is increased, how­
ever, from the condition where the gas in region 2 is a perfect 
diatomic gas to where it is partially dissociated, this time inter­
val changes down by almost a factor of 2. The speed with which 
the gas is drained from the reservoir through the throat into the 
nozzle increa.ses as the square root of ho. Fortunately, the test 
time requirement also decreases as the square root of ho. How­
ever, the growth of the contact surface and the shock boundary 
layer interaction become more severe with increase of hG_ As ho 
is increased, there comes a point when the test time is no longer 
sufficient. Though only very sparse information is available on this 
limit, it may be placed roughly at 22 MJ Ikg for the case of T.5, 
and this is essentially independent of po . 

Other things being equal, a scale increase increases the test time 
more than linearly, because the relative importance of the wall 
effects decreases. The test time requ.irement increases linearly with 
scale. The test time limit may therefore be expected to be moved 
to slightly higher ho in a facility. 

4.1.4 Strength, Scale Effects 

Clearly, the strength of the facility merely limits the pressure at 
which it can be operated, and may be represented by a line at 
constant po. 

To illustrate the effect of scaling up a facility from the size of 
T5 by a factor of 4, Fig. 11 also shows the displaced limits for 
the larger machine as dashed lines. This makes it clear that an 
increase of size makes strength relatively unimportant, since the 
throat-melt limit makes it impossible to operate at po > 70 MPa, 
if ho > 15 MJIkg in the facility scaled up by a factor of 4. As 
regards the throat-melt, test-time and strength limits, T5 appears 
to be close to the optimum scale. This was fortuitous, since the 
scale and strength were determined by other constraints. 

4-1.5 Performance 

In the region of ho-po space within the above limitations, reflected 
shock tunnels can cover the space pra.ctica.lly completely. In the 

- 8­

I II. 



----

case of the free-piston device, this can be achieved with tailored 
interface operation, because of the flexibility of the speed of sound 
ratio a4/al of this device. 

As an example, Fig. 12 shows two reservoir pressure traces ob­
tained in T5. These are representative of the quality achiev-: 
ble over the range 20 MPa < pO < 100 MPa, 5 MJ /kg < he < 

22 MJ/kg. 
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{,. 12. 	 Nozzle reservoir pressure traces of two runs of T5 at 22 
(TOP) and 11 MJ/kg (BOTTOM). 

4.2 	 Expansion Tube 

As was pointed out in the description of the expansion tube, this 
facility type has the advantage that the material is exposed only 
to a fraction of the effecti ve total pressure and only to a fraction of 
the total enthalpy. The stresses and heat loads are therefore not a 
serious limitation. Referring to Fig. 9 and Fig. 6 it becomes clear 
that for a given state 2, the effective values of Po and he depend 
on the pressure P20 to which the flow is expanded in the unsteady 
expansion. It is therefore not meaningful to relate the extreme 
heating condition to the ho - pO space on this basis. 

In the expansion tube a far more important concern is the short 
test time and the small test flow size. Consider for example a 
shock tube diameter of 100 mm. In the reflected shock tunnel, this 
provides a good flow for a nozzle exit diameter of typically 400 mm 
and a test duration of 1 ms at 18 MJ /kg. In the expansion tube, 
the same shock tube, driving an acceleration tube of the same 
diameter and 10 m length would produce a test flow of 100 mm 
exit diameter and 170 J.1S duration. 

Fortunately, the size of the facility can be increased. since the 
penalty for size that plagues the reflected shock tunnel (melt limit) 
does not exist here. However, the test time limit remains, since 
the test time, which increases linearly with the size, only matches 

! increased test time requirement, which also increases linearly 
. .!th size, unless the facility is deliberately made much larger than 
the models to be tested. 

The friction losses in the acceleration tube set a limit on the length 
to diameter ratio. A reasonable maximum value is about 120. It 
turns out that a good shock tube length is then about 50 diame~ 
ters. A rule of thumb for the optimum test time of an expansion 
tube is the time interval between the arrival of the primary shock 
and the al'Tival of the shock tube contact surface at the end of the 
shock tube. This time is given approximately by 

d 
7" ~ 10 I'L' 

yhO 

where d is the shock tube diameter. This is smaller than the test 
time requirement of 20L/Voo , given in section 2.2, by a factor of 1.4 
if the model size L is taken to be the tube diameter d. The model 
therefore has to be smaller than the largest model that could be 
tested in the facility if size were the only constraint. 

Any attempts to expa.nd the diameter of the expa.nsion tube at 
the downstream end are therefore futile, since the model size is 
limited by the available test time, and not by the tube diameter. 
(This verdict may be relaxed if the flow studied is such that less 
test time than 20Voo/L is required.) 

The most important problem in expansion tu be operation is there­
fore the preservation of as much as possible of the test time. An 
obvious factor reducing the test time is the opening time of the 
secondary diaphragm, which is disregarded in the ideal expan­
sion tube calcula.tions a.bove. In order to show the effect of finite 
diaphragm opening time, Fig. 8 shows as blown up insets two suc­
:cessive enlargements of a portion of the wave diagram. In the 
;largest of these, the diaphragm is shown to accelerate from rest 
over a finite time to become the contact surface between the ac­
celeration and test gas. The diaphragm thus causes the incident 
shock to be reflected. As the diaphragm accelerates, expansion 
waves are transmitted to the reflected shock, weakening it and 
eventually causing it to become the right edge of the unsteady 
expansion. On the accaleratioll tube side of the diaphragm, com­
pression waves are transmitted to the right, which focus to form 
the accelera.tion tu be shock. The time it takes to accelerate the 
diaphragm clearly reduces the test time. 

The reduction in test time is roughly equal to the diaphragm open­
ing time. ',rhis is given approximately by 

where p is the density of the diaphragm material, e is the di­
aphragm thickness and P2 is the pressure in state 2. For a mylar 
diaphragm that is just strong enough to contain PI = 100 kPa, 
and a diameter of 300 mm, this gives an opening time of approx­
imately 70 p.s. On the basis of the above rule of thumb, the test 
time becomes 0.7 ms at 18 MJ /kg, so that the diaphragm opening 
time reduces the available test time by about 10%. 

All of these considerations assume the flow to be one-dimensional, 
and serious consequences for the test time may be expected to 
result also from the wall effects on the structure of the two contact 
surfa.ces, and the three-dimensionality of the diaphragm rupture. 

The composition of the test gas was assumed to be that of state 
2 above. This is a little pessimistic, because some recombination 
will occur in the unsteady expansion during the later part of the 
test duration, where the gas has taken a. longer time to traversee 
the expansion wave. This wi.1I therefore cause the composition to 

-9­



vary during the test time from an initial condition corresponding 
to that of state 2 to a final condition in which the atomic oxygen 
concentration, and to a lesser extent the NO concentration, are 
reduced slightly. The composition limit is almost independent of 
pO. The molecular oxygen will be reduced to half the value in air 
at ho :::: 22 MJ /kg. 

Summarizing the limitations of the expansion tube, the emphasis 
has to be on the test time limit. Since the diaphragm opening 
time is independent of ho, there comes a point where the enthalpy 
is limited by the test time. In the author's opinion, this limit is 
at 30 MJ /kg. The upper limit on Po is unimportant, since values 
in the G Pa range are easily achievable. 

4.2.1 Performa.nce 

To date, the largest expansion tube is one operated at the General 
Applied Sciences Laboratory in New York by a team headed by 
Dr. John Erdos. This has a shock tube (and acceleration tube) 
diameter of 150 mm. At present it has a cold helium driver, so that 
the enthalpy at which it can be run is limited to approximately 
12 MJ/kg. A modification to equip the facility with a free-piston 
driver is being considered at present. This would extend the range 
to approximately 30 MJ /kg. The effective reservoir pressure is 
very high. In the GASL facility, values of up to 400 MPa. have 
been achieved. 

5. Concluding Remarks 

The thermodynamics, gasdynamics and scaling laws of hyperve­
locity flows, the power requirements, and the properties of con­
taining materials, were shown to lead to the two main hyperve­
locity flow simulation facility types: The reflected shock tunnel 
and the expansion tube. The simplest forms of such devices were 
described, giving the logic that leads to them, and a comparison 
of their ranges of applicability. This was done with regard only 
to their main features, and many subtle points of their operation 
had to be omitted. 

The hard limitations of the reflected shock tunnel constrain 
this device to be restricted to specific reservoir enthalpies below 
22 MJ/kg and reservoir pressures below 90-200 MPa (depending 
on the enthalpy in the range 25-12' MJ /kg) at the size of the 
presently operating facility T5. Increase of size carries severe pres­
sure penalties. The expansion tube's most severe restriction is the 
short test time. This is critically constrained by the behavior of the 
contact surface and the opening time of the secondary diaphragm. 
However, there appear to be no penalties for scale increase, and the 
reservoir pressure obtainable is extremely high. The upper limit 
for the specific reservoir enthalpy is approximately 30 MJ/kg on 
the basis of the free stream dissociation and test time constraints. 

References 

Bakos R. J., J. Tamagno, O. Riszkalla, M. V. Pulsonetti, W. 
Chinitz, and J. L Erdos, 1992 "Hypersonic mixing and combus­
tion studies in the Hypulse facility," J. Propul3ion and Power, 8 
900-906. 

Hornung, H. G. 1992 Performance data of the new free·piston 
shock tunnel atGALCIT, AIAA 92-3943. 

Lukasiewicz, J. 1973 "Experimenta.l Methods of Hypersonics", 
Marcel Dekker, Inc. New York. 

-10­



CLASS NOTES: Ae234 

19 ABSORPTION OF SOUND BY RELAXATION 
19.1 Linear Wave Equation 

Take a gas at rest and in chemical equilibrium at conditions Po, Po, 0:0, Now perturb this 

state with a time and space dependent perturbation so that the new condition is in a state 

p = Po + pi, P = Po + pi, 0: = 0:0 + 0:' , U = u' , (19.1) 

where the primed variables are time and space dependent. Assume that the space-dependence 

is restricted to one dimension, namely x, so that the other components of the perturbation 

velocity are zero. Also assume that the perturbations are small, so that only linear terms in 

the perturbation quantities need to be retained. This means that the reaction rate equation 

in the general form 
Do: 
Dt = W(p, p, 0:) 

also needs to be linearized: 

(19.2) 

where the subscript variables denote partial differentiation. The subscript 0 indicates that 

the partial derivatives are taken at the rest condition. Note that the first term on the right 

hand side of this equation has to be zero, since we assumed the rest state to be an equilibrium 

state at which W vanishes, and 0:0 = 0:* (POl Po). Though this already gives us the linearized 

form of W, it is useful to relate W to the deviations from equilibrium. For that purpose 

rewrite the equilibrium form of W, 

W(p, p, 0:*(P, p)) = 0 

for the perturbed state: 

W(p + pi, p + pi, o:*(p + pi, p + pi)) = O. (19.3) 

Again retaining only linear terms, and noting that W(po, Po, 0:0) = 0, we obtain 

(19.4) 

Combining this with equation (19.2), we obtain 

(19.5) 

1 




This result is easier to understand when ao ao is added inside the square brackets: 

(19.6) 

The expression in curly brackets is recognized as the equilibrium value of a pertaining to 

the perturbed state, so that the linearized reaction rate equation becomes 

Da = W (19.7)
Dt 

where we have used the abbreviation (Wo)o = l/tr . 


If we neglect friction and heat conduction, the energy equation applies in the form 


Dh 1 Dp = O. 
Dt pDt 

Writing the caloric equation of state as 

h = h(p, p, a), 

and substituting in the energy equation, the result is 

a

( hp !) (DP 
p Dt 

2Dp B Da )af -+ -
Dt Dt 

0, (19.8) 

where 

B(p,p,a) 
2 ho 

-afh'p 
(19.9) 

and 
2 hp 
f hp - 1/P 

is the frozen speed of sound squared. Since the first bracket of equation (19.8) is not identi­

cally zero, the equation may be written as 

-BW. (19.10) 

Using the continuity equation in this, 

-BW. (19.11) 

We can now proceed to linearize the momentum equation, 19.10, the rate equation, and 

(19.11), we obtain 

,
POUt + Px 0, 

, 2'
Pt - tbrPt -BoW, 

a' =W,t 

, 2 
Pt + poafux -BoW, 

2 



where the linearized form (19.7) is to be used for W, and Eo = E(po, Po, ao). By eliminating 

p', p' and 0/ from these equations, a single third order partial differential equation is obtained, 

which may be written after tedious algebra as 

(19.13) 

where 

(19.14) 

and 
2 hp + haD:;

a =----'-----"---,­
e hp + haD:; - 1/P 

is the square of the equilibrium speed of sound as before. 

19.2 Dispersion and Absorption of Harmonic Waves 

Equation 19.13 gives some interesting information. If T = 0, the gas is in equilibrium, and 

19.13 correctly degenerates to the wave equation with the equilibrium speed of sound. In 

the other limit when T = 00, 

:t (Utt - aJouxx ) 0 

results. If we take the gas to be initially at rest, so that for times before it was perturbed, 

U = 0, it follows that 

Utt - aJouxx = 0 

in that limit. Thus, we obtain the wave operator with the frozen speed of sound, as expected. 

The behavior of the complete equation may be studied further by assuming the perturbation 

to take the form of harmonic sound waves 

U = Aei(wt-kx) , (19.15) 

where A is the amplitude, W the frequency, and k = kr + iki is the complex wave number 

of the wave. Substituting 19.15 in 19.13, and cancelling the common factor u, a relation 

between wand k results: 
W2 1 +iWT

k2 - _ ---~-:--;::- (19.16)- 2 . 2/2'aeo 1 + l,WTafO aeo 

As WT -t 0, kr -t ±w/aeo, ki -t 0; this corresponds to undamped sound waves propagating 

at the equilibrium sound speed. The plus and minus signs indicate the directions of prop­

agation. For Wi -t 00, on the other hand, kr -t ±w/afo, ki = 0, i. e., undamped waves 

propagating at the frozen sound speed, as expected. The imaginary part of the wave number 

does not vanish for intermediate values of WT, however, so that under such circumstances 
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the wave is damped or amplified, depending on the relative magnitude of ae and al' If 

the frozen sound speed is smaller than the equilibrium sound speed, the wave is amplified. 

This contradicts experience and correponds to an unstable gas. In reality, al > ae , so that 

damping is physically observed. 

1.15 

"",_ o.lor· 
'::,. 

"'" 
O.05r 

Dispersion curve for phase velocity of sound wave in a relaxing gas with a1/ae 1.2 and 

corresponding absorption. 

The relevant quantities c/ae, where c is the phase velocity w/kr of the wave, and kdkr as a 

measure of the damping rate, are obtained as functions of x = WT and the ratio a = al/ae 

as follows: 

m 

() 

c a 
ae mcos()' 

4 

., , ,. . 




k:k· 
= tanO. 

Graphs of these curves are shown in Fig. 1. 

19.3 Relation to Bulk Viscosity 

Sound waves are, of course, also absorbed by other dissipative effects such as viscosity, heat 

conduction and diffusion. These phenomena do not, however, provide sufficient damping 

to explain the physically observed damping rate, especially at high frequency, where the 

relaxation effect contributes significantly to the damping rate. Rotational and vibrational 

relaxation, which can be treated with the above analysis, contribute to the damping, albeit 

at different frequencies. The damping of ultrasound waves can also be used to measure the 

characteristic relaxation times of different processes. 

When the period of oscillation of a sound wave 21r / W is large compared with 7, 1. e., for 

W7 < < 1, the state of the gas deviates only very slightly from equilibrium. In this limit, 

equation (19.16) may be approximated by 

(19.17) 

An analogous formula is obtained for the absorption of sound in a non-relaxing gas with 

bulk viscosity, /Lb, but with negligible shear viscosity and thermal conductivity: 

(19.18) 

Thus, relaxation may be regarded as giving a contribution to the bulk viscosity 

(19.19) 

for low frequencies. This result, that relaxation processes may be described by processes 

analogous to the action of bulk viscosity, is general for the behavior of all relaxation processes 

at frequencies that are small compared to 1/7. 
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Ae234 Final Assignment, due June 3, 2002 

In a free-piston shock tunnel experiment, the driver conditions are generated by an adia­
batic compression of helium from an initial condition at 90 kPa and 300 K by a volumetric 
compression ratio of 56, at which point the diaphragm bursts. Determine the conditions in 
the helium driver gas at diaphragm burst. 

The initial conditions in the shock tube are: Test gas: nitrogen, pressure: 80 kPa, temper­
ature: 300 K. Determine the primary shock speed by assuming perfect gas behavior of the 
nitrogen and the helium driver gas. 

Using the IDG model, calculate the equilibrium conditions after the primary shock. Calculate 
the relaxation distance after the primary shock to check that it is small compared with the 
shock tube diameter (90 mm). Use the result to check the validity of the assumption made 
in the shock speed determination. 

Calculate the equilibrium conditions and the relaxation distance after the reflected shock. 
Check that the assumption of equilibrium is justified by comparing the relaxation distance 
with the shock tube diameter (90 mm). 

Assume that these conditions correspond to tailored interface operation, i. e., that the re­
flected shock passes through the interface between driver gas and test gas without reflections. 
Hence take the conditions after the reflected shock to be the reservoir conditions for a nozzle 
flow. Determine the specific enthalpy of the reservoir. Compare this with the square of the 
primary shock speed. 

Calculate the flow through a conical nozzle of half-angle 7 deg. and throat diameter 15 mm, 
from this reservoir, assuming the flow to be in equilibrium from the reservoir through the 
throat and to an area ratio of at least 3. Check this assumption by estimating the relaxation 
distance at that point in the nozzle. 

Calculate the nozzle flow up to an area ratio of 400 by making a nonequilibrium computation. 
Give the conditions at the nozzle exit. 

Calculate the flow after an oblique shock at shock angle 67 deg. in the flow at the nozzle 
exit (assume uniform free stream there) by making an appropriate nonequilibrium shock 
computation. Make a plot of the flow variables vs. distance from the shock. 
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ON TRANSITION AND TRANSITION CONTROL IN 

HYPERVELOCITY FLOW 


H. G. Hornung, P. H. Adam. P. Germain, K. Fujii and A. Rasheed 
(Graduate Aeronautical Laboratories. California Institute of Technology) 

ABSTRACT: The results of a major program of research into the effects on transition of the 
vibrational and dissociational relaxation processes that occur in high-enthalpy flows are 
presented. Relaxation effects are found to influence transition significantly, causing the 
transition Reynolds number of flows over slender cones to be increased by almost an order of 
magnitude. Transition is also shown to be further delayed by as much as a factor of two through 
suitable wall porosity. The relationship between absorption of acoustic waves by relaxation, and 
their amplification in the flow over a swept cylinder shows that very significant transition delay 
may occur through relaxation effects. These new effects need to become part of the equipment of 
designers of hypervelocity vehicles. 

I INTRODUCTION 
Heat loads and forces on hypervelocity vehicles depend critically on the location of 

transition from laminar to turbulent flow. Though significant progress has been made toward the 
understanding of transition. it is still the most severe uncertainty in the aerodynamic design of 
such vehicles. 

Two important features of hypervelocity flow set it apart from other flow regimes with 
respect to the transition problem. First, the dominant instability mode at sufficiently high Mach 
number is the second or Mack[ I] mode, in which acoustic perturbations become trapped in the 
boundary layer, grow in amplitude and eventually cause the boundary layer to become turbulent. 
This is in contrast to the situation in low speed flows, where the viscous instability is usually 
responsible for the path to transition. Second, the relaxation processes associated with 
vibrational excitation and dissociation (which occur in hypervelocity flows because of 
aerodynamic heating) provide mechanisms for damping acoustic waves, and may therefore be 
expected to affect the second mode. The effects of vibrational excitation and dissociation are 
quite subtle however, since they also affect the mean structure and therefore the stability 
properties of the boundary layer. 

A large part of the experimental work on the problem of stability and transition at high 
Mach number has been done in cold hypersonic facilities. In such facilities, the test gas is 
expanded from a reservoir at relatively low temperature (of order 1000 K), so that the high Mach 
number is produced, not so much by raising the speed, but mainly by lowering the speed of 
sound. Important examples of the work in this regime are the experiments of Demetriades[2J, 
Stetson et ai. [3] and Kendall[4]. (Reshotko[5] presented a very good review). Together with the 
linear stability analysis by Mack[l), experiments of this kind provide a substantial basis for 
understanding the path to transition in cold hypersonic flow. They are, however, not able to 
capture the phenomena that occur in hypervelocity flows because of the vibrational excitation 
and dissociation that characterize them. 

Some of the specific problems of hypervelocity boundary layer stability have been 
addressed computationally by a number of authors. They include the work of Malik and 
Anderson[6], who considered equilibrium vibration and dissociation, and Stuckert and Reed[7] 
who assumed vibrational eqUilibrium but fmite-rate chemistry. Both found that the new effects 
caused the boundary layer to be destabilized. However, more recent work by Johnson et at. [8] 
found that non-equilibrium chemistry had a strong damping effect, in agreement with recent 
experimental evidence. The apparent contradiction between the results of these investigations is 
not too surprising, in view of the complicated manner in which the rate processes can influence 
the stability problem, and the many parameters involved in it. 

In this paper we present the results of an extensive experimental program of research 



conducted over the last decade, in which the focus is specifically on the regime where relaxation 
processes associated with vibrational excitation and dissociation are important. In the laboratory, 
such flows can only be maintained for very short times, since they require the gas to be 
expanded from a reservoir at very high temperature and very high pressure, conditions at which 
it can be contained only for a period of typically 2 ms. This, and the aggressive environment of 
the high temperatures and pressures make it impossible to use many techniques that are available 
to experiments in longer-duration. cold facilities. It is therefore necessary to approach the 
problem with more indirect methods that use such simple evidence as the location of transition 
in a careful exploration of the parameter space. Fortunately. the frequencies of the most strongly 
amplified modes are typically 1-3 MHz. so that the short test time is not a serious limitation. 

n SLENDER CONE EXPERIMENTS 
Much of the work on transition in hypersonic flow has been performed on the simplest 

possible shape, namely the slender cone. The flow over a slender cone has the advantages that 
the streamwise pressure gradient is zero, and that it is free of side effects. The first experiments 
to be performed in the newly completed T5 hypervelocity free-piston shock tunnel in 1991-1993 
were designed for a 5 deg half-angle cone also, in order to be able to compare the new high 
enthalpy results with those from the cold hypersonic wind tunnels. A diagram of the model built 
for these experiments is shown in Figure 1. 

Main Body - 790mm 
Sharp Tip - 76mm / (Aluminum)

(Molybdenum) 

~~~31~-----­

/ Sting Support 

Mid-Sectiau - 127mm 
(Aluminum) 

Test Section Mounting Rail 
Figure 1. Slender cone model built for T5 experiments. The main body is hollow and instrumented 
with thermoco~ple sUlface heat flux gauges. 

The first series of experiments (for details see Germain and Homung[9]) explored the 
behavior of the transition location on the cone as a function of the total enthalpy of the flow in 
air and nitrogen. The transition location was determined from the distinct rise in heat flux. An 
example of how this is done is shown in Fig. 2. 

In hypervelocity flow simulation it is important to reproduce the actual speed of the flow, 
so that the vibrational excitation and dissociation are reproduced correctly. This is often done at 
the expense of reproducing the Mach number. This is the case in the T5 experiments also, where 
the free-stream Mach number is typically 5.5, but the speed ranges up to 6 kmls. Thus, the 
boundary layer edge temperature in a free-flight situation is very different than in the T5 
experiments, but the temperature profile in the inner part of the boundary layer is almost the 
same in both cases. This is illustrated in the calculated temperature profiles for the two cases, see 
Figure 3. This comparison of the temperature profiles suggests that the T5 tests may well be 
suitable for comparing the high temperature real-gas effects that occur in free flight with those 
that occur in the T5 experiments, but it is more meaningful to compare the two in terms of the 
Reynolds number evaluated at the reference condition. The reference temperature is 
where the wall and boundary layer edge conditions are identified by the subscripts w and e 

'Y -1 ffr2 Tw 
0.5 + -2---6-M• + 0.5T.' 

e 



Figure 2. Plot of Stanton number against boundary-layer edge Reynolds number for one experiment 
on the cone. As may be seen, the Stanton number follows the theoretical laminar flow line (dotted 
line) at low Reynolds numbers, and rises up toward the turbulent level (as given by two turbulence 
models) at high Reynolds number. The transition Reynolds number is determined by a straight line 
fit of the transitional data. 

Figure 3 Typical T5 and free-flight boundary layer temperature profiles in laminar boundary layer 
coordinates for a total enthalpy of 14 MJlkg. 

The results of experiments in nitrogen and air flows are plotted in Figure 4 in the form of 
the Reynolds number at transition, evaluated at the reference temperature and based on the 
distance from the cone tip to the transition location, versus the total enthalpy of the flow. Two 
new features are brought out by this plot. First, a significant increase in transition Reynolds 

. number (evaluated at reference conditions) with total enthalpy increase is observed, and second, 
this increase is slightly larger in air than in nitrogen. This led us to suspect that transition is 
significantly influenced by high-enthalpy real-gas effects, and that it might be interesting to 
explore what happens in other gases, such as helium, which behaves like a perfect gas in our 
total enthalpy range, and carbon dioxide, which exhibits strong vibrational and dissociational 
effects in this range. The first experiment, with helium showed that, even at 15 MJlkg, the 
transition Reynolds number was the same as the low enthalpy value. A dramatically larger 
transition Reynolds number was observed in carbon dioxide flows, also shown in Figure 4, (for 



details see Adam and Hornung [12]). 
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Figure 4 Transition Reynolds number evaluated at reference conditions as function of total 
enthalpy. Open symbols correspond to cases where the flow was laminar to the end of the cone. 
The lines are least-square fits to the points. The cold tunnel data are from papers by and 
Demetriades [10] and DiCristina [Ill. The carbon dioxide results are superimposed on this plot as 
triangular symbols. Note the large transition delay relative to the nitrogen results. 

In later experiments on transition control the low-Reynolds-number gap in the carbon 
dioxide data was filled in, see Figure 10. It is clear from these results that a dramatic transition 
delay which is completely absent at low speeds is evident at high enthalpy, and that the 
magnitude of the phenomenon and the enthalpy at which it sets in are different for different 
gases. 

It was at this point that Graham Candler and his group became interested in testing our 
results by making linear stability computations at the conditions of our experiments. Their 
results agreed with the trends observed in the nitrogen and air flows, and illustrated dramatically 
how strongly thermochemical non-equilibrium effects can influence the growth rate of 
disturbances. Examples of their results are shown in Figure 5. These results also establish the 
acoustic Mack mode as being responsible for the path to transition in the T5 experiments. 

Just as these experiments had been completed, Norman Malmuth of Rockwell Science 
Center and Sasha Fedorov of Moscow Institute of Physics and Technology started to discuss 
with us the possibility of controlling transition in hypersonic flow. They had shown theoretically 
that the acoustic mode could also be damped by wall porosity, see Fedorov and Malmuth[13]. 
This led to the research project described in the next section. 

III PASSIVE CONTROL OF TRANSITION 
Simply stated, the acoustic disturbances are trapped and amplified in the boundary layer, 

which acts like a wave guide for them. It has been known (early work on the subject included 
that of Kirchhoff and Rayleigh) that acoustic disturbances are absorbed in wall porosity by 
viscous action and heat conduction. Fedorov and Malmuth quantified the damping rate in a 
hypersonic boundary layer and suggested types of porosity for optimum results. At the 
conditions of the cone experiments in T5, small-diameter, deep, blind holes that are closely 
spaced were predicted to produce suitable damping. The proportions of the configurations 
chosen are related to the boundary layer thickness in the schematic sketch of Figure 6. 

With such a fine distribution of blind holes, the sheer number of holes required (some 15 
million) appears to be prohibitive. After finding a company (Actionlaser, in Sydney, 
Australia)that was able to make holes at the required spacing and diameter in a stainless steel 
sheet of 0.5 mm thickness, we decided to wrap such a sheet around the aluminum cone and 
remake the intermediate part of the tip to provide a flush transition from the (non-porous) tip 

I I I , 
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Figure 5. Results of linear stability calculations with thermochemical non-equilibrium at the 
conditions of T5 shot 1162 in air at 9.3 MJlkg (left) and shot 1150 at 4.0 MJlkg in carbon dioxide 
(right). The graphs show growth rate of disturbances as functions of disturbance frequency at 
several distances along the cone. To examine the damping effect of finite rate processes, the dotted 
curves show the same results but with the rate processes turned off. Note how the rate processes 
completely stabilize the disturbances in the case of carbon dioxide. (reproduced from Johnson et aI. 
[8]). 

to the porous surface. In order to provide a control experiment in every shot by making half of 
the cone surface porous and half non-porous, the porous sheet was formed into a half cone and 
welded to a similar half cone sheet without holes. The resulting hollow cone was then slipped 
over the aluminum cone at a low temperature (190 K) to take advantage of the difference in the 
thermal expansion coefficients of stainless steel and aluminum, which thus provides an 
interference fit of approximately 0.1 mm. At the same time, disassembly is still possible by 
cooling to liquid nitrogen temperature. 

As may be imagined, the process of getting this model manufactured and assembled 



required a considerable effort in development work. To do this, several attempts had to be

I /.',,"d">L.,,, Ed" 
a 


Figure 6. Showing the approximate proportions of the hole diameter, spacing and depth in relation 
to the laminar boundary layer thickness. With a typical boundary layer thickness of one nun, This 
makes the desirable hole depth 0.5 nun and the hole diameter and spacing 0.06 nun. 

Figure 7. Left: Magnified image of the stainless steel Actionlaser perforated sheet. At this scale the 
grain boundaries of the metal can be resolved. Note that the length of the half-millimeter scale bar 
is equal to the depth of the holes. Right: Micrograph of the weld joining the porous and solid sides 
along a generator of the cone. The weld is 0.5 nun wide. 

made in the roIling of the sheet into an accurate conical shape, and in the extremely fine and 
accurate welding of the sheets. An impression of part of this task is given by the micrographs of 
Figure 7. The cone was then instrumented with thermocouple heat flux gauges as in the 
previous experiments. The same procedure fordetennining the transition location was applied, 
this time separately on the smooth and on the porous side. 

The results obtained in nitrogen flow are shown in Figure 8. They confirm approximately 
the results of the previous experiments and exhibit a dramatic transition delay on the porous side 
of the cone. The increase of the transition Reynolds number is typically 400,000 which is as 
much as 80% at the low-enthalpy end of the range. Both at the low and at the high end of the 
range, transition could not even be achieved on the porous side, the boundary layer remaining 
laminar all the way to the end of the cone. The effect is shown dramatically in Figure 9, which 
shows a shadowgraph that includes the boundary layers on both sides of the cone. 

The results for carbon dioxide flows are shown in Figure 10. Again, the data from the solid 
side of the cone agree with the previous data of Figure 4, and extend these to lower enthalpy, 
where the transition Reynolds number decreases sharply, confirming the damping effect of the 
rate processes. However, now we see a very different effect of the porositY; At low enthalpy, 
transition is delayed by the porosity, but at approximately 3 MJlkg, a crossover 
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Figure 8. Plot of transition Reynolds number vs total enthalpy for the N2 data, Dark squares show 
the results from the non-porous side of the cone. Gray squares show the nitrogen data from Figure 4 
for comparison. The filled diamonds show the values from the porous side of the cone, As may be 
seen, transition is very significantly delayed on the porous side. The open diamonds symbolize 
situations in which the boundary layer was laminar on the porous side all the way to the end of the 
cone. In these cases, the Reynolds number plotted is that based on the length of the cone. The lines 
are linear fits to the points to guide the eye, (For more detail, see Rasheed et at. [14]) 

Figure 9. The schematic at the top shows tbe location of the viewing window relative to the cone. The 
next frame down shows a shadowgraph taken through this window of nitrogen flow at 9,8 MJ/kg and 
reservoir pressure of 48.2 MPa, At the top surface, which is the smooth side of the cone, the boundary 
layer changes from laminar at the left to turbulent at the right, while, at the bottom, it is laminar all the way 
to the end of the picture. The white rectangular boxes in the main image are shown enlarged at the bottom 
for a more detailed view. 
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Figure 10, Transition Reynolds number versus total enthalpy in carbon dioxide, Previous data from 
Figure 5 are shown gray. The triangles and diamonds represent values on the non-porous and 
porous side respectively. The lines are second order fits to the respective points to guide the eye. 
Clearly, the porous wall ceases to be active as a means of transition delay at total enthalpy of 
approximately 3 MJ/kg, and advances transition above this value. 

Figure 11. Difference between reference transition Reynolds numbers on the porous side and non­
porous side plotted against Reynolds number based on bole diameter The dark points are cases in 
wbich transition was not observed, so they are plotted too low, Note that a cross-over occurs at a 
Reynolds number of about 300. 

occurs, and the porosity causes transition to be advanced at higher enthalpy by as much as 50%. 
Speculating on what might be the cause of this crossover, one might argue that the rate processes 
are so active in carbon dioxide that there is not much of the acoustic mode left to damp, or that, 
perhaps, the high Reynolds number that is reached with the flow still laminar, might make the 
holes act like roughness elements and cause the boundary layer to be tripped. To examine this 
question Figure 11 shows a plot of the transition Reynolds number difference (porous minus 
non-porous) against Reynolds number based on the hole diameter. 

In Figure 11, the squares and triangles represent nitrogen and carbon dioxide flows 
respectively. The dark squares are cases in which the boundary layer remained laminar all the 
way to the end of the cone, so that they should be plotted at some unknown higher value of the 
ordinate. The dark gray points are cases where transition was delayed to a known position, and 
the light gray points are cases where transition was advanced. As may be seen, the crossover 
occurs at a Reynolds number based on the hole diameter between 200 and 300. Reda's[l5] 
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experiments in a ballistic range indicate that roughness elements cause transition to turbulence if 
the Reynolds number based on the roughness height is 192 or greater. We conclude that the 
transition Reynolds number on a smooth cone in carbon dioxide at high enthalpy is so high (as 
much as 5 times as high as in nitrogen) that the Reynolds number based on the hole diameter is 
so large as to make the holes act as roughness elements that trip the boundary layer. 

IV ATTACHMENT LINE TRANSITION 
The dramatic influence of relaxation effects on transition in the case of a slender cone 

caused us to ask whether it would be possible to change the relation between the most unstable 
frequency in the boundary layer and the frequency of the strongest relaxation damping effect. 
Since the most unstable frequency of the second mode is inversely proportional to the 
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Figure 12 Swept-cylinder Reynolds number plotted against total enthalpy for nitrogen 
(top) and carbon dioxide (bottom). The full and open symbols represent cases in which the 
boundary layer is turbulent and laminar respectively, and the symbols with the plus sign show 
intermittent turbulent and laminar values of the heat flux, i. e., are transitional. Clearly, the swept­
cylinder Reynolds number at transition in nitrogen is virtually independent of total enthalpy, while 
its value in carboll dioxide is not only substantially higher, but exhibits a distinct total enthalpy 
dependence. (see Fujii and Hornung [17]). 

boundary layer thickness, the flow that suggests itself is the boundary layer on a swept cylinder, 
which has a very small thickness. In addition, for highly cooled wall boundary layers, such as in 
the T5 flows. the first mode is not active, since the generalized inflection point disappears in 



such flows. Thus, we again expect the acoustic mode to be dominant. 
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Figure 13. Comparison of the absorption rate per wavelength due to relaxation (open symbol) with 
the amplification rate per cycle from linear stability calculations for several particular T5 shots. 
Top: nitrogen, bottom: carbon dioxide. Note how the frequencies of maximum absorption and 
amplification coincide at high enthalpy in C02, while they are widely disparate in N2. 

The appropriate Reynolds number for flow over a swept cylinder is that based on a characteristic 
length defined as the square root of the kinematic viscosity divided by the stretching rate along 
the surface in a plane perpendicular to the cylinder axis 

.~ 
TJ = Vd;;;;f(iZ' 

The Reynolds number defined with this length and evaluated at the reference condition is 
referred to as the swept-cylinder Reynolds number. 

Experiments performed by Creel et ai. [16] in the quiet tunnel at NASA Langley observed 
transition when the swept-cylinder Reynolds number was between 650 and 700. The 
experiments performed in T5 were with a 50 mm diameter cylinder swept at 6Odeg, and 
equipped with surface thermocouple heat flux gauges. The results are shown in Figure 12 for 
both nitrogen and carbon dioxide. Note that, again, the transition Reynolds number is 
significantly higher in carbon dioxide than in nitrogen. Also, C02 shows a dependence on total 
enthalpy whereas this is absent in nitrogen. An important feature of these results is that the 
transition Reynolds number is as high or higher than the value from the quiet tunnel, ranging up 
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to 1100 in C02. 
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Figure 14, Absorption rate per wavelength for all the experiments performed on the swept cylinder 
as a function of total enthalpy. 

In order to examine the reasons for this behavior, the theory of sound absorption by 
relaxation phenomena presented by Clarke and McChesney[l8] was extended to cases where 
multiple modes of relaxation are active. Furthermore, the amplification rate per cycle of the 
acoustic mode was calculated using-non-relaxing laminar boundary layer calculations with the 
axisymmetric analogy proposed by Cooke[l9]. Details of these calculations can be found in Fujii 
and Homung[17]. For this presentation we only show the results, see Figure 13. From these two 
diagrams, it is clear that the frequency at which maximum growth would be observed is right in 
the region where the strongest damping occurs in the case of C02, while virtually no damping 
may be expected in the case of N2. 

Plotting the absorption rates versus total enthalpy in Figure 14 for all the experiments, the 
difference between the two gases is brought out dramatically. The curve for C02 follows the 
behavior of the swept-cylinder transition Reynolds number of Figure 12 qualitatively. 

V.CONCLUSIONS 
An extensive series of experiments performed in the high-enthalpy shock tunnel T5 

demonstrate conclusively that the relaxation processes of vibrational excitation and dissociation 
can have very dramatic stabilizing effects on transition in flows over slender cones and over 
swept cylinders. The mechanism by which this damping occurs is through the influence of 
relaxation on acoustic waves. In addition it was demonstrated that transition could be delayed 
very significantly by suitable blind porosity of the surface in the case of the slender cone. In both 
cases the effects are large, so that they must become part of the equipment of design teams. 
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CLASS NOTES: Ae 234 

11. Flow Over A Convex Corner 

The maximum speed that a flow can reach by adiabatic expansion from a given state 

is determined by the energy equation 

V,2 
h' + - = h~ (17.1)

2 

as 

(17.2) 

provided that all of the enthalpy can be converted into kinetic energy in the expansion. In 

the case of the IDG, (17.1) reads 

V,2 
R' {(4 + a)T' + aOd} + 2 = h~, (17.3) 

' k'h R is the specific gas constant for the molecular gas. Hence were = 2m' 

Vi = J2h~ - 2R' {(4 + a)T' + aOH. (17.4) 

If the gas is in equilibrium throughout the expansion, it will be completely recombined as 

the temperature drops, and all the energy contained in the dissociation will be recovered. 

Hence, for equilibrium flow, equation (17.2) applies. On the other hand, if the flow freezes 

during the expansion at some value of a, say ao, then an amount 

of energy remains locked in the dissociation and does not become available to the kinetic 

energy of the flow. Consequently, the maximum speed in the case of frozen flow is reduced 

to 

(17.5) 

We want to map expansion flows in the Vb-plane. Consider a weak expansion wave or 

a Mach line that deflects a flow through a small angle db and increases the velocity vector 
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V by a small amount dV. The wave is able to impart momentum to the fluid only in a 
"'"' "'"' 

direction normal to itself. Hence dr must be at right angles to the wave. 

It follows that 

IV+dVI 
"'" "'" sin (~ + Ji.) cos J.L cos J.L 

v - sin [f - (Ji. + db')] - cos(J.L + db') - cos J.L cos db' - sin J.L sin db' 
"'" 

1- = 1 + tanJi.· db' for db' --t O. 
1 - tan J.L • db' 

If 
Idrl 

dV 
11 + Irl + 0(b'2) V· 

Hence 

db' cot J.L 

dV If' 

or 

db' y'V2/a2- 1 
-= 
dV V 

(17.6) 

since sin I' t k'::ng the speed of sound. (17.6) is the differential equation of Prandtl­

Meyer flow, see Liepmann & Roshko, Vincenti & Kruger etc .. In order to make further 

use of (17.6) it is necessary to relate the speed of sound to V via the energy equation and 

the caloric equation of state. In the case of a perfect gas, the equation may be integrated 
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formally and a final state (2) may be related to an initial state (1) and a total turning 

angle. 

It turns out that to each initial state there corresponds a maximum value of 181 18minl 

which is reached when the flow is fully expanded to the maximum velocity corresponding 

to that initial state. 

If the initial state is undissociated {(q 0), no further recombination can occur and 

there is no difference between frozen and equilibrium flow. This is in contrast to the case 

of deflection by a shock. 

- -/
.Q,x pQ,V\ S iOn, 

The difference between the maximum speed and VI depends on the Mach number. For 

example, in frozen flow, 

(17.7) 

As may be seen, this goes to zero as MI -+ 00. 
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A more interesting case to consider is that where the initial state is dissociated, such 

as occurs, for example at the trailing edge of a wedge, where a shock causes the initial 

dissociation and an expansion occurs from the dissociated state. 

'\, 
f., 

This flow exhibits two important d\fferences between equilibrium and frozen flow: 


First, the maximum speed that is reached from the dissociated initial state is different£see 

') 

eqn. (17.5). 

Second, the path along which the streamline map proceeds in the V 8-plane is different in 

the two cases. In order to illustrate this, the BV- map is drawn here with an exaggerated 

V -scale and relative to the state (1). In this diagram we also show as a dashed line the 

streamline map that would be observed if the flow were to proceed in equilibrium first and 

sudden freezing were occurring within the expansion. 
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This flow would exhibit an intermediate Vmax and an intermediate 8min. Sudden freezing 

is actually a good model for this flow. Clearly, however, the freezing will occur further 

downstream from the first Mach wave for streamlines further from the corner, because the 

recombination rate demanded by the flow is smaller there (passage time through expansion 

longer). Hence, even for an assumed uniform state along the first Mach wave, the state at 

the last Mach wave will not be uniform. The next diagram illustrates the features of the 

flow in the physical and the V 8-plane, for the case 181< 18min frozen ,. 

The point A in the physical plane maps into the line A A l in the V 6-plane. The point 

B indicates the angle downstream of which no recombination occurs, no matter how far 

the streamline is away from the surface. 
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Clearly, there exists a velocity gradient across the flow after the expansion: CAt, the 

higher speed occurring near the wall. This is in contrast to the case of flow over a wedge 

where vorticity of the opposite sign is generated by the nonequilibrium, see sketch. 

G 

1 

The expansion flows considered in this section assume that some recombination does occur 
/ 

in the expansion. For this to be the case it is necessary for the product of density and size 

of the flow (pL) to be much larger than in the flows that exhibit dissociation quenching. 

In the large class of particularly important flows where the latter is true, it is therefore 

not necessary to consider nonequilibrium effects in expansion around a convex corner. In 

these flows the frozen expansion curve in the V 8-plane is appropriate. 



Ae234 Summary 


1 Introduction 

In an introductory part, background information on chemical thermodynamics was pre­
sented, including: 

Chemical equilibrium corresponds to minimization of the Gibbs Function, This leads to the 
Law of Mass Action. 

A review of Statistical Mechanics showed how the Law of Mass Action can be formulated in 
terms of the partition functions of the chemical species. 

It was shown how, in the case of a symmetrical diatomic gas, the Law of Mass Action and 
the caloric properties of the gas may be approximated by a particularly simple equation, 
Lighthill's ideal dissociating gas (IDG). 

The non-equilibrium behavior of the IDG was shown to be well approximated by the Freeman 
model. 

2- Normal shock 

The features of the flow after an equilibrium and a non-equilibrium normal shock were 
derived. In the relaxation zone the density, temperature and velocity are most strongly 
affected, while the pressure and enthalpy are practically constant after the shock. 

3 Speed of sound, nozzle flows 

It was shown that the speed of sound is smaller in equilibrium flow than in frozen flow. 

The singularity at the throat in steady expansion equilibrium nozzle flows is displaced down­
stream of the geometrical throat when the recombination reaction proceeds at a finite rate. 

Because the recombination rate is proportional to the square of the density, the rapid drop in 
density in a nozzle expansion causes the recombination to stop fairly suddenly at some point, 
a phenomenon called sudden freezing. The composition of the flow is constant thereafter. In 
contrast to flow downstream of a shock, non-equilibrium in nozzle flows most strongly affects 
the pressure and temperature, and has practically no influence on the density and velocity. 



4 0 blique and curved shock 

The flow after an oblique shock follows directly from the normal shock results. It is convenient 
to map the flow into the Vb-plane, in which the frozen and equilibrium shock locuses are 
different, and the streamline can be mapped. 

In a small range of shock angles, the flow immediately downstream of the frozen shock 
is subsonic and accelerates to supersonic flow again. This behavior of the sonic line has 
implications for shock detachment (see wedge flow later). 

The equations for the flow immediately downstream of a curved shock were solved to write 
down expressions for the gradients at the shock. This led to a number of results, including 
the streamline curvature and behavior of the streamline in the Vb-plane. The gradient of any 
quantity has two contributions. One form the shock curvature and one from the chemical 
reaction. 

It was shown how a simple argument using the V b- map can be used to predict that the 
process of shock detachment from a wedge is much more gradual in relaxing flow than in 
frozen or equilibrium flow. This was shown to be substantiated dramatically by experiments 
and computation. Similar behavior is exhibited by shock detachment from a cone. 

5 Blunt-body flows 

An analysis was presented that led to an analytical result about the shock stand-off dis­
tance on a sphere showing its dependence on a reaction rate parameter and on a parameter 
measuring the flow kinetic energy in terms of the dissociation energy. The reaction rate 
parameter was formulated for a complex gas (rather than IDG), and illustrates the way in 
which the reaction rate enters the flow problem. 

The phenomenon of reaction quenching was presented, in which the cooling caused by the 
shock curvature causes the dissociation reaction to be terminated. In the case when the 
quenching occurs close to the shock, a boundary layer type of analysis was presented that is 
able to formulate effective shock jump conditions for the flow downstream of the quenching 
line. These shock jump conditions incorporate shock curvature, reaction rate parameter and 
kinetic energy parameter in addition to the usual oblique shock parameters. 

The curved shock on a blunt body generates vorticity that is concentrated around the stream­
line that crosses the shock at a shock angle of about 60°. It was shown by computations 
that the shear layer thus generated becomes unstable within a few nose radii of the nose if 
the density ratio across a normal shock is 14 or higher, as is the case in strongly dissociat­
ing blunt body flows. Experimental results were presented that dramatically confirm this 
instability. 



6 Transition 

It was shown that chemical or vibrational relaxation absorbs sound if the frequency is near the 
inverse relaxation time. In high Mach number flows, the instability that leads to transition 
of a laminar boundary layer to turbulence is acoustic in nature. Relaxation processes could 
therefore delay transition. 

Experimental results were presented that show dramatically that transition delays of up 
to a factor of 5 can be achieved through this phenomenon. Results from linear stability 
computations were presented that support the idea that the observed transition delay was 
caused by the damping of acoustic noise through relaxation. 

Results were also presented that showed that transition could be delayed by suitable wall 
porosity) thus further substantiating the acoustic instability. 

7 Experimental flow simulation 

Arguments were presented (power, material) that led to the need to operate hypervelocity 
flow simulation facilities for short test times. Quick heating need- suggests shock waves. 
The most successful arrangements are the reflected shock tunnel and the expansion tube. 
The need to heat the driver follows from the requirement to achieve flow speeds of 6 km/s. 
Performance and limitations of the facility types were discussed. 

8 Conclusion 

This course aimed to characterize the influence of relaxation on the elements of gasdynamics. 
Many of the discoveries in this field are not yet documented in textbooks, and some of them 
have very important implications for design of entry vehicles and heat shields. They may 
even become useful to you some day. 




